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Abstract

Recent studies in Retrieval-Augmented Gener-001
ation (RAG) have investigated extracting evi-002
dence from retrieved passages to reduce com-003
putational costs and enhance the final RAG per-004
formance, yet it remains challenging. Existing005
methods heavily rely on data-level augmenta-006
tion, encountering several issues: (1) Poor gen-007
eralization due to hand-crafted context filter-008
ing; (2) Semantics deficiency due to rule-based009
context chunking; (3) Skewed length due to010
sentence-wise filter learning. To address these011
issues, we propose a model-level evidence ex-012
traction learning framework, SEER, optimiz-013
ing a vanilla model as an evidence extractor014
with desired properties through self-aligned015
learning. Extensive experiments show that our016
method largely improves the final RAG per-017
formance, enhances the faithfulness, helpful-018
ness, and conciseness of the extracted evidence,019
and reduces the evidence length by 9.25 times.020

1 Introduction021

Recent years have witnessed the prevailing winds022

of Retrieval-augmented Generation (RAG), which023

is a prevailing paradigm for improving the perfor-024

mances of Large Language Models (LLMs) in var-025

ious downstream tasks, such as question answer-026

ing, making the output more reliable (Lewis et al.,027

2020; Chen et al., 2023; Jiang et al., 2023b; Ram028

et al., 2023), interpretable (Guu et al., 2020; Louis029

et al., 2024), and adaptable (Xu et al., 2023; Za-030

kka et al., 2024). Traditional practices (Karpukhin031

et al., 2020; Min et al., 2019) often involve provid-032

ing top-retrieved passages as the input context to033

LLMs without discrimination. However, imperfect034

retrieval systems frequently yield irrelevant content.035

Furthermore, indiscriminately feeding all retrieved036

content to LLMs will cause input redundancy, im-037

posing a significant computational cost and render-038

ing them prone to hallucination (Shi et al., 2023).039

Ideally, LLMs should be grounded on support-040

ing content that is both highly helpful to address041

user input and sufficiently concise to facilitate infer- 042

ence speed. However, it is practically impossible 043

for imperfect retrieval systems to achieve such an 044

ideal grounding solely (Wang et al., 2023). In fact, 045

top-retrieved passages usually compose supporting 046

and distracting content, inflicting a heavy blow on 047

LLMs trained with high-quality corpora to generate 048

the correct output. This motivates us to develop an 049

evidence extractor, that aims at extracting support- 050

ing content while filtering out distracting content. 051

Recently, a pioneering study, FILCO (Wang 052

et al., 2023), attempts to retrieve chunking doc- 053

ument content with sentence precision via three fil- 054

ters, i.e., StrInc, Lexical, and CXMI. Then, it trains 055

a context filtering model, using context filtered 056

by the above three measures as ground truth. De- 057

spite effectiveness, current context-filtering meth- 058

ods have several limitations: (1) Hand-crafted 059

Context Filtering. Manually designed context- 060

filtering measures typically require domain knowl- 061

edge, which can hardly be adaptable to diverse 062

downstream tasks with limited supervision. (2) Dis- 063

ruptive Chunking on Context. The use of chunk- 064

ing strategies may be ineffective as rule-based split- 065

ting on context usually cannot preserve its origi- 066

nal semantics and often produces semantically de- 067

ficient text blocks. (3) Skewed Distribution in 068

Length. The length of supporting content in top- 069

retrieved passages may vary largely across different 070

samples. Hence, learning to filter context sentence- 071

wise is biased toward skewed length distribution. 072

Given these limitations, an interesting question 073

arises: Now that data-level augmentation1 suffers 074

from several issues, can we develop a model-level 075

augmentation method free of the above problems? 076

Inspired by the recent success of self-alignment (Li 077

et al., 2023a; Zhang et al., 2024; Liang et al., 2024), 078

self-aligned learning utilizes the model to improve 079

itself and aligns its response with desired proper- 080

1Previous methods generally construct training signals via
data engineering (we denoted it as data-level augmentation).
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Figure 1: The RAG pipeline with the evidence extrac-
tor, in which the supporting content and the distracting
content are marked in green and yellow, respectively.

