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ABSTRACT

A graph inherently embodies comprehensive interactions among all its nodes
when viewed globally. Hence, going beyond existing studies in long-range in-
teractions, which focus on interactions between individual node pairs, we study
the interactions in a graph through a global perspective. Traditional GNNs ac-
quire such interactions by leveraging local connectivities through aggregations.
While this approach has been prevalent, it has shown limitations, such as under-
reaching, and over-squashing. In response, we introduce a global interaction
perspective and propose interaction efficiency as a metric for assessing GNN
performance. This metric provides a unified insight for understanding several
key aspects of GNNs, including positional encodings in Graph Transformers,
spectral graph filter expressiveness, over-squashing, and the role of nonlinear-
ity in GNNs. Inspired by the global interaction perspective, we present Uni-
versal Interaction Graph Convolution, which exhibits superior interaction effi-
ciency. This new architecture achieves highly competitive performance on a vari-
ety of graph-level learning tasks. Code is available at https://github.com/
iclrsubmission-towards/UIGC.

1 INTRODUCTION

In recent years, Graph Neural Networks (GNNs) have undergone rapid development. From the
model design perspective, various architectures have been proposed, including Spectral Graph Con-
volution (Hammond et al., 2011; Shuman et al., 2013; Defferrard et al., 2016), Message-passing
(MPNN) (Gilmer et al., 2017), Invariant Graph Network (IGN) (Maron et al., 2018; 2019b), Graph
Transformer (Dwivedi & Bresson, 2020; Dwivedi et al., 2021; Ying et al., 2021; Lim et al., 2022;
Ma et al., 2023), Graph MLP-Mixer (He et al., 2022), etc. From an analytical standpoint, researchers
have investigated various factors that limit the performance of GNNs. These factors include over-
smoothing (Li et al., 2018; Oono & Suzuki, 2020; Cai & Wang, 2020; Huang et al., 2020; Zhao
& Akoglu, 2020), over-squashing or the inability to resolve long-range interaction (Alon & Yahav,
2021; Topping et al., 2021; Liu et al., 2022; Black et al., 2023), graph filter expressiveness (He et al.,
2021; Yang et al., 2022a; Wang & Zhang, 2022), and topology expressiveness (Xu et al., 2019;
Morris et al., 2019; Maron et al., 2019a; Sato, 2020; Zhang et al., 2022), among others.

However, most GNNs struggle to effectively represent diverse global interactions, and this issue
is not well explained by existing analytical tools. In a graph, nodes can have mutual influence
with each other, and the influence among distinct pairs of nodes is not independent. Based on this,
we adopt a global interaction perspective, where we consider all node pairs and their interactions
simultaneously, as illustrated in Figure 1. The dimensions of the interaction space are related to
the number of pairs. However, existing GNNs suffer from limited interaction expressiveness, re-
stricting them from representing diverse interactions required by the given tasks. For example, a
k-layer message-passing GNN fails to represent interactions beyond k-hop connectivities. Although
Graphormer (Ying et al., 2021; Luo et al., 2022) with fully connected architectures has no such
restriction, it directly encodes shortest path distance (SPD) as the structure bias. Recent research
by Yang et al. (2023) interprets interactions from a spectral perspective. However, this spectral
perspective restricts the exploration of more flexible interactions. Additionally, Ma et al. (2023)
demonstrates that their proposed positional encoding can approximate several known interaction
patterns simultaneously, but there is a lack of a general understanding of interaction expressiveness.
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Figure 1: Given a graph, each node can interact with all other nodes, including itself. The interaction
states between each node pair can be represented by a variable with a continuous or discrete domain.
For a graph with n nodes, assuming there are K discrete interaction states, the number of possible
interactions is K

n×(n+1)
2 . In the provided example, the number of interactions is 428.

Black et al. (2023) studies global interaction properties with the total effective resistance metric
which does not involve the expressiveness analysis.

Interaction expressiveness shares a similar concern with graph filter expressiveness (Balcilar et al.,
2021). For a graph with n nodes, the corresponding Laplacian involves n graph Fourier bases,
each associated with a filtering coefficient. The concurrent consideration of filtering across different
bases results in a filter space of Rn (He et al., 2021; Yang et al., 2022a; Wang & Zhang, 2022; Bo
et al., 2022). Recent studies emphasize the necessity to enhance filter expressiveness to effectively
span and cover this space. In a parallel analogy, within the framework of global interactions, each
node pair is assigned an interaction coefficient. To view all pair interactions simultaneously, the
dimensions of the interaction space are related to the number of pairs.

In essence, the challenge lies in how a model can universally approximate any interactions. To this
end, we propose leveraging the Jacobian matrix of all node features before and after the GNN op-
eration as a measurement to quantify interaction efficiency. This approach allows us to differentiate
between interaction sensitivity—measuring the sensitivity of model outputs to perturbations in input
node features—and interaction expressiveness—quantifying the range of interactions a model can
express. The analysis of interaction efficiency expands upon existing studies of over-squashing or
long-range interaction by considering dependencies among all pairs of nodes within a graph simul-
taneously, thus revealing insights into the limitations of GNNs that individual pair-wise analyses
cannot encompass. Our contributions are as follows:

• We propose modeling and measuring global interactions with the Jacobian among all node
features, utilizing it to assess GNN performance and systematically illustrate interaction
limitations in existing GNN designs;

• We demonstrate how the analysis of interaction efficiency offers a comprehensive perspec-
tive that generalizes several key findings from GNN studies;

• We present a novel GNN with superior interaction efficiency.

2 PRELIMINARIES

Let G = (V, E) be an undirected graph with vertex set V of size n and edge set E . A ∈ Rn×n is an
adjacency matrix with degree matrix D = diag(A1n). Let Ã = A + I and D̃ = D + I , then Â =

D̃− 1
2 ÃD̃− 1

2 and L̂ = I − Â refer to the normalized adjacency and Laplacian matrices, respectively.
Let Z ∈ Rn×d be a d-channel graph signal assigned on G, also known as a d-dimensional node
feature matrix, where Z:,i ∈ Rn refers to the i-th channel of the signal, and Zi,: ∈ Rd refers to the
signal or feature of the node i. [n] denotes the set {0, 1, 2, . . . , n}. Given a matrix M ∈ Rm×n,
we denote vec(M) ∈ Rmn the vectorization of M and [Mi]i∈[o] ∈ Rm×n×o the concatenation of
[M1,M2, . . . ,Mo].

2.1 GRAPH AUTOMORPHISM

An automorphism of a graph is a form of symmetry in which the graph is mapped onto itself while
preserving edge–vertex connectivity. Formally, for a graph G = (V, E), an automorphism is a
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permutation π of the vertex set V such that for all vertices i, j ∈ V , (i, j) ∈ E if and only if
(π(i), π(j)) ∈ E . In other words, π(V) is a graph isomorphism from G to itself.

