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ABSTRACT

The Federated Averaging (FedAvg) algorithm is a widely utilized technique in
Federated Learning. It follows a recursive pattern where nodes perform a few local
stochastic gradient descents (SGD), and then the central server updates the model
by taking an average. The primary purpose of conducting model averaging is to
mitigate the consensus error that arises between models across different nodes.
In our empirical examination, it becomes evident that in non-iid data distribution
setting, the consensus error in the initial layers of a deep neural network is consid-
erably smaller than that observed in the final layers. This observation hints at the
feasibility of applying a less intensive averaging approach for the initial layers.
Typically, these layers are designed to extract meaningful representations from
the neural network’s input. To delve deeper into this phenomenon, we formally
analyze it within the context of linear representation. We illustrate that increasing
the number of local SGD iterations or reducing the frequency of averaging for the
representation extractor leads to enhanced generalizability in the learned model
produced by FedAvg’s output. The paper is followed with experimental results
showing the effectiveness of this method.

1 INTRODUCTION

Federated learning advocates that multiple clients collaboratively train machine learning models
under the coordination of a parameter server (central aggregator) (McMahan et al., 2016). This
approach has great potential for preserving the privacy of data stored at clients and reducing the
communication cost of sending data from clients to a parameter server. Despite its promise, feder-
ated learning still suffers from high communication costs between clients and the parameter server.

In a federated learning setup, a parameter server oversees a global model and distributes it to partic-
ipating clients. These clients then conduct local training using their own data. Then, the clients send
their model updates to the parameter server, which aggregates them to a global model. This process
continues until convergence. Exchanging machine learning models is costly especially for large
models, which are typical in today’s machine learning applications (Konecný et al., 2016; Zhang
et al., 2013; Barnes et al., 2020; Braverman et al., 2015). Furthermore, the uplink bandwidth of
clients may be limited, time-varying and expensive. Thus, there is an increasing interest in reducing
the communication cost of federated learning especially by taking advantage of multiple local up-
dates also known as “Local SGD” (Stich, 2018; Stich & Karimireddy, 2019; Wang & Joshi, 2018;
Gholami & Seferoglu, 2023). The crucial questions in this context are (i) how long clients shall
do Local SGD, and (ii) when they shall aggregate their local models. The goal of this paper is to
address these questions to reduce communication costs without hurting performance.

The primary purpose of communication in federated learning is to periodically aggregate local mod-
els to reduce the consensus distance among clients. This practice helps maintain the overall opti-
mization process on a trajectory toward global optimization. It is important to note that when the
consensus distance among clients becomes substantial, the convergence rate reduces. This occurs as
individual clients gradually veer towards their respective local optima without being synchronized
with models from other clients. This issue is amplified when the data distribution among clients is
non-iid. It has been demonstrated that the consensus distance is correlated to (i) the randomness
in each client’s own dataset, which causes variation in consecutive local gradients, as well as (ii)
the dissimilarity in loss functions among clients due to non-iidness (Stich & Karimireddy, 2019;
Gholami & Seferoglu, 2023). More specifically, the consensus distance at iteration t is defined as
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Figure 1: Average consensus distance over time for different layers measured while training a
ResNet-20 by FedAvg on CIFAR-10 with 5 clients with non-iid data distribution over clients (2
classes per client). The early layers responsible for extracting representations exhibit lower levels of
consensus distance.
1
K

∑K
k=1 ∥θ̂t − θk,t∥2, where θ̂t =

1
K

∑K
k=1 θk,t, K is the number of clients, and θk,t is the local

model at client k. Note that the consensus distance goes to zero when global aggregation is per-
formed at each communication round. This makes the communication of models between clients
and the parameter server crucial, but this introduces significant communication overhead.

Recent studies have demonstrated that the concept of representation learning is a promising approach
to reduce the communication cost of federated learning (Collins et al., 2021). This is achieved
by leveraging the shared representations that exist in the datasets of all clients. For example, let
us consider a federated learning application for image classification, where different clients have
datasets of different animals. Despite each client having a different dataset (one client has dog
images, another has cat images, etc.), these images usually have common features such as an eye/ear
shape. These shared features, typically extracted in the same way for different types of animals,
require consistent layers of a neural network to extract them, whether the animal is a dog or a cat. As
a result, these layers demonstrate similarity (i.e., less variation) across clients even when the datasets
are non-iid. This implies that the consensus distance for this part of the model (feature extraction)
is likely smaller. Based on these observations, Our key idea is to reduce the aggregation frequency
of the layers that show high similarity, where these layers are updated locally between consecutive
aggregations. This approach would reduce the communication cost of federated learning as some
layers are aggregated, hence their parameters are exchanged, less frequently. This make it crucial
to determine the layers that show high similarity. The next example scratches the surface of the
problem for a toy example.
Example 1. We consider a federated learning setup of five clients with a central parameter server
to train a ResNet-20 (He et al., 2015) on a heterogeneous partition of CIFAR-10 dateset (Krizhevsky,
2009). We use Federated Averaging (FedAvg) (McMahan et al., 2016) as an aggregation algorithm
as it stands as the dominant algorithm in federated learning. We applied FedAvg with 50 local steps
prior to each averaging step, denoted as τ = 50. Non-iidness is introduced by allocating 2 classes to
each client. Finally, we evaluate the quantity of the average consensus distance for each model layer
during the optimization, Fig. 1. It is clear that the initial layers have smaller consensus distance
as compared to the final layers. This is due to initial layers’ role in extracting representations from
input data and their higher similarity across clients.

