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ABSTRACT

Foundation models (FMs) deployed in real-world tasks – such as computer-use
agents – must integrate diverse modalities. How good are FMs at performing
joint reasoning over cross-modal context? To better understand this problem,
we study FMs on cross-modal conflicts: scenarios where conflicting evidence is
presented across modalities. This allows us to examine whether FMs prioritize one
modality over another or reason jointly to reconcile the conflict. Our experiments
reveal that FMs can recognize conflicts in unimodal contexts 90% of the time,
but the ratio falls as low as 3% when evidence is split across modalities – similar
observations hold in cross-lingual settings. We trace this failure to cross-modal
attention imbalance, showing that FMs exhibit extreme asymmetry in attention
scores, disproportionately prioritizing certain modalities. We show that cross-
modal attention imbalance does not go away by simply scaling up multimodal
or multilingual datasets blindly, since they lack training examples that explicitly
require cross-modal reasoning. We demonstrate that even a simple and scalable
method of explicitly combining multiple modalities within each training instance
significantly reduces attention imbalance. Our findings underscore the importance
of systematically addressing cross-modal contexts to build reliable FMs.
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Figure 1: FM-based agents need to reason over diverse modalities, such as multilingual news, online
shopping websites, maps, and EHR records. Failure to handle cross-modal context can result in
consequences including misinformation (orange), purchasing a scam (yellow), misdirection (blue), or
even providing the wrong medical treatment (light blue).

1 INTRODUCTION

Recent advances in foundation models (FMs; OpenAI, 2024a; Gemini, 2024; Anthropic, 2024b)
have enabled their deployment in increasingly complex tasks that require reasoning over diverse
information sources. From autonomous web browsing (Adept, 2022; Anthropic, 2024a; OpenAI,
2024b) to AI-driven research assistants (Perplexity, 2024; Sakana, 2024), FMs are now tasked with
reasoning jointly over multiple domains such as text, images, code, and structured data.
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However, existing work indicates that FMs fall short when handling inputs from non-textual modali-
ties. For example, some studies demonstrate that FMs answer visual questions primarily based on
language priors, disregarding actual visual inputs (Winterbottom et al., 2020a; Niu et al., 2020; Lin
et al., 2024); others illustrate scenarios where models hallucinate objects absent from the image
during open-ended generation tasks (Sun et al., 2023). Yet, it remains unclear whether this behavior
originates primarily from a context-parametric gap (Goyal et al., 2024) or a modality gap (Liang
et al., 2022).

In this work, we specifically focus on the capability of FMs to reason across modalities when all
necessary information is explicitly provided in the input context. This setup is especially relevant
for FM agents and assistants that need to interpret up-to-date information unavailable within their
parametric knowledge – such as web pages combining images, multilingual text, and embedded scripts
(Figure 1). By designing scenarios that isolate cross-modal reasoning from parametric knowledge
retrieval, we directly assess how effectively these models reason over multiple modalities.

As a clean and concrete test case for this, we create cross-modal conflict datasets where each modality
provides contrasting evidence. This allows us to examine whether FMs prioritize one modality over
another or reason jointly to reconcile the conflict. Our experiments reveal a striking gap: while FMs
perform well in unimodal settings (e.g., text-text or image-image), their ability to detect conflicts
deteriorates significantly by up to 65% in cross-modal contexts (e.g., text-image). Moreover, this
degradation extends to multilingual scenarios, where monolingual performance (e.g., English-English
or Chinese-Chinese) is significantly better than multilingual performance (e.g., English-Chinese).

We investigate what drives this behavior, where state-of-the-art models exclusively rely on evidence
from one modality rather than jointly reasoning. First, we observe that it is not simply a consequence
of models being weak in one modality (§3.4). VLMs detect conflicts between multiple images as
easily as conflicts between multiple texts (Figure 3). This extends to multilingual settings – conflicts
between multiple Chinese texts are detected as often as in English.
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Figure 2: An illustration for cross-modal attention imbalance. In unimodal contexts (A), different
domains show balanced normalized attention (softmax(QK⊤)) despite divergent pre-softmax logits
(QK⊤). Cross-modal contexts (B) expose cross-modal attention imbalance – normalization fails to
mitigate logit-level imbalance. Instance-level modality mixing (C) resolves this by training models to
intrinsically balance attention logits across modalities.

We hypothesize that the gap between unimodal and cross-modal conflict detection is because of cross-
modal attention imbalance: an extreme asymmetry in attention scores, where FMs disproportionately
prioritize certain modalities. We validate our hypothesis by finding that manual attention reweighting
vastly shifts the model towards joint reasoning rather than relying on one modality over another (§4).

