Under review as a conference paper at ICLR 2026

LLM-HFR-RL: LARGE LANGUAGE MODEL (LLM)-
DRIVEN CROSS-MODAL FINE-GRAINED ALIGNMENT
AND REINFORCEMENT LEARNING FOR THE PREDIC-
TION OF HEART FAILURE RISK

Anonymous authors
Paper under double-blind review

ABSTRACT

Predicting Heart Failure Risk (HFR) using electronic health records (EHR) and
generating actionable clinical decisions face significant challenges, including in-
tegrating multimodal data, modeling longitudinal temporal patterns, and translat-
ing predictions into executable interventions. To address these limitations, this
paper proposes the LLM-HFR-RL framework, bridging the gap from risk pre-
diction to clinical decision-making. This framework integrates three key techni-
cal innovations: (1) a longitudinal laboratory index summarization method lever-
aging large language models (LLMs), which transforms discrete test value se-
quences into clinically meaningful trend summaries; (2) a ternary cross-modal
fine-alignment architecture that integrates semantic representations across struc-
tured test sequences, LLM-generated trend summaries, and clinical text; and (3)
the novel integration of a Reinforcement Learning (RL)-driven decision engine,
which learns optimal testing strategies via a multi-objective reward function to dy-
namically refine clinical decisions. Experimental results demonstrate that LLM-
HFR-RL not only significantly improves HFR prediction performance but also
forms a high-precision and cost-effective clinical decision support system, pro-
viding a new paradigm for intelligent medical intervention.

1 INTRODUCTION

Cardiovascular diseases, particularly HF, represent a pressing global public health challenge due to
their rising prevalence and substantial socioeconomic burden (Groenewegen et al., [2020). The pre-
cise early identification of high-risk patients is paramount for facilitating timely interventions, op-
timizing healthcare resource allocation, and enhancing patient outcomes. EHR systems amass vast
amounts of multifaceted patient data, encompassing demographics, vital signs, laboratory results,
medication histories, diagnostic codes, imaging reports, and clinical records; thereby providing a
comprehensive data source for Al-driven HF risk prediction. While deep learning-based risk predic-
tion models have advanced considerably in the healthcare domain in recent years (Yoon et al.,|2023)),
researchers however encounter two interconnected core challenges when leveraging EHR data for
accurate HF risk stratification: the effective integration of heterogeneous multi-modal data and the
robust modeling of patients’ longitudinal temporal trajectories. Moreover, achieving accurate risk
prediction alone is insufficient to support clinical practice: translating these predictions into action-
able intervention suggestions that balance effectiveness and cost poses another major challenge for
intelligent medical decision support systems.

On one hand, EHR data inherently represents a highly heterogeneous multimodal data source. A sig-
nificant semantic gap exists between structured data (e.g., patient diagnoses, medication records) and
unstructured data (e.g., clinical notes, discharge summaries). Conventional modeling approaches
(Zhao et al.| 2023 Naseem et al., 2024} |Zhang et al., |2022) often rely on simple fusion techniques
(e.g., early or late fusion) or extract only superficial features across these modalities, which limits
their ability to capture the profound clinical interrelations and complementary information. This
results in fragmented multimodal semantics, ultimately constraining the model’s capacity for com-
prehensive health profiling. On the other hand, disease pathogenesis—particularly for chronic con-
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Figure 1: Example: Modeling longitudinal temporal data into a personalized patient graph composed
of four medical entity types and patient visit entities, and constructing sequential laboratory test
values into trend descriptions.

ditions like HF—manifests as a dynamic progression, such that the temporal evolution patterns of
key biomarkers encode crucial pathophysiological significance. As illustrated in Figure [T} our ap-
proach leverages LLMs to model temporal laboratory data as interconnected evolutionary patterns of
laboratory indicators (such as “elevated BNP concentrations alongside maintained normokalemia”).

