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Abstract
Attention mechanism has become the domi-001
nant module in natural language processing002
models. It is computationally intensive and003
depends on massive power-hungry multiplica-004
tions. In this paper, we rethink variants of at-005
tention mechanism from the energy consump-006
tion aspects. After reaching the conclusion007
that the energy costs of several energy-friendly008
operations are far less than their multiplication009
counterparts, we build a novel attention model010
by completely replacing multiplications with011
either selective operations or additions. Empir-012
ical results on three machine translation tasks013
demonstrate that the proposed method, against014
the vanilla one, achieves comparable accuracy015
while only consumes a half of energy. Our016
code will be released upon the acceptance.017

1 Introduction018

Attention mechanism (ATT, Bahdanau et al., 2015;019

Vaswani et al., 2017; Kovaleva et al., 2019) has020

demonstrated huge success in a variety of natural021

language processing tasks (Kitaev and Klein, 2018;022

Tan et al., 2018; Devlin et al., 2019). The mod-023

ule learns hidden representations of a sequence by024

serving each word as a query to attend to all keys025

in the target sentence, then softly assembling their026

values. It is a de-facto standard to achieve this027

via performing linear projections and dot products028

on representations of queries and keys (Vaswani029

et al., 2017), resulting in large amount of multipli-030

cations. In spite of its promising quality, such kind031

of paradigm may be not the preferred solution from032

the energy consumption aspect (Horowitz, 2014;033

Raffel et al., 2020). How to build a high energy-034

efficient ATT still remains a great challenge.035

Our work starts from in-depth investigations on036

approaches in ATT context with respect to model037

compression (Hinton et al., 2015; Jiao et al., 2020)038

and complexity optimization (Raganato et al., 2020;039

Tay et al., 2021; Beltagy et al., 2020). These ap-040

proaches can potentially alleviate the problem of041

Operation (FP32) ASIC FPGA

Addition 0.9 0.4
Multiplication 3.7 18.8

Table 1: Energy cost (pJ) of addition/multiplication op-
eration on ASIC/FPGA hardware. 1 pJ = 10�12Joule.
Multiplication requires far more energy than addition.

high energy consumption in ATT. Nevertheless, in- 042

tentions of all these methods are not exactly from 043

the energy-friendly perspective, thus overlooking 044

the origin of energy consumed, i.e., basic arith- 045

metic operations in electric equipments. Most of 046

these approaches remain massive multiplications, 047

which costs far more energy than its addition coun- 048

terpart (Table 1, You et al., 2020). 049

To this end, we propose to approach this prob- 050

lem from a new direction – replacing massive mul- 051

tiplications in ATT with cheaper operations. Con- 052

cretely, we propose a novel energy-efficient atten- 053

tion mechanism (E-ATT). It equips binarized selec- 054

tive operations instead of linear projections over 055

input hidden states, and measures attentive scores 056

using L1 distance rather than dot-product. Conse- 057

quently, E-ATT completely abandons multiplica- 058

tions to reach the goal of energy cost reduction. 059

We examine our method with Transformer 060

model (Vaswani et al., 2017), and conduct experi- 061

ments over three machine translation tasks. Com- 062

pared with conventional ATT, our E-ATT can save 063

over 99% energy during alignment procedure, and 064

yield acceptable translation qualities across lan- 065

guage pairs. Extensive analyses also demonstrate 066

that E-ATT can functionally model semantic align- 067

ments without using multiplications. 068

2 Preliminary 069

Conventional Attention Mechanism Given in- 070

put representations X 2 Rl1⇥d and Y 2 Rl2⇥d 071

with l1, l2 being sequence length, and d is the in- 072
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Model # add # mul �(%)

Vanilla 2ld2 + l2d 2ld2 + l2d 100.00
Dense ld2 + l2d ld2 + l2d 51.10
RandInit 0 0 0.00
E-ATT 2ld⇢+ l2d 0 0.44

Table 2: Calls of addition (add) / multiplication (mul),
and energy consumption ratio to derive attention scores
in vanilla ATT (Vaswani et al., 2017), Dense (Tay et al.,
2021), RandInit (Tay et al., 2021), and our model. Re-
sults are conducted over TRANSFORMER-Base setting.
l, d and ⇢ are sequential length, model size, and the
ratio of nonzero values after binarization, respectively.