The above example indicates that initial layers show higher similarity, so they can be aggregated
less frequently. Additionally, several empirical studies (Reddi et al., 2021; Yu et al., 2020) show
that FedAvg with multiple local updates per round learns a generalizable representation and is un-
expectedly successful in non-iid federate learning. These studies encourage us to delve deeper into
investigating how local updates and model aggregation frequency affect the model’s representation
extractor in terms of its generalization. In this paper, our objective is to provide analytical evidence
demonstrating that increasing the number of local steps for the representation extractor leads to
enhanced performance in the general setup, irrespective of the number of clients and in scenarios
involving heterogeneous (non-iid) data distributions.

The contributions of this paper are in the following.

2



Under review as a conference paper at ICLR 2024

• We characterize the generalization error bound in federated learning utilizing a linear rep-
resentation model under both iid and non-iid data distribution for the first time in the liter-
ature.

• We observe from our generalization error bound analysis that less frequent aggregations,
hence more local updates (local SGDs), for the representation extractor (usually corre-
sponds to initial layers) leads to the creation of more generalizable models particularly in
non-iid scenarios (i.e., data distribution is heterogeneous).

• We design a novel FedALS (Federated Learning with Adaptive Local Steps) algorithm
based on our generalization error bound analysis using representation learning. FedALS
employs varying aggregation frequencies for different parts of the model.

• We evaluate the performance of FedALS using deep neural network model ResNet-20 He
et al. (2015) for CIFAR-10, CIFAR-100 (Krizhevsky, 2009), and SVHN (Netzer et al.,
2011) datasets. We consider both iid and non-iid data distributions. Experimental results
confirm that the FedALS outperforms the baselines in non-iid setup.

2 RELATED WORK

There has been an increasing interest in distributed learning recently, largely driven by Federated
Learning, which focuses on the analysis of decentralized algorithms utilizing Local SGD. Several
studies have highlighted that these algorithms achieve convergence to a global optimum or a station-
ary point of the overall objective, particularly in convex or non-convex scenarios (Stich & Karim-
ireddy, 2019; Stich, 2018; Gholami & Seferoglu, 2023; Lian et al., 2018; Kairouz et al., 2019).
However, it is widely accepted that communication cost is the major bottleneck for this technique in
large-scale optimization applications (Konecný et al., 2016; Lin et al., 2017). To tackle this issue,
two primary strategies are put forth: the utilization of mini-batch parallel SGD, and the adoption of
Local SGD. These approaches aim to enhance the equilibrium between computation and communi-
cation. Woodworth et al. (2020b;a) attempt to theoretically capture the distinction to comprehend
under what circumstances Local SGD outperforms minibatch SGD.

Local SGD appears to be more intuitive compared to minibatch SGD, as it ensures progress towards
the optimum even in cases where workers are not communicating and employing a mini-batch size
that is too large may lead to a decrease in performance (Lin et al., 2017). However, due to the fact
that individual gradients for each worker are computed at distinct instances, this technique brings
about residual errors. As a result, a compromise arises between reducing communication rounds
and introducing supplementary errors into the gradient estimations. This becomes increasingly sig-
nificant when data is unevenly distributed across nodes. There are several decentralized algorithms
that have been shown to mitigate heterogeneity (Karimireddy et al., 2019; Liu et al., 2023) . One
prominent example is the Stochastic Controlled Averaging algorithm (SCAFFOLD) (Karimireddy
et al., 2019), which addresses the node drift caused by non-iid characteristics of data distribution.
They establish the notion that SCAFFOLD demonstrates a convergence rate at least equivalent to
that of SGD, ensuring convergence even when dealing with highly non-iid datasets.

However, despite these factors, multiple empirical investigations (Reddi et al., 2021; Yu et al., 2020)
have noted that the model trained using FedAvg and incorporating multiple Local SGD per round
exhibits unexpected effectiveness when subsequently fine-tuned for individual clients in non-iid FL
setting. This implies that the utilization of FedAvg with several local updates proves effective in
acquiring a valuable data representation, which can later be employed on each node for downstream
tasks. Following this line of reasoning, our justification will be based on the argument that the Local
SGD component of FedAvg contributes to improving performance in heterogeneous scenarios by
facilitating the acquisition of models with enhanced generalizability.

An essential characteristic of machine learning systems is their capacity to extend their performance
to novel and unseen data. While these systems are trained on a specific dataset, they are expected
to perform effectively on new data points that were not included during training. This capacity,
referred to as generalization, can be expressed within the framework of statistical learning theory
by assessing the algorithm’s generalization error. There has been a line of research to characterize
generalization bound in FL. Barnes et al. (2022a) considered this problem and gave upper bounds on
the expected generalization error for FL in iid setting, which demonstrates an improved dependence
of 1

K on the number of nodes. Motivated by this work, we build our results for both iid and non-iid
settings for the linear representation model class.
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3 BACKGROUND AND PROBLEM STATEMENT

3.1 PRELIMINARIES AND NOTATION

We consider that we have K clients/nodes in our system, and each node has its own portion of the
dataset. For example, node k has a local dataset Sk = {zk,1, ...,zk,nk

}, where zk,i = (xk,i,yk,i) is
drawn from a distribution Dk over X ×Y , where X is the input space and Y is the label space. We
consider X ⊆ Rd and Y ⊆ R . The size of the local dataset at node k is nk. The dataset across all
nodes is defined as S = {S1, ...,SK}. Data distribution across the nodes could be independent and
identically distributed (iid) or non-iid. In iid setting, we assume thatD1 = ... = DK = D holds. On
the other hand, non-iid setting covers all possible distributions and cases, where D1 = ... = DK =
D does not hold.