2 RELATED WORK

Research on EHR-based Health Event Prediction can be broadly categorized into several directions,
including laboratory metrics, temporal modeling, graph structures, multi-modal fusion, and RL.
Early studies predicted events either by manually extracting features from laboratory metrics (Chen
et al., 2024; |Xu et al., [2022)) or utilizing temporal models such as GRU, LSTM, and Transformer
(Choi et al, [2017; Liu et al.| 2022} IL1 et al., 2020). While efficient, these approaches are often
limited in their ability to capture complex dynamics and structured interdependencies. Graph-based
models attempt to introduce external knowledge to construct patient or disease relationship networks
(Wu et al, [2023; | Kang et al} 2024} [Yang et al.| 2024). However, they are often constrained by
static topologies. Multi-modal methods, despite integrating textual information (Zhao et al., 2023}
Lu et al., 2021} Naseem et al.,|2024)), typically exhibit limited cross-modal interaction mechanisms.
Recently, RL has been applied to tasks such as treatment optimization and detection decision-making
(Yu et al.l 2023} [Li et al., 2022). However, these RL-based approaches often lack multi-modal
semantics and multi-objective constraints in their state representations and reward function designs.

Although traditional temporal models have laid a foundation for EHR analysis, they often suffer
from a lack of structured association and coarse handling of numerical sensitivity. For instance,
Choit et al.|(2017) employed GRUs to model patient visit sequences, utilizing hidden states to prop-
agate historical information for dynamic heart failure risk prediction. |[Liu et al.[(2022) used LSTMs
to model different types of medical events in separate network channels, with gating mechanisms
facilitating information exchange between them. |Li et al.| (2020) introduced the Transformer to
EHR analysis, leveraging its self-attention mechanism to capture long-range dependencies across
visits and demonstrating superior performance in tasks like in-hospital mortality prediction. Despite
their contributions, these methods generally lack structured relational reasoning and exhibit limited
numerical sensitivity.

Graphical models more appropriately mine structured knowledge from EHRs by explicitly model-
ing inter-entity relationships. [Wu et al.| (2023)) leveraged LLMs and external biomedical KGs to
generate additional triples when constructing personalized patient graphs. IICL (Kang et al., [2024)
captured indirect latent disease relationships among different patients by constructing a static disease
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graph based on co-occurring diseases across patients. MMGCN (Yang et al.,[2024) built multimodal
patient similarity networks using gene expression, copy number variation, and clinical data, inte-
grating them into a unified multi-view network via a similarity network fusion algorithm. However,
the rigidity of these static graph structures fails to reflect the temporal dynamics of diagnostic and
therapeutic activities.

Many models have begun leveraging textual records in EHRs to enhance predictive performance.
Zhao et al| (2023) obtained a global patient representation by applying cross-attention between
patient disease and textual data, followed by generating the final patient representation via an at-
tention mechanism. CGL (Lu et all 2021) derived text representations using TF-IDF corrected
attention; however, the patient and text representations were merely summed. Subsequent work,
GLLA (Naseem et al., |2024)), improved upon CGL by introducing label attention [10] during the
word embedding process for text representation. Nevertheless, the integration of patient and text
representations remained a simple addition. This approach of directly concatenating feature vectors
from different modalities before feeding them into models overlooks the semantic disparities and
complex interactions between modalities.

In recent years, RL has demonstrated significant potential in clinical decision support, offering novel
pathways for translating predictive models into actionable treatment plans. For instance, EHRs-
DQN (L1 et al.| [2022) adopted a multi-DQN framework inspired by physician consultations to op-
timize treatment strategies for diabetic patients. SM-DDPO (Yu et al., [2023) employed proximal
policy optimization (PPO) to sequentially select laboratory test panels based on historical observa-
tions, forming a dynamic decision-making scheme that maintains diagnostic accuracy while reduc-
ing testing costs. However, most existing RL methods rely on simplified or handcrafted patient state
representations, failing to fully integrate the rich semantic and longitudinal dynamic information
available in multimodal EHR data. Moreover, their reward functions are often designed around a
single clinical objective, making it challenging to balance multiple real-world constraints such as
accuracy, cost, and timeliness in practical applications.

