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Abstract

Understanding the internal mechanisms of001
large language models (LLMs) is integral to002
enhancing their reliability, interpretability, and003
inference processes. We present Constituent-004
Aware Pooling (CAP), a methodology designed005
to analyse how LLMs process compositional006
linguistic structures. Grounded in principles007
of compositionality, mechanistic interpretabil-008
ity, and information theory, CAP systemati-009
cally intervenes in model activations through010
constituent-based pooling at various model lev-011
els. Our experiments on inverse definition mod-012
elling, hypernym and synonym prediction re-013
veal critical insights into transformers’ limita-014
tions in handling compositional abstractions.015
No specific layer integrates tokens into uni-016
fied semantic representations based on their017
constituent parts. We observe fragmented in-018
formation processing, which intensifies with019
model size, suggesting that larger models strug-020
gle more with these interventions and exhibit021
greater information dispersion. This fragmen-022
tation likely stems from transformers’ training023
objectives and architectural design, prevent-024
ing systematic and cohesive representations.025
Our findings highlight fundamental limitations026
in current transformer architectures regarding027
compositional semantics processing and model028
interpretability, underscoring the critical need029
for novel approaches in LLM design to address030
these challenges.031

1 Introduction032

The number and diversity of applications for033

Transformer-based large language models (LLMs)034

are currently at an accentuated growth, considering035

their performance at major NLP tasks continues036

to increase. Yet, the understanding of characteris-037

tics linked to LLMs critical deficiencies, such as038

hallucinations and lack of interpretability, remain039

limited. In particular, there is the matter of linguis-040

tic compositionality: how different units of text041

(morphemes, words, phrases) are combined into042

units of meaning, and how this relates to models of 043

language interpretation. 044

Uncovering compositional representations in 045

Transformer-based models is a key step in re- 046

ducing the semantic gap between user intent and 047

model interpretation, explaining model behaviour 048

in different settings and mitigating hallucinations 049

and inconsistent reasoning. To this effect, cur- 050

rent work has predominantly focused on mapping 051

input-output pairs (Yin et al., 2024), input embed- 052

dings (Haslett, 2024) and layer-wise outputs (Yu 053

and Ettinger, 2020; Modarressi et al., 2023) to ex- 054

pected latent representations by means of semantic 055

similarity or correlation. Such focus reflects two 056

intuitive expectations regarding LLM behaviour: 057

• LLMs should have an internal representation 058

that surfaces a token/word-level composition- 059

ality. 060

• While substantially distributed across the 061

model’s parameters, (phrasal, sentence-level) 062

meaning is expected to be “localisable” in or- 063

der to be addressed during inference. 064

Prior work has shown, through different pertur- 065

bation experiments, that LLM representations and 066

responses are fragile and unreliable across mod- 067

els (Wang et al., 2023; Fodor et al., 2024; Hu et al., 068

2024). Furthermore, analysis of phrasal representa- 069

tions (Yu and Ettinger, 2020; Carvalho et al., 2025) 070

revealed no significant correlation with phrasal 071

compositional semantics. However, the mecha- 072

nisms behind such obfuscation of the knowledge 073

addressable by a Transformer model are still open 074

research questions, which motivates this work. 075

Aiming to elucidate how token representations, 076

particularly with respect to compositionality, af- 077

fect LLM interpretation, this work investigates the 078

sensitivity/robustness of LLMs across local compo- 079

sitional perturbations at different stages of a Trans- 080

former model. In this study, we specifically fo- 081
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P: FF activation 
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Let the input state be: [1.2, 0.8 , 2.5 , 3.7 , 0.9]
Let the Constituent Segmentation be:  [(1, 2), (3, 4), (5)]

αmax: Select the maximum from each segment → {1.2,3.7,0.9}
αmean: Compute the mean of each segment → {1.0, 3.1, 0.9} 
αsum: Sum the values in each segment → {2.0,6.2,0.9}

CAP aggregation protocols

Output: [S1⍺, S1⍺, S1⍺]

⍺

α(R) → Rgrouped
+

+

+
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Figure 1: Illustration of the CAP process. Constituent Segmentation creates segments based on token constituents,
representing linguistic units like words or phrases. CAP is applied at layer m, pooling activations using aggregation
protocols (e.g., max, mean, sum). CAP can be applied to any component, provided dimensionality is maintained.
Activations at layer m+ 1 show the model’s new-reduced dimensionality. The results graph reflects how CAP is
applied at different depths, with accuracy recorded for comparison.

cus on autoregressive decoder Transformers, inves-082

tigating their compositional properties. We pro-083

pose Constituent-Aware Pooling (CAP), a pertur-084

bation method for pooling LLM activations that085

correspond to individual tokens into activations086

representing more coherent linguistic units, using087

it to improve the understanding of compositionality088

mechanisms within Transformer-based LMs (for089

an overview of compositionality and localisation,090

see Appendix A).091

Through this intervention, contrary to expecta-092

tions of incremental compositional/semantic build-093

up, we found that LLMs focus heavily on isolated094

token features rather than hierarchically integrat-095

ing semantic information across layers, leading to096

significant performance drops when CAP is ap-097

plied. These fluctuations, especially pronounced in098

early and middle layers, indicate that aggregation099

of syntactic and semantic information is distributed100

across multiple layers rather than localised in any101

single layer. Surprisingly, larger models are more102

fragile to compositional perturbations than smaller103

ones, highlighting the significant difference in the104

way Transformer-based LMs build meaning repre-105

sentations.106

Additionally, we interpret these empirical find-107

ings under the light of an information theoretical108

framework by suggesting that Transformer models 109

maximise information gain about the next predicted 110

token by delaying the aggregation of input token 111

representations to later layers, thereby reducing 112

mutual information (redundancy) between tokens 113

at the same layer to optimise prediction, leading to 114

longer aggregation paths across multiple layers. 115

In summary, the contributions of this work are: 116

1. A systematic analysis of compositional aggrega- 117

tion (word and phrasal-level) robustness for current 118

LLMs. 119

2. A theoretical account for the observed results, 120

which also explains the difficulty in locating com- 121

positional semantic representations in Transformer 122

models. 123

Based on the empirical results and theoretical 124

model presented here, we postulate that traditional 125

compositional semantic representations cannot be 126

isolated to any particular (intermediate) stage of a 127

standard Transformer model. This is independent 128

of model size, supervision type or inference task, 129

but linked to the number of hidden layers. Our 130

findings point toward the use of specialised archi- 131

tectures and/or training objectives in order to elicit 132

such representations. The supporting datasets and 133

software are available at a public repository1. 134

1<anonymised url>
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2 Tokenisation and compositionality in135