ties, which is able to mitigate the heavy reliance on081

hand-crafted context filtering, rule-based context082

chunking, as well as sentence-wise filter learning.083

Given extracted evidence, a question arises084

again: How to evaluate the quality of evidence085

properly? In principle, the evidence should be086

faithful (i.e., avoiding intrinsic hallucination) to the087

retrieved passages (Rashkin et al., 2021; Maynez088

et al., 2020), helpful in addressing the user input089

(Adlakha et al., 2023), and concise to facilitate the090

inference speed (Ko et al., 2024). Figure 1 shows091

three representative scenarios: (1) When the evi-092

dence only favors faithfulness, LLMs may generate093

an incorrect answer; (2) When the evidence further094

favors helpfulness but lacks conciseness, LLMs’095

attention may be distracted by noise; (3) When096

the evidence favors all three criteria, LLMs can097

generate confidently with low computational costs.098

In this paper, we propose a model-level ev-099

idence extraction learning framework, SEER,100

Self-Aligned Evidence Extraction for Retrieval-101

Augmented Generation. Specifically, it consists of102

three primary stages: (1) Evidence Extraction: To103

mitigate the issues above, we propose extracting104

diversified evidence with semantic consistency and105

varying length through response sampling, offer-106

ing sufficient preference data for alignment. (2)107

Expert Assessment: For each extracted evidence,108

we construct a quadruple, QuadQARE, made up109

of query, answer, passage, and evidence. Then,110

we devise three experts to assess the quality of111

each extracted evidence w.r.t. three primary criteria.112

Given these scores, we propose smoothing CoV-113

Weighting, which explicitly leverages the statistics114

to estimate their relative weighting and result in the115

CoV-Weighted scores. (3) Self-Alignment: With a116

ranking list of extracted evidence and their smooth-117

ing CoV-weighted scores, a question remains: How118

to optimize extraction preference with the ranking119

position? To this end, we propose a listwise-aware120

Lambda Preference Optimization method, LPO, as- 121

signing each preference pair with a listwise-aware 122

weight scaled by the gain in Reciprocal Rank from 123

swapping the position of two evidence (Donmez 124

et al., 2009; Burges et al., 2006; Wang et al., 2018). 125

It is worth mentioning that SEER is criterion- 126

agnostic and can employ any off-the-shelf expert. 127

Here, we use faithfulness, helpfulness, and concise- 128

ness, which are regarded as three primary criteria 129

for assessing the quality of evidence (Maynez et al., 130

2020; Rashkin et al., 2021; Adlakha et al., 2023; Ko 131

et al., 2024). Our main contributions are summa- 132

rized as follows: (1) We propose a novel evidence 133

extraction learning framework, SEER, leveraging 134

preference data augmented by the model itself to 135

improve performance, being free of the arduous 136

workforce. (2) We devise three experts to assess 137

the quality of the evidence, and design smoothing 138

CoV-weighting to get an overall assessment, which 139

supports criterion-agnostic. Besides, we propose 140

a listwise-aware preference optimization method, 141

LPO, seamlessly bringing the ranking position into 142

preference learning. (3) Extensive experiments on 143

three datasets show that our method can consider- 144

ably improve QA performance, enhance the quality 145

of evidence, as well as reduce computational costs. 146

2 Preliminaries 147

2.1 Problem Formulation 148

In this task, we are given a base extractor E , and 149

a fixed generator G, where we choose Llama2-7b- 150

Chat (Touvron et al., 2023) as the backbone for 151

the base extractor E . For a given query q and its 152

corresponding golden answer a, we assume a set 153

of retrieved passages P = {pi}Ki=1, where K is the 154

retrieved size. Here, we aim to fine-tune the base 155

extractor E via self-alignment to get the aligned 156

extractor Ẽ , for the generator G to leverage the 157

better evidence and achieve superior performance: 158

e ∼ Ẽ(·|q ⊕ P ), o ∼ G(·|q ⊕ e), (1) 159

where e and o denote the extracted evidence and 160

the generated output, respectively; ⊕ denotes the 161

concatenation operation; q is the given user query. 162

2.2 Augmentation Analysis 163

As stated in Section 1, data-level augmentation 164

suffers from several issues, severely hindering the 165

optimization for context filtering. To verify this, we 166

compare the context relevance between data-level 167

and model-level augmentation, where the context 168
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Figure 2: Comparison between model-level and data-
level augmentation in terms of their context relevance.

relevance is the cosine similarity between the ex-169

tracted evidence and the user query2. Here, we use170

StrInc as the representative data-level augmentation171

method (abbreviated as “StrInc Data-level Aug”),172

as it usually performs best on QA tasks according173

to (Wang et al., 2023). For another, we perform174

model-level augmentation by response sampling175

(More details can be seen in §3.1). We take the176

best-performing extracted evidence for each QA177

pair as “Upper Model-level Aug” while the worst-178

performing one as “Lower Model-level Aug”.179

We experiment on three datasets, i.e., NQ, TQA,180

and HotpotQA. As shown in Figure 2, we find that:181

(1) The context relevance of Upper Model-level182

Aug is consistently higher than that of StrInc Data-183

level Aug. (2) The context relevance of StrInc Data-184

level Aug generally lies in the middle of Upper and185

Lower Model-level Aug. From the above obser-186

vations, our claim is well-validated, since model-187

level augmentation shows a larger potential than188

data-level one. Hence, it is valuable to conduct189

model-level augmentation for better performance.190

3 Methodology191

Figure 3 depicts the overall framework of SEER,192

composing three key stages: (1) Evidence Extrac-193

tion (§3.1), which extracts evidence via response194

sampling. (2) Expert Assessment (§3.2), which as-195

sesses the quality of evidence. (3) Self-Alignment196

(§3.3), which aligns the extractor with extraction197

preference. The learning algorithm of our proposed198

method can be seen in Appendix D in Algorithm 1.199

3.1 Evidence Extraction Stage200

As stated in Section 1, data-level augmentation201

(Wang et al., 2023) suffers from several issues. An202

empirical study (§2.2) further indicates that model-203

level augmentation is more beneficial for perfor-204

2We employ the SBERT-NLI-base model Reimers and
Gurevych (2019) (denoted as SBERT) to encode the extracted
evidence and the user query into sentence embedding vectors.

