
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GEM: A GYM FOR AGENTIC LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

The training paradigm for large language models (LLMs) is moving from static
datasets to experience-based learning, where agents acquire skills via interacting
with complex environments. To facilitate this transition we introduce GEM (Gen-
eral Experience Maker), an open-source environment simulator designed for the
age of LLMs. Analogous to OpenAI-Gym for traditional reinforcement learning
(RL), GEM provides a standardized framework for the environment-agent interface,
including asynchronous vectorized execution for high throughput, and flexible
wrappers for easy extensibility. GEM also features a diverse suite of environments,
robust integrated tools, and single-file example scripts demonstrating using GEM
with five popular RL training frameworks. Along with this, we also provide a
set of baselines across 24 environments using REINFORCE with Return Batch
Normalization (ReBN), which—unlike GRPO—is compatible with the full RL
setting of dense per-turn rewards and arbitrary discount factors. We further conduct
apple-to-apple benchmarking of PPO, GRPO and REINFORCE in both single- and
multi-turn settings using GEM to shed light on the algorithmic designs. GEM also
functions as a convenient evaluation toolkit besides a training environment. We
hope this framework can help accelerate future agentic LLM research1.

0 200 400

0.0

0.2

0.5

0.8

1.0

Ep
is

od
e

re
tu

rn

game:GuessTheNumber (1.7B)

w. ReBN
w.o. ReBN

0 200 400
0.0

0.2

0.5

0.8

game:Minesweeper (1.7B)

0 200 400

0.0

0.2

0.4

0.6

0.8
game:Mastermind (1.7B)

0 200 400

0.0

0.2

0.4

game:Hangman (1.7B)

0 200 400

0.0

0.2

0.4

0.6

game:FifteenPuzzle (1.7B)

0 200 400

0.0

0.2

0.4

0.6

0.8
game:Sudoku (1.7B)

0 200 400

0.0

0.2

0.4

0.6

Ep
is

od
e

re
tu

rn

game:TowerofHanoi (1.7B)

0 200 400

0.0

0.2

0.4

0.6
game:Wordle (1.7B)

0 200 400
0.0

0.2

0.5

0.8

1.0
rg:simple_equations (1.7B)

0 200 400
0.0

0.2

0.5

0.8

1.0
rg:simple_geometry (1.7B)

0 200 400
0.0

0.2

0.5

0.8

1.0
rg:chain_sum (1.7B)

0 200 400
0.0

0.2

0.5

0.8

1.0
rg:needle_haystack (1.7B)

0 200 400
0.0

0.2

0.4

Ep
is

od
e

re
tu

rn

rg:shortest_path (1.7B)

0 200 400
0.0

0.2

0.4

rg:letter_counting (1.7B)

0 200 400
0.0

0.2

0.5

0.8

rg:circuit_logic (1.7B)

0 200 400
0.0

0.2

0.4

rg:arc_1d (1.7B)

0 200 400
0.0

0.2

0.5

0.8

rg:acre (1.7B)

0 200 400
0.0

0.2

0.4

0.6

0.8

rg:mini_sudoku (1.7B)

0 200 400
Policy iteration steps

0.0

0.1

0.2

0.3

Ep
is

od
e

re
tu

rn

code:CodeContest (4B)

0 200 400
Policy iteration steps

0.0

0.1

0.2

0.3

code:PrimeIntellect15k (4B)

0 200 400
Policy iteration steps

0.0

0.2

0.4

0.6

0.8
math:Orz57K+Tool (4B)

0 200 400
Policy iteration steps

0.0

0.2

0.4

0.6

math:DeepScaleR40K+Tool (4B)

0 200 400
Policy iteration steps

0.0

0.2

0.4

0.6
qa:HotpotQA+Tool (4B)

0 200 400
Policy iteration steps

0.0

0.2

0.4

0.6
qa:NaturalQuestions+Tool (4B)

Figure 1: Learning curves of Qwen3-based agents across diverse environments of 5 categories: game (language
games); rg (ReasoningGym); code (coding tasks); math (python-integrated math questions); qa (search-
integrated general questions). All agents are learned via a simple yet general multi-turn algorithm based on
REINFORCE (Algorithm 1). The comparison between two curves in each subplot illustrate the effectiveness of
Return Batch Normalization (ReBN).

1 INTRODUCTION

Reinforcement learning (RL) (Sutton and Barto, 2018) has emerged as a powerful paradigm for
improving the reasoning capabilities of large language models (LLMs) (OpenAI, 2024; Guo et al.,
2025). By collecting experience in interactive environments, RL allows agents to learn complex,
open-ended tasks without direct supervision (Silver and Sutton, 2025). This approach promises
to create powerful agents for a variety of domains. For instance, an agent could develop entire

1The codebase will be open sourced after the reviewing process.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

software modules by writing, testing, and debugging code, while also adapting to integration failures
or evolving requirements. Similarly, in scientific discovery, an agent could be trained to develop
hypotheses, design relevant experiments, and adjust its long-term strategy based on the results.

However, current research on RL for LLMs has largely focused on single-turn tasks, such as answering
math questions or retrieving specific data (Lambert et al., 2024; Guo et al., 2025). While these tasks
are a valuable starting point, they significantly oversimplify multi-turn interactions (Liu et al., 2025a).
This oversimplification means that algorithms which excel in the single-turn setting (e.g., GRPO (Shao
et al., 2024)) are fundamentally inapplicable to full multi-turn problems. If the goal is to train agentic
LLMs capable of long-horizon planning, trial-and-error, iterative refinement etc, it is crucial to
transition to testbeds that support these more complex multi-turn interactions.

To facilitate this next step, we introduce GEM (General Experience Maker), an open-source environ-
ment framework for diverse, multi-turn, long-horizon tasks. Motivated by OpenAI-Gym (Brockman
et al., 2016) which catalyzed research in traditional RL by providing a unified interface and stan-
dardized environments, GEM aims to provide analogous foundational infrastructure for LLM agents.
GEM offers a diverse suite of environments spanning single- and multi-turn (over 100 turns) tasks
(including tool integrated responses, reasoning games etc), flexible observation and action wrappers,
asynchronous parallel execution, and a rich set of tools (python, search, and external MCP compatible
tools). Additionally, GEM includes validated baselines and single-file training scripts showcasing
seamless integration with five popular RL training frameworks (Oat, Verl, OpenRLHF, ROLL, and
RL2—see Section 4.5).

Besides introducing the GEM framework, this paper also presents and discusses a simple yet effective
algorithmic variant of REINFORCE (Williams, 1992) which incorporates Return Batch Normalization
(ReBN), a useful technique similar to advantage normalization (Andrychowicz et al., 2021; Liu et al.,
2025b) that brings consistent improvements (Figure 1). Unlike GRPO and its variants, REINFORCE
with ReBN is fully compatible with the multi-turn RL setting, including turn-level dense rewards
and arbitrary discount factors. We further compare REINFORCE-based algorithms with multi-turn
PPO (Schulman et al., 2017) and GRPO, showing its theoretical connections and empirical tradeoffs.
We also provide case studies on the impact of the discount factor γ on multi-turn learning, extensive
results of tool-integrated RL, and performance benchmarks on terminal and MCP usage of strong
LLMs using GEM as a unified evaluation toolkit. We hope this framework will accelerate RL research
on agentic LLMs and advance progress toward more capable and autonomous AI systems.