We investigate how to correct cross-modal attention imbalance. The problem is not resolved by
simply adding more training data in each modality (§5.1). As illustrated in Figure 2, when the
cross-modal attention scores are imbalanced, different modalities have different pre-softmax logits
(QK⊤). However, after normalization, unimodal contexts show balanced normalized attention
(softmax(QK⊤)) and their performance remains stable. So, fine-tuning on either modality separately
does not reduce attention imbalance.

Current instruction-tuning datasets do not involve joint reasoning over multiple modalities. This is a
known problem — curating data for non-textual modalities is expensive (Liu et al., 2023; Dai et al.,
2023). It is infeasible to curate large amounts of joint reasoning data on top of the instruction data
from each modality. However, we hypothesize that correcting for cross-modal attention imbalance
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is already sufficient to promote joint reasoning. A simple and scalable way to do this is to simply
concatenate instructions from multiple modalities within the same context. In other words, we can
repurpose existing datasets with this twist to greatly improve cross-modal joint reasoning in FMs.

In summary, we uncover a new fundamental gap between modalities – in terms of how they are
processed in context. We demonstrate that state-of-the-art models fail in a simple cross-modal
reasoning task of handling conflicting evidence from multiple modalities. We trace this failure to an
imbalance in attention weights across modalities that can be addressed simply by mixing existing
instruction data to create cross-modal instructions. Our findings also generally highlight the need for
training paradigms that mirror the real-world complexity faced by FMs.

2 RELATED WORK

Modality Gap in Foundation Models FMs are known to fall short when handling inputs from
low-resource modalities. For example, some studies demonstrate that FMs answer visual questions
primarily based on language priors, disregarding actual visual inputs (Winterbottom et al., 2020a; Niu
et al., 2020; Lin et al., 2024); others illustrate scenarios where models hallucinate objects absent from
the image during open-ended generation tasks (Sun et al., 2023). Yet, it remains unclear whether
this behavior originates primarily from a context-parametric gap (Goyal et al., 2024) or a modality
gap (Liang et al., 2022). Modern vision-language models (VLMs) embed text and images into a
shared embedding space (Radford et al., 2021; Jia et al., 2021). The modality gap is characterized
as separation between the embeddings of different data modalities (Liang et al., 2022) which hurts
performance on visual question answering and classification tasks (Guo et al., 2023; Winterbottom
et al., 2020b). Several explanations have been proposed, including inductive bias of encoders and
disuniformity of contrastive loss (Fahim et al., 2024). A similar phenomenon persists in multilingual
FMs too (Nigatu et al., 2023; Chang et al., 2022).

Multilingual and Multimodal Instruction Tuning Multilingual and vision-language models
employ specialized pre-training data (Ustun et al., 2024; Li et al., 2024a) and instruction-tuning
datasets (Li et al., 2023; Liu et al., 2023; Antol et al., 2015) to improve performance on underrep-
resented modalities. In general, however, these models are designed for unimodal performance
and they do not saturate large cross-modal benchmarks like MMMU and ScienceQA that require
simultaneously reasoning over data in multiple modalities (Yue et al., 2023; Lu et al., 2022). Several
fine-tuning approaches have been suggested to improve cross-modal reasoning in FMs. For example,
X-InstructBLIP claims that training on individual modalities can result in emergent cross-modal
reasoning (Panagopoulou et al., 2023). In our analysis, however, we find strong evidence that this is
not always possible.

Related Approaches for Cross-Modal Reasoning Another common approach to improve cross-
modal performance is to mitigate language bias, or over-dependence on language priors (Niu et al.,
2020). This approach prevents the model from ignoring images due to parametric knowledge about
the question, but does not counteract bias within the context towards text over image evidence. Other
more specialized approaches include aligning individual entities between modalities (Lin et al., 2022)
or learning sparse feature representations that rely less on language priors (Guo et al., 2021). In
addition, (Li et al., 2024b) propose a fine-tuning approach that is similar to our instance-level mixing
strategy; however, they focus only on textual data, whereas we focus entirely on mixing modalities.

Knowledge Conflicts in Cross-Modal Contexts Even in unimodal settings, FMs sometimes fail to
identify when they encounter conflicting information (Xu et al., 2024). In these unimodal scenarios
(e.g., correcting outdated facts), there is evidence that FMs exhibit self-consistency – the ability
to identify when they don’t know an answer (Kadavath et al., 2022; Yin et al., 2023). In addition,
mitigation strategies like prompting (Zhou et al., 2023), pretraining (Li et al., 2022), and reweighting
neurons (Shi et al., 2024) are known to improve detection but remain limited to specific unimodal
contexts. Existing instruction-tuning solutions for conflict detection (Wang et al., 2023) rely heavily
on curated conflict-specific datasets. Notably, prior work largely overlooks knowledge conflicts
between multiple modalities. (Liu et al., 2024b) benchmarks cross-modal conflicts, but focuses on
context-parametric conflicts between images and the model’s pretrained knowledge. To the best of
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our knowledge, knowledge conflicts have not previously been used to study cross-modal reasoning in
a controlled setting.