2.2 GRAPH CONVOLUTION

Despite the existence of various graph convolution networks, such as ChebyNet (Defferrard et al.,
2016), GCN (Kipf & Welling, 2017), CayleyNet (Levie et al., 2019), SGC (Wu et al., 2019), Bern-
Net (He et al., 2021), GPR (Chien et al., 2021), JacobiConv (Wang & Zhang, 2022), Corr-free (Yang
et al., 2022a), etc., the graph convolution computation can always be generalized into the following
form:

Z ′ = fW(gθ(L̂)Z), (1)

where Z is the input graph signals (or node features), gθ(L̂) is the polynomial of L̂ with coefficient
θ, and fW is a feature transformation neural network with the set of learnable parameters W . 1

3 INTERACTION EFFICIENCY ANALYSIS

The graph convolution computation in Equation 1 is a differentiable function of inputs Z as both gθ
and fW are differentiable. Hence, we propose utilizing the Jacobian matrix among all nodes as a
formal way to characterize the interactions. Specifically,

Definition 1 (Global Interaction). For a GNN computation, given the a-th channel of inputs Z
and the b-th channel of outputs Z ′, the global interaction among all nodes modeled by the GNN is

J(a,b) =
∂Z′

:,b

∂Z:,a
∈ Rn×n.

According to the definition, given the graph L̂ and the input node features Z, the global interaction
of the graph convolution computation can be parameterized by the learnable polynomial coefficients
θ and feature transformation parameters W:

Jθ,W := J
(a,b)
θ,W =

∂Z ′
:,b

∂Z:,a
= diagi∈[n]

(
∂fW(Ki,:)b
∂Ki,a

)
gθ(L̂) ∈ Rn×n, (2)

where K = gθ(L̂)Z ∈ Rn×d. The derivation is given in Appendix A.2. In comparison to existing
over-squashing as well as long-range interaction studies that also consider the Jacobian of node
features but within an individual node pair (Xu et al., 2018; Alon & Yahav, 2021; Topping et al.,
2021; Liu et al., 2022; Black et al., 2023), the global interaction Jθ,W views all node pairs within a
graph simultaneously.

Next, we study the interaction efficiency from the perspective of the interaction sensitivity and the
interaction expressiveness respectively, the results of which indicate the limitations and potential
solutions in existing graph convolution design.

3.1 INTERACTION SENSITIVITY

The determinant |Jθ,W | = | ∂Z
′
:,b

∂Z:,a
| serves as a measure of sensitivity, quantifying how the convolu-

tion outputs respond to changes in the inputs. A smaller |Jθ,W | shows that the b-th output channel
Z ′
:,b is less likely to be affected by the a-th input channel Z:,a.

Proposition 1. If fW is α-Lipschitz continuous, the determinant of Jθ,W is upper bounded as
follows:

|Jθ,W | ≤ αn

∣∣∣∣∣
n∏

i=1

gθ(λi)

∣∣∣∣∣ , (3)

where λ = {λ1, λ2, . . . , λn} is the spectrum of L̂.

1Some existing work generalize graph convolution layer into the form Z(l+1) = ϕl(gl(L̂)ψl(Z
(l))) (Yang

et al., 2022a; Wang & Zhang, 2022). It is equivalent to our Z(l+1) = fl(gl(L̂)Z
(l)) by letting fl = ψl ◦ ϕl−1

when considering over different layers. Please refer to Appendix A.1 for more details.
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Note that in most GNNs, fW is implemented as a one-layer perceptron such as GCN (Kipf &
Welling, 2017), GCNII (Ming Chen et al., 2020), SGC (Wu et al., 2019), SSGC (Zhu & Ko-
niusz, 2020), etc., where the resulting graph convolution is then rewritten as Z ′ = σ(gθ(L̂)ZW ),
where W is a learnable feature transformation matrix and σ is a nonlinear activation function.
Then the corresponding Jθ,W = Wa,bdiagi∈[n](

dσ(γi)
dγi

)gθ(L̂), where γ = gθ(L̂)ZW:,b. Ac-
cording to Proposition 1, we have |Jθ,W | ≤ |(αWa,b)

n
∏n

i=1 gθ(λi)| with σ being α-Lipschitz
continuous. Detailed derivations are given in Appendix A.4. However, most applied activation
functions have α = supx∈R |dσ(x)dx | ≤ 1. For example, |dReLU(x)

dx | = 0 or 1, |dSigmoid(x)
dx | =

Sigmoid(x)(1 − Sigmoid(x)) ≤ 0.25 and |dTanh(x)dx | = 1 − Tanh2(x) ≤ 1. And the degree nor-
malization operation in GNNs, i.e., D− 1

2AD− 1
2 , further shrinks the spectrum, making λi close to

0. All these factors make |Jθ,W | easily affected by the learnable entry Wa,b. A small |Wa,b| results
in |Jθ,W | decaying exponentially with respect to the number of nodes. The determinant of the Jaco-
bian matrix provides a way of quantifying the change of outputs with respect to the perturbation of
inputs from a global perspective.

3.2 INTERACTION EXPRESSIVENSS

As the interaction in Equation 2 is parameterized by both θ and W , the interaction space of the
graph convolution, i.e., the set of all possible interactions that it can represent, is

Jθ,W =
{
Jθ,W

∣∣θ ∈ Rk,W ∈ R⋆
}
, (4)

where k is the degree of the polynomial, and the dimension of W ∈ R⋆ depends on the applied neural
network models. To allow comparing the interactions of two models, we then define interaction
expressiveness.
Definition 2 (Interaction Expressiveness). For two graph models GM1 and GM2 with J1,J2, re-
spectively, GM1 is more expressive in interactions than GM2, denoted by GM1 ⪰ GM2, if and only
if J1 ⊇ J2. Meanwhile, if J1 = J2, we say GM1 is equivalent to GM2, denoted by GM1 = GM2.

Note that in real-world graph data, symmetric parts of a graph often exhibit identical properties.
In alignment with this, general GNNs consistently learn the same interactions for symmetry parts,
which we call symmetry bias. To show this, we first define node/pair-symmetry as follows.
Definition 3 (Node/Pair-symmetry). For a graphG and node features Z, two nodes i, j are symmet-
ric, denoted by i ∼ j, if there exists an automorphism π such that (i) Zπ(i),: = Zi,: for any i ∈ [n],
and (ii) π(i) = j. Meanwhile, two pairs (i, j), (k, l) are symmetric, denoted by (i, j) ∼ (k, l), if
i ∼ k and j ∼ l are under the same automorphism.

According to the definition, pair-symmetry is an equivalence relation, thus we can get the quotient
space {(i, j)|i, j ∈ [n]}/ ∼, i.e., the partitions of pairs based on their pair-symmetry. Examples are
given in Figure 2. Graphs (a) to (d) have the same number of nodes, but different topologies result in
different pair partitions based on pair-symmetry, where more symmetric graphs generally have less
number of partitions. Also, in graphs with diverse node features, the partitions are further decided by
node differences as the comparisons between graph (d) and (e), which means non-symmetric pairs
would not be distinguished without considering node differences. Node-symmetry under graph
automorphism is also studied by Wang & Zhang (2022); Xu et al. (2021). We further extend it to
pair-symmetry, which serves as the basic concept in the interaction expressiveness analysis.
Proposition 2. For any J ∈ J in the graph convolution and any (i, j), (k, l) within the same pair
partition, i.e. (i, j) ∼ (k, l), we have Ji,j = Jk,l, Z ′

i = Z ′
k and Z ′

j = Z ′
l .