mance improvement than data-level augmentation. 205

Hence, we aim to utilize the base extractor E to 206

improve itself and align it with desired properties. 207

To this end, we probe into its evidence extraction 208

preference by response sampling for preference 209

data collection. Specifically, given a query q and 210

its retrieved passage P , we generate multiple candi- 211

date extracted evidence {ei}Mi=1 via response samp- 212

ling e∗ ∼ E(·|q ⊕ P ), where M is the sample size. 213

However, LLMs often tend to be overconfident 214

in their knowledge (Xiong et al., 2023). As such, 215

the response distribution typically follows a power- 216

law, where head responses occupy a large portion 217

of extracted evidence while long-tail ones are very 218

sparse. Directly using the power-law response 219

distribution for alignment would cause preference 220

optimization to be biased toward head responses. 221

Hence, we remove duplicates and obtain the uni- 222

formly distributed set, i.e., {ei}Ni=1, where we use 223

n-gram similarity (Kondrak, 2005) to detect dupli- 224

cates and N is the remaining size. In practice, we 225

find using the uniform response distribution does 226

matter for alignment to reach higher performance. 227

3.2 Expert Assessment Stage 228

Although the base extractor can extract evidence, 229

its output might be unfaithful, unhelpful, and un- 230

concise, regarded as three primary obstacles hin- 231

dering the quality of evidence (Maynez et al., 2020; 232

Rashkin et al., 2021; Adlakha et al., 2023; Ko et al., 233

2024). As such, we devise three experts to assess 234

the quality of extracted evidence w.r.t. faithful- 235

ness, helpfulness, and conciseness3, respectively. 236

Considering multiple scores for each extracted ev- 237

idence, we devise a smoothing CoV-Weighting 238

schema in order to get the overall assessment score. 239

Obtaining Oracle Scores. For expert assessment, 240

we first collect a set of QuadQARE < q, a, P, e >, 241

a Quadruple composed of Query q, Answer a, 242

Retrieved passage P , and extracted Evidence e. 243

Then, we design three plug-and-play experts to 244

assess the quality of extracted evidence, parallelly. 245

• Faithfulness Expert. It focuses on the faithful- 246

ness of each extracted evidence. Toward this 247

end, we adopt an advanced NLI model, ALIGN- 248

SCORE4 (Zha et al., 2023), to evaluate the con- 249

sistency between the retrieved passage P and 250

extracted evidence e in terms of hallucination. 251

Specifically, we treat the retrieved passage and 252

3We use the term “oracle” to denote three primary criteria.
4We use ALIGNSCORE-large for faithfulness assessment.
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Figure 3: The overall system framework of our SEER, which mainly consists of three modeling stages.

extracted evidence as the premise and hypothesis,253

respectively. Then, we leverage ALIGNSCORE254

to measure to what extent the extracted evidence255

e could be entailed by the retrieved passage P :256

sf = ALIGNSCORE(P, e), (2)257

where sf ∈ [0, 1] is the faithfulness score. If the258

hypothesis e is faithful to the premise P , then259

the score is close to 1, otherwise, it is close to 0.260

• Helpfulness Expert. It examines the helpfulness261

of each extracted evidence candidate in terms of262

output improvement. In other words, it checks263

whether the extracted evidence e contributes to264

the model’s output improvement when utilized265

as input. Specifically, we assess its potential266

influence on LLMs by calculating the change267

in the log probability of generating the golden268

answer a between the model’s output before and269

after the inclusion of the extracted evidence e:270

sh = Sig

(
log

∏
f(a|q ⊕ e)∏
f(a|q)

)
, (3)271

where sh ∈ [0, 1] is the helpfulness score, f(·)272

is the helpfulness expert5, Sig(·) is the sigmoid273

function. Similarly, if the extracted evidence e is274

helpful for LLMs to output the golden answer a,275

the score is close to 1, otherwise, it is close to 0.276

5We employ Flan-T5-XL for helpfulness assessment.

• Conciseness Expert. If only the above two ex- 277

perts are considered, the aligned extractor can 278

easily be achieved by directly treating the re- 279

trieved passage as evidence. To avoid such a 280

trivial solution, we further measure the concise- 281

ness of the extracted evidence e. Towards this 282

end, we first convert the query q and the golden 283

answer a into the full-length answer6 t, which 284

represents minimal information for the need to 285

answer the query. Subsequently, we leverage 286

SBERT (Reimers and Gurevych, 2019) to mea- 287

sure to what extent the semantic overlap between 288

the full-length answer and the extracted evidence: 289

sc = SBERTcosine(t, e), (4) 290

where sc ∈ [−1, 1] is the conciseness score via 291

measuring cosine similarity between the sentence 292

embedding of t and e, t is a full-length answer. 293

Here, we prompt GPT-3.5-turbo to generate a 294

full-length answer t given the query q and its ans- 295

wer a. More details can be seen in Appendix B. 296

Weighting Oracle Scores. Having obtained the or- 297

acle scores, a question naturally arises: How to get 298

the overall assessment for each extracted evidence? 299

A straightforward way is to compute the average of 300

6The full-length answer is generated by transforming the
question and its corresponding answer into a declarative state-
ment (Pal et al., 2019; Jain et al., 2021).
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the oracle scores. However, equal weighting might301

