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ABSTRACT

Cross-entropy loss has long been the standard choice for training deep neural net-
works, yet it suffers from interpretability limitations, unbounded weight growth,
and inefficiencies that can contribute to costly training dynamics. Recent work in-
troduced harmonic loss, a distance-based alternative grounded in Euclidean geom-
etry, which improves interpretability and mitigates phenomena such as grokking,
also known as delayed generalization on the test set. However, the study of har-
monic loss remains narrow: only Euclidean distance is explored, and no system-
atic evaluation of computational efficiency or sustainability was conducted. In
this paper, we extend harmonic loss by systematically investigating a broad spec-
trum of distance metrics as replacements for the Euclidean distance. We compre-
hensively evaluate distance-tailored harmonic losses on both vision backbones
and large language models. Our analysis is framed around a three-way evalua-
tion of model performance, interpretability, and sustainability. On vision tasks,
cosine distances provide the most favorable trade-off, consistently improving ac-
curacy while lowering carbon emissions, whereas Bray-Curtis and Mahalanobis
further enhance interpretability at varying efficiency costs. On language mod-
els, cosine-based harmonic losses markedly improve gradient and learning sta-
bility, strengthen representation structure, and reduce emissions relative to cross-
entropy and Euclidean heads. Our code is available at: https://anonymous.
4open.science/r/rethinking-harmonic-loss—-5BABR/.

1 INTRODUCTION

Cross-entropy is the de facto loss function for classification tasks. However, it has shortcomings in
terms of model interpretability and training dynamics. Cross-entropy training provides no inherent
meaning to the learned weight vectors (they serve as abstract parameters rather than intuitive proto-
types) and can drive those weights to grow without bound in pursuit of confident predictions |Baek:
et al.| (2025). This unbounded weight growth can lead to phenomena like grokking: a delayed
generalization where the model only closes the train—test performance gap after extensive overtrain-
ing |[Power et al.[(2022). Moreover, in high-stakes applications where transparency is critical (e.g.,
healthcare or finance), the opaque nature of cross-entropy—trained models poses challenges for trust
and error diagnosis. These issues motivate the exploration of alternative loss functions that may
yield more interpretable, efficient, and robust model behavior.

Recently, harmonic loss was proposed as an alternative training objective to address some of these
concerns |Baek et al.| (2025). Harmonic loss replaces the conventional inner-product logits and soft-
max normalization with a distance-based formulation: model predictions are derived from the dis-
tances between the sample’s representation and class prototype vectors (learned weight vectors for
each class). Intuitively, this means that a model is trained to bring each sample closer to its correct
class center in the feature space rather than simply increasing a classification score. This approach
endows the learning process with two key properties: i) scale invariance — distance comparisons do
not depend on vector norm, and ii) finite convergence point — training aims for a distance of zero to
the correct prototype. As a result, each class weight converges to an anchor point that can be inter-
preted as the center of that class’s feature distribution. Empirically, [Baek et al.|(2025) demonstrated
that harmonic loss can close the train—test gap faster and yield more interpretable representations
than cross-entropy. For example, the learned weight vectors in a harmonic-loss model directly reflect
class prototypes, making them semantically meaningful. Models trained with harmonic loss were
shown to require less data to generalize and to mitigate grokking, all while achieving competitive
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or better accuracy on vision and language benchmarks. These findings suggest that distance-based
loss functions are a promising direction for improving both performance and transparency in deep
learning.

However, research on harmonic loss has been limited in scope so far. [Baek et al.|(2025) focused ex-
clusively on Euclidean distance as the metric for their loss function and did not examine the broader
impacts on computational efficiency or energy consumption. On the other hand, distance-based met-
rics have been explored in other contexts and problems. Notably, |Coil et al.| (2025) investigated a
wide range of distance measures for a problem of change point detection in concept-drift scenarios
for anomaly detection. Their study found that the choice of distance metric can drastically affect both
the accuracy and efficiency of detecting distribution shifts. For instance, replacing a costly metric
(e.g., Wasserstein) with simpler alternatives yielded comparable detection performance at substan-
tially lower computational cost. This evidence that “metric matters” in learning algorithms raises a
natural question: might other distance measures offer advantages over Euclidean in a harmonic-loss
setting? To date, no work has evaluated harmonic loss with distance metrics beyond Euclidean, nor
benchmarked their impacts across different domains.

In this paper, we present the first comprehensive study of custom distance-based loss functions in
deep learning classification, extending the harmonic loss framework to a variety of distance mea-
sures across multiple problem domains. We experiment with a rich set of distance metrics, including
Manhattan, Euclidean, Chebyshev, Minkowski, and cosine distance, as well as specialized metrics
such as Hamming, Canberra, Bray-Curtis, and Mahalanobis. These metrics are integrated as drop-in
replacements for Euclidean distance in the harmonic loss formulation.