3 PROBLEM FORMULATION

Basic symbols. The EHR of each patient is represented by a sequence < vy, ve,--- , v > consist-
ing of multiple visits, where v, represents the ¢-th visit (Kim et al.l 2025)). For the patient’s ¢-th visit
vi = (ci,mi, 1 d), it contains multiple sets of heterogeneous medical concepts. For improved
readability, the patient superscript ¢ will be omitted in the subsequent sections of this paper. For
detailed descriptions of the four types of medical concepts, please refer to Appendix

We define a Markov Decision Process (MDP) as the tuple (S, A, P, R, ). The state space S repre-
sents the patient’s health profile, which is generated by a patient state encoder. The action space A
is discrete, corresponding to the model’s selection of one laboratory test from | K| available options.
The transition function P defines the probability of moving to a new state s, after taking action
a4 in state s;. The reward function R is a sophisticated multi-objective function. The discount factor
~ € [0, 1] balances the importance of immediate and future rewards.

Heart failure risk prediction. The primary objective of this study is to learn a prediction function
f that estimates the probability of a patient developing heart failure within a specific future time
window, based on their complete historical records up to the t-th visit.

Optimal clinical decision strategy learning. Building upon accurate risk prediction, this study
further aims to provide decision support for clinical intervention via joint learning of both tasks.
This objective is formulated as a MDP and addressed within a RL framework.

4 METHODOLOGY

We propose an end-to-end multimodal longitudinal fusion framework, whose core idea is to jointly
learn a unified architecture capable of both accurate risk prediction and optimal testing strategy
generation through the co-optimization of predictive loss and policy gradients. An overview of the
entire pipeline is illustrated in Figure
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Figure 2: Overall Framework of the Model. The proposed framework primarily incorporates the
following methodologies: LLM-driven information enhancement, longitudinal temporal modeling
of EHR, joint RL, and multi-modal alignment.

4.1 INPUT EMBEDDING AND REPRESENTATION

LLM-powered embeddings. First, for each laboratory indicator k € 1,2,--- | K|, we extract its
non-uniform temporal subsequence l; ;, = (medg, (vp, 7'h)hH:’c 1)- Here, v;, denotes the measured
value, 7, is the timestamp in hours, medy, is the medical term extracted from clinical corpora cor-
responding to the k-th indicator, and H}, represents the number of measurements for indicator k
during the current patient visit. Using the powerful in-context learning capability and extensive do-
main knowledge of the DeepSeek model 2025), we achieve an intelligent transformation
from the raw measurement sequence [/, to a textual summary z; capturing temporal trends. This
approach transcends the limitations of conventional numerical analysis.

zé = LLM(ly, 00,21, T) S

where 071 ) is the parameter of knowledge of the frozen model, 7 is the temperature coefficient,
and z; is the word cue. The generated trend text z! was converted into a dense semantic vector using
the Bio_ClinicalBERT model (Alsentzer et al.l [2019), which was pre-trained on the entire clinical
notes of the MIMIC-III (Johnson et al.,[2016)) database.

H'*' = BERT (2L, 05) )
1 L

ol = T > hiest 3)
1=1

where 0p denotes the pre-trained parameters, H last s the last hidden state, L is the number of
tokens, and v! is the mean-pooled visit-level patient state representation. Since medical decision-
making requires the comprehensive integration of a patient’s historical states, we employ an LSTM
to model the sequence of clinical trend semantic vectors < v}, v}, --- v} > generated from labo-
ratory tests:

l
hi = LSTM (v,,h}_;) )
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where h! denotes the hidden state at the t-th visit. Finally, the hidden state of the last visit (t = T'),
denoted th, is taken as a history-aware representation of the laboratory trend text, which integrates
all historical information.

Patient clinical records serve as the central repository of the diagnostic and therapeutic process,
whose quality directly impacts the accuracy and continuity of medical decision-making. However,
they often face challenges such as information fragmentation, spelling errors, and terminology in-
consistency. This study leverages LLMs to perform semantic enhancement and structural reorgani-
zation of raw physician notes:

zit = LLM (ne, Oppas, @, T) ®)

where x,, is the prompt, the temperature coefficient is similarly set to 7 = 0.1, and n; de-
notes the patient’s clinical notes. Consistent with the LLM-powered temporal summarization of
laboratory metrics, we first obtain a dense semantic vector of the enhanced clinical note using
Bio_ClinicalBERT. This vector sequence is then modeled by an LSTM:

N'ast — BERT (27", 0p) (6)
1 L
n__ - last
v =1 2” @)
A = LSTM (v}, bl ;) ®)

where h represents the hidden state of the t-th visit. The hidden state of the final visit, h7., is taken
as the history-aware representation of the clinical notes, integrating all historical information.