LLMs136

Intuitively, aggregating the representations of to-137

kens that compose a single meaning unit (e.g., av-138

eraging the embeddings of ‘m’, ‘amm’ and ‘al’ to139

form a single token embedding) and then to larger140

phrasal units (e.g. adjectival and noun composi-141

tions), would have a relatively small impact on142

model inference, since they have a strong depen-143

dence on each other in a given context and thus144

share significant information. However, it has been145

shown that LLMs are highly sensitive to token146

placement (Yin et al., 2024; Hu et al., 2024) and147

that their internal representations have no signifi-148

cant correlation with phrasal composition seman-149

tics (Yu and Ettinger, 2020; Carvalho et al., 2025).150

The observed disconnection between LLM in-151

ternal representations and linguistic knowledge re-152

garding compositionality raises practical and the-153

oretical questions towards the robustness of such154

models to perturbations strictly tied to composi-155

tional semantics (Appendix A). Such questions are156

especially relevant in solving semantic gaps be-157

tween input prompts and expected responses, as158

well as localising linguistic knowledge and improv-159

ing interpretability. One way in which they can be160

addressed is by systematically assessing the impact161

of said perturbations on model inference perfor-162

mance, at each model layer. We elaborate on the163

methodology to achieve this goal in the following164

section.165

3 Assessing compositional aggregation166

robustness167

To accurately assess the effects of compositional168

grouping at different layers of abstraction within169

transformer models, the inference objective should170

be a task that is both: 1) strictly dependent on the171

input tokens and their composition, with few pos-172

sible input variations; 2) contain as few tokens as173

possible in the output. For this reason, the follow-174

ing tasks were selected (Figure 1):175

1. Inverse definition modelling (IDM): predicting a176

term given its definition.177

2. Synonym prediction (SP): producing a synonym178

for a given word.179

3. Hypernym prediction (HP): generating a more180

general term for a given word.181

Formal task definitions and input formats are de-182

tailed in Appendix B.1.183

Constituent-Aware Pooling (CAP). To introduce184

compositional perturbations, we propose CAP, a 185

method for pooling (i.e., grouping) LLM activa- 186

tions corresponding to individual tokens into cohe- 187

sive linguistic units. CAP operates at two levels: 188

(i) word-level: grouping tokens that form a sin- 189

gle word, and (ii) phrase-level: grouping tokens 190

that form a single phrase. At the word-level, CAP 191

reverse-maps each model’s tokeniser to reconstruct 192

complete words and identify their activation ranges. 193

At the phrase-level, CAP uses a syntactic parser, 194

such as Benepar (Kitaev et al., 2019; Kitaev and 195

Klein, 2018), to align tokens with their correspond- 196

ing phrasal constituents and define their activation 197

ranges. Further details on the parser evaluation 198

methodology are provided in Appendix D. 199

CAP Pooling Protocols. CAP is applied progres- 200

sively across layers using three protocols α: Max: 201

selects the maximum activation within a segment, 202

identifying dominant features and their propaga- 203

tion through layers; Mean: computes the average 204

activation, providing a balanced representation of 205

all token contributions and their collective impact 206

on model decisions; and Sum: sums the activations, 207

capturing cumulative information flow and aggre- 208

gates effects of token interactions. These protocols 209

offer complementary insights into how models pro- 210

cess and integrate information: Max reveals feature 211

prominence patterns, Mean shows distributed rep- 212

resentation effects, and Sum reflects accumulated 213

semantic content across segments. 214

Transformer conceptualisation and the for- 215

malisation of CAP. This work builds on the math- 216

ematical framework of transformers introduced by 217

(Elhage et al., 2021), where computation is for- 218

malised into sequential residual blocks. Each layer 219

reads inputs from the residual stream, processes 220

them through its components (attention heads and 221

feed-forward neural networks (FF)), and writes the 222

outputs back into the residual stream. Attention 223

heads are responsible for transferring information 224

between tokens through the self-attention mecha- 225

nism, allowing each token to attend to others in 226

the sequence. FF apply non-linear transforma- 227

tions independently to each token representation, 228

enhancing the model’s expressive capacity. The 229

residual stream stores and propagates information 230

across layers, enabling the integration of new out- 231

puts with existing representations while preserving 232

original input information through residual connec- 233

tions. Let the transformer model have L layers, 234

input sequence of length K, batch size B, and in- 235

ner activations X , with with tensor shapes varying 236
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by model component as follows:237

• Attention layers output: X ∈ RB×K×Hm ,238

where Hm is the hidden dimension after pro-239

jection.240

• FF: X ∈ RB×K×Hf , where Hf is the feed-241

forward dimension.242

• Residual stream: X ∈ RB×K×Hh , where Hh243

is the hidden dimension.244

Let S = {(s1, e1), . . . (sn, en)} be the set of syn-245

tactic unit ranges (e.g., tokens, words or phrases),246

where si and ei denote the start and end indices of247

the i-th range. CAP pools/groups activations within248

these ranges, reducing the sequence dimension K249

to a grouped dimension G, where250

G = K − Σn
i=1(ei − si) (1)251

For each syntactic unit, CAP applies the grouping252

function α over the range [si, ei] in one of three253

ways, formalised as follows:254

Sum: α([si, ei]) =

ei∑
t=si

X[t] (2)255

256

Mean: α([si, ei]) =
1

ei − si + 1

ei∑
t=si

X[t] (3)257

258
Max: α([si, ei]) = max

t∈[si,ei]
X[t] (4)259

The grouped activations transform as follows:260

• For attention layers output, X ∈ RB×K×Hm261

becomes X ∈ RB×G×Hm .262

• For FF, X ∈ RB×K×Hf becomes X ∈263

RB×G×Hf .264

• For residual stream:, X ∈ RB×K×Hh be-265

comes X ∈ RB×G×Hh .266

This process consolidates activations for each syn-267

tactic unit, enabling systematic evaluation of com-268

positional robustness across layers. For simplicity,269

we demonstrate the operation over these compo-270

nents, but this approach can be extended to any271

transformer’s components, provided that the di-272

mensional requirements for information flow, as273

described in (Elhage et al., 2021), are respected.274

For example, consider attention layer internal acti-275

vations of shape X ∈ RB×Ha×K×K , where Ha is276

the number of attention heads, and K represents the277

query and key token dimensions. Applying CAP 278

with the Sum protocol involves aggregating activa- 279

tions over the query range [si, ei] and the key range 280

[sj , ej ]. The grouped activations are computed as: 281

α([si, ei], [sj , ej ]) =
∑ei

t=si

∑ej
t′=sj

X[b, h, t, t′]. 282

After applying CAP, the grouped activations have 283

the shape X ∈ RB×Ha×G×G, where G is the num- 284

ber of grouped syntactic units. This ensures that 285

query-key interactions are consolidated into co- 286

hesive syntactic units, aligning activations with 287

higher-level linguistic structures. We examine 288

CAP’s reduction ratio (K → G) at the word-level 289

and its effects across models, with detailed analysis 290

in Appendix C. 291

The CAP effect on models is evaluated by mea- 292

suring their accuracy post-CAP on a baseline test 293

consisting of examples correctly predicted by the 294

original models. This ensures that the evaluation 295

focuses on instances where CAP directly tests com- 296

positional robustness. Specifically, we report three 297

key metrics: the original accuracy (Ao), which rep- 298

resents the model’s accuracy on the baseline test 299

before applying CAP and establishes a reference 300

for evaluating the grouping effect; the grouped ac- 301

curacy (Ac), which measures the model’s accuracy 302

post-CAP, averaged across all CAP protocols (sum, 303

mean, max) and reflects how well the model retains 304

its predictions after compositional grouping; and 305

the accuracy drop (∆A), defined as ∆A = Ao−Ac, 306

which quantifies the performance loss due to CAP, 307

where lower ∆A values indicate more robust com- 308

positional behaviour and better preservation of se- 309

mantic information across layers. These metrics 310

offer a framework for comparing tasks and models, 311

allowing a granular assessment of compositional 312

representations. 313

4 Empirical analysis 314

4.1 Experimental setup & datasets 315

Datasets and metrics. The CAP effect 316

is evaluated using three WordNet-derived 317

datasets—definitions, hypernyms, and syn- 318

onyms—corresponding to the IDM, HP, and SP 319

tasks (Fellbaum, 1998). Test examples correctly 320

predicted by the original models (Ao) form the 321

baseline for subsequent CAP evaluation. Grouped 322

accuracy (Ac) is calculated post-CAP for this 323

subset, ensuring that CAP’s effect is isolated to 324

examples where the original models performed 325

correctly. The drop in accuracy (∆A) is reported 326

per protocol (sum, mean, max) to assess the 327
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Figure 2: Average grouped accuracy of CAP across different aggregation functions for normalised layer positions
(0%-100%) is shown for word-level CAP (TW) and phrasal-level CAP (TP). Sub-figures (a)-(c) illustrate the
CAP effect on the original (Org) models, while sub-figures (d)-(f) show its impact on the fine-tuned (FT) models.
Fine-tuning consistently improves performance, particularly in the middle to late layers (25%-100%), while early
layers (0%-25%) show more variability and lower accuracy across models.

impact of different aggregation methods on model328

performance. See Appendix B.2 for dataset details329

and Appendix E.2 for comprehensive results.330

LLMs and evaluated dimensions. The method-331

ology was tested across various decoder-only trans-332

former models (Vaswani, 2017). Our main focus333

was on GPT-2 (small: 124M, medium: 355M, large:334

774M parameters) (Radford et al., 2019), Gemma335

(2B parameters) (Team et al., 2024), Llama (3B, 8B,336

and 8B-instruct parameters) (Dubey et al., 2024),337

and Qwen (0.5B, 1.5B, and 3B parameters) (Yang338

et al., 2024). These models use different tokenisa-339

tion approaches: byte-level BPE (GPT-2, Qwen),340

expanded BPE with 128K vocabulary (Llama3),341

and SentencePiece (Gemma). Models were tested342

before and after task-specific fine-tuning (3 epochs,343

learning rate 5e-5). This selection spans diverse344

architectures, sizes, and tokenisation strategies (see345

Appendix B.3 for further details on the models and346

fine-tuning parameters).347

Experimental setup. All experiments were con-348

ducted using 2x NVIDIA RTX A6000 and 2x349

NVIDIA RTX A100 GPUs, with the experimen-350

tal framework being developed in Python 3.11.5.351

We used the Transformers (v4.44.2) and PyTorch 352

(v2.4.1) libraries, along with Transformer-lens 353

(v2.6.0), to train and evaluate models and for prob- 354

ing. Benepar (v0.2.0) was used for sentence pars- 355

ing, and statistical analysis was supported by Scikit- 356

learn (v1.5.2). 357

4.2 Results and discussion 358

Compositional inference in LLMs is not a purely 359

incremental process. Contrary to expectations 360

of a smooth and steady layer-wise performance 361

improvement, we observe significant fluctuations 362

when CAP is applied across layers (Figure 2). Per- 363

formance drops notably in early and middle lay- 364

ers, followed by sharp improvements (Figure 2 365

(a)-(c), (e), and (f)), suggesting these layers strug- 366

gle to process CAPed activations, particularly the 367

pooled linguistic features captured in earlier layers. 368

Rather than progressively building semantic infor- 369

mation from individual tokens to complex phrases, 370

the models appear to focus heavily on isolated to- 371

ken features. The results indicate that attention 372

is distributed over input tokens and model lay- 373

ers in a non-systematic and decentralised manner 374

that is highly context-dependent, showing mini- 375
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Model Layer
Position

Original Fine-tuned
Max Mean Sum Max Mean Sum

GPT2-large

1% 8.06% 9.15% 6.70% 10.61% 10.01% 7.83%
25% 5.19% 4.94% 5.63% 6.25% 5.77% 6.32%
75% 5.28% 2.62% 2.39% 3.66% 1.62% 0.88%