We evaluate harmonic loss with each distance metric on two heterogeneous task families: image
classification (MLP, ResNet, PVT) and language modeling with transformer-based LLMs (GPT-2,
BERT, and others). This diversity enables us to assess whether certain distance-based losses consis-
tently outperform cross-entropy and Euclidean harmonic loss on metrics of effectiveness, efficiency,
and explainability. Specifically, we pursue the following research questions:

RQ1 (Model Performance): Do distance-based loss functions offer higher accuracy or faster con-
vergence compared to cross-entropy and Euclidean harmonic loss?

RQ2 (Interpretability): Do models trained with distance-based losses exhibit more interpretable
representations than those trained with cross-entropy?

RQ3 (Efficiency & Sustainability): If a custom distance-based loss outperforms cross-entropy,
does it do so without incurring higher computational cost? We track training time, resource utiliza-
tion, and energy consumption to assess the Green Al perspective.

By addressing these questions, our aim is to explore a three-way trade-off between accuracy, inter-
pretability, and sustainability in the training process of deep learning models. Previous work has
typically optimized one or two of these aspects in isolation: for instance, improving accuracy at the
cost of enormous compute, known as “Red AI” (Schwartz et al., 2019)), or simplifying models for
interpretability while losing accuracy. In contrast, we seek solutions that can improve predictive
performance while also yielding lower energy usage and more transparent models.

Contributions. This paper introduces distance-tailored harmonic losses and provides an exten-
sive empirical and analytical evaluation of their merits. To our knowledge, this is the first work
to: i) extend the harmonic loss beyond Euclidean distance and benchmark a wide spectrum of met-
rics on both vision and NLP tasks, ii) assess the carbon footprint and resource usage of different
loss functions in a controlled setting, and iii) investigate interpretability outcomes of distance-based
losses. We also offer preliminary theoretical insights into how different distance metrics influence
the geometry of the learned model (e.g., relating L, losses to median-based class centers vs. Lo to
mean-based centers), which could inform the selection of an optimal loss for a given objective.

2  HARMONIC LOSS

Harmonic loss replaces the conventional inner-product logits and softmax normalization with a
distance-based formulation: model predictions are derived from distances between the sample’s
representation and class prototype vectors (the learned weight vectors for each class). Intuitively,
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this means a model is trained to bring each sample closer to its correct class center in the feature
space, rather than simply pushing up a classification score.

From Baek et al.| (2025), given the training set {(x;, y;)}7", with y; € {1,..., K} and class proto-
types {w.}X ; € RY, the harmonic logit is the £ distance between w; and x, i.e., d; = ||w; — x||2.
Then, the harmonic probabilities are given by:
dfTL
pr(®) = =g —=n (1
2= 4;

where the harmonic exponent 7 is a hyperparameter that controls the heavy-tailedness of the proba-
bility distribution. The Harmonic loss is then given by:

L({wr}) = Z log pi (4)- )

This approach endows the learning process with two key properties: i) scale invariance: distance
comparisons do not depend on the overall norm of h or w, in contrast to inner-product logits; and
ii) finite convergence point: optimization seeks a distance of zero to the correct prototype.

As a result, each class weight converges to an anchor point that can be interpreted as the center of
that class’s feature distribution. Empirically, Baek et al.[ (2025)) demonstrated that harmonic loss
can close the train—test gap faster and yield more interpretable representations than cross-entropy.
For example, the learned weight vectors in a harmonic-loss model directly reflect class prototypes,
making them semantically meaningful. Models trained with harmonic loss were also shown to
require less data to generalize and to mitigate grokking, all while achieving competitive or better
accuracy on both vision and language benchmarks. These findings suggest that distance-based loss
functions are a promising direction for improving performance and transparency in deep learning.

3 NON-EUCLIDEAN HARMONIC LOSSES

Our framework introduces non-Euclidean harmonic losses as a generalization of the harmonic loss,
and as a replacement for conventional cross-entropy training. The idea is that, in Eq. (I)), the Eu-
clidean distance d; = ||w; — x||2 is replaced by a non-Euclidean distance.

3.1 CLASS PROTOTYPES, DISTANCES, AND DISTANCE-BASED HARMONIC LOSS FUNCTION

Each class ¢ € {1,..., K} is associated with a prototype vector w. € R?. Given a sample h, we
compute its distance to all prototypes via a chosen metric d(-, ).

Prototypes are learned parameters, just like the weight matrix in linear classification. Thus, proto-
type learning is no more computationally expensive than learning a final linear layer.