Longitudinal data modeling and embedding. The patient’s longitudinal data are structured into
a dynamic, time-decayed weighted, and patient-personalized KG, denoted as G = (V, £, ). For
the detailed construction process of the personalized patient graph, please refer to Appendix
We initialize a node embedding matrix £ € RIVI*? | where V| is the node cardinality and d the
embedding dimension. Initial embedding vectors e are subsequently retrieved as follows:

e = E(V) ©)

For example, to perform information aggregation for a node e; € R? in graph G, the embedding
update formula for the (I 4 1)-th layer is as follows:

eé"'l =0 Z Wi g - 62) (10)
kEN (v;)

where N (v;) denotes the set of neighboring nodes of node i, wy; € R is the edge weight from
node k to node i, and o is the ReLU activation function. The visit embedding vtL € R? is obtained
through L layers of graph convolution. Since Kim et al.| (2024) observed that not all historical
information is beneficial, this study leverages the laboratory trend text to compute an attention score
for each visit:

v =vf © (W] vl + ba) (11)

where W € R%1! and b, € R are learnable parameters, and ® denotes the element-wise product.
To capture long-term dependencies in the patient visit sequence, the graph embeddings from the
previous T visit nodes are concatenated in chronological order into a sequence V' = v, v5, - - -, v/,
which is then fed into a Transformer encoder:

[RY, hy, -+ Wiy = Encoder(V'") (12)

Finally, the embedding of the final visit A7, output from the last layer of the Transformer, is taken as
the globally attentive patient historical state representation. This representation achieves hierarchical
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extraction of spatiotemporal features. Simultaneously, this state vector % will also serve as the input
to the RL agent.

In the demographic embedding, continuous variables are standardized via Z-score normalization,
while categorical variables are converted into sparse vectors using multi-hot encoding. The encoded
demographic sparse vector f € R? is then mapped to a low-dimensional dense vector h, € R%
through an embedding layer, as formulated by:

hs =W, f1 + b, (13)

4.2 SUPERVISED PREDICTION HEAD

To provide stable training signals, we employ an MLP classifier for endpoint prediction based on
the fused state of the three history-aware representations—h?., hl., and hy—and the demographic
embedding h:

h. = cat (W'}, hlp, Y., hs) (14)

Y = Sigmoid(Wy - ReLU (W - - - hy + b1) + by) (15)

where a dropout layer is applied to the hidden layer to mitigate overfitting; h, € R% is the con-
catenated feature vector; W; € R%Xdn and W, € R%*1 are learnable parameters; dj denotes
the hidden layer dimension; and the Sigmoid function compresses the output to the interval [0, 1],
representing the probability of HF occurrence. The supervised loss is the binary cross-entropy loss:

N
1 ~ ~
Lsp=—% Zzl yilogii + (1= y;)log(1 — §) (16)

4.3 REINFORCEMENT LEARNING AGENT

We employ an Actor-Critic architecture as our RL agent. The global attentive patient history state
representation, h%., is transformed into a patient state, s, via a state encoder.

s=W,- fr +b, (7)

The actor network is a policy network that maps a state s; to a probability distribution over the action
space. The agent then samples an action a; ~ 7(-|s;) from this distribution. The critic network is a
value network designed to estimate the expected cumulative return of a state s;.

m(ag | s¢56,) = softmax(W 2 - ReLU(W 18t + ba1) + ba2) (18)

V(St; GC) = WCQ . ReLU(Wclst + bcl) + bCQ (19)

The reward function is crucial for the success of RL. A composite reward function—integrating
clinical accuracy, cost-effectiveness, and the timing of intervention—is designed as follows:

R(Sta at) = Racc + Rcos+Rearly (20)
where R,.. = 1 — |§ — y| denotes the accuracy reward, which incentivizes correct risk prediction;
R.,s = —C/(a) represents the cost penalty, encouraging the selection of cost-effective tests to
achieve effective control of detection costs; and Reqr1y = I(y = 1 Ag > 0.7) provides a substantial
reward for successfully identifying high-risk patients and intervening early.
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4.4 JOINT OPTIMIZATION TRAINING ALGORITHM

We introduce a hybrid training strategy to collaboratively optimize the supervised learning loss and
the RL objective.

