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ABSTRACT

Diffusion models have emerged as an effective approach for time-series proba-
bilistic forecasting, aiming to generate future observations based on historical
data through a denoising process. In this paper, we introduce self-generation tech-
nique designed to enhance the performance of conditional generation in time-series
forecasting. Self-generation involves synthesizing not only future observations,
but also historical data itself conditioned on the given historical context. While
noise is often introduced during the observation process, our method can reduce
the amount of noise in observed historical data, thereby enhancing forecasting
accuracy. Additionally, to further boost forecasting performance, we incorporate
classifier-free generation methods into conditional generation for time-series fore-
casting. In the experiment, we demonstrate that our method outperforms other
condition generation methods.

1 INTRODUCTION

Time series forecasting is a critical problem in the fields of machine learning and deep learning,
focusing on predicting future observations based on historical data. This process requires learning the
relationship patterns between past and future data during training and, at inference time, reconstructing
patterns that best fit the given historical data from the learned relationships. Time-series forecasting
problems are essential across many domains, spanning fields such as physics, climate, healthcare,
and finance (Lim & Zohren, 2021; Torres et al., 2021a; Masini et al., 2023).

Over the years, numerous deep learning methods have been proposed to address time-series fore-
casting problems (Lim & Zohren, 2021; Torres et al., 2021b; Miller et al., 2024). Among these,
diffusion-based conditional generative methods have shown strong forecasting performance. (Rasul
et al., 2021; Tashiro et al., 2021; Yan et al., 2021) These methods involve training neural networks
to approximate the score values (rxpred

t
log p(xpred

t
|xhist)) on diffusion step t, where p(xpred|xhist)

represents the conditional distribution of future observations given historical data. Using these
trained networks, future observations are synthesized through a denoising process, including a reverse
Stochastic Differential Equation (SDE) process or ancestral sampling, conditioned on the historical
data.

However, due to measurement errors or the occurrence of anomalies, the conditional historical
observations may contain noise, which can negatively impact forecasting performance (Rožanec
et al., 2021). To address this, we propose Self-Generation, which extends the denoising process
of score-based generation to both future observations and conditional historical data, effectively
reducing the inherent noise in the conditional inputs. Specifically, our training objective is not
to approximate rxpred

t
log p(xpred

t
|xhist) but rather rxtotal

t
log p(xtotal

t
|xhist), where xtotal represents an

union of two time-series xpred and xhist.

Modeling the total sequence within the diffusion process has two major advantages. First, high-
frequency anomalies in the data are effectively mitigated after a few forward diffusion steps (Choi
et al., 2022; Yang et al., 2023). Second, during the generation process, predictions and conditions are
interdependently generated. This interdependence enables the reverse diffusion process to minimize
the impact of anomalies in the historical data, as predictions are generated using predominantly
non-anomalous conditions and purified conditions informed by the generated predictions. To further
leverage the noise-reduction capabilities of Self-Generation and focus on prediction generation,
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we introduce an imbalanced weighting scheme in the loss function between the past and future
components, demonstrating the importance of our careful training design.

To further enhance the forecasting performance of our score-based conditional generation, we
integrate classifier-free generation introduced by Ho & Salimans (2022), with score-based conditional
generation for time-series forecasting into a unified framework. Our results show that incorporating
classifier-free methods into conditional generation significantly reduces forecasting errors, and this
positive impact is further amplified when combined with Self-Generation. Finally, in the experimental
section, we demonstrate that our proposed method achieves state-of-the-art forecasting performance
across 2 toy datasets and 5 real datasets, outperforming 12 baseline methods. To summarize, our
contributions can be outlined as follows:

1. We propose Self-Generation as a novel approach for score-based conditional generation in
time-series forecasting. Self-Generation reduces noise in conditional historical observations
by synthesizing both future and historical observations through a denoising process, thereby
enhancing forecasting performance.

2. We theoretically show how generating the entire time-series (rather than only the future part)
within the diffusion process enables a noise-purification mechanism, and formally derive a
corresponding total-sequence score-matching objective. In Section 3, we present Theorems
1–2 to justify this extended generation strategy and detail the resulting loss function, which
emphasizes accurate predictions informed by denoised historical conditions.

3. To further enhance the forecasting performance of Self-Generation, we adapt the classifier-
free generation approach to suit time-series forecasting scenarios.