2 GEM ENVIRONMENTS

This section introduces GEM’s core functionality, covering its main interface (Section 2.1), the
environment design (Section 2.2), and advanced features such as asynchronous vectorization and
modular wrappers (Sections 2.3 and 2.4).

2.1 INTERFACE

GEM employs a standardized environment interface closely following the well-established OpenAI
Gym API with the main functions being reset() and step(). A basic agent-environment
interaction loop is as follows:

1 import gem
2 # gem.print_envs() # to list all available environments
3 env = gem.make("game:GuessTheNumber-v0")
4 observation, info = env.reset()
5
6 while True:
7 # (1) Agent acting:
8 action = env.sample_random_action()
9 # action = agent.act(observation) # real acting by LLM sampling

10
11 # (2) Environment execution:
12 next_obs, reward, terminated, truncated, info = env.step(action)
13
14 # (3) Agent learning:
15 # agent.learn(observation, action, reward)
16
17 observation = next_obs
18 if terminated or truncated:
19 break

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 TASKS AND TOOLS

GEM’s core environment components are tasks and tools. Each combination of a task and an optional
set of tools constitutes an environment that tests complex capabilities such as reasoning, multi-step
planning, and tool use. These environments can therefore be used to benchmark LLMs and to test
and develop new algorithms. GEM currently features six main categories of tasks:

Math: Solve math problems with chain-of-thought reasoning.
Code: Generate code to solve competitive programming problems.
Game: Multi-turn text-based games adapted from TextArena (Guertler et al., 2025).
QA: General, potentially knowledge-intensive questions (useful for testing search tool capability).
ReasoningGym: A unified interface of ReasoningGym (Stojanovski et al., 2025) which provides
100+ single-turn verifiable tasks.
Terminal: Perform complex tasks through a containerized terminal environment.

GEM’s modular design simplifies task integration. Math, code, and QA tasks can be integrated by
simply providing a new dataset. Terminal tasks require a new Docker file, instructions, and test cases.
New games and other custom tasks can be added by inheriting from GEM’s environment base class
and defining their state transition and reward logic. In addition, tasks can be augmented with any
combination of tools. GEM currently supports:

Python: Parses and executes code blocks, returning the stdout or execution error.
Search: Parses a query, executes a search against an external engine, and returns the results.
MCP: General tool calling to any external servers that conform to the model context protocol.

The use of tools converts single-turn tasks, like Math or ReasoningGym, into multi-turn tasks in
which an agent can learn to call tools and adapt based on their output.

2.3 ASYNCHRONOUS VECTORIZATION AND AUTORESET

To facilitate efficient agent RL training, we support parallel execution of vectorized environments
via asynchronous tool calls to collect episodes in batches. In addition to the latency reduction, the
use of vectorized environments with autoreset streamlines the experience collection logic. Users
can run a single .reset() at the initialization stage and simply continue with .step() in the
following agent-environment loop for continuous data generation. In addition, the user code can use
the returned terminated flag to prevent value bootstrapping across episode boundaries, ensuring
the correctness of critic learning. An illustration of the autoreset mechanism can be found in Figure 2.

.step() .step().step()

↺
done

↺
done

.step()

Episode 1
Episode 2
Episode 3
Episode 3
…

↺ autoreset

.step()

↺
done

.step()

↺
done

.step()

pa
ra

lle
l e

nv
iro

nm
en

ts

Figure 2: Illustration of autoreset in vectorized environments. Autoresetting resets the environment automatically
after termination, allowing users to collect batches of episodes by simply running .step() without needing
more complicated logic such as keeping track of whether individual episodes have terminated.

2.4 WRAPPERS

Like in OpenAI-Gym, GEM uses wrappers for easy extensibility. Observation wrappers, for example,
control how the episode is converted into an observation. Options include observing just the most
recent environment output, a concatenation of all previous environment outputs, a concatenation
of all previous environment outputs and actions, or some parsed/summarized version of this. The
Python interpreter or database/web search tools are also formulated as wrappers which can be added
on top of any specified task environment.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

o!
: a!#$! a!# a!#%! r o!

: a!#$! a!# o&! ro&& a&!

o!
: a!# a!#%! o&#r! o&#%!… … … … r& r'

…

(a) Single Token as Action

… …… …

(c) Whole Interaction as Action

(b) Response as Action

a&# a&#%!… …

Figure 3: The illustration of different view of agentic RL. Green nodes denote tokens responsible for loss.

3 REINFORCEMENT LEARNING WITH GEM

In this section, we begin by describing the main RL formulations for LLMs, including their respective
flexibilities and limitations (Section 3.1). Motivated by this, we then present our baseline algorithm
which is applicable to the more flexible RL formulation (Section 3.2).

3.1 PRELIMINARY: LLMS AS AGENTS

There are three main ways of treating LLM-environment interactions in RL algorithms which each
have different limitations and strengths:

Action = Single token (Figure 3(a)): The first approach is to treat each token generated by the LLM
as an individual action (Ziegler et al., 2019). This, however, means that episodes are typically very
long (thousands of tokens), and it also requires specifying the reward for the addition of every token,
which is difficult to evaluate. Successful applications of RL in this formulation tend to use sparse
outcome reward with discount factor γ = 1 (Guo et al., 2025).

Action = Response (Figure 3(b)): To avoid these complications the second approach is to treat a
whole response (a sequence of tokens until an EOS) as a single action2 (Ahmadian et al., 2024; Liu
et al., 2025a). In answering math problems for example—currently the most common testbed for RL
for LLMs—each episode contains a question and response. With this view all episodes therefore have
length 1 and the RL problem essentially degenerates to contextual bandits (Abe et al., 2003). This is
convenient as it means sample-based advantage estimation methods such as GRPO (Shao et al., 2024)
can be applied efficiently, and these have been demonstrated to be highly effective. Extending to
multi-turn episodes (e.g. for games or tool use), however, results in an issue: Multi-turn interactions
have episode lengths > 1, meaning sample-based advantage estimation methods (e.g., Kazemnejad
et al. (2025)) become infeasible (since they require collecting multiple episode completions from
each turn (state) in the episode, leading to exponential complexity).