3 STRESS-TESTING CROSS-MODAL REASONING

3.1 FORMULATION

We study the free-form generation from a FM. The FM takes a context C and a question Q as input
and samples a response y ∼ FM(C,Q). The context C has an in-context knowledge conflict, i.e.,
C contains two subsequences, C1 and C2, that support contradictory answers to Q. We consider
(C,Q) to be a unimodal conflict if C1, C2 ∈ M1 and a cross-modal conflict if C1 ∈ M1, C2 ∈ M2

where M1,M2 are distinct modalities. This allows us to examine whether FMs prioritize one
evidence over another or reason jointly to reconcile the conflict. Given a set of context-question
pairs D = {(Ci, Qi)}Ni=1, we define the conflict detection rate as the proportion of samples that are
mentioned to contain conflicts. We used GPT-4o as the evaluator (see prompts in §C.1). To isolate
the context-based reasoning independent of the parametric bias, we focus on tasks that depend on the
context and cannot be solved with the parametric knowledge alone.

3.2 DATA CURATION

We construct two datasets: a cross-modal question answering (CMQA) dataset and a cross-lingual
question answering (CLQA) dataset, each with controlled variations in context. Examples from both
data sets are given in §B.

Cross-modal question answering (CMQA) The multimodal question answering dataset is con-
structed over both image and text based on the VQA-v2 dataset (Goyal et al., 2016). Each sample in
VQA-v2 consists of an image V , a question Q, and 10 candidate answers. In total, we subsample 500
triples of image, question, and answer (V,Q,A) from the dataset.

For each triplet, we prompt GPT-4o to generate a text description T that does not agree with the image
V regarding the question Q, and the answer A based on T . Given the image V , the text description
T , and the question Q, the FM should report a conflict as A is contradictory to A. We name this
dataset {(V, T ,Q,A,A)} as Text-Image. For each image V , we prompt GPT-4o to generate a
description T ′ that agrees with the image regarding the question Q. We name {(T ′, T ,Q,A,A)} as
Text-Text. For each T , we prompt DALL-E 3 (Betker et al., 2023) to generate an image V . We
name {(V, V ,Q,A,A)} as Image-Image.

Cross-lingual question answering (CLQA) We create a dataset of question answering over
synthetic news paragraphs about fictitious events (so the FM cannot use parametric knowledge to
answer the questions). We use GPT-4o to generate 400 topics. For each topic, we prompt GPT-4o to
generate: (1) a synthetic news paragraph PE in English which has not appeared in reality, a question
Q in English, and an answer A based on the paragraph, and (2) synthetic news paragraph PC in
Chinese that does not agree with the English one PE regarding the question Q, and an answer A
based on the Chinese one.

Given the two news paragraphs PE and PC and the question Q, the FM should reason over
both since A is contradictory to A. We name this cross-modal dataset {(PE , PC , Q,A,A)} as
English-Chinese. We then derive several monolingual variants of different language combinations
via (back-) translation. For each paragraph PC in Chinese, we back-translate it into English P

′
E .

We name {(PE , P
′
E , Q,A,A)} as English-English. For each English paragraph PE , we translate

it into Chinese P ′
C . We name {(P ′

C , PC , Q,A,A)} as Chinese-Chinese. Similarly, we test other
variants where Chinese is replaced with low-resource languages such as Turkish or Icelandic.

3.3 EXPERIMENTAL SETUP

We evaluate a range of state-of-the-art (multimodal) FMs on our conflict detection tasks. Multimodal
FMs can be applied to both CLQA and CMQA, while text-only FMs can only be applied to CLQA.
For text-only FMs, we use Llama-3 and Llama-3.1 (Meta, 2024), Gemma-2 (Riviere et al., 2024), and
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Aya-23 (Ustun et al., 2024). For multimodal FMs, we use GPT-4o (OpenAI, 2024a), LLaVA-NeXT
(Li et al., 2024a), and Cambrian (Tong et al., 2024). We provide the prompts we use in §C.2.

Llama-3 Llama-3.1 Gemma-2 GPT-4o Aya-23
Model

0.0

0.2

0.4

0.6

0.8

1.0
Multilingual

English-English
Chinese-Chinese
English-Chinese

LLaVA-NeXT GPT-4o Cambrian
Model

0.0

0.2

0.4

0.6

0.8

1.0
Multimodal

Text-Text
Image-Image
Text-Image

Figure 3: FMs are worse at reasoning over cross-modal contexts than unimodal contexts.