Proximal policy optimization (PPO). For the policy component, the PPO algorithm is employed
to update the actor and critic networks, with the following objective function:

LEPO9) = Ex[r(0)Ar, clip(re(60), 1— ¢, 1+€)Ar] — c1 (Va(s¢) — Viarget) > + oM (ma(- | 5¢)) (21)

where 6 denotes the parameters of the policy network and the value network, r() =
mo(at|st)/ma,,,(at]s¢) is the probability ratio of the new policy versus the old policy for taking

an action, A; represents the Generalized Advantage Estimate (GAE), Vj(s;) is the state-value es-

timate from the Critic network, V;"*"9 denotes the target value, and #{ is the policy entropy term
which encourages exploration by the model.

To further enhance the stability of value estimation, we introduce an auxiliary Q-network and an
experience replay mechanism. The experience replay buffer stores experience tuples—denoted as
(8¢, ag, Tt, Se+1)—generated from the agent’s interaction with the environment in a fixed-size replay
buffer, D. During the Q-network update, a batch of experiences, B ~ D, is randomly sampled from
this buffer. The target value for the Q-network is computed using a target network:

Y =714 Qyuryer (St41, 1 (5¢41)) (22)

where p(s;+1) = arg max, Qg(S¢+1, a). The parameters of the target Q-network are synchronized
with the online network via a soft update: 0qrget <— 760 + (1 — 7)6zarget. The loss function for the
Q-network is defined as:

Lon(0) = > (Qo(s.a)—y) (23)

‘B| (s,a,r,s")EB

Cross-modal alignment. Given that text embeddings and visit-level graph embeddings reside in
distinct vector spaces, this mechanism first projects the text embeddings into the graph embedding
space. It then establishes visit-level triple-wise cross-modal alignment by minimizing a similarity-
based loss. We note the perspective from Kim et al.|(2025)): even across different patients, their visit
embeddings can be valuable (i.e., cross-patient similarity exists). Accordingly, while our method
acknowledges this insight, it does not explicitly maximize the similarity between different patients
or visits.

1 L1 &
szz (1 — cos(v], Wi - b)) (24)
i=1 t=1
1 X1 &
_ = - _ / T . . n
L, = N ; T ;(1 cos(vy, W, - vp)) (25)
Esim = En +5£l (26)

where cos(+) denotes the cosine similarity function, whose value range is [—1, 1]. Consequently, the
range of (1 — cos(-)) is [0,2]. Here, W;! is a projection matrix (where the superscript 7' denotes
transpose), IV is the number of patients, and 7" is the maximum number of visits.

Overall training objective. The final training objective of the model is formulated as a weighted
sum of the supervised learning loss and the RL loss:

Lol = Lsim + Lst, + BLpro + LaoL 27)
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Table 1: HF Prediction Results Using AUC (%), F1 (%), and ACC (%) on the MIMIC-III and e-ICU
Datasets. The best performers are in bold.

MIMIC-III elCU

Models

AUC F1-Score ACC AUC F1-Score ACC
LSTM 84.4 68.4 77.8 88.6 78.9 92.9
Transformer 81.6 70.7 76.9 88.9 79.5 94.2
Retain 71.5 65.2 78.0 88.7 81.8 94.1
Timeline 82.3 71.0 80.2 89.0 79.6 93.7
CGL 82.5 71.1 79.3 90.6 80.1 93.8
Chet 84.9 71.6 79.8 86.7 72.9 92.8
tBNA-PR 85.2 72.4 79.7 91.9 81.6 94.6
HAR-LSTM 84.7 73.1 79.1 89.1 79.8 94.0
SHY 84.5 71.2 79.8 90.1 80.7 94.3
LLM-HFR-RL 88.3 76.4 83.2 93.9 83.7 95.2

All parameters are jointly optimized via gradient descent, thereby enabling the model to simultane-
ously acquire the capability for accurate patient risk prediction and the generation of cost-effective
clinical decision-making strategies.