We assume that Mθ = A(S) represents the output of a possibly stochastic function denoted as
A(S), where Mθ : X → Y represents the learned model parameterized by θ. We consider a
real-valued loss function denoted as l(Mθ , z), which assesses the model Mθ based on a sample z.

3.2 GENERALIZATION ERROR

We first define an empirical risk on dataset S as

RS(Mθ) = Ek∼K RSk
(Mθ) = Ek∼K

1

nk

nk∑
i=1

l(Mθ , zk,i), (1)

where K is an arbitrary distribution on nodes, and RSk
(Mθ) is the empirical risk for model Mθ on

local dataset Sk. We further define a population risk for model Mθ as

R(Mθ) = Ek∼K Rk(Mθ) = Ek∼K,z∼Dk
l(Mθ , z), (2)

where Rk(Mθ) is the population risk on node k’s data distribution.

Now, we can define the generalization error for dataset S and function A(S) as

∆A(S) = R(A(S))−RS(A(S)). (3)

The expected generalization error is expressed as

E{Sk∼Dnk
k }K

k=1
∆A(S) = E{Sk∼Dnk

k }K
k=1

[
R(A(S))−RS(A(S))

]
. (4)

If a model has a small generalization error, it is considered that the model enjoys effective general-
ization. Existing approaches for training models usually minimize the empirical risk or its variants.
Consequently, a small empirical risk and a reduced generalization error correspond to a low popu-
lation risk. Small population risk shows how good the model is in the test phase as it denotes the
loss that occurs when new samples are randomly drawn from the distribution. Thus, there is an
increasing interest in establishing an upper limit for the generalization error and understanding the
underlying factors that affect the generalization error. The generalization error analysis is also im-
portant to quantitatively assess the generalization characteristics of trained models, provide reliable
guarantees concerning their anticipated performance quality, and design new models and systems.

Our goal in this paper is to use generalization error bounds to design communication efficient fed-
erated learning when data is distributed heterogeneously over nodes, i.e., non-iid setup.

3.3 FEDERATED LEARNING

We consider a federated learning scenario with K nodes/clients and a centralized parameter server.
The nodes update their localized models to minimize their empirical risk RSk

(Mθ) on local dataset
Sk, while the parameter server aggregates the local models to minimize the empirical risk RS(Mθ).
Due to connectivity and privacy constraints, the clients do not exchange their data with each other.
One of the most widely used federated learning algorithms is FedAvg (McMahan et al., 2016), which
we explain in detail next.

At round r of FedAvg, each node k trains its model Mθk,r
= Ak,r(Sk) locally using the func-

tion/algorithm Ak,r. The local models Mθk,r
are transmitted to the central parameter server, which

merges the received local models to aggregated model parameters θ̂r+1 = Â(θ1,r, ...,θK,r), where
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Â is the aggregation function. In FedAvg, the aggregation function calculates an average, so the
aggregated model is expressed as

θ̂r+1 =
1

K

K∑
k=1

θk,r. (5)

Subsequently, the aggregated model is transmitted to all nodes. This process continues for R rounds.
The final model after R rounds of FedAvg is A(S).
The local models are usually trained using stochastic gradient descent (SGD) at each node. To reduce
the communication cost needed between the nodes and the parameter server, each node executes
multiple SGD steps using its local data after receiving an aggregated model from the parameter
server. To be precise, we define the aggregated model parameters at round r as θ̂r. Specifically,
upon receiving θ̂r, node k computes

θk,r,t+1 = θk,r,t −
η

|Bk,r,t|
∑

i∈Bk,r,t

∇l(Mθk,r,t
, zk,i) (6)

for t = 0, . . . , τ − 1, where τ is the number of local SGD steps, θk,r,0 is defined as θk,r,0 = θ̂r,
η is the learning rate, Bk,r,t is the batch of samples used in local step t of round r in node k, ∇ is
the gradient, and |.| shows the size of a set. Upon completing the local steps in round r, each node
transmits θk,r = θk,r,τ to the parameter server to calculate θ̂r+1 as in (5).

3.4 REPRESENTATION LEARNING

Our approach for analyzing the generalization error bounds for federated learning, by specifically
focusing on FedAvg, uses representation learning, which we explain next.

We consider a class of models that consist of a representation extractor (e.g., ResNet). Let θ be
the model Mθ ’s parameters. We can decompose θ into two sets: ϕ containing the representation
extractor’s parameters and h containing the head parameters, i.e., θ = [ϕ,h]. Mϕ is a function that
maps from the original input space to a low-dimensional representation space, i.e., Mϕ : Rd → Rd′

,
d′ ≪ d. The function Mh performs a mapping from the representation space to the label space,
which can be expressed as Mh : Rd′ → R.