3.4 RESULTS

Figure 3 shows the performance of the FMs on our CLQA and CMQA datasets. We see that
the conflict detection performance is significantly lower with the cross-modal contexts than with
the unimodal contexts. For CLQA (Figure 3 left), we the performance on English-English is
comparable to Chinese-Chinese, and both are far better – up to 5x – than English-Chinese.
This shows that the lower performance in the multilingual setting is not due to the limited general
capability of the FM in Chinese. Also, recall that the questions are always in English, including
in the Chinese-Chinese setting, so the lower performance with multilingual contexts is neither
due to the language barrier between English and Chinese. Experimental results for Turkish and
Icelandic are similar to those for Chinese, so we put them in §E for conciseness. We see similar
trends on the CMQA task (Figure 3 bottom) – the performance with unimodal contexts (Text-Text
and Image-Image) is far better than the performance with cross-modal contexts (Text-Image) for all
FMs.

Standard Instructed Explicit
Prompt

0.0

0.2

0.4

0.6

0.8

1.0
Multilingual (Llama-3)

English-English
Chinese-Chinese
English-Chinese

Standard Instructed Explicit
Prompt

0.0

0.2

0.4

0.6

0.8

1.0
Multimodel (LLaVA-NeXT)

Text-Text
Image-Image
Text-Image

Figure 4: Ablation studies on the prompt. FMs are worse at reasoning over cross-modal contexts
than unimodal contexts. See the text for details of each prompt.

In addition to the prompts above (denoted as Standard in Figure 4), which do not assume intervention
from the user, we also test other prompts that encourage FM to detect the conflict. Specifically,
we explore two types of prompts: (1) add an instruction that tells the FM to report the conflict if
it finds any (denoted as Instructed in Figure 4); (2) embed the question into a yes-no question:
“Would the answers to the question ‘{Q}’ be the same based on the paragraphs in the context?”
(denoted as Explicit in Figure 4). In Figure 4, we see that, although the overall conflict detection
performance improves, the trend is similar to Figure 3 – the conflict detection performance is lower
in the cross-modal contexts than in the unimodal contexts. In the next section, we explore why this is
the case and try to improve this practically.
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Summary. State-of-the-art FMs fail in a simple cross-modal reasoning task of handling conflicting
evidences in multiple modalities.

4 CROSS-MODAL ATTENTION IMBALANCE IN FMS

To investigate the mechanisms underlying this failure, we probe the context contribution in FMs.
Most state-of-the-art FMs are autoregressive – at each step, the FM predicts the next token based on
the context so far. For architectures like Transformers (Vaswani et al., 2017), the representation at
each step can be decomposed into a linear combination of the contributions of each span of context.
For example, in a Transformer FM, the output of an attention head in a layer at step t is defined as:

at = WO

t∑
j=1

wt,jvj , (1)

where vj is value output of the j-th token in the context, wt,j is the attention weight from the t-th
token to the j-th token, and WO is the output projection matrix. We can group tokens in the context
based on their domain: Ck contains all token indices of the k-th group. We can rewrite at as:

at =

K∑
k=1

∑
j∈Ck

wt,jWOvj

 :=

K∑
k=1

uk. (2)

The term uk is a vector that the k-th context writes to the residual stream at step t. It shows that the
context representation is a linear combination of each context’s contribution.

We hypothesize that the context contribution in the task-relevant subspaces is imbalanced in the cross-
modal contexts, making the FM more likely to rely on the dominant context instead of doing conflict
detection. In Figure 2, we illustrate our mental model of attention imbalance. In unimodal contexts
(A), different domains show balanced normalized attention (softmax(QK⊤)) despite divergent
pre-softmax logits (QK⊤). Cross-modal contexts (B) expose cross-modal attention imbalance –
normalization fails to mitigate logit-level imbalance. Instance-level modality mixing (C) resolves this
by training models to intrinsically balance attention logits across co-occurring domains.
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Figure 5: Cross-modal attention imbalance. English
has larger attention than Chinese and images.

To demonstrate attention imbalance, we
compute the average norm of uk for each
context, averaged over all layers and atten-
tion heads.1 Figure 5 shows that, for cross-
lingual, the English context contributes
more than the Chinese context; for cross-
modal, text contributes more than images.

To test if there is a causal relationship
between attention imbalance and cross-
modal reasoning, we causally intervene the
contribution of a context Ck by adding a
small constant ϵ to its unnormalized atten-
tion score. Formally, denote the normal-
ized attention weights at step t as wt :=
[wt,1, . . . , wt,t]

⊤. We manipulate the atten-
tion weights as follows:

Manip(wt) = softmax (logwt + ϵ1Ck
) , (3)

where 1Ck
is a vector with 1’s on all the Ck context positions and 0’s otherwise.

1We note that uk averaged over all layers and attention heads should be viewed as a proxy of what we want
to measure, i.e., context contribution in the task-relevant subspaces. We further discuss this in §D. For this
reason, we do not argue that the norms of different uk should be the same to achieve the best conflict detection
performance.
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Figure 6: Cross-modal attention imbalance has a causal effect on cross-modal reasoning: we apply a
fixed attention bias to increase the attention over the context with a smaller attention output norm,
and see that this improves the conflict detection performance. We use the Standard prompt for
cross-lingual and monolingual settings, and Explicit prompt for the cross-modal setting.