not result in optimal alignment, since the learning302

difficulty is inconsistent. Therefore, the weights303

should match the learning difficulty to guide the304

preference optimization process. Given this, we305

propose smoothing CoV-weighting, leveraging the306

variability of the scores in relation to the mean:307

cf = σf/µf , (5)308

where σf and µf denote the mean and the stan-309

dard deviation of faithfulness score sf , cf is the310

Coefficient of Variation (CoV) whose value is inde-311

pendent of the magnitude. As such, CoV can decou-312

ple the score magnitude from the score weighting,313

so a type of score with a small magnitude may still314

be relatively impactful when it is variant (Groe-315

nendijk et al., 2021). Analogously, we obtain the316

CoV of the helpfulness and conciseness score, i.e.,317

ch and cc. Moreover, we employ the softmax func-318

tion with temperature on the coefficient of variation319

of these scores, which controls the smoothness of320

the score weight to avoid abnormal score weight:321

αf =
exp(cf/τ)∑
∗ exp(c

∗/τ)
, (6)322

where αf is the faithfulness score weight, τ is the323

temperature. Analogously, we obtain the helpful-324

ness and conciseness score weight, i.e., αh and αc.325

Then, the CoV-weighted score can be defined as:326

s = αfsf + αhsh + αcsc, (7)327

where the score weight increases when the std in-328

creases or the mean decreases, ensuring more opti-329

mization proceeds when the score is more variant.330

3.3 Self-Alignment Stage331

After obtaining the preference data over all candi-332

dates D = {(q⊕P, ei, ej)|1 ≤ i, j ≤ N, si > sj},333

where each tuple represents a choice preference be-334

tween winning and losing extracted evidence, we335

proceed to the stage of alignment tuning for im-336

proving faithfulness, helpfulness, and conciseness.337

For alignment training, previous works commonly338

adopt Proximal Policy Optimization (PPO) (Schul-339

man et al., 2017) or Direct Preference Optimization340

(DPO) (Rafailov et al., 2023). However, PPO can-341

not perceive the ranking position and DPO treats342

all preference pairs indiscriminately. Due to the343

above drawbacks, both of them cannot result in344

optimal alignment. Inspired by the Lambdaloss345

method (Donmez et al., 2009; Burges et al., 2006; 346

Wang et al., 2018), we propose a listwise-aware 347

Lambda Preference Optimization algorithm, LPO, 348

which seamlessly brings the ranking position into 349

DPO by assigning a lambda weight to each pair: 350

L(πθ;πref , λw,l)LPO = −E(x,yw,yl)∼D[
λw,l log Sig

(
β

πθ(yw|x)
πref(yw|x)

− β
πθ(yl|x)
πref(yl|x)

)]
,

(8) 351

where πθ = Ẽ , πref = E , x = q⊕P, yw, yl = ei, ej . 352

We implement the lambda weight λw,l for Mean 353

Reciprocal Rank (MRR), i.e., measuring the gain in 354

Reciprocal Rank from swapping the position of two 355

candidates, which can be formulated as follows: 356

λw,l = sw∆MRRw,l + sl∆MRRl,w, (9) 357

where ∆MRRw,l =
1
rw

− 1
rl

, rw is the rank position 358

of yw in the ranking permutation induced by the 359

smoothing CoV-weighted score s. Thus, by intro- 360

ducing the lambda weight, LPO becomes a listwise- 361

aware method. LPO is designed to work with any 362

ranking metric, as long as the lambda weight can 363

be defined, e.g., NDCG (Liu et al., 2024). Here, we 364

implement LPO to optimize a well-founded rank- 365

ing metric MRR because it is simple yet effective. 366

4 Experiments 367

In this section, we conduct extensive experiments 368

on three QA benchmark datasets to answer the fol- 369

lowing Research Questions (RQs): RQ1: How 370

does our model contribute to QA accuracy com- 371

pared with other state-of-the-art methods? RQ2: 372

Can LPO facilitate the generation of more faith- 373

ful, helpful, and concise evidence? RQ3: Can our 374

model perform robustly to noise from irrelevant 375

passages? RQ4: How effective are the key settings 376

in our model, such as smoothing CoV-weighting? 377

4.1 Experimental Settings 378

Datasets and Metrics. We experiment on three 379

benchmark QA datasets, NaturalQuestions (NQ) 380

(Kwiatkowski et al., 2019), TriviaQA (TQA) (Joshi 381

et al., 2017), and HotpotQA (Yang et al., 2018). 382

Following Wang et al. (2023), we use the processed 383

version (Lee et al., 2019) of NQ for experiments, 384

discarding answers with more than 5 tokens. As 385

NQ and TQA belong to the extractive QA task, we 386

use Exact Match (EM) as their evaluation metric, 387

where a score of 1 is assigned if at least one among 388

multiple correct answers appears in the response 389
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Datasets Generators Metrics WE CGE FGE
Zero Full SeleCtx LLM-Embedder Bge-Reranker FILCO SEER

Flan-T5
EM 0.0934 0.4137 0.2853 0.3953 0.4089 0.3809 0.4322
Tok 0 732 290 147 148 62 89
EM 0.2695 0.4382 0.3850 0.4208 0.04202 0.4061 0.4549

NQ
Llama2

Tok 0 804 319 160 162 67 95

Flan-T5
EM 0.2621 0.6320 0.5022 0.5689 0.6227 0.6431 0.6503
Tok 0 760 306 152 153 130 121
EM 0.4898 0.6571 0.6061 0.6239 0.6581 0.6599 0.6711

TQA
Llama2

Tok 0 813 331 161 163 137 133

Flan-T5
F1 0.5289 0.5702 0.5127 0.5532 0.5608 0.5535 0.5615
Tok 0 765 313 154 153 56 58
F1 0.6467 0.6978 0.6658 0.6940 0.7106 0.7132 0.7312

HotpotQA
Llama2

Tok 0 821 337 165 164 59 62

Table 1: QA performance comparison, where the best results are boldfaced and the second-best results are
underlined, in each row. ‘Tok’ is the average length of extracted evidence fed into generators, where the smaller the
value, the lower the computational cost. All improvements are significant with p-value < 0.01 according to t-test.