We extend the Euclidean formulation of harmonic loss (Baek et al., [2025) with the following dis-
tances:

Euclidean. deycligean(h, w) = ||h — w||. Baseline Euclidean distance between feature and proto-
type.
Manhattan (L1). dpanhaan(h, w) = ||h — w||;. Emphasizes absolute differences, making it more

robust to outliers (Keeling & Kunischl 2016;|Ye et al.,[2012;|Giloni & Padberg,|2003)). It can stabilize
training and reduce unnecessary computations, thereby lowering energy costs.

Chebyshev (Loo). dchebyshev(h, W) = || — w||. Captures the maximum coordinate deviation,
offering a highly interpretable measure of the most discriminative feature dimension. Its simplicity
makes it computationally efficient.

Minkowski (Lp). dminkowski(l, w;p) = ||h — w||,. Generalizes both L1 and L2, with tunable p
enabling a trade-off between robustness and sensitivity. This flexibility allows tailoring the loss to
dataset complexity, improving accuracy while balancing sustainability.

Cosine. deogine(h,w) = 1 — W Ignores magnitude and instead measures angular sim-
ilarity, making it particularly effective in high-dimensional embeddings (e.g., CNNs, Transform-
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ers) (Reimers & Gurevych, 2019; |Deng et al., |2019;|Wang et al., 2018} |Sun et al.| 2016} [Karpukhin
et al.,[2020). This often improves generalization with minimal computational overhead.

Hamming. dhamming(h, w) = % Zle 1¢p,#w,}- Counts mismatches directly, providing highly in-
terpretable signals. With soft or gumbel relaxations, it becomes suitable for continuous embeddings
and can reduce emissions when binary approximations are leveraged.

Canberra. depperra(h, w) = Z?:l % Normalizes differences by feature magnitudes,
enhancing sensitivity to small but meaningful variations. This can improve performance on fine-
grained tasks while stabilizing optimization.

d
. > i1 [hi—w;]
Bray—Curtis. dpy curis(h, w) = —a=i=t Wil
y bray Cu[‘[lb( ) ) Z?:l(lhl‘+‘wt‘)+€

ture vectors, making it efficient and interpretable for compositional data (Fuschi et al., 2025}, |(Chao
et al.; 2010; Song et al., 2020). It often balances accuracy with sustainability better than covariance-
based measures.

. Captures proportional differences across fea-

Mabhalanobis. dmanatanobis(h, w; X) = \/ (h — w)TX~1(h — w). Incorporates feature correlations,
offering superior accuracy in complex datasets and deep CNNs (Pang et al., [2018; [Lee et al.| 2018;
Gomez-Silva et al.} 2021; Omara et al, [2021). Although covariance estimation may increase com-
putational cost, its interpretability and classification power justify the trade-off in high-capacity
models.

In our work, we generalize harmonic loss by replacing the Euclidean distance used to calculate
the harmonic logit with some other distance measure. Harmonic loss is applied only at the final
classification layer, replacing the standard softmax + cross-entropy objective. All intermediate layers
remain unchanged, and no normalization is applied inside the backbone.

Overall, compared to cross-entropy, these distance-based harmonic losses reduce reliance on proba-
bilistic normalization and can lower the number of required operations. This translates into potential
accuracy gains, reduced carbon emissions, and improved interpretability, depending on the chosen
distance and backbone.

A formal treatment of our distance—based probabilistic layer is provided in Appendix [A]l There, we
generalize the harmonic-loss analysis to broad distance families and prove: 1) scale invariance and
the existence of finite minimizers under 1-homogeneous distances (Theorem [I), and ii) a margin-
style PAC-Bayes generalization bound whose finiteness follows from the finite—norm solution (The-
orem[2)). These results clarify when geometry choices are well-posed and why the resulting classi-
fiers admit standard generalization guarantees.

4 EXPERIMENTS AND DISCUSSION

4.1 TRAINING AND EVALUATION

Datasets. We evaluate on five vision benchmarks (MNIST, CIFAR-10, CIFAR-100, MarathiSign-
Language, TinyImageNet) and one language corpus (OpenWebText).

Vision. We consider a Simple MLP with two hidden layers (512, 256, ReL.U), a Simple CNN (two
3x3 conv blocks with [32,64] channels and 2x2 max-pooling, then a 128-dim FC), ResNet-50
(standard [3, 4, 6, 3] bottleneck stages; for small inputs we remove the initial max-pool and use a
3x3 stride-1 stem), and PVTv2-B0 (four hierarchical stages with overlapping patch embeddings;
output pooled to a 256-dim vector).

Language. We study three Transformer families: GPT-style (decoder-only causal LM), BERT
(encoder-only masked LM with 15% masking), and Qwen2-style decoders.