Action = Whole interaction (Figure 3(c)): One approach to make GRPO applicable to multi-turn
interactions is to treat the whole interaction as a single action while masking the loss on tool outputs.
This view again degenerates the full RL problem back to one-step RL or contextual bandits, meaning
GRPO etc. can be applied. However, it requires two compromises: Firstly, it effectively fixes the
discount factor at γ = 1, thus removing the incentive to solve problems quickly. This is significant,
for example in Section 4.2 where we show how the optimal search algorithm is only recovered when
setting γ < 1. Secondly, this approach is limited to single trajectory-level rewards, losing fine-grained
per-turn credit assignment.

Many prior works make these concessions and use GRPO in multi-turn LLM RL (Cao et al., 2025;
Jiang et al., 2025; Chen et al., 2025a; Jin et al., 2025; Feng et al., 2025a). However, to develop an
algorithm compatible with the full RL setting, we go back to the second view (action=response) and
employ a simple variant of REINFORCE with Return Batch Normalization (ReBN). Unlike GRPO,
this algorithm is compatible with per-step dense rewards and arbitrary discount factors (γ ≤ 1), thus
making it significantly more flexible for optimizing LLMs in complex, multi-turn interactive settings.

2Ignoring token-level PPO clipping which has no effect if the updates are on-policy.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 BASELINE ALGORITHMS

We start from the foundational on-policy3 policy-gradient method REINFORCE (Williams, 1992),
which optimizes the following objective:

JREINFORCE(θ) =
1

N

N∑
n=1

T (n)−1∑
t=0

G
(n)
t log πθ(a

(n)
t |s(n)t), (1)

where N is the batch size, [s0, a0, s1, ..., aT−1] is a sequence of states and actions making up a
trajectory in which each st and at is itself a sequence of tokens, and Gt =

∑T−1
k=t γk−trk is the

return. Though initially designed for single-turn problems (i.e., T (n) = 1), GRPO can be extended
to multi-turn tasks by sampling a group of M trajectories per initial state and normalizing the
trajectory-level reward for each group4:

JGRPO(θ) =
1

N

N∑
n=1

1

M

M∑
m=1

A
(n,m)
GRPO

T (n,m)−1∑
t=0

log πθ(a
(n,m)
t |s(n,m)

t), (2)

where A
(n,m)
GRPO = (

∑T−1
t=0 r

(n,m)
t − mean(R))/std(R) with R = {

∑T−1
t=0 r

(n,m)
t }m∈[1,...,M]. How-

ever, this approach has poor credit assignment for multi-turn problems because all turns in the
trajectory share the same advantage estimation, and improving it typically requires tree-like sampling
which leads to combinatorial explosion. To bypass the expensive sampling from each turn, we can
learn a value function to estimate the return Gt, known as critic (Sutton and Barto, 2018), which in
turn guides the policy learning in the actor-critic architecture. We can compute GAE (Schulman et al.,
2015) for the advantage actor-critic (A2C) objective:

JA2C(θ) =
1

N

N∑
n=1

T (n)−1∑
t=0

A
(n)
GAE,t log πθ(a

(n,m)
t |s(n,m)

t). (3)

To retain the benefits of fine-grained and stable advantage estimation without the combinatorial
explosion or learning an additional critic, we instead use Return Batch Normalization (ReBN). For
ReBN the per-transition returns Gi are normalized over the whole batch of transitions:

JREINFORCE+ReBN(θ) =
1

N

N∑
n=1

T (n)−1∑
t=0

A
(n)
ReBN,t log πθ(a

(n)
t |s(n)t), (4)

where A
(n)
ReBN,t = (G

(n)
t − mean(G))/std(G), with G = {G(n)

t }n∈[1,...,N],t∈[1,...,T (n)−1]. Each of
these algorithms trains the agent by iterating between two main phases: (A) data collection and (B)
policy update. We present the RL loop of Equation (4) in Algorithm 1 in Appendix C due to space
constraint.

4 EMPIRICAL STUDIES WITH GEM

In this section, we demonstrate how GEM can facilitate RL research on agentic LLMs through a
series of empirical studies. These include a comprehensive, apple-to-apple algorithm benchmarking
across eight GEM environments (Section 4.1); analyses of the effects of the discount factor γ and
tool integration (Sections 4.2 and 4.3); an examination of cross-task generalization (Section 4.4); and,
finally, a demonstration of GEM’s compatibility with five RL training frameworks along with their
easily accessible infrastructure benefits (Section 4.5).

4.1 BENCHMARKING RL ALGORITHMS FOR LLMS

Benchmarking has been critical for the progress of RL, with OpenAI-Gym providing standardized
environments that enabled systematic evaluation of algorithms (Raffin et al., 2021; Huang et al.,
2022). Following this paradigm, GEM offers a unified testbed for agentic LLMs, where prior work
often relied on bespoke tasks that complicate fair comparison. We benchmark all baseline algorithms
introduced in Section 3.2 (GRPO, PPO5, REINFORCE, ReBN) across eight GEM environments
under a unified experimental protocol. All algorithms are implemented using Oat (Liu et al., 2024)
with hyperparameters detailed in Appendix F. Results are evaluated by mean episode return, sample
efficiency, and stability.

3Orthogonally, we can also utilize proximal updates (Schulman et al., 2017) to improve sample efficiency.
4This is not the original GRPO because we fixed the length bias as noted by Liu et al. (2025b).
5PPO in this work generally refers to turn-level PPO instead of token-level PPO commonly seen in single-turn

dialogue scenarios (Ouyang et al., 2022).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 200 400
0.0

0.2

0.4

0.6

Ep
is

od
e

re
tu

rn

rg:arc_1d (1.7B)

0 200 400

0.0

0.2

0.4

0.6

0.8

game:Minesweeper (1.7B)

0 200 400

0.2

0.4

0.6

0.8

1.0
rg:acre (1.7B)

0 200 400
0.0

0.2

0.4

0.6

0.8

rg:mini_sudoku (1.7B)

0 200 400
Policy iteration steps

0.0

0.2

0.5

0.8

1.0

Ep
is

od
e

re
tu

rn

game:GuessTheNumber (1.7B)

0 200 400
Policy iteration steps

0.0

0.2

0.4

0.6

0.8

game:Sudoku (1.7B)

0 200 400
Policy iteration steps

0.0

0.2

0.4

0.6

0.8

qa:MixedQA+Tool (4B)

0 200 400
Policy iteration steps

0.2

0.4

0.6

0.8

math:DeepScaleR40K+Tool (4B)

GRPO PPO REINFORCE REINFORCE w. ReBN (Ours)

Figure 4: Algorithm benchmarking using eight representative environments from GEM. All agents are trained
from Qwen3-{scale}-Base models, with scale specified in each plot. rg refers to single-turn reasoning
tasks from ReasoningGym; game consists of long-horizon language games; qa and math are tool-integrated
multi-turn environments.

We present all learning curves in Figure 4. We first observe that in all three single-turn environments
(labeled with rg), GRPO performs reasonably well, defending its effectiveness in single-step RL
with verifiable rewards. However, GRPO falls short when it comes to multi-turn environments
(GuessTheNumber and Sudoku), where dense per-turn rewards are available and more fine-
grained credit assignment is necessary for efficient policy learning, due to a constant advantage
estimation across all steps. Such effects are the most profound when the environment’s reward
structure is inherently non-sparse (qa and math is less so).

