KnotDLO: Toward Interpretable Knot Tying
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Abstract— This work presents KnotDLO, a method for one-
handed knot manipulation to transform a Deformable Linear
Object (DLO) into knot states. Grasp and target waypoints
for future DLO states are planned from the current DLO
shape. Grasp poses are computed from indexing the tracked
piecewise linear curve representing the DLO state based on the
current curve shape and are piecewise continuous. Intermediate
waypoints are computed from the geometry of the current
DLO state and the desired next state. The perception and
manipulation system is robust to occlusion, repeatable for
varying rope initial configurations, interpretable for generating
motion policies, and requires no human demonstrations or
training. The system decouples visual reasoning from control. In
16 trials of knot tying, KnotDLO achieves a 50% success rate in
tying an overhand knot from previously unseen configurations.

I. INTRODUCTION

Manipulating Deformable Linear Objects (DLOs) into
knots is useful for many robotic tasks, including climbing [1],
[2], surgery [3]-[6], household robotics [7], and industrial
robotics [8]-[10]. Manipulating DLOs can be categorized
based on the type of DLO shape information used as input.
Tasks such as insertion [11], disentangling [7], [12], and
clearing DLOs from the path to other objects [13] may
only require information such as the location of the tips, the
locations of crossings, or the locations of inner and external
knot segments rather than a full shape estimate. Tasks such as
winding, braiding, and knotting may benefit from a complete
shape estimate [14]. One challenge is representing the DLO
topology, especially when the DLO is occluded by itself or
the environment as it is manipulated. Recent work in real-
time visual DLO tracking enables occlusion-robust topol-
ogy representation for autonomous knot tying. KnotDLO
achieves repeatable knot tying using topological waypoints
validated in overhand knot tying experiments with a success
rate of 50%, compared to the success rate of the learning-
based state-of-the-art method of 66% [15]. The topological
waypoints enable transformation between knot states using
movement primitives independent of task parameterizations
such as initial DLO configuration or DLO length. Geometric
grasp and target poses are computed from the geometry of
the DLO and are a subset of a continuous space of grasp
and target poses defined by the DLO topology.
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Fig. 1. One robot arm with a parallel gripper grasps the DLO and moves it
between topological waypoints. The DLO topology is tracked from imagery
collected by a camera mounted on the last link of a second robot arm.

II. RELATED WORK

The availability of an accurate DLO topology for robotic
knot tying has conventionally been limited by perception sys-
tems which struggle to follow the shape of the DLO as it is
occluded within the environment or as it is occluded by itself
during the formation of intersections. One method overcomes
this by learning a fast and differentiable neural network
model of the DLO dynamics to augment segmentation-
based shape estimation with physics [16], [17]. Another
method learns DLO configuration-independent dense depth
object descriptors from synthetic ropes rendered in Blender
and uses these descriptors to learn manipulation action
sequences with visual imitation of demonstrations [15].
This method encodes geometric structure on the descriptors
and learns them in simulation without any robot motion
learning. This accelerates training time substantially from
work which requires collecting robot motion demonstration
data for imitation [18], [19] and enables transferring the
learned visual representation across domains. Other work
performs DLO shape manipulation with visual feedback for
shape control without self-occlusion [17], [20], [21]. Recent
advances in DLO perception enable DLO shape tracking
under environment occlusion [22]—-[25]. These methods also
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Fig. 2. Given an initial symmetric, curve-shaped DLO configuration, the planning system computes grasp and target indices from the topology to compose
a sequence knot tying movement primitives. (Top) Sequentially performing Reidemeister Move I (RI), Reidemeister Move II (RII), and the Cross Move
(X) results in an overhand knot. (Bottom) The tracking system tracks the shape of the DLO as it moves.
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Fig. 3. Four movement primitives can transform a DLO between any knot
states. (Left) Reidemeister Move I twists the DLO to add or remove one
crossing. (Center left) Reidemeister Move II slides one strand over one loop
to add or remove two crossings. (Center right) Reidemeister Move III slides
one strand over a crossing to transform the knot state around the crossing.

(Right) The Cross Move pokes the tip of a DLO through a loop to add or
remove two crossings.

accurately track shape under self-occlusion, offering new
opportunities for full DLO state representation for knot tying.

The Reidemeister moves are a set of movement primitives
which add or remove links in a knot projection, creating a
new projection. Reidemeister Move I (RI) adds or removes
one crossing through twisting or untwisting. Reidemeister
Move II (RII) adds or removes two crossings by sliding
one straight segment over one curved segment. Reidemeister
Move III (RIII) transforms the topology of a crossing by
sliding one segment over or under a crossing [26]. The
Cross Move (X) was introduced for tying objects which are
not closed loops in the unknotted state. It passes the tip of
the rope through a loop in the knot to create a crossing.
Composing the RI, RII, and X moves in sequence results in
an overhand knot.

III. ONE-HANDED OVERHAND KNOT MANIPULATION

This work presents an overhand knot tying system using
real-time visual DLO shape tracking to compute manipula-
tion waypoints [25]. The topology of a DLO is represented
as a piecewise linear curve, S, constructed from a set of M

control points, CM*3 ¢ R3, The curve S is parameterized
at time ¢ by curvilinear length, st, and total length, L, with

S:se[0,1] = S(s;L) € R, %))
The head and tail positions of the DLO are S(0) and S(1).