of the QA model; otherwise, the score is 0. While390

HotpotQA belongs to the abstractive QA task, we391

employ unigram F1 to evaluate answer correctness.392

As the test set for HotpotQA is unavailable, we393

report the dev set results. The detailed statistics of394

datasets are summarized in Appendix A in Table 3.395

Baseline Methods. There are three types of base-396

lines: (1) Without Evidence (WE) includes (i)397

Zero-shot (Zero) that does not pass any evidence398

to LLMs. (2) Coarse-grained Evidence (CGE)399

includes (i) Full Passage (Full) that directly passes400

the top-retrieved passage to LLMs, (ii) Select-401

Context (SeleCtx) (Li et al., 2023b) that identi-402

fies and prunes redundancy in the top-retrieved403

passage based on perplexity. (3) Fine-grained404

Evidence (FGE) includes (i) LLM-Embedder405

(Zhang et al., 2023) that extracts the sub-passages406

with the highest similarity to the query from the407

top-retrieved passage, (ii) Bge-Reranker-Large408

(Bge-Reranker) (Xiao et al., 2023) that reorders all409

sub-passages in the top-retrieved passage and uses410

the top-ranked sentence as evidence, (iii) FILCO411

(Wang et al., 2023) that learns to filter the top-412

retrieved passage with sentence precision leverag-413

ing data-level augmentation to label ground-truth.414

Generators for QA. To measure the efficacy of the415

evidence extracted by SEER and other competitive416

baselines7, we employ two different generators,417

i.e.,, Flan-T5-XL (Chung et al., 2024) and Llama2-418

7B-Chat (Touvron et al., 2023), for QA evaluation.419

7In what follows, we use Flan-T5 and Llama2 to represent
Flan-T5-XL and Llama2-7B-Chat, respectively, for brevity.

Implementation Details. Following Wang et al. 420

(2023), we use the adversarial Dense Passage Re- 421

triever (DPR) (Karpukhin et al., 2020) to retrieve 422

the top-5 passages from all Wikipedia passages. 423

For each <user query q, retrieved passage P> pair, 424

we set the sample size M as 10. For the tempera- 425

ture coefficient of smoothing CoV-weighting, we 426

tune it within the range of {0.2, 0.5, 1.0, 2.0, 5.0}. 427

We employ Llama2-7B-Chat (Touvron et al., 2023) 428

as the base extractor E and fine-tune it on the con- 429

structed preference data for 2 epochs to get the 430

aligned extractor Ẽ . We adopt greedy decoding for 431

evidence extraction and output generation. More 432

implementation details are shown in Appendix A. 433

434
4.2 Model Comparison (RQ1) 435

To examine the impact of evidence extraction on 436

the final RAG performance, we experiment on three 437

benchmark QA datasets, where we prepend the ex- 438

tracted evidence before the user query and then 439

input them together into the generator. Besides, we 440

use the tokenizer of Flan-T5 and Llama2 to con- 441

vert the extracted evidence into a list of subwords 442

and then calculate the length of the list, where the 443

length is adopted as a metric (denoted by ‘Tok’) 444

measuring the computational burden to a large ex- 445

tend. Table 1 shows the final RAG performance 446

of different baseline evidence extraction methods 447

and our proposed SEER. From the experimental 448

results, we mainly have the following observations: 449

• In all cases, SEER outperforms FILCO by a large 450

margin, indicating the superiority of model-level 451
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(a) NQ dataset.

(b) TQA dataset.

(c) HotpotQA dataset.

Figure 4: Alignment performance w.r.t. faithfulness,
helpfulness, and conciseness. The bar represents the
oracle scores, while the line denotes the percentage of
performance improvement in comparison with the Base.