Proposition 2 shows that the graph convolution always learns the same interactions for symmetric
pairs, i.e. symmetry bias. Hence we only need to consider the interactions over different pair
partitions instead of individual pairs. This dramatically reduces the interaction space in Eq.4. Let
η = |{(i, j)|i, j ∈ [n]}/ ∼ | be the number of pair partitions, and J∼ ⊆ Rη be the interaction space
over different partitions. The model with J∼ = Rη corresponds to the highest expressiveness, i.e.,
it is powerful enough to model any interaction with proper neural parameter assignments. We call
it universal expressiveness of interactions. Unfortunately, existing graph convolution is far from
universality as follows.2

2We provide similar interaction expressiveness analysis of MPNN framework in Appendix B due to the
page limits.
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Figure 2: We explore graphs and their pair partitions through the lens of pair-symmetry. Graph (a)
to (e) present graphs with 6 nodes. For each of them, there exists a total of 21 pairs. These pairs are
visually represented in a matrix on the right-hand side. Entries corresponding to symmetric pairs, as
defined in Definition 3, are highlighted in the same color, and entries corresponding to direct edges
are marked with ‘1’. Below each graph, a vector summarizes the number of pair partitions in that
particular graph.

Proposition 3. For the interaction space Jθ,W of the graph convolution, we have vec(Jθ,W) ⊆
{I ⊗ diag(β)[vec(Ui ⊗ Ui)]i∈[n]α

∣∣α,β ∈ Rn}, where L̂ = UΛU⊤.

⊗ is the Kronecker product. Proposition 3 shows that Jθ,W is an at most 2n dimensional subspace
within Rη , which is far from universal expressiveness of interactions.

Next, the objective is to improve the interaction expressiveness of graph convolutions. To make it
more general, in the following analysis, we extend gθ(L̂) in graph convolution to any set of graph
matrix representations S ⊆ Rn×n. Correspondingly,

Proposition 4. With JS,W = {diagi∈[n](
∂fW(Ki,:)b

∂Ki,a
)S
∣∣S ∈ S,W ∈ R⋆}, we have

(i) vec(JS,W) ⊆
⋃

S∈S{vec(diag(α)S)
∣∣α ∈ Rn};

(ii) vec(S) ⊆
⋃

S∈S{vec(diag(α)S)
∣∣α ∈ Rn}.

Proposition 4(i) shows that JS,W is bounded by vec(J upper
S ) =

⋃
S∈S

{
vec (diag (α)S)

∣∣α ∈ Rn
}

.
Inspired by this, we simplify the objective of improving the interaction expressiveness of graph con-
volution by improving its upper bound J upper

S , which is parameterized by S. Furthermore, Proposi-
tion 4(ii) shows that we can push J upper

S to universality by letting S∼ = Rη .

4 UNIVERSAL INTERACTION GRAPH CONVOLUTION (UIGC)

For input node features with d′ channels, the model learns an individual interaction for each channel.
We use S ∈ Rn×n×d′

to denote all d′ interactions over these channels. Then, Si,j,: corresponds to
the interaction of all d′ channels between the node pair (i, j). Note that any S can be viewed as a
mapping f : {(i, j)

∣∣i, j ∈ [n]} 7→ {Si,j,:

∣∣i, j ∈ [n]}, hence we can model any S by approximating
the corresponding mapping f .

Proposition 5. Given a MLP fΘ : Rd 7→ Rd′
with learnable parameters Θ ∈ R⋆, for any S ∈

Rn×n×d′
, injective mapping φ : R2 7→ Rd and ϵ > 0, there exists Θ0 such that

sup
i,j∈[n]

∥∥fΘ ◦ φ((i, j))|Θ=Θ0
− Si,j,:

∥∥ < ϵ. (5)

Proposition 5 shows the general result regarding the potential interaction expressiveness a model
can achieve without specifying symmetry properties. Then, to ensure symmetry bias, we relax the
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injectivity of φ by ensuring that symmetric pairs always share the same output as follows.
φLE : {Local structures and/or node/edge features of (i, j)|i, j ∈ [n]} 7→ Rd. (6)

φLE acts as a local encoding operation. Then, the complete of UIGC layer is

E =
[
φLE((i, j))

]
i,j∈[n]

∈ Rn×n×d

J = [fΘ(Ei,j,:)]i,j∈[n] ∈ Rn×n×d′

Z ′ = fW

(
[J:,:,iZ:,i]i∈[d]

)
∈ Rn×d.

(7)

As φLE restricts the pair encodings to the mapping of local structures, it produces identical en-
codings for pairs within the same partitions. The universal expressiveness of interactions across
different partitions is preserved if φLE is injective to these partitions. However, achieving injectivity
is generally challenging. Different implementations of φLE exhibit varying discrimination abilities
on partitions. For a set of implementations of φLE, their discrimination abilities form a partial order.
In this partial order, the one injective to the partitions is the most discriminative. Consequently, we
consolidate diverse φLE implementations in existing GNNs into a Directed Acyclic Graph (DAG)
and compare their discrimination abilities. For detailed information, please refer to Appendix C. Fi-
nally, ignoring the approximation error ϵ of MLP, the universal expressiveness of interactions holds
as {[fΘ ◦ φLE((i, j))]i,j∈[n]|Θ ∈ R⋆} = S∼ = Rη .

Revisiting positional encodings in Graph Transformers via the lens of global interactions. Some
positional encoding studies in Graph Transformers can be viewed as implementations of φLE with
various discrimination abilities of non-symmetric pairs. For example, the shortest path distance
matrix (SPD) used in Ying et al. (2021); Luo et al. (2022) can be viewed as an implementation of
φLE, but this encoding strategy cannot distinguish non-symmetric pairs with the same topological
distance. Ma et al. (2023) proposes relative random walk probabilities (RRWP) positional encoding
in Graph Transformers and shows its great expressiveness that can approximate SPD and others by
combining with MLP. In general, since there always exists a mapping from a local encoding to a less
discriminative one, we can approximate any desired interaction, e.g. SPD, with any more discrimi-
native local encoding as the inputs of MLP. Similarly, a weak local encoding will result in the bottle-
neck of approximating complex interactions as fΘ◦φLE((i, j)) ⪯ φLE((i, j)) according to the partial
order of the discrimination ability. Consistently, the adjacency matrix only encodes each pair accord-
ing to the explicit 1-hop connections, which means it cannot distinguish all pairs with (or without)
1-hop connections. In comparison, normalized adjacencyD− 1

2AD− 1
2 is a stronger one, as it further

distinguishes connected pairs with different degrees. Other interesting local encoding strategies in-
clude GSO (Sandryhaila & Moura, 2013; Dasoulas et al., 2021), Spectrum-smoothness (Yang et al.,
2022a), etc. Although these local encoding strategies are motivated by different theories, they play a
similar role in identifying non-symmetric pairs, such as positional encodings in Graph Transformers
and polynomial bases in spectral graph filters. Generally, a more discriminative one is more helpful.
For example, higher degree polynomials with better filter expressiveness, as recommended in some
works (Wang & Zhang, 2022; Yang et al., 2022a), are also more discriminative. More comparisons
are given in Appendix C.