4. Out of 2 toy examples and 4 real datasets, our score-based conditional generative method
with Self-Generation achieves state-of-the-art performance in all cases, compared to 12 base-
lines, including methods based on variational autoencoder (VAE), diffusion, and gaussian
process (GP).

2 PRELIMINARY AND PROBLEM STATEMENT

2.1 DIFFUSION MODELS

Generative models aim to synthesize realistic data, such as images, by learning the underlying
probability distribution of the data (Oussidi & Elhassouny, 2018; Harshvardhan et al., 2020; Cao
et al., 2024). Among various generative approaches, diffusion models have gained prominence
defeating generative adversarial network (GAN), in terms of generating high-quality images with
more stable training (Dhariwal & Nichol, 2021; Song et al., 2020; Ho et al., 2020; Cao et al., 2024).
Diffusion models operate through following two-step process: i) Noising step, which means gradually
adding noise to an image, transforming it into Gaussian noise, ii) Denoising step, which means
recovering the original image from the noisy version, where the noise is sampled from a specific
distribution, typically a normal distribution (Yang et al., 2023).

Initially, the denoising process was designed to reverse the noising process by adding noise in the
opposite direction at each step. This process is derived from minimizing the Kullback-Leibler (KL)
divergence between the joint probability of noising and denoising step, leading to an inequality
involving the negative log-likelihood, similar to the variational autoencoder (VAE) framework. This
approach is called Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020).

Given original image x ⇠ p(x) and the length of noising and denoising step T , DDPMs add noise
to the image according to the transition kernel: p(xt|xt�1) = N (xt;

p
1� �txt�1,�tI), where

t 2 {1, 2, ..., T} and �t 2 (0, 1) is a hyperparameter. With sufficiently large T , xt converges to a
normal distribution. DDPMs then train a corresponding learnable denoising kernel p✓(xt�1|xt) =
N (xt�1;µ✓(t, xt),⌃(t, xt)), where the denoising process aims to reverse the added noise.

As a follow-up research, Song et al. (2020) have generalized diffusion models from discrete-time
processes to continuous Stochastic Differential Equation (SDE) formulations, introducing Variance
Exploding (VE), Variance Preserving (VP), and sub-VP processes. In this framework, the noising and
denoising processes of diffusion models are reinterpreted as forward and reverse SDEs, respectively:
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dx = f(t, x)dt+ g(t)dw
dx = [f(t, x)� g(t)2rxlogpt(x)]dt+ g(t)dw̄

, where t 2 [0, 1], f is an affine and w, w̄ represent forward and backward Brownian motion,
respectively. Among these, the VP process is particularly notable for its connection to DDPMs,
where: f(t, x) = � 1

2�(t)x, g(t) =
p

�(t). They demonstrate that score based generative models
train score network s✓(·, ·) to learn a gradient of log likelihood, score function, by using following
score matching loss:

LSM (✓) = Et,xt [�(t)||s✓(t, xt)�rxt logp(xt)||2],

where xt ⇠ p(xt). However, directly using score matching loss is computationally prohibitive since
calculating exact score function of xt needs statistical method (Hyvärinen, 2005; Song et al., 2020).
Thanks to specific formulation of f and g, we can derive a following denoising score matching loss,
which can be calculated by using given formula (Vincent, 2011; Øksendal, 2014):

LDSM (✓) = Et,x,xt [�(t)||s✓(t, xt)�rxt logp(xt|x)||2],

where x ⇠ p(x), xt ⇠ p(xt|x). We can directly derive the equivalence between LSM (✓) and
LDSM (✓) by considering the structure of the forward SDE. The drift term f(·, ·) is affine and the
diffusion term g(·) depends solely on the diffusion step. This results in the conditional probability
p(xt|x) being represented as a Gaussian distribution, N (xt;µt(x),�t) (Øksendal, 2014). Therefore,
we can compute the gradient of log likelihood, rxt logp(xt|x), as: rxt logp(xt|x) = �(xt � x)/�2

t
=

�✏/�t, where the reparametrization trick is used on xt = µt(xt) + �t✏ and ✏ ⇠ N (0, I).

By linking the SDE and ODE formulations, Song et al. (2021) proposed setting �(t) = g
2(t) to

ensure the following inequality:

�Ex[log p(x)]  LSM (✓) + C1,

where LSM (✓) = Et,xt

⇥
g
2(t)ks✓(t,xt)�rxt log p(xt)k22

⇤
and C1 is a constant. Based on this, we

adopt g2(·) as the default weighting in our experiments.