In contrast to GRPO, REINFORCE and PPO are natively suitable for multi-turn RL. We find that
vanilla REINFORCE is readily a strong baseline in most environments, but it might suffer from
suboptimal convergence (e.g., two Sudoku environments). We hypothesize that this might be because
the raw return calculation of vanilla REINFORCE can be sensitive to reward shaping, thus hindering
exploration; we defer an in-depth ablation study to Appendix D.1. On the other hand, PPO is generally
performant, attaining the best episode return in the complex and long-horizon Sudoku environment.
This performance advantage can be attributed to a well-learned critic, but it is also deemed difficult
to robustly learn an accurate critic (Van Hasselt et al., 2018; Kazemnejad et al., 2025) (as evidenced
by the poor performance of PPO in Minesweeper), inviting future works to go in this direction.

Finally, we investigate the proposed REINFORCE variant, which incorporates a simple Return Batch
Normalization (ReBN) technique. Results in both Figures 1 and 4 show that ReBN consistently
improves on vanilla REINFORCE by a large margin, suggesting the empirical benefits of adaptive
normalization of policy gradient coefficients. Moreover, ReBN outperforms or is comparable with
PPO and GRPO in all evaluated environments, rendering it the strongest baseline without expensive
modeling such as critic learning or extensive rollouts.

4.2 DISCOUNT FACTOR γ MATTERS

0 200 400
Policy iteration steps

0

10

20

30

M
ea

n
ep

is
od

e
le

ng
th

0 200 400
Policy iteration steps

0.0

0.5

1.0

M
ea

n
ep

is
od

e
re

tu
rn

gamma = 0.9
gamma = 0.99
gamma = 0.999

0 200 400
Policy iteration steps

0.00

0.25

0.50

0.75

M
ea

n
Ep

is
od

e
Su

cc
es

s math:Orz57K

Tool
No tool

0 200 400
Policy iteration steps

0.0

0.2

0.4

0.6

qa:HotpotQA

(a) Effect of discount factor (b) Effect of tool availability

Figure 5: (a) Average number of turns and episode return when trained with different discount factors. (b)
Comparative experiment results on tool availability.

Next, we investigate the effect of the discount factor γ. A key motivation for REINFORCE+ReBN
over GRPO is its compatibility with arbitrary discount factors. To investigate the effect of this
we trained the Qwen3-1.7B-Base model (Yang et al., 2025) using REINFORCE+ReBN on

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the GuessTheNumber environment. In this environment the agent must guess a hidden number
randomly selected between 1 and 50. At each turn the agent may guess, and receives feedback as to
whether the hidden number is larger or smaller. The optimal strategy is therefore binary search.

As shown in Figure 5(a), as expected, smaller γ values naturally encourage solutions with fewer
turns and drive convergence to the optimal turn count (log2(50) ≈ 5.6)—achievable only through
binary search. Example interactions are included in Appendix B. As discussed in Section 3.2, the
natural efficiency incentive from γ < 1 is not compatible with GRPO. Instead, prior works using
GRPO hyperparameter tune the environment’s maximum number of turns to get efficient agent
behavior (Xue et al., 2025).

4.3 TOOL-INTEGRATION IN MATH AND QUESTION-ANSWERING

GEM is designed with modular support for external tools, enabling seamless integration into a
range of tasks. To empirically assess the impact of tool use, we focus on two domains: Math and
Question-Answering (QA).

Table 1: Math benchmark scores for four agents, evaluated with and without tool access and RL training. Note:
scores should be interpreted relative to other values here due to sensitivity to the grader code (see Section 4.3).

Qwen3-4B-Base Base (no tool) Base (with tool) Base + RL (no tool) Base + RL (with tool)

AIME24 10.0 6.7 16.7 30.0
AMC 39.8 50.6 49.4 67.5
MATH500 61.0 62.4 67.4 71.0
MinervaMath 36.4 30.1 40.1 40.4
OlympiadBench 29.5 31.0 33.5 39.9

Average 35.3 36.2 41.4 49.8

We first investigate the effect of GEM’s Python tool on Math tasks. Starting from the base model
Qwen3-4B-Base, we finetune on the math:Orz57K environment, training two variants: one
with Python tool integration and one without. The base model and both finetuned models are then
evaluated across five distinct math environments. Hyperparameter details are provided in Appendix F,
with the training curve shown in Figure 5(b), and Pass@1 accuracy reported in Table 1.

The math grader used for reward and evaluation is based on HuggingFace’s math_verify library6.
We found that even minor differences in grading logic across codebases yields substantial variation
in reported performance. Thus, all results should be interpreted comparatively—within a consistent
evaluation framework—rather than as absolute values. This further highlights the need for unified
benchmarking, as provided by GEM.

Results in Table 1 reveal a clear and consistent pattern: across all environments, performance improves
substantially after RL training compared to the base model. Furthermore, the model with access to
the Python tool achieves higher final performance in every setting.

Table 2: QA benchmark scores for the base agent and agents trained with different RL configurations. † and *
denote single-hop and multi-hop datasets, respectively.

Qwen3-4B Base
(no tool)

Base + RL
(no tool,

single env)

Base + RL
(no tool,

mixed env)

Base + RL
(with tool,
single env)

Base + RL
(with tool,
mixed env)

NQ† 6.1 15.4 15.8 35.0 37.3
TriviaQA† 35.4 43.4 44.9 69.0 71.9
PopQA† 11.3 19.0 19.9 47.1 48.1
HotpotQA* 11.1 21.1 22.1 43.2 45.5
2wiki* 10.0 26.8 30.1 44.5 46.7
Musique* 2.9 4.7 5.5 17.6 19.9
Bamboogle* 17.6 28.8 28.8 49.6 48.8

Average 10.2 22.7 23.9 43.7 45.5

6github.com/huggingface/Math-Verify

7

https://github.com/huggingface/Math-Verify

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We also perform a parallel analysis for QA tasks, this time integrating the Search tool. We train on
two environment compositions: qa:HotpotQA alone, and a mixture of both qa:HotpotQA and
qa:NaturalQuestions. All other setting are the same as for the Math experiments (see above).
Evaluation spans seven diverse QA environments. Results, summarized in Table 2, mirror those from
the math domain: RL finetuning markedly improves performance, and models equipped with the
Search tool achieve the highest accuracy in every scenario.

The consistency of these findings across both domains (mathematics and QA), tools (Python and
Search), and multiple evaluation environments underscores the flexibility and robustness of GEM’s
approach to RL LLM with tool integration.