For any x ∈ X , the output of the model is Mθ(x) = (Mϕ ◦Mh)(x) = Mh(Mϕ(x)). For instance,
if Mθ is a neural network, Mϕ represents several initial layers of the network, which are typically
designed to extract meaningful representations from the neural network’s input. On the other hand,
Mh denotes the final few layers that lead to the network’s output.

4 GENERALIZATION BOUND ANALYSIS FOR FEDAVG VIA REPRESENTATION
LEARNING

In this section, we derive generalization bounds for FedAvg by using representation learning for
the first time in the literature. First, we start with one-round FedAvg and analyze its generalization
bound. Then, we extend our analysis to R−round FedAvg.

4.1 ONE-ROUND GENERALIZATION BOUND

We consider the standard algorithmic representation learning analysis, where the representation is a
linear map from the original input space to a low-dimensional space (Du et al., 2020; Collins et al.,
2021; 2022). Namely, the representation function class is defined as Mϕ = {x → xB | B ∈
Rd×d′}. This is followed by a linear head, i.e., Mh = {x→ xw | w ∈ Rd′}.
In the following lemma, we determine the generalization bound for one round of FedAvg in both iid
and non-iid settings.

Lemma 4.1. Consider that Mθ(x) = xBw is the model class, l(Mθ , z) = (y−xBw)2 is the loss
function, Mθk

= Ak(Sk) represents the model obtained from Empirical Risk Minimization (ERM)
algorithm on local dataset Sk, i.e., Mθk

= argminM
∑nk

i=1 l(M, zk,i), Mθ̂ = A(S) is the model
after one round of FedAvg (θ̂ = Ek∼K θk), and K is a uniform distribution overs all nodes.
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Then, for iid data distribution over nodes, the expected generalization error is

E{Sk∼Dnk
k }K

k=1
∆A(S) ≤

1

K2

K∑
k=1

ESk∼Dnk
k

∆Ak
(Sk), (7)

and the expected generalization error in non-iid case is

E{Sk∼Dnk
k }K

k=1
∆A(S) ≤

1

K

K∑
k=1

ESk∼Dnk
k

∆Ak
(Sk). (8)

Lemma 4.1 shows that the limit of the expected generalization error bound decreases as the number
of nodes K increases in iid case in (7). As a result, after each averaging process carried out by the
central parameter server, the generalization error is reduced by a factor of K in iid case. On the
other hand, we do not see a similar behavior in non-iid case in (8). In other words, the expected
generalization error bound does not necessarily decrease if the number of nodes increases. These
results show why FedAvg works well in iid setup, but not necessarily in non-iid setup. This observa-
tion motivates us to design a new federated learning approach for non-iid setup. The question in this
context is what should be the new federated learning design. To answer this question, we analyze
R−round generalization bound in the next section.

4.2 R−ROUND GENERALIZATION BOUND

Now we turn our attention to a more complicated scenario; R-round FedAvg. A similar R-round
generalization bound analysis is considered in Barnes et al. (2022a), but without representation
learning, which is crucial in our proposed federated learning mechanism in Section 5.

In this setup, after R rounds, there is a sequence of weights {θ̂r}Rr=1 and the final model is θ̂R. We
consider that at round r, each node constructs its updated model as in (6) by taking τ gradient steps
starting from θ̂r with respect to τ random mini-batches Zk,r =

⋃
{Bk,r,t}τ−1

t=0 drawn from the local
dataset Sk. For this type of iterative algorithm, we consider the following averaged empirical risk

1

KR

R∑
r=1

K∑
k=1

1

|Zk,r|
∑

i∈Zk,r

l(Mθ̂r
, zk,i). (9)

The corresponding generalization error is

∆FedAvg(S) =
1

KR

R∑
r=1

K∑
k=1

(
Ez∼Dk

l(Mθ̂r
, z)− 1

|Zk,r|
∑

i∈Zk,r

l(Mθ̂r
, zk,i)

)
. (10)

Note that the expression in (10) differs slightly from the end-to-end generalization error that would
be obtained by considering the final model Mθ̂R

and the entire dataset S. More specifically, (10)
is an average of the generalization errors measured at each round. We anticipate that the gener-
alization error diminishes with the increasing number of data samples, so this generalization error
definition yields to a more cautious upper limit and serves as a sensible measure. The next theo-
rem characterizes the expected generalization error bounds for R−Round FedAvg in iid and non-iid
settings.
Theorem 4.2. Consider that Mθ(x) = xBw is the model class, l(Mθ , z) = (y − xBw)2 is the
loss function, andK is a uniform distribution over all nodes. Local models at round r are calculated
by doing multiple local steps as in (6). The aggregated model at round r is Mθ̂r

is obtained by
performing FedAvg in (5) where the data points used in round r (i.e., Zk,r) are sampled without
replacement.

For iid data distribution over nodes, the average generalization error bound is expressed as

E{Sk∼Dnk
k }K

k=1
∆FedAvg(S) ≤

1

R

R∑
r=1

1

K2

K∑
k=1

√
C(Mθ)

|Zk,r|
, (11)

while in non-iid case, the average generalization error bound is expressed as

E{Sk∼Dnk
k }K

k=1
∆FedAvg(S) ≤

1

R

R∑
r=1

1

K

K∑
k=1

√
C(Mθ)

|Zk,r|
, (12)

where C(Mθ) shows the complexity of the model class of Mθ .
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Algorithm 1 FedALS
Input: Initial model {θk,1,0 = [ϕk,1,0,hk,1,0]}Kk=1, Learning rate η, number of local steps for the
head model τ , adaptation coefficient α.