augmentation that can provide more informative452

samples than data-level one. For example, SEER453

achieves 13.5% and 12.0% improvements in the454

NQ dataset with Flan-T5 and Llama2 generators,455

while the average evidence length is very close.456

• Optimizing the three primary criteria for evi-457

dence extraction (i.e., faithfulness, helpfulness,458

and conciseness) yields such impressive perfor-459

mance improvements, considering most base-460

lines come from studies in recent two years. This461

demonstrates that these three properties strongly462

agree with the evidence quality in RAG, while463

current methods might not satisfy all of them464

simultaneously, which results in inferior results.465

• Comparing different baselines, it is not surprising466

the method without evidence performs the worst.467

Secondly, methods with fine-grained evidence do468

not always perform better than ones with coarse-469

grained evidence. Specifically, the ‘Full’ method470

generally performs well, as it preserves retrieved471

passages complete, while some FGE methods472

(e.g., LLM-Embedder and Bge-Ranker) might473

lose key information in the process of evidence474

extraction, but it takes much more time for gen-475

eration due to the long context. Last but not476

least, our SEER considerably outperforms the477

‘Full’ method in most cases, where the average478

improvement on the three datasets is 2.76% w.r.t.479

QA accuracy, but the average length of evidence480

fed into generators is reduced by a factor of 9.25.481

4.3 Alignment Study (RQ2) 482

To verify the effectiveness of the proposed LPO, 483

we implement SEER with different types of PO 484

methods to optimize the three primary criteria: (1) 485

Base, i.e., the base extractor; (2) PPO (Schulman 486

et al., 2017); (3) DPO (Rafailov et al., 2023); (4) 487

LPO (§3.3). In Figure 4, we present the oracle 488

scores made by each method, the performance per- 489

centage of improvement w.r.t. the Base method. 490

From the results, we find that: (1) Unsurprisingly, 491

the Base without alignment performs the worst in 492

11 out of 12 cases, indicating the necessity of align- 493

ment for evidence extraction. (2) The PPO usually 494

performs worse than the DPO one, as it directly op- 495

timizes the reward signal, i.e., the oracle scores in 496

our work, and thus neglects the pairwise signals be- 497

tween the extracted evidence corresponding to the 498

same query. (3) Our LPO consistently outperforms 499

the DPO, indicating the superiority of supplement- 500

ing DPO with a listwise-aware weight. (4) After 501

self-alignment, the average improvements of our 502

LPO over the Base on three datasets are 10.2%, 503

6.16%, and 1.70% regarding the three primary cri- 504

teria, showing huge potential to enhance the final 505

RAG performance and quicken up the inference. 506

4.4 Robustness Analysis (RQ3) 507

In real-world scenarios, RAG systems usually suf- 508

fer from data noise issues (Gao et al., 2023; Ding 509

et al., 2024) caused by imperfect retrieval systems, 510

etc. To simulate this scenario, we randomly add a 511

certain proportion (0%, 100%, 200%, 300%, and 512

400%) of irrelevant passages to each test query. We 513

use Noise-to-Signal Ratio (NSR) to denote the ratio 514

of irrelevant passages to the relevant retrieved ones. 515

Figure 5 shows the results on silver faithfulness8 516

and helpfulness, while conciseness is omitted as 517

the noise issue does not affect it much. The results 518

show that: (1) The performance of both aligned 519

and base extractors decreases, while the aligned 520

one can consistently outperform the base under any 521

NSR except for 1 case. (2) The performance drop 522

percent of the aligned model is generally lower than 523

the base in 2 out of 3 datasets. Besides, with 100% 524

noise proportion, the aligned model can even out- 525

perform the base without noise data on all datasets. 526

These observations manifest that SEER can endow 527

the backbone with more robustness to noise issues. 528

8The silver faithfulness measures the entailment degree
between the relevant retrieved passage (rather than the mixture
of it and the irrelevant passages) and the extracted evidence.
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(a) NQ dataset. (b) TQA dataset. (c) HotpotQA dataset.

Figure 5: Model performance w.r.t. NSR ratio. The bar denotes the silver faithfulness or helpfulness score, while
the line denotes the performance drop percent compared to the model provided with only relevant retrieved passage.

Model
Dataset

NQ HotpotQA
FS HS CS FS HS CS

(A) SEER 0.901 0.703 0.796 0.894 0.674 0.369
(B) w/o Dup 0.896 0.675 0.800 0.881 0.657 0.365
(C) w/o CoV 0.904 0.696 0.787 0.903 0.668 0.363
(D) w/o Lam 0.894 0.684 0.785 0.857 0.654 0.359

Table 2: Ablation study with key settings of SEER,
where we use FS, HS, and CS to indicate the Faithful-
ness, Helpfulness, and Conciseness scores, respectively.