Once the score network is trained, diffusion models proceed with the denoising step. At this stage,
there are two main sampling strategies: the predictor-corrector (PC) sampler and a deterministic
sampler based on the probability flow ordinary differential equation (ODE). In here, we explain
PC sampler that is used in our experiment. The PC sampler works by first estimating the next step
using a known numerical SDE solver, which is called predictor. Then refining the estimate with a
score-based MCMC strategy, which is named of corrector. A representative example of predictor is
an Euler-Maruyama sampling predictor, which is a discretization of backward SDE:

xt�1 = [f(t, xt)� g(t)2s✓(t, xt)]�t+ g(t)�w,

, where t 2 [1, 0], �t is a time interval and �w ⇠ N (0,�tI).

Song et al. (2020) achieved state-of-the-art results through extensive hyperparameter tuning of
various SDEs, predictors and correctors. However, for our experiments, we adopt the VP SDE and
use an Euler-Maruyama sampling predictor without corrector, which is a default setting of it (Song
et al., 2020). This allows us to isolate the performance of SFdiff from other factors, ensuring that
other control variables remain fixed.

2.2 TIME-SERIES FORECASTING

Time-series forecasting involves predicting future values based on historical data (Lim & Zohren,
2021; Torres et al., 2021b; Miller et al., 2024). Specifically, given a historical sequence x1:N , the
task is to forecast the future sequence xN+1:N+T , where N represents the length of the historical
data, and T represents the length of the prediction. Each data point x belongs to Rd. For clarity,
we define xhist by a sequence of history, x1:N , xpred by a future values, xN+1:N+T , and xtotal, a total
sequence x1:N+T . Time-series forecasting has been widely researched improve the accuracy of future
predictions. However, the complex, intertwined characteristics of time-series data make it difficult to
fully capture and understand its underlying patterns.
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Figure 1: Overall visualization of the sampling process of SFdiff. Comparison between prediction-
only generation (top) and self-generation (bottom). Even when anomalies (highlighted in yellow) exist
in the historical data, SFdiff iteratively applies reverse diffusion to produce an anomaly-free sequence
containing both historical and robust future observations, whereas prediction-only generation deviates
from the ground truth. Although reverse SDE is shown here, other sampling strategies can be used
interchangeably.

To address this challenge, researchers have increasingly turned to generative models, which aim to
model the conditional likelihood of time-series data and provide a more comprehensive understanding
of its structure. As a result, many time-series diffusion models were appeared, which generally aim to
learn conditional distribution of prediction given history sequence, p(xpred|xhist) (Rasul et al., 2021;
Tashiro et al., 2021). We provide a detailed explanation of their contributions and the rationale behind
their target selection in Section 6. Therefore, those who apply DDPM methods to forecasting problem
optimize the following equation:

L
pred
SM

(✓) = E
t,xpred

t

⇥
�(t)ks✓(t,xpred

t
,xhist)�rxpred

t
log p(xpred

t
|xhist)k22

⇤
.

3 PROPOSED METHOD

In this section, we analyze existing prediction methods and propose a novel self-generation approach
that reconstructs the entire sequence consisting of purified condition given noised history data.

3.1 DIFFUSION MODEL WITH SELF-GENERATION

Current methods train diffusion models by optimizing the conditional probability p(xpred|xhist)
through well-known DDPM loss (Rasul et al., 2021; Tashiro et al., 2021; Kollovieh et al., 2023b):

L
pred

DDPM
(✓) = Et,✏,xpred [�(t)||✏� ✏✓(t, xpred

t
, xhist)||2]

Song et al. (2021) proved that the target value of DDPM (log p(xpred|xhist)) can be optimized in the
perspective of score-based approach:

�Extotal log p(xpred|xhist)  1

2
· Lpred

SM
(✓) + C1,

4
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where

L
pred
SM

(✓) = E
t,xhist,xpred

t

⇥
�(t)ks✓(t,xpred

t
,xhist)�rxpred

t
log p(xpred

t
|xhist)k22

⇤
.