1: for Round r in 1, ..., R do
2: for Node k in 1, ...,K in parallel do
3: for Local step t in 0, ..., τ − 1 do
4: Sample the batch Bk,r,t from Dk.
5: θk,r,t+1= θk,r,t − η

|Bk,r,t|
∑

i∈Bk,r,t
∇l(Mθk,r,t

, zk,i)

6: if mod (rτ + t, τ) = 0 then
7: hk,r,t ← 1

K

∑K
k=1 hk,r,t

8: else if mod (rτ + t, ατ) = 0 then
9: ϕk,r,t ← 1

K

∑K
k=1 ϕk,r,t

10: θk,r+1,0 = θk,r,τ
11: return θ̂R = 1

K

∑K
k=1 θk,R,τ

The generalization error bounds in (11), and (12) depend on the following parameters: (i) number of
rounds; R, (ii) number of samples used in every round; |Zk,r|, and (iii) the complexity of the model
class; C(Mθ). We note that (11), and (12) also depend on K, but this dependence is similar to the
discussion we had for one-round generalization, so we skip it here.

The complexity of the model class and the number of samples used in every round are crucial to min-
imize the generalization error bound especially in non-iid case in (12) noting that the generalization
error bound has a reduction factor of 1

K in iid setup. Some common complexity measures in the lit-
erature include the number of parameters (classical VC Dimension (Shalev-Shwartz & Ben-David,
2014)), parameter norms (e.g., l1, l2, spectral) (Bartlett, 1997), or other potential complexity mea-
sures (Lipschitzness, Sharpness, . . . ) (Neyshabur et al., 2017; Dziugaite & Roy, 2017; Nagarajan &
Kolter, 2019; Wei & Ma, 2019; Norton & Royset, 2019; Foret et al., 2021).

Independent from a specific complexity measure, a model in representation learning can be divided
into two parts: (i) Mϕ , which is the representation extractor, and (ii) Mh , which maps the represen-
tation to an output. The complexities of these parts follow C(Mh)≪ C(Mϕ) as d′ ≪ d.

Our key intuition in this paper is that we can reduce the aggregation frequency of Mϕ , which leads
to a larger τ and |Zk,r|, hence smaller generalization error bound according to (12).1 We note that
the aggregation frequency of Mϕ can not be reduced arbitrarily as it would increase the empirical
risk. As seen, there is a nice trade-off between aggregation frequency of Mϕ and population risk. In
the next section, we design our Federated Learning with Adaptive Local Steps (FedALS) algorithm
by taking into account this trade-off.

5 FEDALS: FEDERATED LEARNING WITH ADAPTIVE LOCAL STEPS

Theorem 4.2 and our key intuition above demonstrate that more local SGD steps (less aggregations
at the parameter server) are necessary for representation extractor Mϕ as compared to the model’s
head Mh to reduce generalization error bound. This approach, since it will reduce the aggregation
frequency of Mϕ , will also reduce the communication cost of federated learning. In this context,
the crucial question is to determine how frequently Mϕ and Mh should be communicated and
aggregated to keep the generalization error bound small. Our FedALS design provides a solution to
this question.

The main idea of FedALS is to maintain a uniform generalization error across both components (Mϕ

and Mh ) of the model. This can be achieved if τMϕ
is set on the order of C(Mϕ )

C(Mh )τMh
, where τM

denotes the number of local iterations in a single round for the model M while τMϕ
and τMh

are the
corresponding number of local iterations for Mϕ and Mh , respectively. Following this approach,
we designed FedALS in Algorithm 1.

1We do not reduce the aggregation frequency of Mh as its complexity, so its contribution to generalization
error, is small.
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Figure 2: Results for SVHN.
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Figure 3: Results for CIFAR-10.

FedALS in Algorithm 1 divides the model into two parts: 1- the representation extractor, denoted
as Mϕ , and 2- the head, denoted as Mh . Additionally, we introduce the parameter α =

τMϕ

τMh
as an

adaptation coefficient, which can be regarded as a hyperparameter for estimating C(Mϕ )
C(Mh ) , considering

that determining this value is not straightforward.

6 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of FedALS by employing ResNet-20 as a deep neural
network architecture. We regard the convolutional layers as the representation extractor and the final
dense layers as the head of the model. The datasets we used are CIFAR-10, CIFAR-100 and SVHN.
The experimentation was conducted on a network comprising five nodes alongside a central server.
A batch size of 64 per node was configured. To grid-search the learning rate, we try each experiment
with multiplying and dividing the learning rate by powers of two. Additionally, the momentum was
set to 0.9, and the weight decay to 10−4.

The experiments are conducted on Ubuntu 20.04 using 36 Intel Core i9-10980XE processors and 5
GeForce RTX 2080 graphics cards. We repeat each experiment 20 times and present the error bars
associated with the randomness of the optimization. In every figure, we include the average and
standard deviation error bars.