4.4 STUDYING GENERALIZATION

0 200 400
Training Steps

0.00

0.25

0.50

0.75

1.00

M
ea

n
Ep

is
od

e
Re

tu
rn game:Sudoku-v0-easy

0 200 400
Training Steps

0.4

0.6

Ev
al

 A
cc

ur
ac

y

rg:circuit_logic

0 200 400
Training Steps

0.85

0.90

0.95

Ev
al

 A
cc

ur
ac

y

rg:needle_haystack

0 200 400
Training Steps

0.3

0.4

0.5

Ev
al

 A
cc

ur
ac

y

rg:mini_sudoku

Figure 6: Training on the game:sudoku-v0-easy environment generalizes to ReasoningGym.

GEM’s environments can be used for both training and evaluation. This makes it ideal for
investigating cross-environment generalization. For instance, we demonstrate training on the
game:sudoku-v0-easy environment, while periodically evaluating on three different environ-
ments, with some encouraging initial generalization results shown in Figure 6.

4.5 INTEGRATION WITH TRAINING FRAMEWORKS

Finally, we demonstrate that GEM—which takes care of the environment side—can be easily
integrated with five popular frameworks that handle the training side. There has been a proliferation
of frameworks focusing on the training side of LLM RL. These often rely heavily on multiple
other libraries (such as vLLM for response generation (Kwon et al., 2023), and DeepSpeed for
optimization (Rasley et al., 2020)). The diverse range of features and design choices make it
challenging for researchers to select and adapt a suitable training framework to their specific needs.

To address this GEM comes with complete, single-file training scripts showing clean integration
into five widely used LLM RL frameworks: Oat (Liu et al., 2024), Verl (Sheng et al., 2024),
OpenRLHF (Hu et al., 2024), ROLL (Wang et al., 2025a), and RL2 (Tan et al., 2025). These are
validated in Figure 7(a) where we show the training curve for each. Despite minor differences
due to underlying design choices of the frameworks (e.g., different LLM generation engines) and
RL stochasticity, all curves exhibit similar trends, demonstrating that GEM is agnostic to training
frameworks and validating their implementation equivalence. Furthermore, supporting a wide range
of frameworks allows us to effortlessly access their advanced features. For example, enabling the
asynchronous rollout in RL2 gives an immediate 2× gain in wall-clock efficiency.

0 100 200
Policy iteration steps

0.0

0.5

1.0

M
ea

n
ep

is
od

e
re

tu
rn game:GuessTheNumber

oat
openrlhf
rl2
roll
verl

0 200 400
Policy iteration steps

0.0

0.2

0.4

0.6

rg:LetterCounting

0 25 50 75 100
Policy iteration steps

0.1

0.0

0.1

0.2

0.3
Sync
Async

0 5 10 15 20
Time (in hours)

0.1

0.0

0.1

0.2

0.3

(a) Cross-framework comparison (b) Efficiency comparison

Figure 7: (a) Training curves on two environments showing successful integration of GEM into five existing
frameworks. (b) Asynchronous rollout improves wall-clock efficiency of training Sudoku-solving agents based
on Qwen3-4B-Base.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 AGENT EVALUATION WITH GEM
In addition to RL training, GEM can serve as a unified evaluation interface to test LLM agents’
performance. In this section, we present two example use cases where we evaluate agents pow-
ered by strong LLMs (GPT-5 (OpenAI, 2025), Gemini-2.5-Pro (Gemini Team, 2025) and Claude-
Sonnet-4 (Anthropic, 2025a)) on two complex tasks: database operation via model context protocol
(MCP) (Anthropic, 2025b) and terminal interaction via docker containers, both of which have been
added to GEM following Appendix A.

5.1 GENERAL TOOL USE VIA MODEL CONTEXT PROTOCOL

GPT-5

Gemini-2.5-Pro

Claude-Sonnet-4
0.0

0.2

0.4

0.6

Su
cc

es
s

ra
te

0.65

0.35 0.30

GPT-5

Gemini-2.5-Pro

Claude-Sonnet-4
0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s

ra
te

0.49

0.30 0.33

0

5

10

15

20

N
um

be
r

of
 t

ur
ns

10.0

14.3
20.1

MCPMark Results

0

20

40

60

80

100

N
um

be
r

of
 t

ur
ns

17.4

89.5

42.8

Terminal Bench Results

Figure 8: Benchmark results on MCPMark (Postgres subset)
and Terminal-Bench (subset) using GEM as a unified evalua-
tion toolkit.

Modern LLM agents often need to interact
with external tools, such as search engines,
APIs, and code interpreters. To facilitate
this, GEM is designed to be compatible
with the MCP, which is an open protocol
that provides a standardized way for LLMs
to communicate with external tools and
data sources.

The MCP architecture consists of an MCP
host (the LLM application), an MCP client,
and an MCP server (the external tool). By
adopting this protocol, GEM allows for "plug-and-play" tool usage, where any tool that implements
the MCP server interface can be used by an agent in a GEM environment without custom integration.
This significantly simplifies the process of creating tool-augmented LLM agents and opens up a vast
ecosystem of potential tools.

Using a PostgreSQL MCP tool, we assess the agent’s tool-augmented reasoning capabilities using
20 database tasks taken from MCPMark (Team, 2025a). We report the average success rate and the
average number of turns required to complete the tasks in the left panel of Figure 87. GPT-5 attains
the best success rate with the fewest interactions, while Gemini-2.5-Pro and Claude-Sonnet-4 have
slightly lower and varied performance.

5.2 TERMINAL ENVIRONMENT VIA DOCKER CONTAINER

To support a wider range of tasks, especially those involving complex software dependencies and
interactions with the operating system, GEM includes support for environments running inside docker
containers. The integrated terminal environment provides a sandboxed unix operating system where
agents can learn to perform tasks using shell commands. This approach provides a high degree of
isolation and reproducibility, ensuring that the environment is consistent across different machines.

We assess the terminal mastery of LLM agents on 57 tasks sampled from Terminal-Bench (Team,
2025b), without any scaffolding. The right panel of Figure 8 reports the average success rate and the
number of turns required to complete the tasks. GPT-5 attains the highest success rate with the most
efficient interaction, followed by Claude-Sonnet-4 and Gemini-2.5-Pro. The evaluation leverages the
same interaction loop used for RL training, highlighting GEM’s role as a unified framework for both
reinforcement learning and standardized evaluation.

6 CONCLUSIONS

GEM aims to accelerate agentic LLM research by providing a decoupled and clean library that is
agnostic to training frameworks, a unified agent-environment interface and a suite of standardized
environments. In this paper, we introduced the design choices of GEM, the current suite of task
domains and tools, features like vectorized environment execution, a simple yet general multi-turn
REINFORCE algorithm implemented in five training frameworks, a comprehensive algorithm bench-
marking evaluation, and in-depth analysis on several algorithmic details. We invite the community
to enter the era of experience for LLM agent learning, and join us in both using and continuing to
develop the GEM framework.