Optimization. Unless noted, models are trained from scratch with Adam/AdamW-style optimizers
(weight decay, (81, 32) as configured), cosine learning-rate decay with linear warmup, mixed preci-
sion (FP16/BF16 when available), and gradient accumulation. We apply gradient clipping, dataset-
specific schedulers, and early stopping with dataset-specific patience and a minimum improvement
threshold (A ;,). For fairness, all harmonic heads and the baseline share the same backbone, batch
size, scheduler, and data order. Additional details about optimization are reported in Appendix
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Model Performance. For vision tasks, we report average Accuracy and F1. For language task, we
report the following metrics:

Perplexity (Train / Val). Given a sequence of targets {y;}7_; and model probabilities py(y: |
context), the average negative log-likelihood is Lni = —~ 3, logpe(y: | context), and the
corresponding perplexity is PPL = exp (,CNLL). Lower perplexity indicates better next—token pre-

dictionl']
Gradient Stability (GS). To quantify the smoothness of optimization, we measure the variability
Var (Vo L4]|2)

Var (I[VoLel2) .
Var(-) is computed over a fixed evaluation window (e.g., 500 steps) and the denominator corre-
sponds to the variability under cross—entropy (CE). Thus, GS = 1 indicates equal smoothness as
CE, GS > 1 indicates reduced gradient variance (smoother training), and GS < 1 reflects more
unstable gradient dynamics. This metric is anchored in standard variance-of-gradient analyses used
in optimizing large-scale LLMs.

of the /5-norm of the gradient across consecutive training steps: GS = 1 — where

Model Health (MH). To track representation collapse or instability in token embeddings during pre-
training, we measure the diversity of hidden representations using the per-token covariance trace:

MH=1— %7 Y, = Cov(h;). Here h; denotes the hidden activations at the penulti-

mate transformer block, and A denotes deviation from initialization (higher deviation often signals
collapse into low-rank subspaces). MH > 1 indicates healthier representations (preserved diver-
sity, no collapse), while MH < 1 suggests degenerate or low-rank features. This relates directly to
standard metrics used in collapse detection and embedding drift.

Interpretability. We probe whether learned prototypes/weights act as class centers and whether fea-
tures become more structured by computing PCA explained variance on the penultimate features:
(1) PC2 EV (variance explained by the top two PCs), and (ii) PCA@90% (dimensions required
to reach 90% variance). Lower PCA@90% and higher PC2 EV indicate more concentrated, low-
dimensional structure. For language, we report PCA5: A variance explained by the top 5 principal
components of final hidden states (causal LM: last token; MLM: masked positions); higher values
implies more concentrated, low-dimensional structure.

Sustainability. We perform training with CodeCarbon to log duration, energy, and COy emissions.
Emissions are reported per run and differentially vs. the cross-entropy baseline (grams COs; neg-
ative means greener-than-baseline). We aggregate by (dataset, backbone, distance) and also report
cumulative figures across seeds. For language, we also report Speed (—A time_to_90_percent):
higher values denotes fewer steps to reach 90% of final performance.

To isolate the effect of the loss geometry, we only swap the classifier head (linear vs. distance-
based) while keeping: backbone weights initialization scheme, data preprocessing/augmentation,
optimizer and LR schedule, batch size, number of epochs, early-stopping rule, and randomness
controls (seeds). For ResNet-50/PVT we use identical augmentation; for LLMs we use the same
context length L, optimizer, and schedule across heads. We run multiple seeds and report means.
Exact architectures and preprocessing pipelines are detailed in Appendix [C.I} Full hyperparame-
ter grids (including head-specific parameters ©, e.g., p for Minkowski or covariance settings for
Mahalanobis) are provided in Appendix [D} This unified protocol lets us systematically test how re-
placing the Euclidean harmonic head with alternative distances impacts: i) final model performance,
ii) representation structure and prototype semantics, and iii) measured energy and carbon footprint.

Figure [T| summarizes the behavior of distance-based harmonic losses across all vision settings, in-
cluding a high-resolution sign-language dataset (Marathi Sign) and TinylmageNet in addition to
CIFAR-100. Additional results on MNIST and CIFARI0 are provided in Appendix [F] Together,
these radar plots expose how the choice of distance in the harmonic head shapes performance, rep-
resentation geometry, and sustainability.