6.1 FEDALS IN NON-IID SETTING

In this section, we allocate the dataset to nodes using a non-iid approach. This is achieved by initially
sorting the data based on their labels and subsequently dividing it among nodes following this sorted
sequence.

In this scenario, we can observe in Fig. 2a, 3a the anticipated performance improvement through the
incorporation of different local steps across the model. By utilizing parameters τ = 5 and α = 10 in
FedALS, it becomes apparent that aggregation and communication costs are reduced as compared
to FedAvg with the same τ value of 5. This implies that the initial layers perform aggregation at
every 50 iterations. This reduction in the number of communications is accompanied by enhanced
model generalization stemming from the larger number of local steps in the initial layers, which
contributes to an overall performance enhancement. Thus, our approach in FedALS is beneficial for
both communication efficiency and enhancing model generalization performance simultaneously.

6.2 FEDALS IN IID SETTING

The results for the iid setting are presented in Fig. 2b, 3b. In order to obtain these results, the data
is shuffled, and then evenly divided among nodes. We note that in this situation, the performance
improvement of FedALS is negligible. We expected this result as the generalization error bound (7)
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Table 1: Test accuracy for 5 nodes FL, after training ResNet-20 for 104 iterations in iid and 2× 104

iterations in non-iid setting with τ = 5 and α = 10.

dataset
FedAvg FedALS SCAFFOLD FedALS + SCAFFOLD

iid non-iid iid non-iid non-iid non-iid

SVHN 94.74 70.10 95.38 80.97 71.79 81.07
CIFAR-10 87.62 48.38 88.65 52.51 46.51 51.89
CIFAR-100 59.89 41.68 61.20 48.04 41.98 48.20

decreases after each aggregation on the order of K. Thus, the improvement of the generalization
error using FedALS approach is negligible in this setup.

6.3 COMPARED TO SCAFFOLD

Karimireddy et al. (2019) introduced an innovative technique called SCAFFOLD, which employs
some control variables for variance reduction to address the issue of “client-drift” in local updates.
This drift happens when data is heterogeneous (non-iid), causing individual nodes/clients to con-
verge towards their local optima rather than the global optima. While this approach is a significant
theoretical advancement in achieving independence from loss function disparities among nodes, it
hinges on the assumption of smoothness in the loss functions, which might not hold true for practical
deep learning problems in the real world. Additionally, since SCAFFOLD requires the transmission
of control variables to the central server, which is of the same size as the models themselves, it
results in approximately twice the communication overhead when compared to FedAvg.

Let us consider Fig. 2a, 3a to notice that in real-world deep learning situations, FedALS enhances
performance significantly, while SCAFFOLD exhibits slight improvements in specific scenarios.
Moreover, we integrated FedALS and SCAFFOLD to concurrently leverage both approaches. The
results of the test accuracy in different cases are summarized in Table 1.
6.4 THE ROLE OF α

As shown in Fig. 4, and Table 2, it becomes evident that when we increase α from 1 (FedAvg), we
initially witness an enhancement in accuracy owing to improved generalization. However, beyond a
certain threshold (α = 10), further increment in α ceases to contribute to performance improvement.
This is due to the adverse impact of a high number of local steps on optimization performance. The
trade-off we discussed in the earlier sections is evident in this context.

7 CONCLUSION
In this research, we examined how Local SGD affects the generalization aspects of federated learn-
ing within the context of representation learning. Our findings demonstrate that achieving a stronger
generalization bound in this system necessitates a greater number of local steps for the representa-
tion extractor component of the model compared to the model’s final layers. This insight led us to
develop the FedALS algorithm, which centers around the concept of increasing local steps for the
initial layers of the deep learning model while conducting more averaging for the final layers.
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Figure 4: The role of α in training ResNet-
20 for SVHN non-iid with τ = 5.

Value of α Accuracy

1 70.10
5 79.92
10 80.97
25 76.80
50 63.77
100 58.37

Table 2: The accuracy achieved after train-
ing ResNet-20 for 2 × 104 iterations on
SVHN non-iid with τ = 5 and variable α.
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A PROOF OF LEMMA 4.1

We first state and prove the following Lemma that will be used in the proof of lemma 4.1.

Lemma A.1 (Leave-one-out). [Expansion of theorem 1 in Barnes et al. (2022b)]

Let S′
k = (z′

k,1, ...,z
′
k,nk

), where z′
k,i is sampled from Dk. Let also define S′ = (S′

1, ...,S
′
K).

Denote S
(i)
k = (zk,1, ...,z

′
k,i, ...,zk,nk

) to represent the alteration of Sk wherein the i-th data

sample is replaced with z′
k,i. Also define S(k,i) = (S1, ...,S

(i)
k , ...,SK). Then

E{Sk∼Dnk
k }K

k=1
∆A(S) = Ek∼K,{Sk,S′

k∼Dnk
k }K

k=1

[
1

nk

nk∑
i=1

(
l(A(S), z′

k,i)− l(A(S(k,i)), z′
k,i)

)]
.