100% 0.84% 0.12% 0.19% 0.22% 0.16% 0.16%

Gemma-2B

1% 97.91% 23.51% 23.75% 57.58% 22.70% 21.99%
25% 86.32% 16.20% 19.27% 50.45% 14.08% 15.57%
75% 52.38% 31.03% 24.74% 21.77% 14.99% 12.80%

100% 6.87% 10.61% 10.61% 2.21% 2.05% 2.05%

Qwen-3B

1% 12.63% 12.27% 11.44% 7.85% 6.71% 6.48%
25% 18.61% 8.59% 9.11% 10.66% 4.75% 5.82%
75% 7.23% 4.00% 3.79% 3.65% 2.83% 1.85%

100% 0.39% 0.4% 0.4% 0.31% 0.17% 0.2%

Llama3-8B

1% 25.49% 24.99% 24.94% 24.44% 23.42% 23.48%
25% 20.02% 5.87% 5.74% 8.81% 6.03% 5.92%
75% 7.31% 3.40% 3.54% 5.16% 3.47% 3.29%

100% 2.80% 1.77% 1.77% 1.55% 1.33% 1.33%

Table 1: IDM accuracy drop ∆ in the word-level CAP, highlighting best and worst values in both original and
fine-tuned models. The layer numbers were normalised to layer positions as percentages of the total layers, which
allows comparing equivalent relative depths across models, such as 25% or 75% of the total layers, rather than using
absolute layer numbers. This method ensures fair comparisons between models, even with different architectures.

mal reliance on sequential or positional relation-376

ships of constituents. This phenomenon is partic-377

ularly evident in the sharp decline in SP and HP378

tasks, where contextual information is limited dur-379

ing phrase-level CAP application. We argue that380

this behaviour stems from the model’s training ob-381

jective, which maximises information gain in each382

layer towards predicted tokens at the cost of reduc-383

ing mutual information between tokens in a sin-384

gle layer. This behaviour means that aggregation,385

including syntactic, is performed across multiple386

layers and thus is not localisable from any single387

given layer. An information theoretical analysis388

elaborates this reasoning in Section 5. Our findings389

highlight how compositional structures are highly390

sensitive to token representation dynamics across391

layers, suggesting that performance fluctuations392

can be attributed to information loss incurred as a393

function of token mutual information across layers.394

Larger models are more fragile to composi-395

tional perturbations. The IDM task highlights396

this fragility in larger models, as larger models397

rely on finer feature extraction. Within families,398

distinct patterns emerge: original Qwen’s smaller399

variants show better IDM robustness (e.g., at posi-400

tion 25% there was a 7.69% drop on Qwen-1.5B401

vs 12.11% on Qwen-3B), while Llama3 exhibits402

capacity-dependent behaviour with the 3B variant403

being more vulnerable than 8B. Notably, Llama3-404

8B-Instruct, despite being fine-tuned, performed405

worse in IDM compared to Llama 8B and 3B, but406

excels in structured tasks (SP, HP), underscoring407

the role of architecture and training in composi- 408

tional robustness. Despite having similar reduc- 409

tion ratios to Llama models (see Appendix C), 410

Gemma-2B shows greater sensitivity to perturba- 411

tions (e.g., at position 1% Max: Gemma-2B drops 412

97.91% vs. Llama3-8B’s 25.49%), likely due to its 413

larger vocabulary enabling finer-grained tokenisa- 414

tion. While fine-grained token knowledge benefits 415

standard tasks, it appears to increase susceptibility 416

to compositional perturbations. The superior per- 417

formance of Llama3-8B over its 3B variant can be 418

attributed to its enhanced capacity for maintaining 419

feature relationships across layers while preserv- 420

ing key compositional information. While larger 421

models excel in standard tasks (see Appendix E.1), 422

they exhibit a greater reliance on the identifica- 423

tion of intrinsic features in the early layers. We 424

find that phrasal-level CAP substantially impacts 425

Gemma-2B and Llama models, suggesting a heavy 426

dependence on layer-wise information gain, where 427

they separate features in an uncorrelated and highly 428

distinct manner. While this aids in identifying 429

complex feature patterns, it also makes them more 430

vulnerable to contextual noise—a weakness that 431

threatens their robustness and integrity. Notably, 432

Qwen models outperform Llama and Gemma de- 433

spite similar parameter counts, likely due to byte- 434

level BPE tokenisation and multilingual training, 435

which enhance compositional stability, whereas 436

Llama’s expanded BPE and Gemma’s Sentence- 437

Piece prioritise efficiency over phrase retention, 438

increasing vulnerability to CAP interventions. 439
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Activation abstraction vs the information loss.440

Table 1 reveals significant variations in aggrega-441

tion function performance across sample models442

for the IDM task (see Appendix E.2 for the rest443

of the models and tasks results). The Max aggre-444

gation shows the most dramatic impact. This find-445

ing supports our argument that these models tend446

to distribute information in a fragmented manner,447

lacking the integration of compositional (lexical448

and semantic) information across tokens and con-449

tiguous layers. The Mean aggregation provides450

more balanced results, though performance drops451

still indicate absence of consistent compositional452

mechanisms. This issue becomes more pronounced453

in token-phrases experiments (Figure 2). The Sum454

aggregation consistently outperformed other meth-455

ods, with Mean aggregation following closely be-456

hind, particularly in original models. The Sum457

aggregation reflects the cumulative effect of aggre-458

gating tokens into larger segments, reinforcing our459

earlier conclusion. Instead of progressively build-460

ing semantic information across layers, the models461

exhibit cumulative information loss, particularly462

when interventions occur in early layers.463

Fine-tuning enhances recovery capabilities464

across models. Figure 2 (d-f) demonstrates im-465

proved performance maintenance post-fine-tuning466

across all model families, with strongest gains in467

75%-100% layer positions. SP tasks showed maxi-468

mum benefit, attributed to high task specificity and469

minimal activation reduction under CAP. Max ag-470

gregation displayed the greatest improvement post-471

fine-tuning, likely due to enhanced retention of472

key information. For instance, Gemma-2B’s accu-473

racy drop decreased from 97.91% to 57.65% in the474

1% layer, while Qwen-3B improved from 7.23%475

to 3.65% in the 75% layer. Mean aggregation476

benefits were also substantial in smaller models,477

with Gemma-2B’s 75% layer drop reducing from478

31.03% to 15.00%. The Qwen family showed con-479

sistent improvements across all aggregation types,480

though smaller models like GPT2-large demon-481

strated minimal gains, suggesting potential over-482

fitting. Notably, larger models like Llama3-8B483

showed minimal gains from fine-tuning in IDM484

tasks, indicating that standard fine-tuning objec-485

tives may not directly enhance compositional ro-486

bustness. Although fine-tuning strengthens models’487

resilience under CAP, it does not fully resolve the488

challenge of forming stable compositional seman-489

tic representations, highlighting an architectural490

limitation in current transformer models.491

5 Information Gain & Token Mutual 492

Information 493

The empirical findings can be explained by look- 494

ing at the autoregressive next-token objective of 495

a transformer model from an information theo- 496

retical standpoint: examining the relationship be- 497

tween each generated token Y to the input token 498

representations Rl(X) of each layer l, in terms 499

of Information Gain IGY,Rl(X), and the aggre- 500

gation of a pair of input token representations 501

Rl(Xi), Rl(Xj) in terms of their Mutual Informa- 502

tion I(Rl(Xi), Rl(Xj)). 503

IGY,Rl(X) quantifies the amount of information 504

gained about the predicted token Y from the ob- 505

servation of the Rl(X), for which the expectation 506

is the mutual information I(Y,Rl(X)) of Y and 507

Rl(X), which is equivalent to the reduction in en- 508

tropy of Y achieved by learning the state of Rl(X): 509

IGY,Rl(X)(Y, r) = H(Y )−H(Y |r). 510

During training, Rl(X) will be adjusted in a way 511

that reduces the uncertainty about Y , meaning it 512

will promote the maximisation of IGY,Rl(X) for 513

any given layer l, which can be expressed as: 514

IGY,X = max(
∑
l

IGY,Rl(X)) (5) 515

where IGY,X represents the information gain of Y 516

w.r.t. input token X . 517

When looking at two input tokens Xi, Xj , the 518

higher the mutual information I(Rl(Xi), Rl(Xj)) 519

is, the lower the impact that aggregating Rl(Xi) 520

and Rl(Xj) would have over IGY,X , as those vari- 521

ables share more of the same information. In- 522

tuitively, that would apply to linguistic composi- 523

tion, e.g., tokens that form a word and thus have a 524

stronger dependence when observed together. 525

However, as the model’s ability to predict Y 526

is contingent on the accumulated information of 527

all layers, and Equation 5 is independent of layer 528

order, there is an intrinsic incentive to delay the 529

aggregation of information (to later layers), as 530

IGRlp (X),Rlq (X) < IGRlp (X),Rlr (X), ∀p < q < r,
(6) 531

where p, q and r are layer indices, i.e., subse- 532

quent layers have more information about the in- 533

puts than previous ones. This can be explained 534

in that optimising Equation 5 can be achieved by 535

retaining at each Rlp(X) only the necessary infor- 536

mation to maximise
∑

i,j IGRlq (Xi),MHA(Rlp (Xj)), 537

where MHA(Rlp(Xj)) is the multi-head atten- 538
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tion weighted representation. Such an objec-539