5 EXPERIMENTS

Datasets. The study utilizes large-scale datasets derived from MIMIC-III (Johnson et al., [2016)
and eICU (Pollard et al.| [2018)). Patients with fewer than two visit records were excluded. We
extracted relevant medical entities including diseases, medications, laboratory tests, vital signs, and
clinical notes. Disease codes are standardized using Level 3 of the modern ICD-9-CM classification
system through pre-definition. Notably, while eICU lacks physician progress notes, it provides
comprehensive past medical history documentation. For further details regarding the dataset, please
see Appendix [B] A stratified sampling strategy partitioned patients into training, validation, and test
sets at an 7:1.5:1.5 ratio.

Implementation details. Network architecture hyperparameters were kept constant throughout the
study. Models were implemented in PyTorch and trained on NVIDIA GeForce RTX 3090 GPUs.
Dataset splits were randomized using fixed seeds. The embedding layer dimension was set to 512,
with dropout applied to hidden layers to prevent overfitting. Optimization employed Adam (Choi
et al.| |2016) with an initial learning rate of le-3. The training process begins with a pre-training
phase on the supervised task, followed by a joint training phase that integrates the pre-trained model
with RL. For further details on hyperparameters, please refer to Appendix [B]Following Chet (Lu
et al., 2022)), we adopt AUC and F1-score as primary metrics, with accuracy (ACC) included as a
supplementary measure.

Comparison algorithms. To comprehensively evaluate our work, LLM-HFR-RL was benchmarked
against: Two classical sequence models (spec.,LSTM (Graves, 2012) and Transformer (Vaswani
et al., 2017)) and seven state-of-the-art clinical prediction methods (spec. RETAIN (Choi et al.
2016), Chet (Lu et al) 2022), HAR-LSTM (Wang et al., [2024), SHy (Yu et al. 2025), CGL (Lu
et al.,[2021)), tBNA-PR (Liang & Guol 2023), and Timeline (Bai et al.,|2018)).

5.1 RESULTS AND ANALYSIS

Ablation study. To rigorously validate the contribution of each module within the proposed frame-
work, a series of ablation studies were conducted. The evaluated variants included: removing the
trend text summaries of laboratory tests (Without Lab Text), ablating the patient notes (Without
Notes Text), excluding all textual information (Without Full Text), disabling the triplet alignment
loss (Without L;,,), removing the PPO algorithm for reinforcement learning (Without PPO), and
ablating the Q-learning component with experience replay (Without Q-Learning). As illustrated in
Table 3, the removal of either LLM-driven laboratory summaries or patient notes resulted in a sig-
nificant performance drop, particularly in the F1-score, underscoring the critical importance of deep
multi-modal integration for accurate identification of positive cases. Furthermore, compared to a
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Figure 3: Evolutionary trajectory of medical entity node weights across training epochs.

supervised learning-only baseline, our full framework integrating the RL decision engine yielded
significant improvements in both AUC and F1-score, highlighting the substantial contribution of the
joint optimization strategy.

Visual analytics. As illustrated in Figure[3] the model weight visualization reveals distinct weight-
ing patterns across clinical entity types. Notably, signs and laboratory findings demonstrate the
highest predictive influence for HF, validating the core principle of evidence-based medicine: data-
driven diagnosis. All four clinical entity types exhibit consistent weight dynamics—an initial sharp
decline followed by gradual resurgence. This trajectory indicates the model’s adaptive learning pro-
cess regarding feature dependencies, with the inflection point signifying discovery of inter-feature
synergies. Crucially, diagnoses and medications display steadily increasing weights with strong mu-
tual correlation, revealing the intrinsic clinical logic: precise diagnostics drive optimal therapeutic
decisions.

6 CONCLUSION

The LLM-HFR-RL framework successfully addresses core challenges in HFR predic-
tion—including dynamic temporal modeling, heterogeneous data fusion, and clinical decision sup-
port—through the organic integration of LLM-enhanced multimodal RL and RL-based decision
optimization. Experimental results robustly validate its exceptional performance and generalization
capability. However, certain limitations remain. First, the action space of the RL component is cur-
rently limited to laboratory tests; future work could extend it to include a broader range of clinical
interventions such as medication therapies and imaging studies. Second, the weighting scheme of
the reward function requires further refinement. Exploring inverse learning from clinical outcomes
or developing adaptive reward functions represents an important direction for future research.
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This statement is provided as required.