(13)

Proof. We have

E{Sk∼Dnk
k }K

k=1
R(A(S)) = Ek∼K,{Sk,S′

k∼Dnk
k }K

k=1
l(A(S), z′

k,i). (14)

Also, observe that

E{Sk∼Dnk
k }K

k=1
RS(A(S)) = Ek∼K,{Sk∼Dnk

k }K
k=1

[
1

nk

nk∑
i=1

l(A(S), zk,i)
]

(15)

= Ek∼K,{Sk,S′
k∼Dnk

k }K
k=1

[
1

nk

nk∑
i=1

l(A(S(k,i)), z′
k,i)

]
. (16)

Putting 14, and 16 together, by the definition of the expected generalization error we get

E{Sk∼Dnk
k }K

k=1
∆A(S) = Ek∼K,{Sk,S′

k∼Dnk
k }K

k=1

[
1

nk

nk∑
i=1

(
l(A(S), z′

k,i)− l(A(S(k,i)), z′
k,i)

)]
.

(17)

In the following lemma, we determine the generalization bound for one round of FedAvg in both iid
and non-iid settings (Lemma 4.1).

Lemma A.2. Consider that Mθ(x) = xBw is the model class, l(Mθ , z) = (y−xBw)2 is the loss
function, Mθk

= Ak(Sk) represents the model obtained from Empirical Risk Minimization (ERM)
algorithm on local dataset Sk, i.e., Mθk

= argminM
∑nk

i=1 l(M, zk,i), Mθ̂ = A(S) is the model
after one round of FedAvg (θ̂ = Ek∼K θk), and K is a uniform distribution overs all nodes.

Then, for iid data distribution over nodes, the expected generalization error is

E{Sk∼Dnk
k }K

k=1
∆A(S) ≤

1

K2

K∑
k=1

ESk∼Dnk
k

∆Ak
(Sk), (18)

and the expected generalization error in non-iid case is

E{Sk∼Dnk
k }K

k=1
∆A(S) ≤

1

K

K∑
k=1

ESk∼Dnk
k

∆Ak
(Sk). (19)
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Proof. Based on Lemma A.1 we obtain
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k }K

k=1
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where (21) is based on uniform K and squared norm loss. In (23), we assumed iid data distri-

bution over nodes, i.e., Dk = ... = DK = D, so E{Sk,S′
k∼Dnk

k }K
k=1

(
x′
k,iBA(S)wA(S)

)2

=

E{Sk,S′
k∼Dnk

k }K
k=1

(
x′
k,iBA(S(k,i))wA(S(k,i))

)2

regardless of k. The essential step (24) proceeds

by observing that A(S(k,i)) varies solely in the sub-model derived from node k, diverging from
A(S), and this discrepancy is magnified by a factor of K when averaging of all sub-models. We can
again add appropriate canceled terms in (25) to get the result for iid case. For the general non-iid
case, we have
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∆A(S) = R(A(S))−RS(A(S)) (29)

=
1

K

K∑
k=1

Ez∼Dk
l(A(S), z)− 1

K

K∑
k=1

1

nk

nk∑
i=1

l(A(S), zk,i) (30)

=
1

K

K∑
k=1

Ez∼Dk

(
xBA(S)wA(S) − y

)2

− 1

K

K∑
k=1

1

nk

nk∑
i=1

l(A(S), zk,i) (31)

=
1

K

K∑
k=1

Ez∼Dk

(
1

K

K∑
k′=1

xBAk′ (Sk′ )wAk′ (Sk′ ) − y

)2

(32)

− 1

K

K∑
k=1

1

nk

nk∑
i=1

l(A(S), zk,i)

≤ 1

K

K∑
k=1

Ez∼Dk

1

K

K∑
k′=1

(
xBAk′ (Sk′ )wAk′ (Sk′ ) − y

)2

(33)

− 1

K

K∑
k=1

1

nk

nk∑
i=1

l(A(S), zk,i)

≤ 1

K

K∑
k′=1

(
1

K

K∑
k=1

Ez∼Dk

(
xBAk′ (Sk′ )wAk′ (Sk′ ) − y

)2
)

(34)

− 1

K

K∑
k=1

min
M

1

nk

nk∑
i=1

l(M, zk,i)

=
1

K

K∑
k′=1

R(Ak′(Sk′))− 1

K

K∑
k=1

RSk
(Ak(Sk)) (35)

=
1

K

K∑
k=1

∆Ak
(Sk), (36)

where (32) is based on averaging in FedAvg. (33) is derived following the convexity of squared
norm.

B PROOF OF THEOREM 4.2

Theorem B.1. Consider that Mθ(x) = xBw is the model class, l(Mθ , z) = (y − xBw)2 is the
loss function, andK is a uniform distribution over all nodes. Local models at round r are calculated
by doing multiple local steps as in (6). The aggregated model at round r is Mθ̂r

is obtained by
performing FedAvg in (5) where the data points used in round r (i.e., Zk,r) are sampled without
replacement.