Figure 6 shows that the conflict detection performance indeed improves after attention manipulation.
In the cross-lingual setting, the absolute improvement is up to 43% (relative by 5x). In the cross-modal
setting, we observe a smaller yet significant gain of 18%. We hypothesize that this is because current
visual instruction tuning datasets (Liu et al., 2024a) mainly focus on questions that can be answered
(e.g., questions about an object in the image), which creates a strong bias towards responding with a
definite answer. As a side observation, we find that attention manipulation can help the unimodal
context as well: we find that FMs exhibit primacy bias and tend to rely more on the context that
appears first. By increasing the attention weights on later context, we also further improve the conflict
detection performance on unimodal context.

Summary. Cross-modal attention imbalance has a causal negative effect on FMs’ cross-modal
reasoning capability.

5 HOW TO CORRECT CROSS-MODAL ATTENTION IMBALANCE?

5.1 DATASET-LEVEL MODALITY MIXING DOES NOT HELP

We begin by noting that most state-of-the-art FMs today are trained on highly diverse corpora,
spanning a wide range of domains and multiple languages (Meta, 2024; Riviere et al., 2024). More
surprisingly, as we observe in Figure 3, Aya-23, a FM specifically optimized for multilingual
capabilities, performs no better than other FMs with multilingual contexts. This suggests that simply
training FMs on diverse modalities does not, by itself, ensure good cross-modal reasoning.

To reinforce this, we run two instruction-tuning experiments. First, we finetune Llama-3 on mixed
English and Chinese instruction tuning datasets (we call this strategy dataset-level modality mixing)
and see if this improves conflict detection in the cross-lingual English-Chinese setting. Specifically,
we use the English and Chinese subsets of Bactrian-X (Li et al., 2023), a multilingual instruction-
tuning dataset containing 67k samples in each language. Similarly, we finetune Qwen-2.5-VL on
mixed text and visual instruction tuning datasets (dataset-level modality mixing) and see if this
improves conflict detection in the cross-modal text-image setting. In this experiment, we use the
visual instruction data from Liu et al. (2024a) and the English subset of Bactrian-X. In Figure 7, we
see that dataset-level modality mixing offers minimal gains in alleviating cross-domain attention
imbalance. This motivates us to understand why diverse, multimodal data is not enough to close the
gap between unimodal and cross-modal contexts.

5.2 INSTANCE-LEVEL MODALITY MIXING

We have shown that standard cross-modal instruction tuning (e.g. having both English and Chinese
examples in the data, or having both text and visual instruction tuning examples) fails to improve
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Figure 7: Finetuning on instance-level mixed data (dark blue) reduces cross-modal attention imbal-
ance significantly more than fine-tuning on dataset-level mixed data (gray).

cross-modal attention imbalance. We hypothesize that the gap in unimodal and cross-modal contexts
arises because mixing datasets does not expose models to instances requiring cross-domain reasoning
within the same context. Without instance-level modality mixing between modalities, the pre-softmax
attention scores for one domain could be hugely different from that of another domain, without
changing the normalized attention scores on each domain (Figure 2). To address the lack of instance-
level modality mixing between modalities, we propose a simple and scalable method of explicitly
combining multiple modalities within each training instance. Here is an illustration of our input and
output format in the cross-lingual setting:

Input:
<Chinese instruction> <English instruction>
Reply to both user instructions.
Output:
<Chinese response> <English response>

In the cross-modal setting we have the input and output as:

Input:
<text instruction>
<image> <image-related instruction>
Reply to both user instructions.
Output:
<text response> <image-related response>
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Figure 8: Finetuning on instance-level mixed data (dark blue) improves cross-modal conflict detection
largely more than fine-tuning on traditional dataset-level mixed data (gray).

To verify the benefit of instance-level modality mixing, we use the same data from § 5.1 but mix them
at the instance level instead of at the dataset level. In Figure 7, we report the attention imbalance of
model checkpoints for instance-level modality mixing and the dataset-level modality mixing baseline
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in §5.1. In the cross-lingual setting, instance-level modality mixing reduces attention imbalance
between modalities by 4×. In the cross-modal setting, it reduces attention imbalance by 34%. In
Figure 8, we report the performance of model checkpoints for instance-level modality mixing and the
baseline in §5.1 (dataset-level modality mixing). In the cross-lingual setting, instance-level modality
mixing boosts conflict detection by 37%, much greater than dataset-level modality mixing. In the
cross-modal setting, instance-level modality mixing improves conflict detection by 2×.

We highlight that instance-level modality mixing is more scalable than directly finetuning the FMs
on the knowledge conflict detection task itself, as it does not require any explicit conflicts within the
instructions, which could be costly to generate for diverse domains. Notably, the improvement in
conflict detection does not come from training on the same task that we are testing on, but rather a
general proxy for cross-modal attention balance.