tive implies minimising the mutual information540

I(Rlp(Xi), Rlp(Xj)), i.e., reducing redundancy541

across tokens from the same layer. Therefore, token542

dependencies will tend to be modelled by aggre-543

gation paths spanning multiple layers, with more544

layers allowing for more complex and longer paths.545

This is in line with the findings of Mechanistic In-546

terpretability studies (Elhage et al., 2021; Conmy547

et al., 2023). Equation 6 also implies that the ear-548

lier an aggregation is done, the larger the impact it549

will have on IGY,X , which explains the empirical550

results.551

The effects of I(Rl(Xi), Rl(Xj)) on LLMs552

are further compounded by the tokenisation ob-553

jective (e.g., BPE, WordPiece), which minimises554

I(Xi, Xj), i.e., token redundancy, as a means of555

reducing the vocabulary size, leading to longer ag-556

gregation paths.557

6 Related work558

General compositionality. Compositionality, a559

fundamental concept across disciplines, concerns560

understanding complex systems through their sim-561

pler components’ meanings. It spans philosophy,562

cognitive science, linguistics, and machine learning563

(Tull et al., 2024). In ML and AI, compositionality564

enables models to generalise, reason about, and in-565

terpret complex meanings from basic components.566

In cognitive science, the Language of Thought Hy-567

pothesis (LOTH) (Fodor, 1975) proposes that men-568

tal processes are compositional (Rescorla, 2024).569

Recent ML studies explore how transformers and570

neural networks build inferences. The logit lens571

(Nostalgebraist, 2020) demonstrated that transform-572

ers build predictions progressively where early lay-573

ers make initial guesses and deeper layers refine574

guesses with broader context. (Dai et al., 2022)575

show feed-forward layers act as key-value mem-576

ories, combining information for complex predic-577

tions. MEMIT (Meng et al., 2023) and PMET (Li578

et al., 2025) show how controlled inferences can be579

built by manipulating models’ components. These580

studies suggest transformers may employ composi-581

tional processing, systematically building complex582

representations from simpler components.583

Linguistic compositionality. In linguistics, com-584

positionality is often linked to the principle of com-585

positionality, which states that the meaning of a586

complex expression is derived from "the meanings587

of its constituent parts, the grammar used to com-588

bine them, and the syntactic structure as a whole" 589

(Montague and Thomason, 1975). (Yu and Ettinger, 590

2020) found that transformers mainly encode indi- 591

vidual word content rather than true phrase-level 592

meaning, with model performance often tied to 593

word overlap rather than compositional understand- 594

ing. (Carvalho et al., 2025) probed transformer 595

models’ representation of adjectival modifier phe- 596

nomena in adjective-noun phrases. Their tests re- 597

vealed that models partially capture meaning in- 598

tersective composition, which does not generalise 599

across other adjective types. DecompX (Modar- 600

ressi et al., 2023) traces individual token repre- 601

sentations through transformer layers, enabling 602

analysis of compositional behaviour at the level of 603

specific token predictions without requiring cross- 604

layer vector aggregation. (Haslett, 2024) demon- 605

strate that models from Multilingual BERT through 606

GPT-4 frequently fail to segment words meaning- 607

fully, especially in non-Latin scripts where mor- 608

pheme boundaries are poorly captured. 609

This work complements and extends these findings 610

to characterise the fundamental disconnect between 611

transformer representations and compositional se- 612

mantics observed across aforementioned studies. 613

7 Conclusion 614

This work systematically analyses the robustness of 615

transformer-based LLMs to compositional pertur- 616

bations. Motivated by studies highlighting an unex- 617

pected gap between linguistic compositionality and 618

LLM representations, we characterised the impact 619

of compositional aggregation at each inference step 620

and provided an information-theoretical explana- 621

tion. Our findings indicate a pattern where token 622

dependencies are modelled by aggregation paths 623

spanning multiple layers, and complex token struc- 624

ture learning comes at the cost of higher sensitivity 625

to perturbations at inputs and earlier layers. Based 626

on the relation between information gain from input 627

to predicted token and mutual information between 628

token representations, we postulate that composi- 629

tional semantic representations cannot be isolated 630

to any particular (intermediate) stage of a standard 631

transformer model. These insights suggest that fu- 632

ture compositional-aware models should explore 633

specialised architectures or training objectives. Nat- 634

ural extensions include analysing encoder-based 635

and encoder-decoder transformers and investigat- 636

ing final token representations to further understand 637

internal compositional mechanisms. 638
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Limitations639

Several limitations are acknowledged in our paper.640

First, the WordNet dataset may not fully represent641

language diversity across all domains. Second, the642

employed transformer models are decoder-based643

only and could be subject to biases from their train-644

ing data. Third, our findings depend on the Benepar645

parsing model, which may introduce inaccuracies646

in linguistic analysis. Additionally, the applicabil-647

ity of our results to other languages has not been648

tested. Future research should address these is-649

sues and consider combining languages and parsing650

models for further validation.651

Ethical Statement652

The proposed framework aims to have a positive653

impact on improving the critical understanding of654

the mechanisms involved in language interpretation655

in transformers. A more complete understanding of656

these mechanisms requires coordination with other657

interpretability methods.658
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A Compositionality and Localisation 803

The concept of linguistic compositionality has 804

evolved from its origins in Frege’s work (Frege, 805

1892), which started conceptualising the notion that 806

the meaning of a complex expression is determined 807

by its constituent parts and their syntactic arrange- 808

ment. This principle was formalised by Montague 809

(Montague, 1970b,a), who applied mathematical 810

rigour to natural language semantics, thereby rein- 811

forcing the compositional approach within formal 812

semantics. Linguistic phenomena such as idioms, 813

context-dependence, and metaphor, which seemed 814

to violate compositionality, prompted debates on 815

its universality (Katz and Postal, 1963; Jackendoff, 816

1997), with theoretical accounts evolving to inte- 817

grate these phenomena, leading to a more nuanced 818

understanding that balances strict compositional 819

rules with allowances for non-compositional ele- 820

ments (Partee, 1984). 821

While the syntactic-logical connection entailed 822

by formal models is not assumed to be induced 823

by neural language models, there is a common 824

assumption that those models should entail a syn- 825

tactic compositionality function, which allows for 826

a systematic model for meaning composition, i.e., 827

that the syntactic structure of a complex expression 828

s is significantly determined by the syntactic prop- 829

erties of its constituent parts and the rules used to 830

combine them. Formally, for any sentence s, its 831

syntactic properties can be defined as a function 832

f of the syntactic properties of its immediate con- 833

stituents s1, s2, . . . , sn and the syntactic operations 834

applied: 835

Syntax(s) = f (Syntax(s1),Syntax(s2), . . . ,

Syntax(sn),Rules)
(7)

836

Within the context of distributed representations, 837

a meaning representation can be factored into its 838

syntactic and content (term embedding) compo- 839

nents. A compositional distributional semantic 840

model merges syntactic compositionality with dis- 841

tributional semantics by representing token mean- 842

ings as vectors (token embeddings) in a continuous 843

semantic space and combining them according to 844

10

https://doi.org/10.1111/j.1755-2567.1970.tb00434.x
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens


syntactic structure. Formally, each token t is as-845

sociated with a vector vt ∈ Rn that captures its846

semantic content based on distributional informa-847

tion.848

For a complex syntactic expression s composed849

of constituents s1, s2, . . . , sn, the semantic repre-850

sentation vs is computed using a compositional851

function f that integrates both the vectors of the852

constituents and the syntactic operations applied:853

vs = f (vs1 ,vs2 , . . . ,vsn ,Syntactic structure)
(8)854

This function f is designed to reflect syntac-855

tic compositionality by structurally combining the856

embeddings of the constituents according to the857

syntactic rules governing their combination.858

In the context of a specific transformer-based859

LM model implementing an interpretation func-860

tion of an input s, the question which is central to861

this work is whether the contiguous composition862

of tokens is reflected within the structure of the863

transformer-based LMs and its constituent parts,864

layers l0...ln, multi-head attention, feed-forward865

layers and residual connections, i.e. whether the866

representations h(k)
i at each layer lk explicitly en-867

code the composition of contiguous tokens ti, ti+1,868

and how the model’s components contribute to this869

encoding.870

B Elaborations on Experimental Setup871

B.1 Downstream Task Definitions872

The tasks selected for this study are designed to873

evaluate the effects of compositional aggregation,874

focusing on tasks that are strictly dependent on in-875

put tokens and their compositional semantics while876

minimising variability. Each task produces a single-877

token output, and predictions are considered cor-878

rect if they exactly match the target token. The879

following are the formal definitions for each task.880

Inverse Definition Modelling (IDM): The IDM881

task involves predicting a term T based on a882

given natural language definition D. Let D =883

{d1, d2, . . . , dn} represent the sequence of tokens884

constituting the definition. The goal is to generate885

the corresponding term T , where:886

T = argmax
t∈V

P (t | D) (9)887

Here, V is the vocabulary of possible terms, and t888

is a candidate term. A prediction is correct if the889

term T exactly matches the target term. The task 890

prompt used for IDM was structured as follows: 891

"<definition> is called a" 892

For example, given the definition "A domesticated 893

carnivorous mammal that typically has a long snout, 894

an acute sense of smell, non-retractile claws, and a 895

barking or howling voice," the task would require 896

the model to predict the term "dog." 897

Synonym Prediction (SP): The SP task requires 898

the model to generate a synonym S for a given 899

word W . Let W ∈ V represent the input word. 900

The task is to predict a synonym S, such that: 901

S = argmax
s∈V

P (s | W ) (10) 902

where s is a candidate synonym from the vocab- 903

ulary V . The prediction is considered correct if 904

S exactly matches the target synonym. The task 905

prompt used for SP was structured as follows: 906

"<word> is a synonym of" 907

For instance, given the input word "happy," the 908

task would ask the model to predict the synonym 909

"joyful." 910

Hypernym Prediction (HP): The HP task in- 911

volves predicting a more general term, or hyper- 912

nym, H for a given word W . Let W ∈ V represent 913

the input word. The objective is to predict a hyper- 914

nym H , such that: 915

H = argmax
h∈V

P (h | W ) (11) 916

where h is a candidate hypernym. The prediction 917

is correct if H exactly matches the intended hyper- 918

nym. The task prompt used for HP was structured 919

as follows: 920

"<word> is a type of" 921

For example, given the word "cat," the task would 922

ask the model to predict the hypernym "animal." 923

These tasks focus on generating precise, single- 924

token predictions, allowing for a rigorous evalua- 925

tion of the model’s ability to capture and process 926

compositional semantics. 927

B.2 Dataset Descriptions and Preprocessing 928

The training and test datasets are constructed by 929

extracting definitions, hypernyms, and synonyms 930

for each synset from WordNet (Fellbaum, 1998), 931

whose usage is unencumbered by licensing restric- 932

tions. WordNet is a lexical database of the En- 933

glish language, containing over 117,000 synsets of 934

nouns, verbs, adjectives, and adverbs. Each synset 935
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Model Task Original Test Set Fine-tuned Test Set

GPT2 (S,M,L)
IDM 11,948 8,651
SP 7,753 5,578
HP 25,364 18,273

Gemma-2B
IDM 24,831 17,859
SP 16,014 11,533
HP 44,687 32,209

Llama3 (3B, 8B, 8B (Instruct)
IDM 14,991 10,828
SP 9,360 6,723
HP 31,962 23,070

Qwen2.5 (0.5B, 1.5B, 3B)
IDM 14,927 10,780
SP 9,195 6,598
HP 31,845 23,000

Table 2: Test set sizes for each model and task (IDM:
Inverse Dictionary Modelling, SP: Synonym Prediction,
HP: Hypernym Prediction) derived from WordNet.

Model Params Layers Dmodel Heads Act. MLP Dim
GPT2-small 124M 12 768 12 GELU 3072
GPT2-medium 302M 24 1024 16 GELU 4096
GPT2-large 708M 36 1280 20 GELU 5120
Gemma-2B 2B 32 4096 16 GELU 8192
LLama3-3B 3.2B 28 3072 24 SiLU 8192
LLama3-8B 7.8B 32 4096 32 SiLU 14336
LLama3-8B (Instruct) 7.8B 32 4096 32 SiLU 14336
Qwen2.5-0.5B 391M 24 896 14 SiLU 4864
Qwen2.5-1.5B 1.4B 28 1536 12 SiLU 8960
Qwen2.5-3B 3.0B 36 2048 16 SiLU 11008

Table 3: Model properties across architectures. Params:
number of parameters, Layers: number of layers, Dmodel:
size of word embeddings and hidden states, Heads: num-
ber of attention heads, Act.: Activation function, MLP
Dim: dimensionality of the FF layers.

represents a unique concept and is annotated with936

part of speech, definition, hypernyms, synonyms,937

and other semantic relationships. It is focused on938

general-purpose vocabulary and does not target939

specific demographic groups or domains. Defi-940

nitions were cleaned using typical preprocessing941

techniques, such as removing special characters,942

punctuation, and extra spaces, and removing paren-943

thesised content when necessary. The dataset was944

initially split 80-20, with 20% used for training.945

The remaining 80% was then split 90-10, with 10%946

for validation and 90% for testing. The test dataset947

was filtered to retain only single-token predictions948

matching each model’s tokenisation. Table 2 shows949

the test dataset sizes used for each task and model,950

including inverse dictionary modelling (IDM), syn-951

onym prediction (SP), and hypernym prediction952

(HP).953

B.3 Model Specifications and Fine-tuning954

Parameters955

Table 3 provides a comparative overview of various956

Transformer models used in this study. We used957

GPT-2 models (released under the Modified MIT958

License), Gemma-2B (released under the Gemma959

Terms of Use), Llama3 models (released under the960

Meta Llama 3 Community License), and Qwen961

Model Original Fine-tuned
IDM SP HP IDM SP HP

GPT2-small 7.10% 2.59% 17.04% 13.52% 8.18% 26.59%
GPT2-medium 10.70% 4.27% 16.77% 16.34% 11.65% 28.75%

GPT2-large 11.33% 5.93% 13.90% 17.80% 11.78% 27.66%
Gemma-2B 16.76% 6.38% 10.16% 9.57% 10.75% 23.31%
Llama3-8B 25.17% 10.80% 15.30% 18.28% 10.75% 24.14%

Llama3-8B (Instruct) 1.61% 8.41% 12.09% 19.36% 10.97% 24.73%
Llama3-3B 20.51% 8.26% 12.19% 26.42% 13.43% 31.1%
Qwen-0.5B 8.21% 6.10% 12.03% 18.83% 10.94% 28.03%
Qwen-1.5B 12.35% 7.61% 14.64% 30.01% 13.70% 31.31%
Qwen-3B 13.35% 7.53% 14.40% 31.80% 13.66% 31.95%

Table 4: Baseline performance of various models on
three tasks: (inverse dictionary modelling) IDM, syn-
onym prediction (SP), and hypernym prediction (HP).
The values represent the accuracy of each model’s origi-
nal and fine-tuned versions.

models (released under Apache License 2.0). The 962

used models were mainly pre-trained on English 963

data, with Qwen and LLama models providing 964

additional multilingual support, which is English, 965

German, French, Italian, Portuguese, Hindi, Span- 966

ish, and Thai for LLama, and more than 10 lan- 967

guages, including Chinese, English, French, Span- 968

ish, Portuguese, Russian, Arabic, Japanese, Korean, 969

Vietnamese, Thai, and Indonesian for Qwen. All 970

models were used for research purposes, specifi- 971

cally for language modelling and text generation 972

in English, aligning with their intended usage. The 973

models differ in their number of parameters, lay- 974

ers, heads, and feed-forward (FF) dimensions. The 975

number of parameters ranges from 85M for GPT2- 976

small to 7.8B for LLama3-8B. The activation func- 977

tions and FF dimensions also highlight variations 978

in the internal processing architecture, influenc- 979

ing the models’ performance across different tasks. 980

In addition to these architectural differences, the 981

models were fine-tuned using a consistent set of 982

hyperparameters. The fine-tuning process spanned 983

over three training epochs with a batch size of 16. 984

The learning rate was set to 5e-5, while a weight 985

decay of 0.01 was applied to prevent overfitting. 986

Training logs were generated every 200 steps, with 987

model checkpoints saved every 1000 steps, but lim- 988

ited to retaining only one checkpoint to manage 989

storage efficiently. The evaluation strategy during 990

fine-tuning was set to evaluate at the end of each 991

epoch, and similarly, the model was saved at the 992

end of each epoch as well. 993

C Token Reduction Analysis 994

Table 5 presents an analysis of activation reduction 995

percentages across different LLMs, particularly for 996

the token-to-words case. In this context, the mean 997

represents the average reduction percentages across 998

samples, while the standard deviation indicates the 999
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Model Task Mean ± Std