put dimensionality. Note l1 and l2 may be equal073

for self-attention pattern, and represent lengths of074

target and source sequence in cross-attention. Con-075

ventional ATT first projects the inputs into three076

representations with multi-head property1:077

Q = XWQ, [K;V] = Y[WK ;WV ], (1)078

Q̂ = SplitHead(Q) 2 Rh⇥l1⇥kh , (2)079

K̂; V̂ = SplitHead([K,V]) 2 Rh⇥l2⇥kh , (3)080

where WQ,WK 2 Rd⇥k,WW 2 Rd⇥d are pa-081

rameters, k and kh are the dimensionalities for lin-082

ear transition and each head, Q, K and V are query,083

key and value representations, respectively. For the084

m-th head, the attention alignment is calculated by085

obtaining the logits with dot-product multiplication,086

following by softmax activation:087

A
m
ij / exp(

Q̂
m
i K̂

m>
jp

kh
) 2 Rl1⇥l2 . (4)088

Then, the output is derived by multiplying atten-089

tion weights with value representation V̂, concate-090

nating heads and additional linear projection:091

Ô
m = A

m
V̂

m 2 Rl1⇥hk , (5)092

O = ConcatHead(Ô) 2 Rl1⇥d, (6)093

As seen, matrix multiplications are massively ex-094

ploited into conventional ATT.095

Related Work Several related approaches po-096

tentially alleviate the power-hungry drawback of097

ATT. One direction relies on model compression by098

pruning redundant parameters (Denton et al., 2014;099

Wang et al., 2016; Zhuang et al., 2018) or distill-100

ing the learned knowledge from a large model to a101

1For simplicity we omit the bias term in related equations.

smaller one (Hinton et al., 2015; Yim et al., 2017), 102

which still maintains multiplicative operations. An- 103

other direction aims at reducing the computational 104

complexity of obtaining alignment logits, e.g. lin- 105

early projecting input (Dense, Tay et al., 2021), or 106

randomly initializing and training (RandInit, Tay 107

et al., 2021). Interestingly, Tay et al. (2021) point 108

out that their approach fails to be employed into 109

cross-attention networks. We think the main rea- 110

son stems from the mechanism of these modules, 111

where attention logits are obtained by using the lin- 112

ear transition of target representation, or randomly 113

initialized parametric matrix. They can not strongly 114

contribute aligned information across languages. 115

To give a full comparison of energy consumption 116

of those approaches, we conduct the number of 117

additive and multiplicative operations across mod- 118

ules, as well as estimate the ratio of energy cost 119

in Table 2. As seen, vanilla ATT (Vaswani et al., 120

2017) involves the most multiplicative operations, 121

and requires the most energy than other methods. 122

These ATT designs still suffer from considerable 123

energy consumption. 124

3 Energy-Efficient Attention Mechanism 125

In this section, we describe E-ATT by pertinently 126

reducing the multiplicative operations of ATT, in- 127

cluding selective operation and L1 distance. 128

3.1 Feature Selection with Discreteness 129

As the linear transitions of queries and keys (Equa- 130

tion 1⇠3) involve massive multiplications within 131

conventional ATT, we propose to modify them with 132

binarized quantization (Liu et al., 2018; Qin et al., 133

2020). Concretely, the inputs X 2 Rl1⇥d and 134

Y 2 Rl2⇥d are turned into discrete value with a 135

threshold function f(·): 136

f(x) =

(
1 x > ⌧,

0 otherwise,
(7) 137

where ⌧ and d are threshold and hidden size, respec- 138

tively. The derived representations X̃ = f(X) and 139

Ỹ = f(Y) thus contain discrete representations 140

composing of zeros and ones. Since this proce- 141

dure is undifferentiable, we need to predefine a 142

pattern of gradient calculation for X when receiv- 143

ing back-propagated gradient Z. Inspired by recent 144

work (Wu et al., 2018), here we use a modified 145

Gaussian function during back-propagation: 146

rX =

r
2

⇡
e�2(Z�⌧)2 , (8) 147
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and the same procedure is applied for Y. Then148