529 4.5 Ablation Study (RQ4)530

In Table 2, we conduct an ablation study to ver-531

ify the effectiveness of key settings in our method,532

where w/o denotes without, (A) represents SEER,533

(B) removes the deduplication operation, (C) re-534

moves smoothing CoV-weighting by uniformly set-535

ting αf , αh, and αc to 1/3 in Eq. (7), (D) removes536

the lambda weight λw,l in Eq. (8). From this table,537

we can find that (A) achieves the best or second-538

best results in all datasets, indicating all key set-539

tings are effective for SEER. By comparing (A)540

and (B), removing duplicates can largely improve541

helpfulness, as it effectively avoids preference op-542

timization overwhelmed by head responses. By543

comparing (A) and (C), weighting the oracle scores544

based on their statistical properties can match the545

learning difficulty well. By comparing (C) and (D),546

we see that weighting the preference pairs plays547

a more key role than weighting the oracle scores.548

The reason might be that equally treating all prefer-549

ence pairs causes less attention to the crucial ones.550

5 Related works551

5.1 Context Refinement for RAG552

Recently, many works have emerged, aiming at553

identifying the supporting content from retrieved554

passages. The common method is to rerank the re-555

trieved passages and feed the top-ranked ones into556

generators (Zhang et al., 2023; Xiao et al., 2023).557

Thereafter, some methods leverage the capabili-558

ties of LLMs to summarize retrieved passages to559

identify key information (Ko et al., 2024; Laskar560

et al., 2023; Kim et al., 2024; Sarthi et al., 2024). 561

Furthermore, a few methods leverage agent mod- 562

els to calculate perplexity as an important indica- 563

tor to filter out low-information content (Li et al., 564

2023b; Jiang et al., 2023a). Other works use manu- 565

ally designed data-level augmentation to construct 566

training signals for fine-tuning LLMs, to enhance 567

their capacity to identify key information (Wang 568

et al., 2023; Jin et al., 2024). In contrast to previous 569

works heavily relying on hand-crafted augmenta- 570

tion, we use data augmented by the model itself to 571

boost performance, free of the arduous workforce. 572

5.2 Self-Aligned Learning 573

Recently, a few works have attempted to utilize 574

the model to improve itself and align its response 575

with desired properties (Li et al., 2023a; Zhang 576

et al., 2024; Liang et al., 2024; Sun et al., 2023). 577

For example, (Zhang et al., 2024) utilizes the self- 578

evaluation capability of LLMs to provide training 579

signals steering the model towards actuality. (Liang 580

et al., 2024) utilizes the model’s self-awareness to 581

align the model for hallucination mitigation. To the 582

best of our knowledge, our study is the first to ex- 583

plore self-aligned learning for evidence extraction. 584

6 Conclusion 585

This work explores the method that learns to ex- 586

tract high-quality evidence to assist model gener- 587

ation and reduce computational cost. Different 588

from previous works heavily relying on heuristics, 589

we introduce a novel evidence extraction learning 590

framework, SEER, which utilizes the model to cal- 591

ibrate its extraction preference via self-alignment. 592

To this end, we first probe into model extraction 593

preferences via response sampling, then assess the 594

quality of extracted evidence via experts, and fi- 595

nally optimize the vanilla model as an evidence ex- 596

tractor via self-alignment. Extensive experiments 597

show that SEER considerably improves the final 598

RAG performance. Moreover, it can extract more 599

faithful, helpful, and concise evidence, and also 600

shows higher robustness against data noise issues. 601
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Limitations602

Despite our discoveries and improvements, we603

must acknowledge certain limitations in our work:604

Firstly, computing resource constraints restrict605

our experiment to LLMs with limited and moder-606

ate scale, i.e., Flan-T5-XL (Chung et al., 2024) and607

Llama2-7B-Chat (Touvron et al., 2023). We will608

explore the use of our method on larger models609

such as Llama2-70B in future work. The EM and610

F1 metrics used in our experiments might over-611

estimate the correctness of responses, even if the612

response does not convey equivalent semantics to613

the ground truth, since these metrics mechanically614

verify whether the answer exists in the response.615

Secondly, our method still requires domain616

knowledge for devising experts to assess the qual-617

ity of evidence, though it has considerably light-618

ened the arduous workforce in data engineering.619

We experiment solely on Dense Passage Retriever620

(Karpukhin et al., 2020) with Wikipedia passages,621

while de facto RAG applications commonly invol-622

ve multi-source retrieval with varied writing styles.623

Thirdly, there are a few cases where the aligned624

extractor is vulnerable to data noise issues. As625

demonstrated in Table 5(c), with the NSR increases,626

the performance drop percent of the aligned extrac-627

tor is higher than that of the base one, although628

it still outperforms the base one. Therefore, we629

are currently conducting further research to pro-630

pose a more powerful evidence extractor, which is631

not only skilled at refining retrieved passages but632

also has higher robustness against noisy passages.633
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A More Implementation Details958

Dataset Task Metric #Train #Dev #Test

NQ Extractive QA EM 79.1k 8.7k 3.6k
TQA Extractive QA EM 78.7k 8.8k 11.3k
HotpotQA Abstractive QA F1 88.9k 5.6k 5.6k

Table 3: Statistics and task metrics for three datasets.