GPT2 (S)
IDM 3± 5
SP 27± 9
HP 27± 10

GPT2 (M)
IDM 3± 5
SP 28± 10
HP 26± 11

GPT2 (L)
IDM 3± 5
SP 27± 9
HP 26± 11

Gemma-2B
IDM 9± 4
SP 19± 9
HP 30± 9

Llama3-3B
IDM 10± 5
SP 23± 6
HP 28± 6

Llama3-8B
IDM 10± 5
SP 21± 7
HP 28± 9

Llama3-8B instruct
IDM 13± 4
SP 30± 6
HP 28± 8

Qwen 0.5B
IDM 3± 5
SP 9± 11
HP 20± 10

Qwen 1.5B
IDM 3± 5
SP 12± 10
HP 19± 10

Qwen 3B
IDM 3± 5
SP 12± 10
HP 19± 10

Table 5: Reduction percentages

variability of these reductions. The purpose is to as-1000

sess whether token reduction across models would1001

highly influence the results of CAP.1002

Token reduction is a factor but not the sole de-1003

terminant of performance degradation. The1004

results presented in Tables 7, 8, and 9 indicate1005

that while token reduction percentage influences1006

performance degradation, it is not the sole deter-1007

mining factor. Several key observations support1008

this conclusion, which is discussed below.1009

First, we observe that higher token reduction1010

does not always lead to a greater performance1011

drop. For instance, models such as Gemma-2B and1012

Llama3-8B exhibit high token reduction percent-1013

ages (Table 5), yet their performance degradation1014

varies significantly across tasks and layer positions.1015

Also, despite lower token reduction percentages,1016

the models Qwen 0.5B and GPT2-small still show1017

substantial accuracy drops, particularly in early lay-1018

ers in the SP and HP tasks. Second, model size and1019

depth influence degradation, as evident in the larger1020

models (e.g., Llama3-8B, Gemma-2B) exhibiting1021

greater fragility to CAP interventions, particularly1022

in early layers (1% and 25%). Third, as discussed1023

in the paper, layer-specific variability suggests hi-1024

erarchical processing differences. Early-layer CAP 1025

interventions cause severe accuracy drops in large 1026

models but have a less pronounced effect in smaller 1027

models, suggesting that deeper architectures defer 1028

compositional integration to later layers. Further, 1029

fine-tuning reduces degradation in later layers (75% 1030

and 100%), implying that learned representations 1031

in deeper layers mitigate the effects of early pertur- 1032

bations. Finally, architectural differences influence 1033

sensitivity. We observe that higher MLP dimen- 1034

sions (e.g., Llama3-8B: 14,336 vs. GPT2-small: 1035

3,072) correlate with greater vulnerability to CAP 1036

perturbations, likely due to increased parameter 1037

redundancy and disruption of the key-value recall 1038

mechanism in MLPs (Meng et al., 2022). 1039

While the token reduction percentage contributes 1040

to performance degradation, it is insufficient to 1041

fully explain the observed variations. Task nature, 1042

model size, layer depth, activation functions, and 1043

MLP dimensions collectively influence the robust- 1044

ness of CAP interventions. Larger, deeper models 1045

demonstrate greater sensitivity to early perturba- 1046

tions, while fine-tuning helps recover performance 1047

in later layers. These findings suggest that effec- 1048

tive compositional representations in LLMs are dis- 1049

tributed rather than localised, requiring specialised 1050

architectures or training objectives to improve ro- 1051

bustness. 1052

D Evaluating Parsing Accuracy and 1053

Addressing the Impact of Benepar 1054

Parser Errors 1055

A key potential bias in our results comes from the 1056

reliance on the constituency parser for token-to- 1057

phrase experiments. Inaccuracies in parsing may 1058

distort the results of CAP. To address this, we re- 1059

port the chosen parser’s accuracy by testing it on 1060

the Stanford Sentiment Treebank (SST) dataset, a 1061

dataset that offers golden labels for parsing. We 1062

aim to alleviate concerns about the parser’s impact 1063

on our findings by showcasing its accuracy on the 1064

SST dataset. The parser evaluation was conducted 1065

as follows: 1066

Dataset. A subset of 1,000 randomly sampled 1067

sentences from the test split of the SST dataset was 1068

used for the analysis. The Stanford Sentiment Tree- 1069

bank (SST) provides annotated constituency labels, 1070

which serve as the golden labels for comparison 1071

with parser outputs. While WordNet definitions of- 1072

fer rich semantic information, they lack annotated 1073

golden constituency labels, making direct parser 1074
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validation infeasible. The use of SST’s annotations1075

enables reliable parser evaluation and indirectly1076

supports the validation of the parsing correctness1077

for WordNet definitions, provided they follow stan-1078

dard syntactic structures.1079

Parser. The Benepar parser was employed for1080

parsing sentences due to its strong performance1081

in constituency parsing tasks. Benepar is widely1082

recognised for its robustness and ability to handle1083

diverse syntactic structures. For this evaluation,1084

the constituency structures generated by Benepar1085

were directly compared against SST’s golden anno-1086

tations to assess its parsing accuracy.1087

Evaluation metrics. The parser’s performance1088

was evaluated using the following metrics:1089

• Precision: Proportion of correctly predicted1090

constituents out of all predicted constituents.1091

• Recall: Proportion of correctly predicted con-1092

stituents out of all ground truth constituents.1093

• F1-Score: Harmonic mean of precision and1094

recall, providing an overall performance mea-1095

sure.1096

• Accuracy: Percentage of sentences where the1097

predicted constituency structure fully matches1098

the ground truth.1099

Results robustness. To ensure robustness and1100

consistency, the evaluation was repeated across five1101

different random seeds. This allowed for an assess-1102

ment of variability in performance across multiple1103

subsets of the dataset. Additionally, constituents1104

were evaluated at hierarchical levels—such as root1105

level, phrase level, and token level—to analyse1106

parsing performance across varying syntactic gran-1107

ularities.1108

Results. The evaluation yielded the following av-1109

eraged metrics across five seeds for the default level1110

of parsing (Level 1, the immediate children of the1111

root node):

Metric Mean ± Std
Precision 0.956 ± 0.001
Recall 0.956 ± 0.001
F1-Score 0.956 ± 0.001
Accuracy 0.956 ± 0.001

Table 6: Aggregated evaluation metrics for Level 1 con-
stituents using the Benepar parser, averaged across five
seeds.

1112

Interpretation. The results demonstrate consis- 1113

tently high parsing accuracy across all evaluation 1114

metrics, with minimal variability (as indicated by 1115

the low standard deviation). These findings validate 1116

the Benepar parser’s reliability for parsing Level 1 1117

constituents, which form the backbone of sentence 1118

structure. Consequently, the parser’s impact on 1119

CAP results is minimal, ensuring robustness and 1120

validity of our conclusions. 1121

E Detailed Performance Evaluation and 1122

Results 1123

E.1 Baseline Performance 1124

Table 4 summarises the baseline performance of 1125

the models used in this paper on the three tasks. 1126

The results include the accuracy of each model’s 1127

original and fine-tuned versions on the test set de- 1128

scribed in Table 2. Fine-tuning generally improves 1129

performance, particularly in the larger models such 1130

as Gemma-2B and Llama3-8B, which show no- 1131

table increases in accuracy in most tasks, except 1132

the IDM task. 1133

E.2 Comprehensive CAP Results for All 1134

Models and Tasks 1135

Tables 7, 8, 9, 10, 11, and 12 present the reduc- 1136

tion in accuracy when applying word-level and 1137

phrasal CAP, respectively, across models and the 1138

three tasks: Inverse Dictionary Modelling (IDM), 1139

Synonym Prediction (SP), and Hypernym Predic- 1140

tion (HP). The results of phrasal-level CAP for 1141

Gemma-2B and Llama3-8B are not reported due to 1142

the severe degradation in model performance under 1143

these conditions, rendering the outputs effectively 1144

unusable. 1145

Let Ao represent the original accuracy and Ac 1146

represent the accuracy after applying CAP. The 1147

reported drop in accuracy, ∆A, is calculated as: 1148

∆A = Ao −Ac (12) 1149

This ∆A value is expressed in percentage points. 1150

For example, ∆A = 40 indicates that the model’s 1151

accuracy has decreased by 40 percentage points 1152

from its original performance, which could repre- 1153

sent a change from Ao = 100% to Ac = 60%, or 1154

any other pair of accuracies with a 40 percentage 1155

point difference. 1156

The tables report ∆A for different layer posi- 1157

tions (1%, 25%, 75%, and 100%) in both Original 1158

and Fine-tuned settings, using three CAP protocols: 1159

Max, Mean, and Sum. This representation allows 1160
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for a direct comparison of CAP’s impact across1161

different models and tasks, independent of their1162

baseline performance levels.1163
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Model Layer Position Original Fine-tuned
Max Mean Sum Max Mean Sum

IDM (Inverse Dictionary Modelling)

GPT2-small

1% 4.76% 4.44% 4.69% 8.04% 7.72% 7.22%
25% 3.09% 2.74% 3.26% 5.87% 5.85% 6.24%
75% 2.64% 2.36% 2.74% 2.72% 2.47% 2.35%
100% 1.43% 1.24% 1.24% 0.46% 0.39% 0.39%

GPT2-medium

1% 16.75% 16.36% 13.77% 24.51% 12.70% 7.44%
25% 6.73% 5.692% 6.22% 5.04% 4.84% 5.36%
75% 18.61% 2.13% 2.89% 11.79% 2.09% 1.72%
100% 1.58% 0.41% 0.41% 2.27% 1.29% 1.29%

GPT2-large

1% 8.06% 9.15% 6.70% 10.61% 10.01% 7.83%
25% 5.19% 4.94% 5.63% 6.25% 5.77% 6.32%
75% 5.28% 2.62% 2.39% 3.66% 1.62% 0.88%
100% 0.84% 0.12% 0.19% 0.22% 0.16% 0.16%

Gemma-2B

1% 97.91% 23.51% 23.75% 57.58% 22.70% 21.99%
25% 86.32% 16.20% 19.27% 50.45% 14.08% 15.57%
75% 52.38% 31.03% 24.74% 21.77% 14.99% 12.80%
100% 6.87% 10.61% 10.61% 2.21% 2.05% 2.05%

Llama3-8B

1% 25.49% 24.99% 24.94% 24.44% 23.42% 23.48%
25% 20.02% 5.87% 5.74% 8.81% 6.03% 5.92%
75% 7.31% 3.40% 3.54% 5.16% 3.47% 3.29%
100% 2.80% 1.77% 1.77% 1.55% 1.33% 1.33%