Summary. Instance-level modality mixing mitigates attention imbalance and improves cross-
modal reasoning, without requiring any additional data curation.

6 CONCLUSIONS

We uncovered a new fundamental gap in how FMs process modalities in context. Through controlled
datasets and experiments, we demonstrated that state-of-the-art models fail in a simple cross-modal
reasoning task of handling conflicting evidences in multiple modalities. Our analyses trace the
problem to cross-modal attention imbalance, an imbalance in attention weights across modalities. We
showed that simply including multiple modalities in training (i.e., dataset-level modality mixing) has
little gains, while explicitly mixing different modalities within each training sample (i.e., instance-
level modality mixing) mitigates attention imbalance and substantially boosts conflict detection. Our
results highlight the need for training paradigms that mirror the real-world complexity faced by
models and for scaling methods that enable foundation models to balance cross-modal attention and
reason on cross-modal contexts.

REFERENCES

Adept. ACT-1: Transformer for actions, 2022.

Anthropic. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku. Anthropic Blog,
2024a.

Anthropic. The Claude 3 model family: Opus, Sonnet, Haiku. Anthropic Blog, 2024b.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE international
conference on computer vision, pp. 2425–2433, 2015.

James Betker, Gabriel Goh, Li Jing, TimBrooks, Jianfeng Wang, Linjie Li, LongOuyang, Jun-
tangZhuang, JoyceLee, YufeiGuo, WesamManassra, PrafullaDhariwal, CaseyChu, YunxinJiao,
and Aditya Ramesh. Improving image generation with better captions. In OpenAI, 2023.

Tyler A. Chang, Zhuowen Tu, and Benjamin K. Bergen. The geometry of multilingual language
model representations. ArXiv, abs/2205.10964, 2022.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning, 2023.

Abrar Fahim, Alex Murphy, and Alona Fyshe. It’s not a modality gap: Characterizing and addressing
the contrastive gap. arXiv preprint arXiv:2405.18570, 2024.

Gemini. Introducing gemini 2.0. Blog, 2024.

Sachin Goyal, Christina Baek, J Zico Kolter, and Aditi Raghunathan. Context-parametric inver-
sion: Why instruction finetuning may not actually improve context reliance. arXiv preprint
arXiv:2410.10796, 2024.

9



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V in
VQA Matter: Elevating the role of image understanding in visual question answering. International
Journal of Computer Vision, 2016.

Yangyang Guo, Liqiang Nie, Zhiyong Cheng, Feng Ji, Ji Zhang, and Alberto Del Bimbo. Adavqa:
Overcoming language priors with adapted margin cosine loss. arXiv preprint arXiv:2105.01993,
2021.

Yangyang Guo, Liqiang Nie, Harry Cheng, Zhiyong Cheng, Mohan Kankanhalli, and Alberto
Del Bimbo. On modality bias recognition and reduction. ACM Transactions on Multimedia
Computing, Communications and Applications, 19(3):1–22, 2023.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with
noisy text supervision. In International conference on machine learning, pp. 4904–4916. PMLR,
2021.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly)
know what they know. arXiv preprint arXiv:2207.05221, 2022.

Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Renrui Zhang, Feng Li, Yuanhan Zhang, Ziwei Liu,
and Chunyuan Li. Llava-next: Stronger llms supercharge multimodal capabilities in the wild. Blog,
2024a.

Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin Wang, Michal Lukasik, Andreas Veit, Felix Yu,
and Sanjiv Kumar. Large language models with controllable working memory. arXiv preprint
arXiv:2211.05110, 2022.

Haonan Li, Fajri Koto, Minghao Wu, Alham Fikri Aji, and Timothy Baldwin. Bactrian-x : A
multilingual replicable instruction-following model with low-rank adaptation. In ArXiv, 2023.

Ming Li, Pei Chen, Chenguang Wang, Hongyu Zhao, Yijun Liang, Yupeng Hou, Fuxiao Liu, and
Tianyi Zhou. Mosaic-it: Free compositional data augmentation improves instruction tuning. arXiv
preprint arXiv:2405.13326, 2024b.

Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y. Zou. Mind the gap:
Understanding the modality gap in multi-modal contrastive representation learning. ArXiv,
abs/2203.02053, 2022.

Zhenxi Lin, Ziheng Zhang, Meng Wang, Yinghui Shi, Xian Wu, and Yefeng Zheng. Multi-modal
contrastive representation learning for entity alignment. arXiv preprint arXiv:2209.00891, 2022.

Zhiqiu Lin, Xinyue Chen, Deepak Pathak, Pengchuan Zhang, and Deva Ramanan. Revisiting the role
of language priors in vision-language models. In International Conference on Machine Learning,
2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. ArXiv, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. NeurIPS,
2024a.