'For visualization in the radar plots, we invert perplexity (and all metrics where lower values indicate better
performance) and then normalize to the range [0, 10] relative to the harmonic Euclidean baseline. The effect is
that the greater the coverage on the plot, the better the relative performance compared to Euclidean. Importantly,
the absolute numeric values on the radial axis do not have a direct “good/bad” interpretation in perplexity space;
they are only meaningful as normalized, experiment—specific comparisons against Euclidean harmonic.
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RQ1: Model Performance (F1, Accuracy). Across datasets and backbones, cosine—based har-
monic losses remain the most reliable all-round performers. On CIFAR-100, cosine (stable/un-
stable) typically attains the highest or near—highest accuracy and F1 on CNN and ResNet50, and
is consistently among the top curves on PVT. On the more realistic, higher-resolution Marathi
Sign and TinylmageNet, the same pattern largely persists: cosine (stable) and Bray—Curtis (nor-
malized) frequently improve or match Euclidean and cross—entropy on CNN, ResNet50, and PVT,
while also appearing in the top group on MLP. TinylmageNet is the most challenging setting: here,
cross—entropy remains a strong baseline, but cosine heads still achieve competitive accuracy on
ResNet50 and PVT, demonstrating that the benefits of distance—tailored heads extend beyond small
benchmarks. Other non-Euclidean distances (Bray—Curtis variants, Manhattan, Minkowski) can
occasionally match or exceed cosine in specific architecture—dataset combinations.

RQ2: Interpretability (PC2 EV, PCA 90%). Non-Euclidean distances reshape the final em-
bedding geometry in a systematic, dataset—agnostic way. Across Marathi Sign, TinyImageNet,
and CIFAR-100, Bray—Curtis (standard/normalized) and Chebyshev (standard) repeatedly yield the
largest PC2 explained variance and the lowest dimensionality required to reach 90% EV, indicat-
ing compact, prototype—aligned feature spaces with sharper class clusters than those produced by
Euclidean harmonic loss or cross—entropy. Cosine harmonic loss generally provides substantial EV
gains over Euclidean while retaining top accuracy, offering a favorable accuracy—interpretability
balance on both convolutional backbones and PVT. Mahalanobis variants often achieve extreme
variance concentration (very high EV) and pronounced cluster separation, but this representation
clarity sometimes co—occurs with less stable optimization on the hardest datasets. Overall, the same
geometric trends observed on earlier small benchmarks persist when moving to higher resolutions
and deeper models: non—Euclidean harmonic losses, especially Bray—Curtis and Chebyshev, pro-
duce more structured, low—dimensional embeddings than Euclidean or cross—entropy heads.

RQ3: Sustainability (Duration/Epoch/GFLOPs, Emissions). Distance choice also affects ef-
ficiency, but in a controlled way. Across all datasets, cosine harmonic loss is typically neu-
tral-to—favorable in emissions relative to Euclidean and cross—entropy: normalized Duration/E-
poch/GFLOPs and gCOseq remain comparable, and in several ResNet50 and PVT runs cosine
achieves slightly lower emissions due to faster approach to high accuracy. Bray—Curtis losses incur
modest overhead while delivering strong interpretability gains, whereas Mahalanobis distances are
the most costly, reflecting their covariance—related computation and sometimes slower convergence
on complex data. Even on high-resolution Marathi Sign and TinyImageNet, the harmonic head con-
tributes only a small fraction of total FLOPs; thus, differences in Duration/Epoch are smaller than
differences in accuracy or EV, yet cumulative emissions still separate distances meaningfully.

Across all vision workloads, three regularities emerge: i) cosine harmonic loss is the best all-around
choice, offering consistently strong accuracy/F1, clear geometric structure relative to Euclidean, and
neutral-to—lower emissions from MLPs up to ResNet50/PVT on Marathi Sign and TinyImageNet; ii)
Bray—Curtis and Chebyshev are the most interpretability—forward options, reliably increasing vari-
ance concentration and reducing PCA 90% dimensionality, with accuracy effects that are positive
but more configuration—dependent; iii) Mahalanobis emphasizes representation clarity at a higher
sustainability cost. Taken together, the radar plots show that the geometry of the harmonic loss,
especially non-Euclidean choices, has a consistent, architecturally robust effect on performance,
structure, and sustainability across both small and large vision benchmarks.

4.2 LANGUAGE: RADAR PLOTS

Figure summarizes the effect of distance-tailored harmonic losses on BERT, GPT, and Qwen-style
decoders across the three perspectives. Scores are normalized so that larger areas indicate more
desirable behavior.

RQ1: Model Performance (Perplexity, Health, Stability). Across architectures, cosine—based
harmonic losses remain the most reliable choices on performance—oriented axes. For BERT, co-
sine heads achieve low train and validation perplexity while improving Gradient Stability and pre-
serving high Model Health relative to both cross—entropy and Euclidean harmonic loss. For GPT,
cosine and Minkowski (p=2) again provide steady training dynamics with competitive perplexity,
whereas the cross—entropy baseline exhibits higher variability and weaker stability. On Qwen, Eu-
clidean harmonic loss offers the strongest combination of low perplexity and gradient stability, with
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Minkowski providing a close alternative; the cross—entropy head is consistently dominated on at
least one of these axes. Overall, replacing the linear classifier with distance—based harmonic heads
reduces gradient volatility and collapse symptoms while maintaining or improving perplexity.