Revisiting the role of nonlinearity as well as spectral graph filter expressiveness via the lens of
global interactions. Nonlinearity plays an essential role in interaction expressiveness, as shown
in our UIGC, where the effects of nonlinearity are analogous to that in achieving universal ap-
proximation power of MLP (Cybenko, 1989; Hornik et al., 1989). While without nonlinearity, the
interaction computation degrades into the linear combinations of a group of bases as that in spectral
graph filters approximated with polynomials. Generally, improving polynomials degree can improve
filter/interaction expressiveness as {gθ(Λ)

∣∣θ ∈ Rk} ⊆ {gθ(Λ)
∣∣θ ∈ Rk+1} and {gθ(L̂)

∣∣θ ∈ Rk} ⊆
{gθ(L̂)

∣∣θ ∈ Rk+1}, where L̂ = UΛU⊤. Also, it has been proved that improving the polynomial
degree to k = n achieves universal expressiveness of filters, i.e. {gθ(Λ)

∣∣θ ∈ Rn} = Rn (Yang
et al., 2022a; Wang & Zhang, 2022). However, it cannot improve expressiveness by further setting
k > n as it is bounded by vec({gθ(L̂)

∣∣θ ∈ Rk}) ⊆ span
({

vec (Ui ⊗ Ui)
∣∣i ∈ [n]

})
for any k. This

means that the universal expressiveness of filters only corresponds to an n-dimensional subspace of
the interaction space, which is far from the universal expressiveness of interactions. Thankfully,
involving nonlinearity helps to break this bound. Also, a larger k in polynomial filters can easily
result in numerical instability, making it less applicable.
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Revisiting over-squashing via the lens of global interactions. The over-squashing issue can be
understood in terms of one node representation failing to be affected by some other input node
features at long distances, which is also known as long-range interaction issue (Alon & Yahav,
2021; Topping et al., 2021; Liu et al., 2022; Black et al., 2023). Topping et al. (2021) and Black
et al. (2023) apply the Jacobian of the two node features/representations as a formal way to access
the over-squashing effects. Liu et al. (2022) studies the norm of node feature perturbation between
two nodes. They all theoretically show that the dependency effects decay exponentially with respect
to the distance. However, these studies focus on the case of two given nodes with a known distance in
the graph. It corresponds to a local view where the dependency effects are always considered within
each pair of nodes individually. Our interaction efficiency analysis provides a global view that
studies global interaction sensitivity and interaction expressiveness among all nodes simultaneously,
which cannot be identified by the local view.

5 EXPERIMENTS

In this section, we first verify the effectiveness of our UIGC in approximating various synthetic
interactions. Then, we evaluate UIGC on graph classification and regression datasets.

5.1 LEARNING INTERACTIONS ON SYNTHETIC DATA
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Figure 3: Illustrations of 5 synthetic interaction patterns learned by PolyGC and UIGC. k is the pair
partition index. h(k) is the synthetic interaction function. α is a scaling factor controlling output.

Setup. We randomly select a graph from TUDataset/NCI1. Based on pair-symmetry, all node pairs
form 130 partitions. We index these partitions from 0 to 129 and then assign five distinct interaction
patterns to the partition indices with different approximation difficulties, as depicted in Figure 3.
We test graph convolution models with polynomial filters, i.e. PolyGC, and our UIGC models. To
ensure a fair comparison, UIGC and PolyGC apply the same φLE, i.e. [Âk]k∈[K]. A larger value of
K achieves a more discriminative φLE. For the given graph, K ≥ 8 is sufficient to distinguish all
pair partitions. In our tests, we evaluate cases with K = 3 and K = 8, representing insufficient
and sufficient discrimination abilities of φLE, respectively. In PolyGC, they correspond to 3-degree
and 8-degree polynomials. Other values of K can be chosen to demonstrate similar results. Then
the corresponding interaction computations of PolyGC and UIGC are Jθ =

∑K
k=0 θkÂ

k and Jθ =

MLPθ([Â
k]k∈[K]) respectively. The node features X are randomly generated. Finally, the model

learns node representations for each node by optimizing argminθ ∥JθX − JGTX∥2.

Result. When applying fewer bases, both PolyGC-3 and UIGC-3 struggle to approximate the given
interactions effectively, resulting in significant errors. Notably, the partitions indexed below 50 can-
not be distinguished from each other across all four interaction patterns. This arises from the limited
discrimination ability of [Âk]k∈[3], which cannot differentiate pairs beyond 3 hops. In contrast, when
applying more bases as [Âk]k∈[8], both PolyGC-8 and UIGC-8 can distinguish each partition suc-
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Table 1: Mean square error of approximations on synthetic interactions.

Function h(k) = α h(k) = αk h(k) = kα h(k) = sin(αk) h(k) = α⌈k/40⌉
PolyGC-3 0 0.1326 0.2567 0.5346 0.3668
PolyGC-8 0.0002 0.1709 0.3073 0.3446 0.4523
UIGC-3 0.0005 0.0143 0.1160 0.2598 0.0184
UIGC-8 0.0003 0.0002 0.0009 0.0018 0.0111

cessfully. However, PolyGC-8 does not exhibit significant improvement with an increased number
of bases. This observation suggests that polynomial filters, while performing well in approximat-
ing graph filters as demonstrated in previous studies (He et al., 2021; Bo et al., 2022), struggle to
effectively approximate interactions. In contrast, UIGC-8 outperforms the others by achieving the
best fit on all interaction patterns, with significantly smaller errors as indicated in Table 1. This
verifies our analysis that discriminative local encoding combined with MLP achieves the universal
approximation ability of interactions. Furthermore, it shows that the piecewise interaction is the
most challenging to approximate, while the constant with all partitions sharing the same interaction
value is the easiest where all four implementations can fit accurately.

5.2 BENCHMARKING UIGC

We evaluate UIGC on datasets from Benchmarking GNN (Dwivedi et al., 2020), OGB (Hu et al.,
2020) and TUDataset (Morris et al., 2020) respectively. All baseline results are quoted from their
official leaderboards 3 or the original papers.