For iid data distribution over nodes, the average generalization error bound is expressed as

E{Sk∼Dnk
k }K

k=1
∆FedAvg(S) ≤

1

R

R∑
r=1

1

K2

K∑
k=1

√
C(Mθ)

|Zk,r|
, (37)

while in non-iid case, the average generalization error bound is expressed as

E{Sk∼Dnk
k }K

k=1
∆FedAvg(S) ≤

1

R

R∑
r=1

1

K

K∑
k=1

√
C(Mθ)

|Zk,r|
, (38)

where C(Mθ) shows the complexity of the model Mθ .
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Algorithm 2 FedAvg
Input: Initial model {θk,1,0}Kk=1, Learning rate η, and number of local steps τ .
Output: θ̂R

1: for Round r in 1, ..., R do
2: for Node k in 1, ...,K in parallel do
3: for Local step t in 0, ..., τ − 1 do
4: Sample the batch Bk,r,t from Dk.
5: θk,r,t+1= θk,r,t − η

|Bk,r,t|
∑

i∈Bk,r,t
∇l(Mθk,r,t

, zk,i)

6: θk,r+1,0 = 1
K

∑K
k=1 θk,r,τ

7: return θ̂R = 1
K

∑K
k=1 θk,R,τ

Proof. For non-iid case, we have

E{Sk∼Dnk
k }K

k=1
∆FedAvg(S) = E {Sk ∼ Dnk

k }
K
k=1

1

KR

R∑
r=1

K∑
k=1

(
Ez∼Dk

l(Mθ̂r
, z) (39)

− 1

|Zk,r|

K∑
i∈Zk,r

l(Mθ̂r
, zk,i)

)

=
1

KR

R∑
r=1

K∑
k=1

E {Zk,r ∼ D
|Zk,r|
k }Kk=1

(
Ez∼Dk

l(Mθ̂r
, z) (40)

− 1

|Zk,r|

K∑
i∈Zk,r

l(Mθ̂r
, zk,i)

)

=
1

R

R∑
r=1

E {Zk,r ∼ D
|Zk,r|
k }Kk=1∆A({Zk,r}Kk=1) (41)

≤ 1

R

R∑
r=1

1

K

K∑
k=1

E {Zk,r ∼ D
|Zk,r|
k }∆Ak

(Zk,r) (42)

≤ 1

R

R∑
r=1

1

K

K∑
k=1

√
C(Mθ)

|Zk,r|
, (43)

where in (41), A represents one-round FedAvg algorithm. In (42) we have used lemma 4.1. The
same proof applies to the iid case.

C ALGORITHMS USED IN THE EXPERIMENTS

In this section we have listed our implementation of FedAvg (Algorithm 2), SCAFFOLD Karim-
ireddy et al. (2019) (Algorithm 3), and FedALS+SCAFFOLD (Algorithm 4). In Algorithm 3, we
observe that in addition to the model, SCAFFOLD also keeps track of a state specific to each client,
referred to as the client control variate ck,r. It is important to recognize that the clients within
SCAFFOLD have memory and preserve the ck,r and

∑K
k=1 ck,r values. Additionally, when ck,r

consistently remains at 0, SCAFFOLD essentially becomes equivalent to FedAvg.

Algorithm 4 demonstrate the integration of FedALS and SCAFFOLD. It is important to observe that
in this algorithm, the control variables are fragmented according to various model layers, and there
exist distinct local step counts for different layers. This concept underlies the fundamental principle
of FedALS.
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Algorithm 3 SCAFFOLD
Input: Initial model {θk,1,0}Kk=1, Initial control variable {ck,1}Kk=1, learning rate η, and number of
local steps τ .
Output: θ̂R

1: for Round r in 1, ..., R do
2: for Node k in 1, ...,K in parallel do
3: for Local step t in 0, ..., τ − 1 do
4: Sample the batch Bk,r,t from Dk.
5: θk,r,t+1= θk,r,t − η

(
1

|Bk,r,t|
∑

i∈Bk,r,t
∇l(Mθk,r,t

, zk,i)− ck,r +
∑K

k=1 ck,r
)

6: ck,r+1 =
∑K

k=1 ck,r − ck,r +
1
ητ (θk,r,0 − θk,r,τ )

7: θk,r+1,0 = 1
K

∑K
k=1 θk,r,τ

8: return θ̂R = 1
K

∑K
k=1 θk,R,τ

Algorithm 4 FedALS + SCAFFOLD

Input: Initial model {θk,1,0 = [ϕk,1,0,hk,1,0]}Kk=1, Initial control variable {ck,1 = [cϕk,1, c
h
k,1]}Kk=1,

learning rate η, number of local steps for the head model τ , adaptation coefficient α.
Output: θ̂R

1: for Round r in 1, ..., R do
2: for Node k in 1, ...,K in parallel do
3: for Local step t in 0, ..., τ − 1 do
4: Sample the batch Bk,r,t from Dk.
5: θk,r,t+1= θk,r,t − η

(
1

|Bk,r,t|
∑

i∈Bk,r,t
∇l(Mθk,r,t

, zk,i)− ck,r +
∑K

k=1 ck,r
)

6: if mod (rτ + t, τ) = 0 then
7: chk,r ←

1
K

∑K
k=1 c

h
k,r − chk,r +

1
ητ (hk,r,0 − hk,r,t)

8: hk,r,t ← 1
K

∑K
k=1 hk,r,t

9: else if mod (rτ + t, ατ) = 0 then
10: cϕk,r ←

1
K

∑K
k=1 c

ϕ
k,r − cϕk,r +

1
ηατ (ϕ

l
k,⌊ rτ+t−ατ

τ ⌋, mod (rτ+t−ατ,τ)
− ϕl

k,r,t)

11: ϕk,r,t ← 1
K

∑K
k=1 ϕk,r,t

12: ck,r+1 = ck,r
13: θk,r+1,0 = θk,r,τ
14: return θ̂R = 1

K

∑K
k=1 θk,R,τ
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