Statistics of datasets. We conduct extensive ex-959

periments on three benchmark datasets, i.e., Natu-960

ralQuestions (NQ) (Kwiatkowski et al., 2019), Triv-961

iaQA (TQA) (Joshi et al., 2017), and HotpotQA962

(Yang et al., 2018), for evaluating our proposed963

method and the competitive baselines. We show964

the detailed statistics of these datasets in Table 3.965

Response sampling details. Given the query and966

the retrieved passages, we prompt the base extrac-967

tor to generate 10 candidate response samples and968

we remove duplicates. To fully probe the evidence969

extraction preferences of the base extractor, we970

have modified the generation configuration to make971

the responses more varied. Specifically, we set top-972

p, top-k, temperature, and the repetition penalty973

as 1.0, 80, 1.0, and 1.0 respectively, for collecting974

diverse preference data, used to align the responses975

of the based extractor with the desired properties.976

Fine-tuning details. We use the Adam optimizer977

(Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.999,978

and eps = 1e−8. The learning rate is 1e−5 with 979

1.5% warmup ratio and cosine scheduler. The batch 980

size, gradient accumulation step, and number of 981

epochs are set as 16, 2, and 2.0, respectively. We 982

leverage the parameter-efficient fine-tuning tech- 983

nique, specifically LoRA (Hu et al., 2022), where 984

we employ the Llama-Factory9 fine-tuning frame- 985

work (Zheng et al., 2024) to implement all the pref- 986

erence optimization methods for fair comparisons. 987

Context relevance details. In Section 2, we use 988

context relevance as the metric to measure how 989

well the extracted evidence fits the current user 990

query and can be effectively used to augment the 991

quality of generation. To this end, we naturally 992

define context relevance as the cosine similarity 993

between the extracted evidence and the user query: 994

scr = SBERTcosine(q, e), (10) 995

where scr ∈ [−1, 1] is the context relevance score; 996

q and e denote the query and evidence, respectively. 997

Silver faithfulness details. In Section 4.4, we de- 998

vise a metric, silver faithfulness, to measure the 999

robustness of the evidence extractor against data 1000

noise issues commonly existing in real-world sce- 1001

narios. Specifically, we fed the mixture of the rele- 1002

vant retrieved passage and the randomly sampled 1003

irrelevant passages into the extractor. Then, we 1004

treat the relevant retrieved passage and extracted 1005

evidence as the premise and hypothesis, respec- 1006

tively, measuring how well the extractor is robust 1007

to irrelevant context, which can be formulated as: 1008

ssf = ALIGNSCORE(p̂, e), e = Ẽ(·|q ⊕ P̆ ), 1009

where ssf ∈ [0, 1] is the silver faithfulness score; p̂ 1010

is the relevant retrieved passage; P̆ is the mixture of 1011

p̂ and those randomly sampled irrelevant passages. 1012

B Full-length Answer Generation 1013

To assess the conciseness of the extracted evidence, 1014

we propose measuring the information gap between 1015

it and the full-length answer. The full-length an- 1016

swer is generated by transforming the question and 1017

its corresponding answer into a declarative state- 1018

ment, as shown in Table 4. Towards this end, we 1019

prompt GPT-3.5-turbo to transform each question- 1020

answer pair into a full-length answer. Addition- 1021

ally, we prepared a few-shot examples to encour- 1022

age well-organized output. The prompt for full- 1023

length answer generation can be found in Table 5. 1024

9https://github.com/hiyouga/LLaMA-Factory
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Question: Which branch of philosophy is concerned with fundamental questions about the nature of reality?
Answer: Metaphysics
Full-length answer: Metaphysics is the branch of philosophy concerned with fundamental questions about the nature of
reality.

Question: What country used the Drachma as its currency, before switching to the Euro in 2001?
Answer: Greece
Full-length answer: Greece used the Drachma as its currency before switching to the Euro in 2001.

Question: Californian rock band Lit recorded A Place in the Sun in 1995, but what’s their best known song?
Answer: My Own Worst Enemy
Full-length answer: The Californian rock band Lit recorded their album A Place in the Sun in 1995, and their best known
song is My Own Worst Enemy.

Table 4: Three examples of full-length answers from the NQ, TQA, as well as HotpotQA datasets, respectively.

Full-length Answer Generation Prompt

[Instruction]
You are given a question and its answer. Your task is to transform this question-answer pair into a
declarative sentence with lossless fidelity to the original semantics.
[Here are three examples]
[Question]: What profession does Nicholas Ray and Elia Kazan have in common?
[Answer]: director
[Full-length answer]: Nicholas Ray and Elia Kazan have the profession of director in common.
[Question]: When is season seven of game of thrones coming out?
[Answer]: July 16, 2017
[Full-length answer]: Season seven of Game of Thrones is coming out on July 16, 2017.
[Question]: What is the moon festival called in Chinese?
[Answer]: Mid-Autumn Festival
[Full-length answer]: The moon festival is called the Mid-Autumn Festival in Chinese.
[Now complete the following]
[Question]: When did the genre of installation art start to gain acceptance?
[Answer]: in the 1970s
[Full-length answer]:

Table 5: The prompt for full-length answer generation.

C Stability Analysis1025

In Figure 6, we experiment to verify whether the1026

stability of model generation is improved after self-1027

alignment. Specifically, we generate ten pieces of1028

evidence for each test query by response sampling1029

with the same generation configuration as Section1030

3.1. Then, we measure the oracle scores, calculate1031

the standard deviation, and compute the average.1032

The results show that: (1) The generation stability1033

of the aligned model performs much better than1034

that of the base one in most cases. More precisely,1035

the average improvement of the aligned model over1036

the base one on the three datasets is 18.5%. (2) The1037

generation stability in terms of helpfulness has seen 1038

greater improvements compared to the other two 1039

properties, with an average improvement of 32.2%, 1040

showing the huge potential to enhance the final 1041

RAG performance. These observations fully mani- 1042

fest that SEER is able to endow the backbone with 1043

superior generation stability during the inference. 1044

D Learning Algorithm of SEER 1045

Algorithm 1 demonstrates the learning algorithm 1046

of the proposed SEER framework. The algorithm 1047

can be divided into three stages, i.e., (1) Evidence 1048

Extraction (line 3-6), (2) Expert Assessment (line 1049

7-10), as well as (3) Self-Alignment (line 11-14). 1050
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(a) NQ dataset. (b) TQA dataset. (c) HotpotQA dataset.

Figure 6: Model stability w.r.t. faithfulness, helpfulness, and conciseness. The bar represents the standard deviation
results, while the line represents the stability improvement percent of the aligned model compared to the base model.
We use FS, HS, and CS to denote the Faithfulness, Helpfulness, and Conciseness scores, respectively, for simplicity.

Algorithm 1 Learning algorithm of SEER

Input: Trainig dataset with queries q, answers a, and retrieved passages P = {pi}Ki=1; the base evidence
extractor E ; the sample size M ; total number of iterations T .

Output: The aligned evidence extractor Ẽ
1: Initialize the model parameter Ẽ with E
2: for each i ∈ [1, T ] do
3: # Stage1: Evidence Extraction
4: Sample a mini-batch of (q, a, P ) query-answer-passage triples from the dataset.
5: Get evidence candidates {ej}Mj=1 via response sampling e ∼ E(·|q ⊕ P ).
6: Obtain uniformly distributed set {ej}Nj=1 by removing duplicates in {ej}Mj=1.
7: # Stage2: Expert Assessment
8: Construct a QuadQARE for each evidence candidate < q, a, P, e >.
9: Get the oracle scores for each evidence candidate (sf , sh, sc) with Eq. (2-4).

10: Get the smoothing CoV-weighted score s with Eq. (5-7).
11: # Stage3: Self-Alignment
12: Get the lambda weight λw,l for each preference pair (x, yw, yl) with Eq. (9).
13: Compute the preference optimization loss LLPO with Eq. (8).
14: Update the model parameter of Ẽ using gradient descent.
15: end for
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