Baselines. The baseline models used for comparisons include: GK (Shervashidze et al., 2009),
RW (Vishwanathan et al., 2010), PK (Neumann et al., 2016), FGSD (Verma & Zhang, 2017),
AWE (Ivanov & Burnaev, 2018), DGCNN (Zhang et al., 2018), PSCN (Niepert et al., 2016),
DCNN (Atwood & Towsley, 2016), ECC (Simonovsky & Komodakis, 2017), DGK (Yanardag &
Vishwanathan, 2015), CapsGNN (Xinyi & Chen, 2019), GIN (Xu et al., 2019), k-GNN (Morris
et al., 2019), IGN (Maron et al., 2018), PPGNN (Maron et al., 2019a), Soft-mask (Yang et al., 2021),
GCN2 (de Haan et al., 2020), GraphSage (Hamilton et al., 2017), GAT (Veličković et al., 2018),
GatedGCN-PE (Bresson & Laurent, 2017), MPNN (sum) (Gilmer et al., 2017), DeeperGCN (Li
et al., 2020), PNA (Corso et al., 2020), DGN (Beani et al., 2021), GSN (Bouritsas et al., 2020),
GINE-APPNP (Brossard et al., 2020), PHC-GNN (Le et al., 2021), ExpC (Yang et al., 2022b),
GT (Dwivedi et al., 2020), SAN (Kreuzer et al., 2021), Graphormer (Ying et al., 2021), K-Subgraph
SAT (Chen et al., 2022), EGT (Hussain et al., 2022), GPS (Rampášek et al., 2022).

Following baseline settings, we use the parameter budgets ∼500k for ZINC, ∼100k for MNIST, and
no parameter limitation for ogbg-molpcba. Both ZINC and ogbg-molpcba are small molecule graphs
that have sparse connections. General message-passing models rely on connectivity to compute in-
teractions. A sparse-connected graph requires a deeper model to capture the long-range interactions,
but this will lead to over-squashing and over-smoothing issues. UIGC infers the interaction of each
pair directly through their local encodings, which will not be affected by the connectivity of graphs.
The results in Table 2 show that UIGC outperforms baselines on these sparsely connected graphs.

TUDataset involves small-scale datasets. We use the standard 10-fold cross-validation and dataset
splits in Zhang et al. (2018), and then report our results following the rule as described in Xu et al.
(2019) and Ying et al. (2018). The results are presented in Tab.3. Our tested datasets have a number
of graphs ranging from 1000 to 4000. This kind of small-scale graph data can easily result in
overfitting, making it less effective in leveraging more learnable parameters, as shown in (Yang
et al., 2021). Also, it is unclear whether the popular Graph Transformer-based models can fully
show their power on these small-scale data as there are not many results provided. In UIGC, we
utilize the MLP fΘ to model interactions. The classification improvement shows the alleviation
of the overfitting issue. However, datasets like IMDB-B have no classification gains, indicating
that label-related interaction patterns on these graphs may be inherently simple and can be easily
captured by basic models. Detailed hyperparameter settings and the number of parameters of the
model are given in Appendix D.2.

3https://paperswithcode.com/sota/graph-regression-on-zinc-500k and https:
//ogb.stanford.edu/docs/leader_graphprop/
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Table 2: Results on ZINC, ogbg-molpcba, and MNIST. The best results are in bold, and the second-
best are underlined.

Method ZINC MNIST ogbg-molpcba
MAE ↓ ACC(%) ↑ AP(%) ↑

GCN 0.367±0.011 90.705±0.218 24.24±0.34
GIN 0.526±0.051 96.485±0.252 27.03±0.23
GAT 0.384±0.007 95.535±0.205 -
GraphSage 0.398±0.002 - -
GatedGCN-PE 0.214±0.006 97.340±0.143 -
MPNN 0.145±0.007 - -
DeeperGCN - - 28.42±0.43
PNA 0.142±0.010 97.94±0.12 28.38±0.35
DGN 0.168±0.003 - 28.85±0.30
GSN 0.101±0.010 - -
GINE-APPNP - - 29.79±0.30
PHC-GNN - - 29.47±0.26
ExpC - - 23.42±0.29

GT 0.226±0.014 - -
SAN 0.139±0.006 - 27.65±0.42
Graphormer 0.122±0.006 - -
K-Subgraph SAT 0.094±0.008 - -
EGT 0.108±0.009 98.173±0.087 -
GPS 0.070±0.004 98.051±0.126 29.07±0.28

UIGC (Ours) 0.060±0.002 98.272±0.119 30.24±0.27

Table 3: Results on TUDataset.

Method ENZYMES NCI1 NCI109 PTC MR PROTEINS IMDB-B RDT-B

GK 32.70±1.20 62.49±0.27 62.35±0.3 55.65±0.5 71.39±0.3 - 77.34±0.18
RW 24.16±1.64 - - 55.91±0.3 59.57±0.1 - -
PK - 82.54±0.5 - 59.5±2.4 73.68±0.7 - -
FGSD - 79.80 78.84 62.8 73.42 73.62 -
AWE 35.77±5.93 - - - - 74.45±5.80 87.89±2.53

DGCNN 51.0±7.29 74.44±0.47 - 58.59±2.5 75.54±0.9 70.03±0.90 -
PSCN - 74.44±0.5 - 62.29±5.7 75±2.5 71±2.3 86.30±1.58
DCNN - 56.61±1.04 - - 61.29±1.6 49.06±1.4 -
ECC 45.67 76.82 75.03 - - - -
DGK 53.43±0.91 80.31±0.46 80.32±0.3 60.08±2.6 75.68±0.5 66.96±0.6 78.04±0.39
GraphSAGE 58.2±6.0 76.0±1.8 - - - 72.3±5.3 -
CapsGNN 54.67±5.67 78.35±1.55 - - 76.2±3.6 73.1±4.8 -
GIN - 82.7±1.7 - 64.6±7.0 76.2±2.8 75.1±5.1 92.4±2.5
k-GNN - 76.2 - 60.9 75.5 74.2 -
IGN - 74.33±2.71 72.82±1.45 58.53±6.86 76.58±5.49 72.0±5.54 -
PPGNN - 83.19±1.11 82.23±1.42 66.17±6.54 77.20±4.73 73.0±5.77 -
Soft-mask 60.3±5.26 83.3±1.88 - - 76.8±4.15 75.0±5.95 93.1±2.25
GCN2 - 82.74±1.35 83.00±1.89 66.84±1.79 71.71±1.04 74.80±2.01 -

UIGC (Ours) 74.83±7.17 85.09±1.12 83.35±0.87 67.47±7.76 77.27±4.33 74.90±3.24 93.40±1.09

6 CONCLUSION

We propose to study the global interactions of a graph as a way to access GNN performance. To
this end, we use the Jacobian of all node features before and after GNN operations as the interaction
efficiency metric. It can be applied to various graph models and also provides new interpretations
into several widely studied issues.
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A PROOFS AND DERIVATIONS

A.1 UNIFIED GRAPH CONVOLUTION

H(l+1) = ϕl(gl(L̂)ψl(H
(l)))

= ϕl(gl(L̂)ψl ◦ ϕl−1(gl−1(L̂)(. . . ψ1 ◦ ϕ0(g0(L̂)ψ0(X)))))
(8)

Let fl = ψl ◦ ϕl−1, then the K-layer graph convolution operation can be represented as

Z(1) = ψ0(X)

Z(l+1) = fl(gl(L̂)Z
(l))

Y = ϕK−1(gK−1(L̂)Z
(K−1)) = ψ−1

K (Z(K)),

(9)

where we suppose ψK is invertible.