7Our evaluation relies on the basic response generation API rather than agent frameworks (e.g., LangChain,
OpenAI Agent SDK), which may lead to deviations from the original benchmark results.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Naoki Abe, Alan W Biermann, and Philip M Long. Reinforcement learning with immediate rewards
and linear hypotheses. Algorithmica, 37(4):263–293, 2003.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier,
Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, et al. What matters for
on-policy deep actor-critic methods? a large-scale study. In International conference on learning
representations, 2021.

Anthropic. System card: Claude opus 4 & claude sonnet 4. https://www-cdn.anthropic.
com/07b2a3f9902ee19fe39a36ca638e5ae987bc64dd.pdf, 2025a.

Anthropic. Model context protocol. https://github.com/modelcontextprotocol/
modelcontextprotocol, 2025b.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Shiyi Cao, Sumanth Hegde, Dacheng Li, Tyler Griggs, Shu Liu, Eric Tang, Jiayi Pan, Xingyao Wang,
Akshay Malik, Graham Neubig, Kourosh Hakhamaneshi, Richard Liaw, Philipp Moritz, Matei
Zaharia, Joseph E. Gonzalez, and Ion Stoica. Skyrl-v0: Train real-world long-horizon agents via
reinforcement learning, 2025.

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z. Pan,
Wen Zhang, Huajun Chen, Fan Yang, Zenan Zhou, and Weipeng Chen. Research: Learning to
reason with search for llms via reinforcement learning, 2025a.

Wentse Chen, Jiayu Chen, Hao Zhu, and Jeff Schneider. Context-lite multi-turn reinforcement
learning for LLM agents. In ES-FoMo III: 3rd Workshop on Efficient Systems for Foundation
Models, 2025b. URL https://openreview.net/forum?id=6CE5PLsZdW.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms,
2025a.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025b.

Google Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,
long context, and next generation agentic capabilities. arXiv preprint arXiv:2507.06261, 2025.

Leon Guertler, Bobby Cheng, Simon Yu, Bo Liu, Leshem Choshen, and Cheston Tan. Textarena.
arXiv preprint arXiv:2504.11442, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An
easy-to-use, scalable and high-performance rlhf framework. arXiv preprint arXiv:2405.11143,
2024.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html.

Dongfu Jiang, Zhuofeng Li, Yi Lu, Zhiheng Lvu, Ping Nie, Wenhu Chen, Tianyu Pang, and Chao Du.
Verltool, 2025. URL https://github.com/TIGER-AI-Lab/verl-tool.

10

https://www-cdn.anthropic.com/07b2a3f9902ee19fe39a36ca638e5ae987bc64dd.pdf
https://www-cdn.anthropic.com/07b2a3f9902ee19fe39a36ca638e5ae987bc64dd.pdf
https://github.com/modelcontextprotocol/modelcontextprotocol
https://github.com/modelcontextprotocol/modelcontextprotocol
https://openreview.net/forum?id=6CE5PLsZdW
http://jmlr.org/papers/v23/21-1342.html
https://github.com/TIGER-AI-Lab/verl-tool

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Refining credit assignment in rl training of llms.
In International conference on machine learning, 2025.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems principles,
pages 611–626, 2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in
open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Bo Liu, Leon Guertler, Simon Yu, Zichen Liu, Penghui Qi, Daniel Balcells, Mickel Liu, Cheston
Tan, Weiyan Shi, Min Lin, et al. Spiral: Self-play on zero-sum games incentivizes reasoning via
multi-agent multi-turn reinforcement learning. arXiv preprint arXiv:2506.24119, 2025a.

Zichen Liu, Changyu Chen, Xinyi Wan, Chao Du, Wee Sun Lee, and Min Lin. Oat: A research-
friendly framework for llm online alignment. https://github.com/sail-sg/oat, 2024.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. In Conference on Language
Modeling (COLM), 2025b.

OpenAI. Openai o1 system card. arXiv preprint arXiv:2412.16720, 2024.

OpenAI. Gpt-5 system card. https://cdn.openai.com/gpt-5-system-card.pdf,
2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimiza-
tions enable training deep learning models with over 100 billion parameters. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
3505–3506, 2020.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

David Silver and Richard S Sutton. Welcome to the era of experience. Google AI, 1, 2025.

11

https://github.com/sail-sg/oat
https://cdn.openai.com/gpt-5-system-card.pdf
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training for
problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kaddour,
and Andreas Köpf. Reasoning gym: Reasoning environments for reinforcement learning with
verifiable rewards. arXiv preprint arXiv:2505.24760, 2025.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

Chenmien Tan, Simon Yu, Lanbo Lin, Ze Zhang, Yuanwu Xu, Chenhao Jiang, Tianyuan Yang, Sicong
Xie, and Guannan Zhang. Rl2: Ray less reinforcement learning. https://github.com/
ChenmienTan/RL2, 2025. GitHub repository.

The MCPMark Team. Mcpmark: Stress-testing comprehensive mcp use. https://github.
com/eval-sys/mcpmark, 2025a.

The Terminal-Bench Team. Terminal-bench: A benchmark for ai agents in terminal environments,
Apr 2025b. URL https://github.com/laude-institute/terminal-bench.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph
Modayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648,
2018.

Weixun Wang, Shaopan Xiong, Gengru Chen, Wei Gao, Sheng Guo, Yancheng He, Ju Huang, Jiaheng
Liu, Zhendong Li, Xiaoyang Li, et al. Reinforcement learning optimization for large-scale learning:
An efficient and user-friendly scaling library. arXiv preprint arXiv:2506.06122, 2025a.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
Kefan Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Yiping Lu, Kyunghyun Cho, Jiajun Wu,
Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. Ragen: Understanding self-evolution in llm
agents via multi-turn reinforcement learning, 2025b.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
Zhang, Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling to
reinforce. arXiv preprint arXiv:2504.11343, 2025.

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Zejun Ma, and Bo An. Simpletir: End-to-
end reinforcement learning for multi-turn tool-integrated reasoning. https://simpletir.
notion.site/report, 2025. Notion Blog.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

12

https://github.com/ChenmienTan/RL2
https://github.com/ChenmienTan/RL2
https://github.com/eval-sys/mcpmark
https://github.com/eval-sys/mcpmark
https://github.com/laude-institute/terminal-bench
https://simpletir.notion.site/report
https://simpletir.notion.site/report

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ENVIRONMENT REGISTRATION

GEM enables rapid development of new RL environments. In this section, we illustrate two scenarios:
(i) integrating additional datasets into an existing task and (ii) defining a custom task, followed by the
procedure for registering these environments for use.

The following code snippet shows how to add a new dataset for math environment, where the answer
verification logic is predefined by GEM and can be reused.

1 import gem
2 from gem.envs.registration import register
3
4 register(
5 "math:GSM8K-Example",
6 "gem.envs.math_env:MathEnv",
7 dataset_name="axon-rl/GSM-8k", # HuggingFace or local dataset path
8 question_key="problem",
9 answer_key="answer",

10)
11
12 env = gem.make("math:GSM8K-Example") # ready to use

Next, we demonstrate how to build a new environment from scratch by defining the initial state
distribution (in .reset()) and the transition and reward functions (in .step()) as follows.