Xiaoyuan Liu, Wenxuan Wang, Youliang Yuan, Jen-tse Huang, Qiuzhi Liu, Pinjia He, and Zhaopeng
Tu. Insight over sight? exploring the vision-knowledge conflicts in multimodal llms. arXiv preprint
arXiv:2410.08145, 2024b.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. Advances in Neural Information Processing Systems, 35:2507–2521,
2022.

Llama Team AI Meta. The llama 3 herd of models, 2024.

10



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Hellina Hailu Nigatu, Atnafu Lambebo Tonja, and Jugal Kalita. The less the merrier? investigating
language representation in multilingual models. ArXiv, 2023.

Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu, Xiansheng Hua, and Ji rong Wen. Counterfactual
vqa: A cause-effect look at language bias. 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 12695–12705, 2020.

OpenAI. Hello gpt-4o. OpenAI Blog, 2024a.

OpenAI. Introducing operator research preview. OpenAI Blog, 2024b.

Artemis Panagopoulou, Le Xue, Ning Yu, Junnan Li, Dongxu Li, Shafiq Joty, Ran Xu, Silvio Savarese,
Caiming Xiong, and Juan Carlos Niebles. X-instructblip: A framework for aligning x-modal
instruction-aware representations to llms and emergent cross-modal reasoning. arXiv preprint
arXiv:2311.18799, 2023.

Perplexity. Pro search: Upgraded for more advanced problem-solving. Perplexity Blog, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. ICML, 2021.

Gemma Team Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, L’eonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ram’e, Johan Ferret, Peter
Liu, Pouya Dehghani Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Char-
line Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stańczyk, Sertan Girgin, Nikola
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A ADDITIONAL EXAMPLES OF CONFLICT DETECTION

We provide additional examples of FM failure in conflict detection over cross-modal contexts.

Multilingual example In Figure 9, we provide an example of how an FM (GPT-4o) with web
access can fail to acknowledge knowledge conflicts from multilingual news sources.

Figure 9: An FM with web access can fail to acknowledge knowledge conflicts from multilingual
news sources. For example, GPT-4o reports the size of the protest outside South Korea’s National
Assembly on December 3, 2024 as 2,000 people, although different sources provide conflicting
numbers of attendees.

Cross-modal agent example In Figure 10, we provide an example of how an FM (GPT-4o) with
web access can fail to acknowledge knowledge conflicts in multimodal product descriptions.

Figure 10: A FM can fail to acknowledge knowledge conflicts in multiple modalities. For example,
GPT-4o instructs the user to purchase an item labeled as ”Hawaiian Shirt for Men” despite the image
clearly depicting an ordinary t-shirt, not a Hawaiian shirt.

B DATASET EXAMPLES

Figure 11 shows an example English evidence, Chinese evidence, and question from our CLQA
dataset. Figure 12 shows an example text evidence, image evidence, and question from our CMQA
dataset.

C PROMPTS

C.1 LM-AS-A-JUDGE FOR EVALUATING CONFLICT DETECTION

We use the following prompt for GPT-4o to evaluate if the model output is doing conflict detection.
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In a recent breakthrough, researchers at the University of California have developed a 
new genetic modification technique that significantly boosts crop yield. This 
advancement, based on CRISPR-Cas9 technology, allows for more precise editing of 
plant genomes, enabling scientists to enhance growth rates and resistance to 
environmental stressors. Preliminary field tests conducted on corn and wheat in the San 
Joaquin Valley have shown promising results. The modified crops exhibited a robust 
increase in productivity, with yield improvements recorded at approximately 25\%. This 
development is expected to revolutionize agricultural practices by reducing the need 
for chemical fertilizers and pesticides, potentially lowering production costs and 
benefiting farmers globally. According to Dr. Emily Zhang, the lead scientist on the 
project, the technique is ready for wider application and could be instrumental in 
addressing food security challenges posed by a growing global population and climate 
change. The next steps involve scaling up production and collaborating with 
agricultural organizations to implement these genetically modified crops on a larger 
scale. However, some environmental groups have raised concerns about the long-term 
impacts on biodiversity and ecosystem balance, advocating for more rigorous testing 
before widespread adoption.

最近，加州⼤学的研究⼈员开发了⼀种新的基因改造技术，可以显著提⾼农作物产量。该
技术基于CRISPR-Cas9技术，允许更精确地编辑植物基因组，从⽽增强⽣⻓速度和对环境
压⼒的抵抗⼒。在圣华⾦⾕进⾏的⽟⽶和⼩⻨初步⽥间试验显示出令⼈⿎舞的结果。经过
改造的作物表现出⽣产⼒的显著提⾼，产量提⾼约为15%。这⼀发展预计将通过减少对化
肥和农药的需求来⾰新农业实践，可能降低⽣产成本并使全球农⺠受益。项⽬负责⼈张艾
⽶博⼠表示，该技术已准备好进⾏更⼴泛的应⽤，并可能在应对由全球⼈⼝增⻓和⽓候变
化带来的粮⻝安全挑战中发挥关键作⽤。接下来的步骤包括扩⼤⽣产规模，并与农业组织
合作，在更⼤范围内实施这些转基因作物。然⽽，⼀些环保团体对⽣物多样性和⽣态系统
平衡的⻓期影响表示担忧，呼吁在⼴泛采⽤之前进⾏更严格的测试。

Q: What is the estimated percentage increase in crop yield due to the new genetic 
modification technique?