While intuitive, this approach is sensitive to noisy conditions: if xhist contains adversarial noise,
the resulting diffusion model may produce degraded samples. To address this, we propose SFdiff
: Diffusion Model with Self-Generation for Probabilistic Forecasting, which generates the entire
time-series instead of only synthesizing prediction sequence. SFdiff learns mathematically same
conditional distribution p(xtotal|xhist) = p(xpred|xhist) by optimizing the following inequality:

�Extotal log p(xtotal|xhist)  1

2
· Ltotal

SM
(✓) + C1,

where

L
total
SM

(✓) = E
t,xhist,xtotal

t

⇥
�(t)ks✓(t,xtotal

t
,xhist)�rxtotal

t
log p(xtotal

t
|xhist)k22

⇤
.

Generating the total time-series offers two key advantages:

1. Noise Purification: Diffusion models inherently denoise conditions. By learning the
conditional distribution of the total time-series, the model can generate a purified sequence
consistent with the full distribution.

2. Interdependent Predictions: During total sequence generation, predictions are both influ-
enced by and influence historical data through the diffusion process.

The following theorem demonstrates how the self-generation preserve robustness between noisy and
clean conditions:
Theorem 3.1 (Self-generation yields smaller sensitivity). Assume (A1)–(A3). Let H(t) :=R 1
t
g(s)2 ds and G := H(0) =

R 1
0 g(s)2 ds > 0. Then for noised input condition cs ⌘ xhist

s
,

(prediction-only) kxpred
0 � xpred 0

0 k  L

Z 1

0
g(s)2 kcs � c0

s
k ds  LG sup

s2[0,1]
kcs � c0

s
k,

(total-sequence) kxpred
0 � xpred 0

0 k  L

Z 1

0
g(s)2 e�mx H(s) kcs � c0

s
k ds =

L

mx

�
1� e

�mxG
�
sup
s

kcs � c0
s
k.

Consequently,

L

mx

�
1� e

�mxG
�

< LG ) kxpred
0 � xpred 0

0 k < kxpred
0 � xpred 0

0 kpred-only.

Thus the total-sequence conditional score produces forecasts with strictly smaller sensitivity to
condition perturbations than the prediction-only score.

On the Theorem 3.1, we distinguish xhist from condition and total sequence by denoting that of
condition as c. The above theorem shows that when noise is injected to history data, self-generation
always takes lower bound than prediction-only method.

It is well known that directly computing L
pred
SM

(✓) and L
total
SM

(✓) is computationally prohibitive due
to the need for statistical methods (Hyvärinen, 2005; Song et al., 2020). Therefore, we derive the
denoising score-matching losses to train the score network s✓ and guarantee its convergence:

Theorem 3.2. For each L
pred
SM

(✓) and L
total
SM

(✓), its denoising score matching are represented as
follows:

L
pred
DSM

(✓) = E
t,xtotal,xtotal

t
[�(t)||s✓(t,xpred

t
,xhist)�rxpred

t
logp(xtotal

t
|xtotal)||22]

L
total
DSM

(✓) = E
t,xtotal,xtotal

t
[�(t)||s✓(t,xtotal

t
,xhist)�rxtotal

t
logp(xtotal

t
|xtotal)||22]

Therefore, these models aim same conditional score function since rxtotal
t

logp(xtotal
t

|xtotal) =

r[xhist
t ,xpred

t ]logp(xtotal
t

|xtotal).
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Figure 2: CRPSsum on different �.

Beyond using L
total
DSM

(✓), we place additional emphasis
on the prediction portion of the sequence. In designing
SFdiff, we aim to ensure that it generates a predictive
sequence that takes past history into account but is not
overly dominated by historical values. To achieve this
balance, we introduce a hyperparameter � to control the
influence of the past history. The exact loss function is
then defined as:

l(✓) = ||s✓(t, xtotal
t

, xhist)�rxtotal
t

logp(xtotal
t

|xtotal)||2,
L(✓) = E

t,xtotal,xtotal
t
[�(t)||�m ⌦ l(✓) + (1� m)⌦ l(✓)||1]

, where ⌦ is a hadamard product and m = {xij}(N+T )⇥d is a mask vector that xij = 1 if i  N and
0 otherwise, dividing the past and future elements in our loss function.

3.2 TRAINING AND INFERENCE

For training SFdiff, we employ the Variance Preserving (VP) SDE (Song et al., 2020), which
generalizes existing DDPM-based methods (Rasul et al., 2021; Tashiro et al., 2021) to compute
rxt logp(xt|x). In this phase, a key aspect is controlling the parameter �. Setting � = 0.0 (equivalent
to DDPM) ignores past information, while � = 1.0 fully incorporates it. Neither extreme is optimal.
As shown in Figure 2 and Figure 3, SFdiff achieves the best results on the Solar and Electricity
datasets when � = 0.1 and � = 0.5, respectively.