1 from gem.core import Env
2 from gem.envs.registration import register
3 from gem.utils.constants import TERMINAL_STATE
4 from gem.utils.parsing import extract_last_boxed_answer
5
6 class ReverseStringEnv(Env):
7 def __init__(self, str_len: int = 5):
8 super().__init__()
9 self.str_len = str_len

10
11 def _get_instructions(self):
12 return (
13 "You are tasked to reverse a given string.\n"
14 "You may provide your response in any manner. Only the content wrapped inside \\

boxed{} will be considered as your final answer.\n"
15 f"Please reverse the string: {self.gt_str}.\n"
16)
17
18 def reset(self, seed=None):
19 super().reset(seed)
20 characters = string.ascii_letters + string.digits # A-Z, a-z, 0-9
21 self.gt_str = "".join(random.choices(characters, k=self.str_len))
22 return self._get_instructions(), {}
23
24 def step(self, action):
25 clean_action = extract_last_boxed_answer(action)
26 if clean_action is None:
27 reward = 0
28 else:
29 reward = float(clean_action[::-1] == self.gt_str)
30 return TERMINAL_STATE, reward, True, True, {}
31
32
33 # Register your environment
34 register("custom:ReverseString", ReverseStringEnv)
35
36 env = gem.make("custom:ReverseString")

B CASE STUDIES OF LANGUAGE GAMES

This section illustrates example interactions of game-playing agents trained on GuessTheNumber
under different discount factors γ. With a near-undiscounted setting (γ = 0.999), the agent fails to
complete the game within the trial budget, as it lacks incentive to obtain the terminal correctness
reward as earlier as possible (see example below).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(γ = 0.999, the agent exhausts all 10 trials)
State: You are playing Guess The Number. You have to guess the number between 1 and 50
(inclusive) within 50 turns. · · · As you play, the history of your guesses will be appended below.
Use the information to complete the game before you run out of guesses.
Enter your first guess to start the game.
At turn 1, you guessed 14, and the target number is higher than 14.
At turn 2, you guessed 22, and the target number is higher than 22.
. . .
At turn 10, you guessed 39, which has been already guessed before.
Enter your next guess.
Action: Let’s break down the problem step by step:
1. **Initial Guess (Turn 1):** The target number is higher than 14. This means the target number
is between 15 and 50 (inclusive).
2. **Initial Guess (Turn 2):** The target number is higher than 22. This means the target number
is between 23 and 50 (inclusive).
. . .
From the final two steps, the target number is between 37 and 50 (inclusive). The final answer is
\boxed{38}.

In contrast, when using a more myopic return estimate (γ = 0.9), the agent is encouraged to minimize
the number of turns, discovers the binary search strategy, and converges to the optimal policy.

(γ = 0.9, the agent learns to conduct binary search)
State: You are playing Guess The Number. You have to guess the number between 1 and 50
(inclusive) within 50 turns. · · · As you play, the history of your guesses will be appended below.
Use the information to complete the game before you run out of guesses.
Enter your first guess to start the game.
At turn 1, you guessed 25, and the target number is lower than 25.
At turn 2, you guessed 12, and the target number is higher than 12.
At turn 3, you guessed 18, and the target number is higher than 18.
At turn 4, you guessed 21, and the target number is higher than 21.
At turn 5, you guessed 23, and the target number is lower than 23.
Enter your next guess.
Action: To determine the target number between 1 and 50, we can use a binary search strategy,
which is effective for narrowing down a range when given hints like ’higher’ or ’lower.’
Step-by-Step Reasoning:
1. **Initial Guess (Turn 1):** - The target number is lower than 25. - This means the target number
is in the range [1, 24].
2. **Second Guess (Turn 2):** - The target number is higher than 12. - This means the target
number is in the range [13, 24].
3. **Third Guess (Turn 3):** - The target number is higher than 18. - This means the target number
is in the range [19, 24].
4. **Fourth Guess (Turn 4):** - The target number is higher than 21. - This means the target
number is in the range [22, 24].
5. **Fifth Guess (Turn 5):** - The target number is lower than 23. - This means the target number
is in the range [22, 22].
Final Guess:
The target number is in the range [22, 22], which means the target number is 22. Final Answer:
\boxed{22}

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C ALGORITHM

For completeness we include the full algorithm of ReBN in Algorithm 1.

Algorithm 1 Multi-turn REINFORCE with Return Batch Normalization (ReBN)

Require: Policy πθ , EnvironmentM = (S,A, P,R, γ, ρ), Batch size B
1: while not converged do
2: Reset batch buffer B ← ∅
3: while |B| ≤ B do
4: // Multi-turn episode collection
5: Sample the initial state s0 ∼ ρ
6: for turn t = 0, 1, . . . , T − 1 until terminate do
7: yt ∼ πθ(·|st) ▷ Generate reasoning + action
8: at ← extract_action(yt)
9: rt ← R(st, at)

10: st+1 ← P (st, at)
11: end for
12: for t = 0, 1, . . . , T − 1 do
13: Gt ←

∑T−1
k=t γk−trk ▷ Compute discounted return

14: Add (st, yt, Gt) to B
15: end for
16: end while

17: // Return Batch Normalization
18: G̃i ← (Gi −mean(G)) / std(G)

19: // Policy optimization ▷ Or proximal update for data reuse
20: Update θ using Monte Carlo policy gradient

∑B
i=1 G̃i∇θ log πθ(yi|si)

21: end while

D EXTENDED EMPIRICAL STUDIES WITH GEM

0 100 200 300 400 500
Policy iteration steps

0.0

0.2

0.4

0.6

0.8

M
ea

n
Ep

is
od

e
Su

cc
es

s (a)
math:Orz57K

0 100 200 300 400 500
Policy iteration steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 (b)
qa:HotpotQA

0 100 200 300 400 500
Policy iteration steps

1.0

1.2

1.4

1.6

1.8

2.0

M
ea

n
Ep

is
od

e
Le

n

(c)
math:Orz57K

0 100 200 300 400 500
Policy iteration steps

1

2

3

4

5 (d)
qa:HotpotQA

w. ReBN w.o ReBN Neg rew

Figure 9: Learning curves of different reward shaping strategies. (a-b) The average success rate of two
environments. (c-d) The corresponding average number of turns taken to solve the tasks, equal to the number of
tool calls minus one.

D.1 IMPROVING LEARNING EFFICIENCY VIA RETURN BATCH NORMALIZATION

As briefly discussed in Section 4.1, while REINFORCE demonstrates strong performance across
most environments, its convergence can be suboptimal in certain cases. To investigate this further, we
present an in-depth ablation study here. Following minimalist principles, we began with the vanilla
REINFORCE algorithm and a simple reward scheme: r = 1 for correct answers and r = 0 otherwise.
This approach has been shown effective for single-turn RL training (Singh et al., 2023; Xiong et al.,
2025). However, as shown in Figure 9c (No norm), it failed to induce tool usage in multi-turn settings,
despite significant amount of initial attempts.