RQ2: Interpretability (PCA Structure). Non—Euclidean distances consistently concentrate to-
ken representations into more structured latent spaces. In BERT and GPT, cosine and Minkowski
enlarge the PCA Structure wedge (higher variance explained by a small number of components),
indicating more organized, prototype—aligned embeddings than those produced by cross—entropy
or Euclidean harmonic loss. Qwen shows a similar pattern: distance—based heads achieve clearer
low—dimensional structure even when Euclidean is slightly stronger on stability. As in the vision
experiments, geometries that emphasize angles (cosine) or ¢, structure (Minkowski) tend to yield
hidden states that are easier to summarize with a few principal components.

RQ3: Sustainability (Emissions). Results confirm that distance—based harmonic heads introduce
little computational overhead and can be greener than cross—entropy in practice. In all three models,
the cross—entropy baseline occupies the largest emissions wedge, while cosine and Minkowski are
neutral-to—favorable, often matching or improving on Euclidean harmonic loss. Extremely sharp
cosine temperatures may reduce emissions slightly but at the cost of stability and perplexity; mod-
erate settings avoid this trade—off. Because the classifier head is lightweight compared to the Trans-
former backbone, these sustainability gains primarily arise from smoother optimization and faster
convergence rather than per—step FLOPs.

In summary, cosine—based harmonic losses are the most robust all-around choice for LLMs, jointly
improving perplexity, stability, and representation structure with neutral or reduced emissions.
Minkowski (p=2) provides a strong alternative when cosine hyperparameters are poorly tuned,
while Euclidean remains a solid reference but is rarely dominant over non—-Euclidean geometries.
Additional results showcasing optimization dynamics for all models, including a larger GPT2 (2B)
model, are reported in Appendix

5 RELATED WORK

Loss functions for classification. The majority of classification models are trained with cross-
entropy loss due to its empirical effectiveness and probabilistic interpretation. However, it only cares
about separating classes, not about how the representations are separated, often yielding features that
are separable but not necessarily interpretable. Over the years, alternative loss functions have been
proposed to address these limitations. Metric learning losses, such as contrastive and triplet loss,
train models to preserve distances between examples, but require sampling strategies that add train-
ing complexity. Boudiaf et al.|(2020) propose a unifying mutual information framework connecting
cross-entropy to standard pairwise losses, showing that cross-entropy implicitly bounds pairwise
distance objectives. These insights motivate a deeper theoretical understanding of distance-based
training. Regularization-based approaches such as center loss (Wen et al., 2016) explicitly encour-
age compact intra-class clusters and large inter-class separation. These works foreshadow the idea
that directly leveraging distances to class prototypes can improve representation quality. Angular
margin losses such as AMC-Loss in (Choi et al.| (2020) introduce geometric constraints on angu-
lar separations to enhance interpretability via hyperspherical metrics. Orthogonal Projection Loss
(OPL) introduced by Ranasinghe et al.| (2021) encourages inter-class orthogonality and intra-class
cohesion without sampling overhead. Several studies have assessed how loss functions affect neu-
ral network performance. |Miller et al.| (2021)) introduce Class Anchor Clustering (CAC) loss that
encourages tight class clusters centered on anchored prototypes, enhancing distance-based open-set
classification performance. This approach aligns with the prototype-centered philosophy underlying
harmonic loss. |Cho et al.|(2019) analyzed how eight loss functions impact neural network accuracy
and convergence speed, finding that additive-margin softmax loss resulted in the fastest conver-
gence and highest performance on multiple datasets. |Janocha & Czarnecki| (2017) assessed 12 loss
functions for classification, finding that choice of loss function impacted learning speed and test-
ing accuracy. |Gonzalez & Miikkulainen| (2020) used genetic programming to develop Baikal loss,
which not only led to networks achieving higher accuracy than networks trained with cross-entropy
loss, but also faster training and higher performance in low-data settings. These studies demonstrate
a large focus on the impact of loss function on neural networks performance. Our work builds on
the discussion of the importance of loss function choice by drilling deeper on harmonic loss, exam-
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Figure 1: Vision: Radar plots: 1) Model Performance (F1, Accuracy); 2) Interpretability (PC2
EV, PCA 90%), and 3) Sustainability (Duration/Epoch/GFLOPs, Emissions). Plots feature Baseline
(Cross-Entropy), Euclidean harmonic, and the four top-performing non-Euclidean harmonic losses.

ining how distance metric choice impacts the effectiveness of neural networks. Our focus is not on
comparing harmonic loss with other loss functions, which was done by Baek et al(2025), but rather

to shed light on performance of a generalized harmonic loss.