Llama3-3B

1% 28.79% 26.36% 25.96% 25.54% 22.71% 22.74%
25% 31.73% 8.08% 6.99% 13.44% 5.84% 5.8%
75% 12.27% 5.84% 5.22% 8.54% 5.03% 5.15%
100% 3.62% 1.99% 1.99% 2.37% 1.82% 1.85%

Llama3-8B Instruct

1% 41.75% 48.99% 45.99% 22.01% 19.97% 20.29%
25% 44.43% 25.22% 25.12% 17.62% 13.51% 15.22%
75% 26.17% 24.42% 24.98% 7.9% 5.34% 5.19%
100% 21.8% 12.04% 12.04% 1.51% 1.29% 1.33%

Qwen2.5-0.5B

1% 10.12% 8.2% 8.23% 7.85% 6.39% 6.00%
25% 5.19% 4.21% 4.45% 4.35% 3.29% 3.49%
75% 3.56% 2.82% 3.15% 2.39% 2.24% 2.15%
100% 0.98% 0.98% 0.98% 0.23% 0.28% 0.33%

Qwen2.5-1.5B

1% 14.56% 11.04% 10.22% 9.47% 7.36% 7.48%
25% 13.29% 4.45% 5.34% 6.83% 3.86% 4.00%
75% 7.03% 2.68% 2.84% 4.21% 2.74% 2.79%
100% 0.7% 0.4% 0.4% 0.65% 0.23% 0.23%

Qwen2.5-3B

1% 12.63% 12.27% 11.44% 7.85% 6.71% 6.48%
25% 18.61% 8.59% 9.11% 10.66% 4.75% 5.82%
75% 7.23% 4.00% 3.79% 3.65% 2.83% 2.8%
100% 0.39% 0.4% 0.4% 0.31% 0.17% 0.2%

Table 7: Performance drop (in percentage points) for GPT2 (small, medium, large), Gemma-2B, Llama3 (3B, 8B,
3B Instruct), and Qwen2.5 (0.5B, 1.5B, 3B) models after applying word-level CAP for the Inverse Dictionary
Modelling (IDM) task. Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both Original
and Fine-tuned settings, using three CAP protocols: Max, Mean, and Sum.

16



Model Layer Position Original Fine-tuned
Max Mean Sum Max Mean Sum

SP (Synonym Prediction)

GPT2-small

1% 99.04% 99.04% 99.04% 59.68% 49.40% 34.68%
25% 98.56% 98.56% 97.60% 61.09% 30.85% 29.64%
75% 96.15% 94.23% 93.75% 40.12% 9.68% 10.48%

100% 6.73% 7.21% 7.21% 3.23% 2.42% 2.42%

GPT2-medium

1% 96.43% 96.43% 96.43% 83.35% 82.50% 84.06%
25% 96.13% 96.43% 96.43% 79.22% 80.22% 80.79%
75% 63.93% 48.30% 56.63% 48.36% 23.23% 24.53%

100% 6.68% 3.41% 3.41% 6.55% 5.12% 5.12%

GPT2-large

1% 98.49% 98.49% 98.06% 78.61% 78.33% 80.17%
25% 97.63% 97.63% 97.63% 80.93% 81.78% 79.89%
75% 34.27% 27.59% 28.52% 11.91% 10.02% 10.49%

100% 1.29% 1.51% 1.51% 1.22% 39.12% 0.61%

Gemma-2B

1% 99.99% 99.80% 83.47% 99.93% 99.15% 96.38%
25% 99.99% 97.46% 63.68% 90.20% 90.24% 65.82%
75% 84.63% 60.66% 61.15% 89.87% 75.68% 68.65%

100% 4.30% 8.69% 8.69% 2.98% 4.57% 4.57%

Llama3-8B

1% 99.99% 99.90% 99.90% 99.99% 99.88% 99.88%
25% 85.55% 83.50% 82.81% 87.63% 85.75% 85.63%
75% 53.35% 50.55% 49.77% 31.29% 30.29% 29.91%

100% 9.28% 9.96% 9.96% 5.20% 5.82% 5.82%

Llama3-3B

1% 100% 100% 100% 100% 100% 100%
25% 85.81% 86.2% 85.16% 88.47% 84.54% 85.48%
75% 40.18% 39.3% 38.91% 14.77% 16.48% 15.64%

100% 5.77% 6.16% 6.16% 5.8% 6.12% 6.12%

Llama3-8B (Instruct)

1% 85.46% 85.71% 83.88% 42.9% 32.33% 31.09%
25% 54.34% 55.48% 58.83% 27.52% 18.13% 18.27%
75% 44.92% 31.51% 25.77% 19.23% 12.5% 12.23%

100% 6.81% 7.3% 7.3% 5.77% 4.81% 4.95%

Qwen2.5-0.5B

1% 81.77% 88.89% 79.17% 64.24% 58.36% 53.3%
25% 90.8% 91.15% 86.11% 54.51% 54.38% 37.22%
75% 63.72% 66.32% 39.06% 48.87% 48.57% 24.29%

100% 8.51% 10.07% 8.51% 3.67% 3.8% 3.8%

Qwen2.5-1.5B

1% 89.35% 84.52% 84.23% 64.55% 56.79% 56.03%
25% 90.58% 83.48% 83.19% 60.45% 55.5% 54.79%
75% 22.06% 22.21% 18.8% 10.88% 10.34% 10.02%

100% 6.82% 3.55% 3.55% 8.19% 7.87% 7.87%

Qwen2.5-3B

1% 81.39% 81.53% 73.58% 55.93% 49.35% 49.57%
25% 93.04% 89.91% 82.81% 72.41% 42.78% 38.47%
75% 77.84% 69.6% 49.43% 43.24% 22.13% 15.25%

100% 3.98% 3.13% 3.13% 1.4% 1.29% 1.29%

Table 8: Performance drop (in percentage points) for GPT2 (small, medium, large), Gemma-2B, Llama3 (3B, 8B,
3B Instruct), and Qwen2.5 (0.5B, 1.5B, 3B) models after applying word-level CAP for the Synonym Prediction (SP)
task. Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both Original and Fine-tuned
settings, using three CAP protocols: Max, Mean, and Sum.

17



Model Layer Position Original Fine-tuned
Max Mean Sum Max Mean Sum

HP (Hypernym Prediction)

GPT2-small

1% 99.75% 99.75% 99.75% 91.19% 91.08% 88.20%
25% 99.47% 99.29% 98.94% 81.35% 76.76% 72.63%
75% 95.40% 91.16% 91.32% 48.75% 38.54% 38.40%

100% 8.12% 6.39% 6.39% 1.35% 1.38% 1.28%

GPT2-medium

1% 99.42% 99.40% 99.44% 93.42% 92.17% 91.69%
25% 99.11% 98.55% 97.85% 91.64% 86.11% 85.76%
75% 74.83% 33.22% 41.52% 3.86% 2.23% 2.33%

100% 4.42% 1.79% 1.79% 3.86% 2.23% 2.32%

GPT2-large

1% 99.27% 99.32% 99.20% 91.49% 90.90% 89.80%
25% 98.81% 98.75% 98.10% 87.30% 87.54% 84.16%
75% 45.17% 29.85% 35.66% 7.61% 6.89% 6.22%

100% 2.14% 0.45% 0.90% 0.69% 0.50% 0.56%

Gemma-2B

1% 99.99% 98.97% 70.22% 99.88% 95.39% 74.03%
25% 99.98% 90.58% 86.35% 90.98% 73.78% 86.01%
75% 68.14% 80.06% 80.20% 58.56% 72.57% 66.56%

100% 5.89% 10.99% 10.99% 1.58% 2.12% 2.12%

Llama3-8B

1% 99.99% 99.99% 99.14% 99.99% 99.10% 99.14%
25% 80.85% 76.97% 76.81% 72.67% 71.86% 71.40%
75% 24.43% 24.39% 23.11% 19.65% 19.71% 18.77%

100% 3.83% 4.49% 4.49% 4.63% 4.04% 4.20%

Llama3-3B

1% 100% 99.95% 99.95% 99.93% 99.86% 99.82%
25% 88.04% 83.87% 84.34% 65.53% 63.92% 64.17%
75% 26.06% 24.47% 23.4% 11.06% 10.52% 10.79%

100% 4.34% 4.31% 4.31% 3.85% 4.08% 3.86%

Llama3-8B (Instruct)

1% 92.51% 92.45% 92.48% 95.86% 96.21% 96.03%
25% 68.41% 65.9% 67.24% 70.72% 69.99% 69.64%
75% 15.79% 14.78% 15.55% 20% 20.29% 19.53%

100% 0.57% 0.39% 0.39% 3.57% 3.5% 3.29%

Qwen2.5-0.5B

1% 93.76% 90.95% 85.27% 86.33% 80.55% 77.91%
25% 97.12% 97.51% 89.18% 74.83% 75.41% 75.77%
75% 76.74% 77.96% 55.39% 50.69% 49.71% 48.81%