A.2 DERIVATIONS OF EQUATION 2

With

Z ′ = fW(gθ(L̂)Z) =


fW

(
gθ(L̂)1,:Z

)
...

fW

(
gθ(L̂)n,:Z

)
 ∈ Rn×d, (10)

we have
Z ′
i,b = fW

(
gθ(L̂)i,:Z

)
b

= fW

 n∑
j=1

gθ(L̂)i,jZj,:


b

= fW

 n∑
j=1

gθ(L̂)i,jZj,1, . . . ,

n∑
j=1

gθ(L̂)i,jZj,a, . . .


b

.

(11)

Then we have
∂Z ′

i,b

∂Zj,a
=
∂fW(Ki,:)b
∂Ki,a

gθ(L̂)i,j ∈ R (12)

among which K = gθ(L̂)Z ∈ Rn×d and Ku,v =
∑n

i=1 gθ(L̂)u,iZi,v ∈ R. Then

∂Z ′
i,b

∂Z:,a
=
∂fW(Ki,:)b
∂Ki,a

gθ(L̂)i,: ∈ Rn. (13)

Finally,

Jθ,W =
∂Z ′

:,b

∂Z:,a
= diagi∈[n]

(
∂fW(Ki,:)b
∂Ki,a

)
gθ(L̂) ∈ Rn×n. (14)

14
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A.3 PROOF OF PROPOSITION 1

Proof.

|Jθ,W | =
∣∣∣∣diagi∈[n]

(
∂fW(Ki,:)b
∂Ki,a

)
gθ(L̂)

∣∣∣∣
=

∣∣∣∣diagi∈[n]

(
∂fW(Ki,:)b
∂Ki,a

)∣∣∣∣ ∣∣∣gθ(L̂)∣∣∣
=

n∏
i=1

∂fW(Ki,:)b
∂Ki,a

n∏
i=1

gθ(λi)

≤ αn

∣∣∣∣∣
n∏

i=1

gθ(λi)

∣∣∣∣∣ / ∗ As sup
x∈Rd

∣∣∣∣∂fWb

∂xa

∣∣∣∣ = α ∗ /

(15)

A.4 DERIVATIONS OF ONE-LAYER PERCEPTRON IMPLEMENTATION

With Z ′ = σ(gθ(L̂)ZW ), we have,

Z ′
i,b = σ

(
gθ(L̂)i,:ZW:,b

)
= σ

(
gθ(L̂)i,:

d∑
u=1

Z:,uWu,b

)

= σ

(
n∑

v=1

d∑
u=1

gθ(L̂)i,vZv,uWu,b

)
.

(16)

Then we have
∂Z ′

i,b

∂Zj,a
=
dσ(γi)

dγi
gθ(L̂)i,jWa,b ∈ R (17)

among which γi = gθ(L̂)i,:ZW:,b ∈ R. Then

∂Z ′
i,b

∂Z:,a
=
dσ(γi)

dγi
gθ(L̂)i,:Wa,b ∈ Rn. (18)

Finally,

Jθ,W =
∂Z ′

:,b

∂Z:,a
= diagi∈[n]

(
dσ(γi)

dγi

)
gθ(L̂)Wa,b ∈ Rn×n. (19)

Correspondingly,

|Jθ,W | =
∣∣∣∣Wa,bdiagi∈[n]

(
dσ(γi)

dγi

)
gθ(L̂)

∣∣∣∣
=Wn

a,b

∣∣∣∣diagi∈[n]

(
dσ(γi)

dγi

)∣∣∣∣ ∣∣∣gθ(L̂)∣∣∣
=Wn

a,b

n∏
i=1

dσ(γi)

dγi

n∏
i=1

gθ(λi)

≤

∣∣∣∣∣(αWa,b)
n

n∏
i=1

gθ(λi)

∣∣∣∣∣ / ∗ As sup
x∈R

∣∣∣∣dσ(x)dx

∣∣∣∣ = α ∗ /

(20)

A.5 PROOF OF PROPOSITION 2

For a graph automorphism π, we use Pπ to denote the corresponding permutation matrix of π.
Lemma 1. Given a graph G and node features Z, both Z ′ and J in the graph convolution are
invariant to graph automorphism, i.e. for any automorphism π of G with PπZ = Z, we have
PπZ

′ = Z ′ and PπJP
⊤
π = J.

15
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Proof. According to the definition of graph automorphism, we have PπL̂P
⊤
π = L̂ and PπL̂

2P⊤
π =

L̂2. Then

Pπgθ(L̂)P
⊤
π = Pπ

(
k∑

i=0

αiL
i

)
P⊤
π

=

k∑
i=0

αiPπL
iP⊤

π

=

k∑
i=0

αiL
i

= gθ(L̂).

(21)

Let S = gθ(L̂) for the representation simplicity. We have PπSP
⊤
π = S and PπSZ =

PπSP
⊤
π PπZ = SZ. Then

PπZ
′ = PπfW(SZ)

= fW(PπSZ)

= fW(SZ)

= Z ′

(22)

PπJP
⊤
π = Pπdiagi∈[n]

(
∂fW([SZ]i,:)b
∂[SZ]i,a

)
SP⊤

π

= Pπdiagi∈[n]

(
∂fW([SZ]i,:)b
∂[SZ]i,a

)
P⊤
π︸ ︷︷ ︸

(a)

PπSP
⊤
π︸ ︷︷ ︸

=S

= diagi∈[n]

(
∂fW([SZ]i,:)b
∂[SZ]i,a

)
S

= J,

(23)

where

(a) = diagi∈[n]

(
Pπ

∂fW([SZ]i,:)b
∂[SZ]i,a

)
= diagi∈[n]

(
∂fW([PπSZ]i,:)b
∂[PπSZ]i,a

)
= diagi∈[n]

(
∂fW([SZ]i,:)b
∂[SZ]i,a

)
.

(24)

Then, we prove Proposition 2.

Proof. According to the definition of pair-symmetry, for any (i, j), (k, l) within the same equiva-
lence class, i.e. (i, j) ∼ (k, l), there exists an automorphism π such that π(i) = k and π(j) = l.
Then for any J ∈ J , according to Lemma 1,

Jk,l = [PπJP
⊤
π ]k,l

= [PπJP
⊤
π ]π(i),π(j)

= Ji,j .

(25)

Meanwhile,
Z ′
k = [PπZ

′]k

= [PπZ
′]π(i)

= Z ′
i,

(26)

and similarly Z ′
l = Z ′

j .