A PROBLEM FORMULATION

A.1 CLINICAL CONCEPT

The diagnosis is represented by a multi-hot binary vector ¢; € {0,1}/°l, and the medication by
mi € {0,1}M] where |C| and |M| denote the total number of diagnosis and medication codes,
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respectively. A value of 1 at a specific position indicates that the corresponding diagnosis or med-
ication is present in the visit, and 0 otherwise. Since the number and type of laboratory tests and
vital signs measurements may vary across visits, laboratory test results [} € RIKIXIH] and vital signs
di € RIFIXIJI are represented as real-valued matrices. Here, | K| and |F| are the total number of
laboratory test types and vital sign types (fixed dimensions), while |H| and |J| represent the num-
ber of measurements for laboratory tests and vital signs in the current visit (variable dimensions).
Additionally, n¢ denotes the clinical note written by the physician during the visit.

A.2 PATIENT-SPECIFIC GRAPH

The node set ) comprises patient visit nodes v; and four types of medical entity nodes: diagnoses c,
medications m, laboratory tests [, and symptoms d. Since [ and d may have multiple measurements
within a single visit, this study retains only the first measured value. The edge set £ contains directed
edges from medical entity nodes (¢, m, [, d) to their corresponding visit node v;, as well as temporal
progression edges v;_1 — v; connecting consecutive visits. The time-decayed edge weights W for
laboratory tests (1) and symptoms (d) are defined as the product of the normalized original value and
the inverse of the time interval between adjacent visits, i.e., W = m X Tporm, Where At, t+1

is the time difference between adjacent visits and € is a small constant to prevent division by zero.

The weights for all other edges are directly defined by the inverse time interval (W = m).

Specifically, the time interval for the last visit node v to the four types of medical concepts is set to
1, thereby enhancing the recency weight of the most recent visit information.

B DATASETS AND HYPERPARAMETERS

The statistical information of the datasets is presented in Table 2] and the detailed hyperparameters
are summarized in Table[3]and [4]

Table 2: Dataset statistics on MIMIC-III and eICU

Dataset MIMIC-III elCU

# patients 7,537 11,691
HF. # patients  2,659(25.3%) 1,731(14.8%)
Max. # visit 41 8

# entitys 15,670 15,552

# edges 1,634,654 689,074

Table 3: Hyperparameters on MIMIC-III and eICU. Joint training: The starting epoch for joint
training.

Hyperparameters MIMIC-1IT  eICU
Jé] 0.3 0.3
£ 0.5 0.5
Batch size 256 256
Embedding dimension 512 256
Ir 0.001 0.001
rlIr 0.0003 0.0003
€ 0.2 0.2
c1 -0.5 -0.5
c2 -0.01 -0.01
5 0.99 0.99
Action space 29 29
Joint training 5 5
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Table 4: Cost weights of laboratory test items in the reinforcement learning action space

Specific Test Items Cost Category Cost Weight
Hemoglobin Basic Tests 0.1
Hematocrit Basic Tests 0.1
WBC Basic Tests 0.1
Platelets Basic Tests 0.1
RBC Basic Tests 0.1
Na Basic Tests 0.1
K Basic Tests 0.1
Ca Basic Tests 0.1
Mg Basic Tests 0.1
BUN Basic Tests 0.1
Creatinine Basic Tests 0.1
Glucose Basic Tests 0.1
Total Protein Urine Advanced Tests 0.3
Urine Glucose Advanced Tests 0.3
Urine RBC Advanced Tests 0.3
Cholesterol Advanced Tests 0.3
LDL Advanced Tests 0.3
HDL Advanced Tests 0.3
Triglycerides Advanced Tests 0.3
ALT Advanced Tests 0.3
AST Advanced Tests 0.3
Bilirubin Advanced Tests 0.3
Albumin Specialized Tests 0.5
ALP Specialized Tests 0.5
Iron Specialized Tests 0.5
Ferritin Specialized Tests 0.5
TIBC Specialized Tests 0.5
TSH Specialized Tests 0.5
NT-proBNP Specialized Tests 0.5
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