given parameters WQ,WK 2 Rd⇥k, we derive149

query and key representations Q,K by applying150

masked selection function:151

Q̃ = g(X̃,W̃Q) 2 Rl1⇥d⇥k, (9)152

K̃ = g(Ỹ,W̃K) 2 Rl2⇥d⇥k, (10)153

Q =
dX

i=1

Q̃·,i,·; K =
dX

i=1

K̃·,i,·, (11)154

where W̃Q 2 Rl1⇥d⇥k and W̃K 2 Rl2⇥d⇥k are155

derived by tiling WQ,WK with l1 and l2 times,156

respectively; and g(·, ·) represents indexed feature157

selection defined as follows:158

g(U,P) =

(
Ui,j,· Pi,j = 1,

0 otherwise.
(12)159

3.2 Pairwise L1 Distance160

We further propose to use pairwise L1 distance for161

measurements between Q and K, which does not162

require any multiplication. Attention score calcula-163

tion in Equation 4 is then modified as:164

A
m
ij / exp(�

||Q̂m
i � K̂

m
j ||1p

kh
), (13)165

where || · ||1 denotes the L1 norm of inputted vector.166

4 Experiments167

4.1 Dataset and Model Setting168

We choose three machine translation tasks, i.e.169

IWSLT’15 English-Vietnamese (En-Vi), WMT’14170

English-German (En-De) and WMT’17 Chinese-171

English (Zh-En), to evaluate the effectiveness of172

our approach. We follow the setting of TRANS-173

FORMER-Base (Vaswani et al., 2017) for all in-174

volved tasks, with model hidden size d as 512, and175

the number of layers in encoder and decoder as 6.176

4.2 Experimental Results177

As shown in Table 4, vanilla model achieves best178

performance over all translation tasks. However,179

replacing conventional attention networks with E-180

ATT does not lead to significant performance drop,181

with small decrease of 0.15⇠0.78 BLEU score. Be-182

sides, after referring the statistics from Table 1183

and 2, our E-ATT module only takes 0.44% en-184

ergy of conventional ATT. These results reveal that,185

E-ATT can achieve comparative translation quality186

to baseline attention module, and more importantly,187

highly reduce the energy consumption in attention188

score calculation.189

Model BLEU (%)

Vanilla 28.12
Replace with discrete selection 27.51
Replace with L1 distance 28.05

E-ATT 27.45

Table 3: Model performance with component replace-
ments over En-Vi dev set. Using L1 distance as simi-
larity measurement slightly harms model performance.

4.3 Ablation Study 190

We further conduct ablation experiments on En-Vi 191

task. As seen in Table 3, using discrete feature se- 192

lection instead of linear transition does slight harm 193

to performance, with 0.61 BLEU score decrease. 194

Besides, replacing dot-product attention with L1 195

distance does not significantly affect model perfor- 196

mance, with only 0.07 BLEU score drop against 197

baseline. We conclude that, L1 distance can mea- 198

sure the similarity of vectorized representations and 199

give modest performance compared to baseline. 200

5 Analyses 201

5.1 Hybrid Attention Networks 202

We first collect a series of experiments involving 203

hybrids of attention networks among vanilla ATT, 204

Dense, RandInit, and E-ATT module in Table 5. 205

As shown, the conventional attention network per- 206

forms the best among all models. Our module per- 207

forms well when served as either self-attention or 208

cross-attention modules. Besides, for all cases ap- 209

plying Dense/RandInit as cross-attention modules, 210

models perform significantly worse, identical with 211

the findings in Tay et al. (2021). On the contrary, 212

our E-ATT module can give better performance 213

with marginal performance drop comparing with 214

baseline, indicating that E-ATT module is capable 215

of providing adequate semantic alignments across 216

languages for translation. Besides, it is encourag- 217

ing to see that our method works compatibly with 218

other modules with marginal performance drop. 219

5.2 Knowledge Distillation 220

To compare our model with knowledge distillation 221

approaches (Hinton et al., 2015; Tang et al., 2019), 222

we further conduct experiments on the various di- 223

mensionalities inside ATT. As shown in Figure 1, 224

we simulate the energy consumption of each model 225

with modified dimensionality d, and conduct the re- 226

lationship between corresponding energy cost and 227
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Attention mechanism En-Vi En-De Zh-En Energy (%)
Vanilla 30.26 ± 0.07 27.60 ± 0.04 24.28 ± 0.08 100.00
E-ATT 29.48 ± 0.08 27.45 ± 0.04 24.23 ± 0.06 0.44

Table 4: Averaged BLEU scores (%) upon test set on IWSLT’15 En-Vi, WMT’14 En-De and WMT’17 Zh-En
tasks over 5 independent runs. E-ATT gives comparable results against conventional ATT, reducing the energy
cost at 99.56% in alignment procedure. Since the energy cost for a specific module is difficult to be empirically
evaluated, we report the theoretical values following the common practice (Chen et al., 2020; You et al., 2020).
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Figure 1: Performance of attention procedure with re-
spect to the ratio of energy consumption on En-De task.
We regard the energy consumption of ATT baseline
as 1, and accumulatively halve the dimensionality of
model till untrainable (from 512 to 64). E-ATT requires
far less energy to meet up the baseline performance.