After training the model, we generate total sequence from history condition by using well-known
PC sampling procedure and its default setting (Song et al., 2020). Furthermore, to facilitate self-
generation technique, we adapt classifier-free guidance(CFG) to our framework. However, up to
our survey, CFG is confined to DDPM and there was no adaptation of CFG to score-based diffusion
models. Therefore, we briefly introduced CFG in Section C and now explain its usage in SFdiff.

From a score matching perspective, CFG using score function can be understood as rxt logp̃(xt|c) =
rxt logp(xt|c) + wrxt logp(c|xt) = rxt logp(xt|c) + wrxt(logp(xt|c) � logp(xt)) = (1 +
w)rxt logp(xt|c) � wrxt logp(xt). And this formulation leads to the generalized score function
used in CFG: s̃✓(xt, c) = (1 + w)s✓(xt, c) � ws✓(xt, 0), where 0 means zero padding. We use
this generalized CFG sampling. As the formulation shows, CFG should train both conditional and
unconditional sampling to single model. In line with Ho & Salimans (2022), we adopt a proportional
training strategy, where with probability pcond (setting 0.2 as default value), the model trains the
conditional score network s✓(xt, c), and with probability 1� pcond, it trains the unconditional score
network s✓(xt, 0).

Table 1: CRPSsum comparison between pre-
diction CFG results on prediction generation
and total generation.

Exchange Electricity Solar
L

pred .006±.001 .021±.001 .287±.020
L

pred
CFG

.008±.001 .026±.001 .451±.011
L

total .006±.000 .018±.001 .250±.007
L

total
CFG

.005±.000 .015±.000 .277±.006

Comparing self-generation with prior prediction-only
generation methods reveals interesting insights. In-
tuitively, CFG applied to prediction generation with
potentially noisy conditions may amplify undesirable
influences, degrading performance. In contrast, self-
generation benefits from CFG by generating predic-
tions jointly with a denoised historical sequence. As
shown in Table 1, CFG negatively impacts prediction-
only generation by exacerbating noise-related effects.
However, combined with Table 2, self-generation yields overall improved results, with minimal
performance degradation observed for the Solar dataset, which is the only reduced result among
dataset.

4 EXPERIMENTS

In this section, we present the results of experiments conducted to evaluate the performance of our
proposed model.
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4.0.1 EXPERIMENTAL SETUPS

Our experiments consist of two stages: (1) assessing whether our generative framework effectively
reduces noise in the conditions using toy datasets, and (2) evaluating our model’s performance on
real-world time-series datasets.

To verify noise reduction in the conditions, we utilize two toy datasets: the 2D oscillator ODE and
the 3D harmonic ODE. The corresponding ODE formulations are as follows:


dx

dt
dy

dt

�
=


y

y(1� x)2 � x

�
and

2

4
dx

dt
dy

dt
dz

dt

3

5 =

" �y

x� z

y

#
,

where the initial conditions are [2.0, 0.0] and [0.5, 0.5, 0.5], respectively. We generate the ODE
trajectories using the well-known scipy package with a time interval of 0.1.

For real dataset experiments, we use our model on 5 widely-used time-series forecasting datasets:
Exchange (Lai et al., 2017), Solar (Lai et al., 2017), Electricity1, Taxi2, Wikipedia3. We give detailed
description of these datasets in Table 5, including dimension, total number of timesteps, domain and
frequency data of each dataset. We also report hyperparameters setting in Table 5: the history and
prediction lengths, the number of diffusion steps, and the number of iterations, etc. Here, we point
out that we follow the common practice of training based on iteration count and saving checkpoints
every 5,000 steps, as done in other diffusion models (Ho et al., 2020; Song et al., 2020).