Efficiency and Green Al. Green Al is an emerging initiative that calls for efficiency and energy

usage to be treated as first-class evaluation criteria (Schwartz et al. . Many works on green
Al focus on model compression (Paula et al, 2025}, [Rafat et al. , comparing multiple models
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Figure 2: Language: Radar plots: 1) Model Performance (Perplexity, Model Health, Gradient Sta-
bility); 2) Interpretability (PCAS EV), and 3) Sustainability (Emissions). Plots feature Baseline
(CE), Euclidean harmonic, and the top-performing non-Euclidean harmonic losses.

(Verma et al.,[2024) or fine-tuning strategies (Wang et al.,2023), or hyperparameter optimization for
carbon emission reduction Wang et al.| (2025). While prior works on new loss functions rarely report
sustainability metrics, we incorporate carbon footprint analysis into our evaluation due to claims that
models trained with harmonic loss are more data efficient and have less grokking (Baek et al.,[2025).

Interpretability in neural networks. Neural networks are complex and not inherently interpretable,
but a substantial amount of effort was done to improve interpretability (Zhang et al.|[2021)). The push
for interpretable by design models argues that transparency should be built into model architectures
and losses rather than added post-hoc (Rudin, |2019). Harmonic loss aligns with this vision by struc-
turally linking model weights to class prototypes. The study by |Saphra et al.| (2024)) discusses how
internal model components reveal human-understandable circuits and features in LLMs. Techniques
such as activation patching, sparse autoencoders, transcoders, and crosscoders enable structural in-
terpretations of model behavior. Parallel to our interpretability focus, [Wen et al.|(2025) introduced
InterpGN, a framework combining interpretable models with deep networks for time-series tasks,
preserving understandable reasoning where possible. Though not loss-centric, it reflects the growing
emphasis on transparency in deep learning research. Some work has focused on using loss functions
specifically to improve model interpretability. [Liu et al|(2022) combine sparse coding constraints
with cross-entropy to produce concise, interpretable word-level attributions. [Dong et al.|(2017) in-
troduced interpretative loss to improve interpretability of learned features during video captioning
tasks. Within classification tasks, Zhang et al| (2018)) designed a loss function to improve CNN
filter interpretabiltiy. Methods such as the one proposed by Hagos et al.| (2023) augment standard
losses with distance-based penalties that align model attributions with user-provided annotations,
strengthening interpetability.

Distance metrics in learning algorithms. Beyond supervised classification, the choice of distance
measure is known to be crucial. |Coil et al.| (2025 compared twelve distance metrics in anomaly
detection for concept drift. Their results highlighted that performance depends heavily on the chosen
metric and that efficient alternatives can sometimes match the performance of more costly distances.
A variety of other works have shown the importance of distance metric choice. Amaya-Tejera et al.
(2024) used a kernel for SVMs that could support a variety of kernels, finding that distance metric
choice impacted performance. [Kalra et al.| (2022) and |Hu et al.| (2016) both found that distance
metric choice impacted performance of k-nearest neighbors algorithms on a variety of datasets.
These result highlights the importance of systematically exploring metrics in different contexts. To
our knowledge, our paper is the first to bring this perspective into loss functions.

6 CONCLUSION

This work examined distance—based harmonic losses as drop—in replacements for cross—entropy
across image classification (MNIST, CIFAR-10, CIFAR-100, Marathi Sign Language, Tinylma-
geNet) with four vision backbones (MLP, CNN, ResNet50, PVT) and LLM pretraining (GPT,
BERT, Qwen, GPT-2B), leveraging a broad family of distances (cosine, Euclidean, Bray—Curtis,



Under review as a conference paper at ICLR 2026

Mahalanobis, Minkowski, Chebyshev, Canberra, efc.) and comparing them against strong modern
baselines (Focal Loss, Label Smoothing, Center Loss, Confidence Penalty, ArcFace).

What we learned. i) Geometry matters for optimization. Across vision and language tasks, Co-
sine consistently delivers smoother training dynamics, higher or competitive final performance, and
reduced grokking—like behavior on toy modulo—addition experiments. Euclidean remains a solid ref-
erence; Bray—Curtis is often competitive but architecture—sensitive; Mahalanobis exhibits the largest
variance—sometimes yielding very sharp, well-separated clusters, but with less stable plateaus on
the more difficult scenarios (larger datasets and model backbones). Loss—convergence curves for
both vision and LLMs show that all investigated distances (including cosine and Mahalanobis) are
characterized by a smooth optimization without problematic instabilities.