Two curvilinear lengths, sf and st, are determined to be on
the same segment of S(s*; L) if [idx; — idx;| < 1, where

The geodesic distance defines the length of the shortest path
along a manifold. The geodesic distance, p(sj, s%), is
p(sm s]) -
— st - [|S(sh) = S(sh)|| if Jidx; —idx;| < 1

\1 = 55| - [I5(s2) = Canaill + I55] - 1S(s5) = Canil| + 3

JrZ:dJenle |Cm — Crm—1]| otherwise
where || - || is the I3 norm and

Cla; = argmin ||S(s)) — C]|- )
meM

The DLO topology is used to plan grasp and target poses
for a robot with a gripper to tie an overhand knot. As shown
in Fig. 4, the orientation of these poses are computed using
the semi-planar manipulation constraint (i.e., z = [0, 0, 1]),
where the y—axis of the transform is the unit-length tangent
vector to the curve at the desired point, dS(s'; L)/ds, and
the x—axis is the axis normal to the y — z plane. Waypoints
transforming each grasp pose to the target pose are designed
to reduce effects from sliding on the manipulation plane.
Seven curvilinear lengths—s = 0.5, s = A\, s = 1 — A,
S¢p (the crossing bottom), s¢ (the crossing top), Scp, ¢p (the
undertip), and s, i (the overtip)—are selected to tie an
overhand knot for a DLO in an initial symmetric, curved
configuration as shown in Fig. 2. The DLO is first grasped
at S(0.5), lifted to a height h = yp(\, 1 —\), and translated
to the z — y positions given by the midpoint between the
two parallel lengths, 3 (S(A) + S(1 — X)). At this waypoint,

oo n . .
the grasped point is rotated by 7 radians about the z-axis,
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Fig. 4. A grasp pose can be computed given the curve representation of
the tracking result, S(s*; L), and the curvilinear length at a given time step,
st. The grasp position is S(s?) and the orientation is computed from the
unit-length tangent vector to the curve, dS(s’; L)/ds assuming semi-planar
knot tying with z = [0, 0, 1].

TABLE I

KNOT TYING SUCCESS RATE BY MOVE

RI RII X
0.937 | 0.867 | 0.615

Total
0.500

then returned to the start position of the move to complete
RI. The top crossing, s, is calculated as the control point
closest in Euclidean distance to the self-occluded control
point estimated from the tracking algorithm using their 2D
projections in pixel space [25]. The undertip is computed
as the tip closest to the crossing bottom using Eq. (3). To
perform RII, the DLO is grasped at S(0.5), lifted to a height
h = vp(Scb, Sct), translated to S(sp), translated to S(schip)-
and placed. Tracking often fails to accurately initialize the
crossing topology after this step due to its sensitivity to
depth resolution, however the X move requires grasping near
S(Scb, tip)- Instead of computing S(sc, dp) from topology,
S(Seb, tip) is computed as the tip nearest to the centroid of
a convex polygon formed from the tracked points along the
DLO [27]. To improve robustness, the closest node to the
polygon centroid within a radius of r nodes from the undertip
is selected as the grasp point. The target position for the X
move is computed as S(s.) + (S(sc) — S(Set,tip)) and the
target orientation is the same as the grasp orientation.

IV. EXPERIMENTS

The DLO is assumed to start in a symmetric curved shape
and able to be distinguished from the background using
image-based thresholding in Hue, Saturation, and Value
(HSV) color space. One tip of the rope is covered with
green tape to break object symmetry when initializing the
object shape. In 16 experiments analyzing the repeatability
of one-handed knot manipulation, the system achieves a 50%
success rate in tying an an overhand knot from previously
unseen initial DLO configurations. All experiments used an
Intel RealSense d435 camera for vision with default tracking
parameters in TrackDLO with the number of nodes used as
control points, M, as M = 30. The DLO is a blue rope with
L =0.88m, A =0.1, v = 0.4 and r = 5. The manipulation
system includes one ABB IRB120 manipulator with an
OnRobot 2FG7 gripper. Manipulation assumes the perceived
topology of the DLO is accurate before performing RI and
RII, but not before performing RIII. Figure 5 shows the steps
of knot tying in the manipulation scene, which shows the
transformation between knot states, and the planning scene,
which shows the poses of waypoints. Table I reports per-
move knot tying success rates. Table II reports knot tying
success rates from the literature.

Manipulation Scene

Planning Scene

Fig. 5. A small number of waypoints designed based on the rope topology
are required to tie an untightened overhand knot.

TABLE II
OVERALL OVERHAND KNOT TYING SUCCESS RATES

KnotDLO (Ours) | DDOD [15] | GSP [18] | Imitation [19]
0.50 0.66 0.6 0.38

V. CONCLUSIONS

This work introduced KnotDLO, a system for semi-planar
one-handed overhand knot tying. KnotDLO is the first knot
tying method using topological DLO state tracking from
a perception system as input. The knot tying system was
evaluated in repeated knot tying trials from different initial
symmetric curved configurations. The key advantages of this
system are its interpretability and robustness to occlusion,
including its ability to resolve points of crossing in the
DLO. This method shows promise for further development
and deployment as an explainable system for knot tying. In
future work, KnotDLO could also be used to automatically
collect high-quality demonstration data to learn multi-step
manipulation policies comprising sequences of pick-and-
place actions [28].
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