After training our model on the selected real datasets, we evaluate its performance against a wide
range of baseline models. These baselines include: i) classical multivariate methods such as VAR,
VAR-Lasso (Lütkepohl, 2005), GARCH (van der Weide, 2002), and VES (Hyndman et al., 2008); ii)
RNN-based methods like Vec-LSTM-ind-scaling, Vec-LSTM-lowrank-Copula, GP-scaling, and GP-
Copula (Salinas et al., 2019); iii) Transformer-based models, specifically Transformer-MAF (Rasul
et al., 2020); and iv) VAE and diffusion-based models, including KVAE (Fraccaro et al., 2017),
TimeGrad (Rasul et al., 2021), and CSDI (Tashiro et al., 2021). A description of these baseline
models can be found in Appendix D.

For evaluation, we use the sum of continuous ranked probability score (CRPSsum), a widely
recognized metric for probabilistic forecasting. CRPS measures the compatibility between the
cumulative distribution function (CDF) F and an observation x as CRPS(F, x) =

R
(F (z)� I(x 

z))2dz, where I is an indicator function. To approximate CDF, we use an empirically estimated CDF
F̂ = 1

N

P
N

i=1 I(xi  z), where xi are samples from F . Then we compute the sum of CRPS over all
features, denoted as CRPSsum,

CRPSsum(F, x) =
CRPS(F,

P
i
xi,t)P

i,t
|xi,t|

, where
P

i,t
|xi,t| means the summation of all target features at time t. For other detailed descriptions

of experimental setup, we refer to Section B.

4.1 EXPERIMENTS ON TOY DATASETS

We utilize two toy datasets: the 2D oscillator dataset and the 3D harmonic dataset. During training,
we augment the given trajectories by randomly adding noise sampled from N (0, 1

2 I) to half of the
trajectory to promote robust training. Each trajectory is uniformly divided into segments of length 72.
For testing, we introduce more intense noise, sampled from N (0, I), to 1

8 of the condition portion of
the test samples to evaluate the purification effectiveness of our model.

Figure 3 illustrates that our model effectively purifies noisy conditions, significantly reducing large
anomalous values. Notably, the bottom row of the figure shows that the parameter � in our loss

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
3https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
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Table 2: CRPSsum results on evaluation datasets. The best scores are in boldface.

Exchange Solar Electricity Taxi Wiki
VES .005±.000 .900±.003 .880±.004 - -
VAR .005±.000 .830±.006 .039±.001 - -

VAR-Lasso .012±.000 .510±.006 .025±.000 - 3.10±.004
GARCH .023±.000 .880±.002 .190±.001 - -
KVAE .014±.002 .340±.025 .051±.019 - .095±.012

Vec-LSTM ind-scaling .008±.001 .391±.017 .025±.001 .506±.005 .133±.002
Vec-LSTM low-copula .007±.000 .319±.011 .064±.008 .326±.007 .241±.033

GP scaling .009±.000 .368±.012 .022±.000 .183±.395 1.48±1.03
GP copula .007±.000 .337±.024 .025±.002 .208±.183 .086±.004

Transformer MAF .005±.003 .301±.014 .021±.000 .179±.002 .063±.003
TimeGrad .006±.001 .287±.020 .021±.001 .114±.020 .049±.002

CSDI .007±.001 .298±.004 .017±.000 .123±.003 .047±.003
SFdiff .006±.000 .250±.007 .018±.001 .122±.001 .052±.000

SFdiff-CFG .005±.000 .277±.006 .015±.000 .092±.001 .046±.001

function plays a crucial role in achieving successful purification. When � ⇡ 1, the synthesized
time-series closely follow the noisy conditions, whereas when � ⇡ 0, the model struggles to generate
meaningful conditions. Thus, controlling � is essential not only for generating accurate predictions
but also for mitigating out-of-distribution values, a process we refer to as purification.

4.2 EXPERIMENTS ON REAL DATASETS
2ULJLQDO *HQHUDWHG

�'�2VFLOODWRU �'�+DUPRQLF

Ȗ ���� Ȗ ��� Ȗ ���

Figure 3: Generated total time-series.
The orange dots divide history and pre-
diction part.

We present the CRPSsum performance of SFdiff and
other baseline models in Table 2. We evaluate SFdiff with
5 different seeds, and we report both the mean and stan-
dard deviation. As shown in the table, SFdiff consistently
outperforms all competing models across every dataset, in-
cluding other diffusion-based forecasting models. Notably,
while diffusion-based forecasting models like TimeGrad
and CSDI perform comparably on certain datasets, SFdiff
consistently delivers superior results across a wide range
of data complexities, from relatively low-dimensional
datasets (e.g., Exchange) to high-dimensional ones (e.g.,
Wiki).