16
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A.6 PROOF OF PROPOSITION 3

Proof. We first prove vec({gθ(L̂)
∣∣θ ∈ Rk}) ⊆ span

({
vec (Ui ⊗ Ui)

∣∣i ∈ [n]
})

, where L̂ =

UΛU⊤.
vec
({
gθ(L̂)

∣∣θ ∈ Rk
})

= vec
({
Ugθ(Λ)U

⊤∣∣θ ∈ Rk
})

=

{
n∑

i=1

gθ(λi) (vec (Ui ⊗ Ui))
∣∣θ ∈ Rk

}
⊆
{
[vec (Ui ⊗ Ui)]i∈[n] α

∣∣α ∈ Rn
}

= span
({

vec (Ui ⊗ Ui)
∣∣i ∈ [n]

})
⊂ Rn2

,

(27)

among which rank
({

vec (Ui ⊗ Ui)
∣∣i ∈ [n]

})
= rank(U) = n.

For a k-degree polynomial and λ ∈ Rn,

gθ(λ) =
∑
i∈[k]

θiλ
i =Mθ, (28)

where θ ∈ Rk andM ∈ Rn×k,M[ij] = λj
i is a Vandermonde matrix. HenceM is a full rank matrix

if all eigenvalues have the algebraic multiplicity equal to 1. If k = n, {gθ(λ)|θ ∈ Rn} = {Mθ|θ ∈
Rn} = span(M) = Rn. Therefore, vec

({
gθ(L̂)|θ ∈ Rk

})
= span ({Ui ⊗ Ui|i ∈ [n]}).

Next,

vec (Jθ,W) = vec

({
diagi∈[n]

(
∂fW(Ki,:)b
∂Ki,a

)
gθ(L̂)

∣∣θ ∈ Rk,W ∈ R⋆

})
=

{
I ⊗ diagi∈[n]

(
∂fW(Ki,:)b
∂Ki,a

)
vec
(
gθ(L̂)

) ∣∣θ ∈ Rk,W ∈ R⋆

}
⊆
{
I ⊗ diag(β) [vec (Ui ⊗ Ui)]i∈[n] α

∣∣α,β ∈ Rn
}
,

(29)

where the last “⊆” holds as
{
diagi∈[n]

(
∂fW(Ki,:)b

∂Ki,a

) ∣∣W ∈ R⋆
}

⊆
{
diag(β)

∣∣β ∈ Rn
}

and

vec
({
gθ(L̂)|θ ∈ Rk

})
⊆
{
[vec (Ui ⊗ Ui)]i∈[n] α

∣∣α ∈ Rn
}

A.7 PROOF OF PROPOSITION 4

Proof. (i) With K = SZ ∈ Rn×d, for any JS,W |S=S0,W=W0
∈ JS,W , we have

vec
(
JS,W |S=S0,W=W0

)
= vec

(
diagi∈[n]

(
∂fW0(Ki,:)b

∂Ki,a

)
S0

)
∈
{
vec (diag (α)S0)

∣∣α ∈ Rn
}

/ ∗ As
[
∂fW0

(Ki,:)b
∂Ki,a

]
i∈[n]

∈ Rn ∗ /

⊆
⋃
S∈S

{
vec (diag (α)S)

∣∣α ∈ Rn
}

(30)
Therefore, we have

vec(JS,W) ⊆
⋃
S∈S

{
vec (diag (α)S)

∣∣α ∈ Rn
}
. (31)

(ii) For any S ∈ S, we have

vec(S) ∈
{
vec (diag (α)S)

∣∣α ∈ Rn
}

⊆
⋃
S∈S

{
vec (diag (α)S)

∣∣α ∈ Rn
}
. (32)

Hence, vec(S) ⊆
⋃

S∈S
{
vec (diag (α)S)

∣∣α ∈ Rn
}

.
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A.8 PROOF OF PROPOSITION 5

Proof. As φ : R2 7→ Rd is injective, for any S ∈ Rn×n×d′
, we can find a continuous function

fS : Rd 7→ Rd′
such that fS ◦ φ((i, j)) = Sij for any i, j ∈ [n]. Then according to universal

approximation theorem (Cybenko, 1989; Hornik et al., 1989), we can approximate fS with fΘ, i.e.
there always exists Θ = Θ0 such that for any ϵ > 0,

sup
x∈Rd

∥∥fΘ(x)|Θ=Θ0
− fS(x)

∥∥ < ϵ. (33)

Then
sup

i,j∈[n]

∥∥fΘ ◦ φ((i, j))|Θ=Θ0
− Si,j,:

∥∥
= sup

i,j∈[n]

∥∥fΘ ◦ φ((i, j))|Θ=Θ0
− fS ◦ φ((i, j))

∥∥
≤ sup

x∈Rd

∥∥fΘ(x)|Θ=Θ0
− fS(x)

∥∥ / ∗ As {φ(i, j)|i, j ∈ [n]} ⊆ Rd ∗ /

<ϵ.

(34)

B INTERACTION ANALYSIS OF MESSAGE-PASSING NNS

Message-passing framework (MPNN) is a well-adopted concept to generalize various GNN imple-
mentations. However, there seems a lack of a unified form since different literatures present it in
different forms. They can be summarized into the following two main classes.

z′
i = fV

zi,

n∑
j=1

Âi,jfW (zj)

 (35)

z′
i = fV

zi,

n∑
j=1

Âi,jfW (zi, zj)

 (36)

Equation 35 is studied by Xu et al. (2019); Yang et al. (2022b); Black et al. (2023) etc. Equation 36
is studied by Gilmer et al. (2017); Veličković et al. (2018); Topping et al. (2021) etc. Equation 36
serves as a more general form, and Equation 35 can be viewed as a strict subset of Equation 36.
Here, we conduct our interaction efficiency analysis on Equation 36. Equation 36 can be rewritten
as the following equivalent form,

Z ′ = fV

(
Z, Â⊙ [fW (Zi,:, Zj,:)]

n×n×d
i,j∈[n] 1n

)
. (37)

where Â⊙ [fW (Zi,:, Zj,:)]i,j∈[n] ∈ Rn×n×d, ⊙ is hadamard product applied on each dimension of
d individually. Then we have

Z ′
i,b = fV

(
Zi,:, Âi,: ⊙ [fW (Zi,:, Zj,:)]

n×d
j∈[n] 1

n
)
b

= fV

Zi,:,

n∑
j=1

Âi,jfW (Zi,:, Zj,:)1 , . . . ,

n∑
j=1

Âi,jfW (Zi,:, Zj,:)d


b

.
(38)

Then
∂Z ′

i,b

∂Zj,a
=
∂fV(Zi,:,Ki,:)b

∂Zj,a
+

d∑
c=1

∂fV(Zi,:,Ki,:)b
∂Ki,c

Âi,j
∂fW(Zi,:, Zj,:)c

∂Zj,a
∈ R, (39)

among which K = Â ⊙ [fW (Zi,:, Zj,:)]
n×n×d
i,j∈[n] 1n and Ku,v = Âu,: ⊙

[
fW (Zu,:, Zj,:)v

]n
j∈[n]

1n.
Then

∂Z ′
i,b

∂Z:,a
=
∂fV(Zi,:,Ki,:)b

∂Z:,a
+

d∑
c=1

∂fV(Zi,:,Ki,:)b
∂Ki,c

(
Âi,: ⊙

[
∂fW(Zi,:, Zj,:)c

∂Zj,a

]
j∈[n]

)
∈ Rn.