100% 6.15% 5.56% 5.56% 2.48% 2.34% 2.34%

Qwen2.5-1.5B

1% 97.14% 90.5% 88.96% 88.52% 83.19% 77.21%
25% 98.12% 95.66% 94.04% 72.29% 68.18% 68.33%
75% 18.27% 18.72% 17.94% 8.94% 9.64% 9.51%

100% 7.13% 6.81% 6.81% 3.95% 3.8% 3.8%

Qwen2.5-3B

1% 83.26% 82.41% 68.8% 75.13% 72.56% 70.69%
25% 97.36% 96.32% 88.81% 92.69% 79.67% 79.63%
75% 86.56% 71.45% 45.47% 40.87% 30.95% 33.04%

100% 2.07% 1.89% 1.89% 0.45% 0.35% 0.41%

Table 9: Performance drop (in percentage points) for GPT2 (small, medium, large), Gemma-2B, Llama3 (3B, 8B,
3B Instruct), and Qwen2.5 (0.5B, 1.5B, 3B) models after applying word-level CAP for the Hypernym Prediction
(HP) task. Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both Original and
Fine-tuned settings, using three CAP protocols: Max, Mean, and Sum.
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Model Layer Position Original Fine-tuned
Max Mean Sum Max Mean Sum

IDM (Inverse Dictionary Modelling)

GPT2-small

1% 93.00% 93.94% 96.56% 77.912% 77.73% 80.28%
25% 90.20% 87.85% 91.41% 65.73% 62.95% 72.31%
75% 87.81% 78.66% 84.90% 55.74% 46.81% 55.73%
100% 48.10% 45.10% 38.04% 11.11% 8.45% 8.11%

GPT2-medium

1% 87.96% 89.87% 92.52% 81.12% 82.37% 81.83%
25% 77.06% 82.71% 86.54% 69.53% 75.19% 77.55%
75% 76.35% 48.76% 57.68% 60.60% 29.52% 33.12%
100% 29.23% 23.12% 23.21% 13.03% 9.75% 9.94%

GPT2-large

1% 87.06% 89.91% 88.44% 81.14% 85.35% 79.46%
25% 73.54% 78.18% 82.48% 69.39% 73.85% 71.90%
75% 49.02% 42.06% 40.38% 20.59% 19.78% 21.45%
100% 28.14% 24.22% 24.78% 6.46% 6.67% 8.44%

Qwen2.5-0.5B

1% 93.97% 91.19% 87.15% 90.94% 84.44% 78.85%
25% 84.64% 76.78% 78.00% 76.36% 66.24% 67.16%
75% 61.75% 57.95% 63.86% 48.86% 41.8% 46.25%
100% 32.29% 26.8% 19.5% 13.55% 10.17% 15.08%

Qwen2.5-1.5B

1% 98.24% 95.8% 95.82% 93.31% 87.33% 80.81%
25% 96.4% 84.72% 89.41% 79.52% 63.00% 65.53%
75% 69.68% 64.6% 60.33% 19.11% 14.72% 24.01%
100% 68.03% 60.04% 56.6% 12.01% 7.46% 12.72%

Qwen2.5-3B

1% 96.51% 94.37% 94.64% 90.11% 86.02% 80.57%
25% 96.82% 89.89% 92.39% 90.24% 76.55% 76.28%
75% 82.27% 74.71% 77.07% 47.45% 36.06% 39.95%
100% 62.26% 62.21% 58.12% 7.41% 5.52% 8.18%

Table 10: Performance drop (in percentage points) for GPT2-small, GPT2-medium, and GPT2-large models after
applying phrasal-level CAP across three tasks: Inverse Dictionary Modelling (IDM), Synonym Prediction (SP), and
Hypernym Prediction (HP). Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both
Original and Fine-tuned settings, using three CAP protocols: Max, Mean, and Sum. Results for Gemma-2B and
Llama3-8B are omitted due to severe performance degradation under phrasal-level CAP.

Model Layer Position Original Fine-tuned
Max Mean Sum Max Mean Sum

SP (Synonym Prediction)

GPT2-small

1% 99.99% 99.99% 99.99% 64.90% 58.47% 53.22%
25% 92.97% 93.36% 93.36% 61.27% 37.19% 74.69%
75% 92.58% 90.63% 92.19% 43.35% 20.57% 52.22%

100% 58.46% 47.92% 51.43% 13.27% 7.57% 12.45%

GPT2-medium

1% 97.55% 95.11% 99.99% 88.92% 84.23% 84.80%
25% 97.55% 99.73% 97.55% 75.00% 76.85% 85.65%
75% 71.20% 68.21% 77.45% 47.72% 22.16% 45.88%

100% 66.30% 39.40% 52.17% 12.93% 6.68% 9.52%

GPT2-large

1% 96.67% 98.33% 96.67% 92.55% 80.76% 79.58%
25% 96.67% 96.44% 97.90% 79.44% 80.48% 82.86%
75% 78.83% 66.72% 66.32% 18.63% 15.80% 21.00%

100% 67.10% 45.83% 56.68% 9.69% 7.15% 8.33%

Qwen2.5-0.5B

1% 99.32% 95.88% 92.87% 81.67% 61.89% 57.95%
25% 98.65% 95.91% 96.45% 60.19% 58.75% 58.43%
75% 93.21% 84.66% 77.4% 56.29% 49.3% 44.94%

100% 68.78% 45.74% 43.92% 13.56% 7.47% 16.79%

Qwen2.5-1.5B

1% 98.1% 96.33% 94.43% 72.33% 58.5% 59.55%
25% 97.55% 96.2% 95.38% 63.79% 55.84% 68.93%
75% 75.72% 55.17% 48.41% 19.33% 14.48% 26.87%

100% 70.39% 38.68% 36.29% 18.73% 10.41% 20.97%

Qwen2.5-0.5B

1% 96.47% 95.52% 90.31% 74.05% 67.1% 56.57%
25% 99.32% 98.1% 94.29% 94.89% 56.93% 57.38%
75% 94.02% 89.46% 83.4% 86.43% 64.01% 43.39%

100% 47.00% 35.56% 31.32% 20.07% 15.19% 21.15%

Table 11: Performance drop (in percentage points) for GPT2-small, GPT2-medium, and GPT2-large models after
applying phrasal-level CAP across three tasks: Inverse Dictionary Modelling (IDM), Synonym Prediction (SP), and
Hypernym Prediction (HP). Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both
Original and Fine-tuned settings, using three CAP protocols: Max, Mean, and Sum. Results for Gemma-2B and
Llama3-8B are omitted due to severe performance degradation under phrasal-level CAP.
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Model Layer Position Original Fine-tuned
Max Mean Sum Max Mean Sum

HP (Hypernym Prediction)

GPT2-small

1% 99.40% 99.26% 47.24% 89.31% 89.86% 88.76%
25% 99.31% 98.12% 46.38% 77.72% 73.12% 76.08%
75% 95.63% 91.78% 45.57% 47.73% 336.59% 48.32%

100% 65.62% 45.84% 34.80% 4.80% 3.64% 4.00%

GPT2-medium

1% 99.77% 99.56% 99.950% 92.67% 90.40% 92.54%
25% 99.92% 99.35% 99.47% 90.38% 84.29% 86.84%
75% 77.77% 58.17% 80.58% 63.00% 21.55% 23.32%

100% 59.28% 27.47% 30.54% 8.46% 5.10% 5.10%

GPT2-large

1% 99.77% 99.71% 99.76% 91.63% 92.56% 88.92%
25% 99.82% 98.72% 98.82% 85.31% 85.35% 84.58%
75% 66.58% 49.79% 63.56% 9.87% 8.79% 9.73%

100% 35.57% 24.79% 26.69% 6.99% 5.05% 4.82%

Qwen2.5-0.5B

1% 99.06% 97.77% 92.97% 94.46% 81.39% 79.64%
25% 99.85% 98.54% 96.95% 75.14% 76.07% 86.94%
75% 94.87% 87.81% 88.37% 56.27% 53.09% 63.33%

100% 68.71% 27.91% 27.92% 10.6% 7.68% 15.16%

Qwen2.5-1.5B

1% 99.81% 97.07% 92.75% 90.34% 84.61% 78.76%
25% 99.64% 97.97% 96.98% 72.81% 68.48% 77.13%
75% 84.28% 47.63% 43.15% 17.12% 14.76% 28.18%

100% 82.22% 26.00% 27.7% 13.49% 9.08% 17.98%

Qwen2.5-3B

1% 93.95% 91.81% 82.05% 77.6% 73.86% 71.41%
25% 99.24% 98.54% 95.97% 93.6% 80.32% 80.77%
75% 94.48% 88.91% 78.88% 54.32% 38.19% 57.87%

100% 55.28% 27.4% 25.1% 15.1% 8.77% 13.77%

Table 12: Performance drop (in percentage points) for GPT2-small, GPT2-medium, and GPT2-large models after
applying phrasal-level CAP across three tasks: Inverse Dictionary Modelling (IDM), Synonym Prediction (SP), and
Hypernym Prediction (HP). Results are reported for different layer positions (1%, 25%, 75%, and 100%) in both
Original and Fine-tuned settings, using three CAP protocols: Max, Mean, and Sum. Results for Gemma-2B and
Llama3-8B are omitted due to severe performance degradation under phrasal-level CAP.
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