5 ABLATION EXPERIMENTS

In this section, we conduct sensitivity studies about weight of classifier-free guidance. As shown in
the Table 3, CFG results getting deteriorated as the weight of CFG (w) getting stronger.

Original CFG0.01 CFG0.1

Exchange .006±.000 .005±.000 .006±.000
Electricity .018±.001 .015±.000 .016±.000

Solar .250±.007 .277±.006 .300±.002

Table 3: Detailed dataset descriptions.

Next, we present ablation studies conducted across
several datasets to analyze the impact of varying the
diffusion steps in SFdiff. We experiment with differ-
ent numbers of diffusion steps: 50, 100, 200, 250,
500, and report the corresponding CRPSsum results.

As indicated by the results, there are optimal “sweet
spots" for the number of steps depending on the dataset. For example, SFdiff requires relatively fewer
diffusion steps on datasets like Exchange and Electricity, whereas it benefits from higher steps on
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Table 4: Results of ablation study varying the number of sampling steps

50 100 200 250 500
Exchange 0057±.0003 .0054±.0002 .0057±.0002 .0059±.0004 .0057±.0002
Electricity .0168±.0003 .0165±.0005 .0168±.0007 .0166±.0005 .0166±.0002

Solar .4540±.0125 .2829±.0090 .2501±.0070 .2313±.0059 .2155±.0089

the Solar dataset to achieve the best performance. However, since lots of diffusion steps increase
sampling time of SFdiff, we compromise them by hyperparameters in Table 5 in Appendix B.

We also point out that an notable distinction of SFdiff, compared to other diffusion-based forecasting
models such as CSDI (Tashiro et al., 2021) and TimeGrad (Rasul et al., 2021), is its ability to adjust
the number of sampling steps without the need for additional training at each specific step. This
flexibility offers a significant advantage, as it allows SFdiff to adapt more efficiently across varying
datasets and conditions, without incurring extra computational costs for retraining.

6 RELATED WORK

This section briefly reviews diffusion-based time-series forecasting models, categorizing them based
on their target score objectives.

Existing diffusion-based forecasting models are broadly divided into two categories: models targeting
the prediction sequence score function, rxpred

t
logp(xpred

t
|xhist), and those modeling the entire sequence

score, rxtotal
t

logp(xtotal
t

|xhist).

TimeGrad (Rasul et al., 2021) and CSDI (Tashiro et al., 2021) belong to the first category. TimeGrad
generates predictions autoregressively, predicting one step ahead iteratively, whereas CSDI generates
the entire prediction sequence in a single step. Although one-shot generation can be efficient, it
may introduce higher variance in samples, prompting CSDI to stabilize performance by averaging
multiple samples.

In the second category, models like TSDiff (Kollovieh et al., 2023b) generate the complete sequence,
leveraging history-guided sampling to enhance conditional generation. Additionally, Lim et al. (2023)
and Lim et al. (2024) propose autoregressive generation in a latent space to handle irregularly sampled
data effectively, offering improved modeling of complex time dependencies.

Our proposed method, SFdiff, combines advantages from both categories, integrating predictive
accuracy and guidance mechanisms within a unified framework for robust and flexible time-series
forecasting.

7 CONCLUSION

We propose the Self-Generation framework, leveraging diffusion models to robustly forecast time-
series data despite anomalous inputs. Self-Generation effectively purifies noisy conditions by
generating the entire sequence, balancing historical and future components. Moreover, we introduce
classifier-free guidance into diffusion-based forecasting, significantly enhancing predictive accuracy.
Extensive experiments demonstrate our model consistently outperforms 12 baselines across two toy
examples and four real-world datasets. Limitations. While our approach achieves state-of-the-art
forecasting performance, it requires careful tuning of the hyperparameter � to balance historical
and predictive sequences effectively. Furthermore, the computational cost associated with diffusion
models can be substantial, especially for large-scale applications. Societal Impacts. Our work
presents positive societal impacts by improving predictive accuracy in critical domains such as
healthcare and finance, potentially aiding better-informed decisions. However, misuse in sensitive
areas, such as privacy-sensitive data forecasting, might lead to ethical concerns. Safeguards. Since
our work primarily focuses on synthetic and publicly available datasets, specific safeguards for
high-risk misuse scenarios were not required. However, we emphasize careful ethical consideration
for future extensions involving sensitive or confidential data.
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