Figure 11: English evidence, Chinese evidence, and question from our CLQA dataset.

In the breathtaking expanse of a winter wonderland, the person is immersed in the art 
of snowboarding. As they glide effortlessly down the pristine slopes, their board carves 
precise arcs into the powdery snow, leaving behind a trail of skillful mastery. Clad in 
vibrant winter gear, they exhibit the perfect blend of agility and grace that is the 
hallmark of a seasoned snowboarder. Each twist and turn is a testament to their years of 
practice and passion for the sport. The snowy landscape stretches out endlessly, a 
canvas for the snowboarder's dynamic movements. With each jump and trick, they defy 
gravity, soaring briefly before landing with practiced ease. The sun shines brightly, 
reflecting off the snow and illuminating the snowboarder's path as they navigate the 
mountain with confidence. Every moment on the board is a dance with the elements, a 
thrilling experience that captivates both the participant and any fortunate observers. In 
this wintry realm, the snowboarder finds freedom and exhilaration in equal measure, 
making the most of every descent. 

Q: What is the person doing? 

Figure 12: Text evidence, image evidence, and question from our CMQA dataset.

I'll provide you with a question and a response by a model.

## Your task

Can you infer from the response that the pieces of evidence provided to the model
has contradictions within them (or that different pieces of evidence suggest
different answers)?
If yes, then contradict_score = 1, otherwise contradict_score = 0.

Examples of contradictions:
- two images describing different things, e.g., one image describes something,
while the other image describes something else;
- image and text describing different things, e.g., the image describes something,
while the text describes something else;
- two paragraphs giving different answers, e.g., one paragraph says something,
while the other paragraph says something else.

## Input

Question: {question}
Response: {response}

## Output requirements

Wrap your final judgement in triple backticks. Your judgement should look like
this:

```json
{{

"contradict_score": 0 or 1
}}
```
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C.2 CMQA AND CLQA PROMPTS

We prompt FMs with two pieces of context and a question, and sample a response from the FM. Here
is the prompt we use for our CLQA task:

Here are some paragraphs.
<paragraph 1>
<paragraph 2>
Based on all the paragraphs, answer the question below. Reply in English.
<question>

Similarly, we use the following prompt for our CMQA task:

<image> <text> // The order depends on the model.
Above are visual and textual descriptions of a scene.
Answer the question below.
<question>

D ADDITIONAL EXPERIMENTS IN ATTENTION IMBALANCE

Recall that in §4 we demonstrate cross-modal attention imbalance with the average norm of uk for
each context, averaged over all layers and attention heads. In this section, we elaborate on this by
visualizing uk for each context in each layer and attention head.

Figure 13 visualizes the norm of uk for each layer and attention head in the multilingual setting,
aggregated over all test samples. Figure 14 visualizes the norm of uk for each layer and attention
head in the multilingual setting, aggregated over all test samples. We see that that the values over the
Chinese/image context is generally smaller than those over the English/text context, especially in
upper layers.

We note one important exception that is relevant to the footnote in §4, where we argue that uk

averaged over all layers and attention heads should be viewed as a proxy of what we want to measure,
i.e., context contribution in the task-relevant subspaces. Figure 13, Layers 11-14 are an exception,
where the values over the Chinese context is higher – we argue that these layers are not in the
task-relevant subspace (i.e., they activates on the Chinese context but does not improve the reliance
on Chinese when answering the question). For this reason, we do not argue that the norms of different
uk should be the same to achieve the best conflict detection performance.

E ADDITIONAL RESULTS ON OTHER LANGUAGES

Figure 15 shows the results of conflict detection over cross-modal contexts containing Icelandic and
Turkish.
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Figure 13: We visualized the norm of uk for each layer and attention head in the multilingual
setting, aggregated over all test samples. We see that the values over the Chinese context is generally
smaller than those over the English context, especially in upper layers. Notably, Layers 11-14 are an
exception, where the values over the Chinese context is higher – we argue that these layers are not
in the task-relevant subspace (i.e., they activates on the Chinese context but does not improve the
reliance on Chinese when answering the question).
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Figure 14: We visualized the norm of uk for each layer and attention head in the multimodal setting,
aggregated over all test samples. We see that the values over the image is generally smaller than those
over the text.
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Figure 15: Conflict detection ratio over cross-modal contexts with Icelandic and Turkish.
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