performance. As seen, by accumulatively halving d228

from 512, both ATT and E-ATT significantly loses229

the performance. Besides, E-ATT saves around230

99.45% energy compared to baseline to achieve231

comparable performance against ATT. This proves232

the advantage of our E-ATT, where it gives a better233

trade-off between model performance and energy234

consumption than knowledge distillation methods.235

5.3 Binarization Statistics236

We further collect the ratio of nonzero values ⇢ for237

each attention module in Figure 2, we can see that it238

increases with the number of encoder layers, denot-239

ing that more information is arranged into attentive240

calculation at higher layer of source side. However,241

for decoder E-ATT, the ratio meets its peak at mid-242

dle layers, revealing that decoder E-ATT tends to243

focus on target semantics at the middle term of se-244

mantic processing. Interestingly, ratio in the query245

of cross-attention modules, which align source and246

target semantics, is higher for the layer closer to247

output. As the binarized key representation of each248

cross-attention module is equivalent, higher ratio of249

nonzero values in query representation means that,250

E-ATT at higher decoder layer provides more in-251

formation for cross-lingual alignments, thus enrich252

the information for translation.253

- Vanilla Dense RandInit E-ATT
Vanilla 28.12 19.92 19.31 27.72
Dense 27.48 19.43 19.21 27.60

RandInit 27.36 18.98 18.83 27.48
E-ATT 28.08 19.85 19.67 27.45

Table 5: BLEU score (%) of different model hybrids
with modifying self-attention (horizontal) and cross-
attention (vertical) network upon En-Vi dev set. E-ATT
can achieve good performance when applied as cross-
attention modules, whereas Dense or RandInit can not.
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Figure 2: Ratio of nonzero values in the representations
of E-ATT. Enc-Self: encoder self-attention ; Dec-Self:
decoder self-attention; Dec-Crs-Query/Key: query/key
representation for decoder cross-attention. Query rep-
resentations in cross-attention are the most active.

6 Conclusion 254

In this paper, we empirically investigate the high 255

energy-consumption problem in ATT. We argue 256

that the alignment modeling procedure can be com- 257

pletely achieved by additions other than multiplica- 258

tions, thus to reduce the energy costs. Experimen- 259

tal results demonstrate that our approach is able to 260

save around 50% energy comparing with baseline, 261

whereas yielding considerable quality. Extensive 262

analyses suggest that: 1) Binarized representations 263

marginally harm the feature extraction procedure; 264

2) L1 distance can be efficiently exploited to mea- 265

sure alignment among queries and keys; and 3) 266

Binarization ratio of E-ATT can give more intuitive 267

and detailed description for model interpretability. 268
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A Dataset Preprocessing001

In this paper we evaluate our approach with002

three widely used machine translation datasets:003

IWSLT’15 English -Vietnamese (En-Vi), WMT’14004

English - German (En-De) and WMT’17 Chinese -005

English (Zh-En). All datasets are segmented into006

subwords by byte-pair encoding (BPE, Sennrich007

et al., 2016) with 32k merge operations. Specially,008

for the former two tasks, we apply joint BPE for009

both source and target languages. All datasets are010

modified into truecase format with mosesdecoder011

by training truecase models upon train set.012

Dataset Train Dev Test
En-Vi 13.3K 1,553 1,268
En-De 4.50M 3,000 3,003
Zh-En 20.6M 2,002 2,001

Table 1: Dataset statistics. Each cell represents the
number of examples. K: thousand, M: million.

B Experimental Setting013

We apply TRANSFORMER-Base (Vaswani et al.,014

2017) setting for all experiments. The model di-015

mensionality is 512, and 6 layers are engaged016

in both encoder and decoder side. The inner-017

connection dimensionality for feedforward block018

is 2,048, and the number of heads in multi-head019

attention networks is 8. We share the source embed-020

ding, target embedding and target softmax projec-021

tion weight for En-Vi task, and share the latter two022

matrices for En-De. We modify the learning rate023

schedule as: lr = 0.001·min
�

t
8000 , 1, (

20000
t )0.5

�
,024

where t denotes the current step. Across all tasks,025

we determine the threshold ⌧ as 1.0.026

For both baseline and our model, En-Vi, En-De027

and Zh-En tasks take 50k, 150k and 200k updates,028

and each batch contains 4,096, 32,768 and 32,768029

source tokens. The dropout ratio is determined030

as 0.3, 0.1 and 0.1, respectively. All experiments031

are conducted over 4 NVIDIA V100 GPUs. For032

each task, we choose the best model over dev set,033

defining beam size as 4, 4, 10 and decoding alpha034

as 1.5, 0.6 and 1.5, respectively.035

C Case Study036

We visualize the averaged attention values over one037

case from WMT’17 Zh-En dev set. As seen, our038

model can give good aligned information, where039

Figure 1: Case study from WMT’17 Zh-En dev set.

preposition phrase "around 50 years ago" is ar- 040

ranged at the end of sentence in English, while 041

its aligned phrase is at the front in Chinese. 042
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