(40)
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As
∂fV(Zi,:,Ki,:)b

∂Zj,a
= 0 (41)

for any i ̸= j, finally, we have

JW,V =
∂Z ′

:,b

∂Z:,a

= diagi∈[n]

(
∂fV(Zi,:,Ki,:)b

∂Zi,a

)
+

d∑
c=1

diagi∈[n]

(
∂fV(Zi,:,Ki,:)b

∂Ki,c

)(
Â⊙

[
∂fW(Zi,:, Zj,:)c

∂Zj,a

]
i,j∈[n]

)
∈ Rn×n.

(42)

Equation 42 shows some interesting insights into the interaction expressiveness of MPNN:

1. fV only appears in the computations of the diagonal part of JW,V . So it has very little
contribution to interaction expressiveness, which means designing more sophisticated fV
or increasing the learnable parameters V will not improve the ability to model complex
interactions. fW appears in the computations of each entry of JW,V , and therefore the
expressiveness of fW will have a major impact on the interaction expressiveness.

2. MPNN does not well leverage the topologies of the underlying graph in inferring the inter-
actions, as we can see both learnable fW and fV only take node features or a pair of node
features as inputs with no topology encoding module. And the only topology information
is provided by Â. Unfortunately, in most proposed GNNs, Â is normalized Laplacian or
adjacency which only encodes the existence of explicit edges or not. Since most graphs
are sparsely connected, most entries in Â are 0. Then, in each layer computation, the dot-
product ⊙ of Â masks all pair interactions between nodes with no explicit connections. So,
the inappropriate usage of topology acts as an obstacle to interaction computations. The
potential improvements towards MPNN can be replacing Â with learnable fΘ ◦ φLE as
introduced in Section 4.

3. If the applied Âi,j is invariant to graph automorphism, so does MPNN, i.e. for any auto-
morphism π of G with PπZ = Z, we have PπZ

′ = Z ′ and PπJP
⊤
π = J. Then, for any

(i, j) ∼ (k, l), we have Ji,j = Jk,l, Z ′
i = Z ′

k and Z ′
j = Z ′

l . The proof is similar to that in
graph convolution, as in Proposition 2.

C SUMMARY OF LOCAL ENCODINGS IN GNNS

Table 4 shows the implementations of φLE in different GNNs. And their discrimination ability
comparisons are shown in Figure 4.

Table 4: Implementations of φLE in different GNNs, where σ is a smoothing function, e.g. y =
eρ ln x, and P is the eigenvector of A.

φLE

GCN, SGC, GPR-GNN, JacobianConv [(D̃− 1
2 ÃD̃− 1

2 )k]k∈[K] ∈ Rn×n×K

Spec-GN (Yang et al., 2022a) [(Pσ(Λ)P⊤)k]k∈[K] ∈ Rn×n×K

PDF (Yang et al., 2023) [(D̃ϵÃD̃ϵ)k]k∈[K],ϵ∈[−0.5,0] ∈ Rn×n×(K|{ϵ}|)

GRIT (Ma et al., 2023) [(D̃−1Ã)k]k∈[K] ∈ Rn×n×K

Apart from existing design of φLE, we provide a new one [(D̃ϵÃD̃−1−ϵ)k]k∈[K],ϵ∈[−1,0]. It
preserves the benefits of two popular designs while avoiding their respective drawbacks: Com-
pared with [(D̃−1Ã)k]k∈[K], it provides more diverse pair encodings, and compared with
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Injective to
pair-symmetry

Figure 4: The discrimination ability comparisons of different φLE implementations, where
[Sk]k∈[K] ∈ Rn×n×K refers to the stack of Sk ∈ Rn×n, and SPD is the shortest path distance
matrix with the longest one equal to K.

[(D̃ϵÃD̃ϵ)k]k∈[K],ϵ∈[−1,0], it has the bounded spectrum thus can be easier to handle numerical in-
stability when applying a larger K.

D EXPERIMENTAL DETAILS.

D.1 DATASETS STATISTICS.

All detailed statistics of the datasets used in our experiments are presented in Table 5. The cor-
responding tasks involve graph regression tasks and graph classification tasks collected from real-
world molecules, social networks and protein-protein interactions.

Table 5: Statistics of the datasets used in our experiments.

Dataset # Graphs Avg # nodes Avg # edges Node attr Edge attr Directed Task type
ZINC 12,000 23.2 24.9 Y Y N Regression
MNIST 70,000 70.6 564.5 Y Y Y 10-way classi
ogbg-molpcba 437,929 26.0 28.1 Y Y N Binary classi.

ENZYMES 600 32.63 62.14 Y N N 6-way classi
NCI1 4110 29.87 32.39 N N N Binary classi.
NCI109 4127 29.68 32.13 N N N Binary classi.
PTC MR 344 14.29 14.69 N N N Binary classi.
PROTEINS 1113 39.06 72.82 Y N N Binary classi.
IMDB-B 1000 19.77 96.53 N N N Binary classi.
RDT-B 2000 429.63 497.75 N N N Binary classi.

D.2 EXPERIMENTAL SETUP.

Table 6 and Table 7 present all hyperparameter configurations and the number of parameters used in
Table 2 and Table 3. We use AdamW (Loshchilov & Hutter, 2018) optimizer. For ZINC and MNIST,
we employ a cosine learning rate schedule together with a linear “warm-up” at the beginning of the
training.
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Table 6: Hyperparameter settings on ZINC, ogbg-molpcba, and MNIST datasets.

Hyperparameter ZINC MNIST ogbg-molpcba

Hidden Dim. 160 160 384
Num. Layers 6 4 8
Drop. Rate 0 0 0

Readout mean mean max

Batch Size 32 16 64
Initial LR 0.001 0.001 0.0005

LR Dec. Steps - - 5
LR Dec. Rate - - 0.2
# Warm. Steps 10 5 5
Weight Dec. 1e-5 1e-5 1e-2

# Epochs 500 100 15

# Parameters 499,681 110,620 3,838,976

Table 7: Hyperparameter settings on TUDataset.

Hyperparameter ENZYMES NCI1 NCI109 PTC MR PROTEINS IMDB-B RDT-B

Hidden Dim. 256 256 256 128 128 256 256
Num. Layers 6 6 6 6 6 3 4
Drop. Rate 0.2 0 0 0 0 0 0

Readout max max max max mean max max

Batch Size 64 64 64 64 64 16 64
Initial LR 0.001 0.001 0.001 0.001 0.001 0.001 0.001

LR Dec. Steps 40 50 50 30 50 40 50
LR Dec. Rate 0.6 0.6 0.6 0.65 0.65 0.6 0.6
# Warm. Steps 0 0 0 0 0 0 0
Weight Dec. 0 0 0 0 0 0 0

# Epochs 300 300 500 150 300 300 300

# Parameters 1,336,070 1,335,810 1,336,578 339,971 332,546 737,026 931,843
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