We hypothesize that this failure arises from the absence of negative gradients under 0/1 reward
shaping, which are crucial for efficient learning and exploration. To address this, we introduced
negative gradients in two ways: (i) assigning fixed negative rewards (r = 1 for correct and r = −1 for
incorrect answers, denoted as Neg rew in Figure 9); and (ii) applying Return Batch Normalization with

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0/1 rewards, where Monte Carlo returns in REINFORCE are normalized as described in Algorithm 1
(denoted as ReBN in Figure 9). While both 0/1 and ±1 reward schemes theoretically induce the same
optimal policy, they might exhibit markedly different learning dynamics in practice.

Notably, ReBN demonstrates strong and consistent performance across environments—not only
in math and QA tasks (Figure 9) but also in all other settings (Figure 1). We also observe that
models can be sensitive to fixed reward shaping: for example, Neg rew fails to improve tool use
in math:Orz57K, yet leads to tool overuse in qa:HotpotQA, both of which are suboptimal
behaviors.

E RELATED WORKS

There is a significant body of work on tool-integrated language models—including SkyRL-v0 (Cao
et al., 2025), VerlTool (Jiang et al., 2025), ReCall and ReSearch (Chen et al., 2025a), Search-R1
(Jin et al., 2025), ReTool (Feng et al., 2025a), and SimpleTIR (Xue et al., 2025). A common design
pattern in these methods is to collect multi-turn agent-environment interactions as single continuous
sequences of tokens of agent actions interleaved with environment outputs. Training then simply
involves masking the environment outputs from the loss calculation.

However, this single-sequence approach presents two significant limitations. First, the state observa-
tion is rigidly defined as the complete history of actions and outputs. This restricts the ability to use
alternative state representations, such as pruning “thinking” tokens or summarizing the history to
avoid exceeding context lengths. Second, this formulation inherently limits the reward structure to a
single, trajectory-level signal, preventing the use of finer-grained, per-step rewards, and effectively
fixing the discount factor at γ = 1. In Section 4.2 we demonstrate that γ < 1 is crucial for obtaining
the optimal fastest search behavior. By contrast, with trajectory-level rewards, the natural speed
incentive from γ < 1 is lost, and hence other works, such as SimpleTIR, must tune and enforce a
strict turn-limit to get this behavior.

To address this, our framework, GEM, is designed for maximum flexibility by collecting trajectories as
a sequence of individual transitions (i.e., state, action, reward, next state) as in the full, unsimplified RL
formulation. This design choice enables arbitrary state observation constructions (using observation
wrappers), and also preserves compatibility with per-turn rewards and arbitrary discount factors
γ ≤ 1. The verl-agent framework (Feng et al., 2025b) also adopts this transition-wise approach,
which enables its implementation of GiGPO (Feng et al., 2025b), an RL method that utilizes turn-level
rewards. While GiGPO collapses to trajectory-level GRPO when observations are unique, it is an
example of a type of algorithm that is now straightforward to implement with GEM’s infrastructure.

There are multiple popular frameworks that focus on the agent training side (e.g., Oat (Liu et al.,
2024), Verl (Sheng et al., 2024), OpenRLHF (Hu et al., 2024), ROLL (Wang et al., 2025a), and
RL2 (Tan et al., 2025)). Currently, many works that build on these, including verl-agent, RAGEN
(Wang et al., 2025b), Verlog (Chen et al., 2025b), and many of the works above, add environments by
directly modifying the source code. This results in tight coupling between training and environments,
and makes it difficult to maintain and reuse the environments for future research. As a result,
each codebase tends to support only a small, ad-hoc collection of environments, making it hard to
compare different methods. Even environments with the same name are often inconsistent between
codebases. GEM addresses this by dealing with all the environment infrastructure, including providing
a diverse suite of environments, and corresponding baselines. This makes it easy to keep training
and environments decoupled, with the aim of freeing researchers from cumbersome environment
development and setup, and thus enabling quicker prototyping and evaluation of new ideas.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

F EXPERIMENTAL SETTINGS

All our experiments are performed on 8 × A100 GPUs and finished in about one day. The detailed
experimental configurations are shown in Table 3.

Table 3: Hyperparameter configurations used in all experiments.

Parameter Value

ACTOR

Maximum response length per turn 4096 tokens
Sampling temperature, train 1.0
Sampling temperature, evaluation 0.0
(top P, top k) (1.0, -1)

LEARNER

Optimizer AdamW
Adam parameters (β1, β2) (0.9, 0.95)
Weight decay 0.0
Gradient norm clipping 1.0
Learning rate scheduler Constant
Learning rate 1× 10−6

Inner proximal update epoch 2
KL loss coefficient 0.0
KL penalty coefficient 0.0
Policy clipping parameter 0.2
Discount factor 1.0
GAE λ 0.95
Steps 500

G LIMITATIONS

While GEM provides a unified and extensible platform for training and evaluating LLM-based agents,
several limitations remain. First, GEM primarily focuses on the environment aspect of the RL loop;
it does not prescribe specific algorithms or training pipelines. Although this design encourages
flexibility, it may impose an additional burden on practitioners to integrate GEM with their own RL
frameworks. To mitigate this, GEM includes built-in support for five popular training frameworks,
which significantly reduces integration overhead. However, custom pipelines or novel algorithmic
designs may still require additional engineering effort. Second, the current set of environments, while
diverse, cannot fully capture the breadth of real-world agentic tasks. Many tasks rely on synthetic or
curated datasets, which may not reflect the complexity, ambiguity, or safety challenges encountered
in open-world applications. Third, GEM emphasizes single-agent and text-based interaction settings,
leaving multi-modal or multi-agent scenarios as future work. This limitation restricts its applicability
to tasks requiring rich perceptual input or collaborative behavior. Finally, due to the rapid evolution
of LLM architectures and tool usage, GEM’s abstractions and interfaces may require frequent updates
to remain compatible with new models and emerging best practices. We plan to address this through
continuous development and active collaboration with the research community.

17

	Introduction
	GEM environments
	Interface
	Tasks and tools
	Asynchronous vectorization and autoreset
	Wrappers

	Reinforcement learning with GEM
	Preliminary: LLMs as agents
	Baseline algorithms

	Empirical studies with GEM
	Benchmarking RL algorithms for LLMs
	Discount factor matters
	Tool-integration in math and question-answering
	Studying generalization
	Integration with training frameworks

	Agent evaluation with GEM
	General tool use via model context protocol
	Terminal environment via Docker container

	Conclusions
	Environment registration
	Case studies of language games
	Algorithm
	Extended empirical studies with GEM
	Improving Learning Efficiency via Return Batch Normalization

	Related works
	Experimental settings
	Limitations