ii) Sustainability depends jointly on distance and architecture. On vision tasks, several
non—Euclidean harmonic losses are carbon—negative per step relative to cross—entropy for CN-
N/ResNet50 (largest gains occur on deeper CNNs), mixed on MLP, and closer to neutral on PVT
and TinyImageNet, where backbone FLOPs dominate. For LLM pretraining, the classifier head is
lightweight, so differences arise primarily via convergence: the cross—entropy baseline typically in-
curs the largest cumulative emissions, while cosine and Minkowski heads are neutral-to—favorable.
Our FLOPs—normalized analysis and extended emissions study show that the best non—Euclidean
harmonic losses lie on or near the sustainability—accuracy Pareto frontier.

iii) Interpretability can be quantified. @ PCA-based probes (variance concentration and
PCA@90%) and geometric visualizations of prototype neighborhoods provide reproducible evi-
dence that distance—tailored heads yield more structured representations. Bray—Curtis and Cheby-
shev consistently increase variance concentration and reduce intrinsic dimensionality, while Maha-
lanobis emphasizes representation clarity at higher computational cost. These trends hold for image
features and for token representations in LLMs (last—token and masked—token states), and are sup-
ported by statistical tests (Wilcoxon) and confidence intervals across seeds.

Language. Cosine—based harmonic losses markedly improve gradient/learning stability, perplex-
ity, and representation structure for GPT, BERT, Qwen, and GPT-2B, while keeping emissions
on par with or below cross—entropy and Euclidean heads. Mahalanobis remains less attractive for
large—scale pretraining due to covariance overheads and sensitivity to ill-conditioned statistics.

Vision. For accuracy—focused workloads across MNIST, CIFAR, Marathi Sign, and TinyImageNet,
cosine (stable) is the preferred all-round choice; Bray—Curtis is a strong secondary option; Maha-
lanobis should be used when its inductive bias (sharp, anisotropic clusters) is explicitly desired. For
sustainability on CNN/ResNet50, several non—-Euclidean distances reduce per—step COs; on PVT
and LLMs, the lightest geometries (cosine/Euclidean) should be favored, or cross—entropy retained
unless a distance—based head reduces steps—to—target enough to offset higher per—step cost.

Beyond specific winners, our main contribution is a framework: a plug—and—play harmonic head,
a catalogue of distances, and a three—axis evaluation protocol (performance, interpretability, sus-
tainability) with concrete metrics, visualizations, and statistical tests. This framework can be effec-
tively exploited in future work: practitioners can choose distances according to their priorities and
researchers can extend our study to new geometries, learning settings, and domain—specific con-
straints. In this sense, distance—based harmonic losses provide a principled, empirically validated
toolbox for rethinking the geometry of classifier heads in both vision and language models.

Reproducibility Statement. We took several steps to facilitate exact and statistical reproducibility.
The main paper specifies the learning objectives, training protocol, model families, and evaluation
metrics used in all studies. The Appendix contains: i) complete hyperparameter and backbone-
specific settings; ii) dataset descriptions and end-to-end preprocessing pipelines (including splits and
any filtering); iii) detailed experimental studies and analyses; iv) technical details with code snip-
pets to integrate our non-Euclidean harmonic losses in conventional deep learning pipelines. Our
code repository provides: ready-to-run scripts for data acquisition and preprocessing; configuration
files for every experiment; training/evaluation entry points; instructions for reproducing results. To-
gether, these materials are intended to enable independent researchers to audit, rerun, and extend our
findings with minimal effort.
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APPENDIX

A THEORETICAL PROPERTIES OF DISTANCE-BASED PROBABILISTIC
LAYERS

Setup. Let {(z;,y;)}"; be the training set with y; € {1, ..., K }. Each class has a prototype wy, € R¢
and a nonnegative distance d(x,w) > 0. Given a decreasing link « : Ry — R we define

o) = ;(d(%wk))

Zj:l ’i(d(mawj))’

harmonic r(r) = r~% with w > 0; while distances include Euclidean/Mahalanobis, ¢,, Bregman
divergences, and cosine/angle on the sphere.

L({un}) = =Y logpy(a).

A.1 SCALE INVARIANCE AND FINITE MINIMIZERS

We begin by generalizing the finite-minimizer result of the harmonic loss (cf. Thm. 1, Sec. G in
Baek et al.[(2025))).

Definition 1 (Metric separability and homogeneity). A dataset is metric-separable if for each ¢ there
exists {wy} s.t. d(z;, wy,) < minj,, d(x;, w;). A distance d is I-homogeneous if d(cx,cw) =
le| d(x, w) for all ¢ > 0.

Theorem 1 (Finite minimizer and scale invariance for harmonic link). Assume d is 1-homogeneous
and the training set is metric-separable. For k(r) = r~%, the empirical loss L is invariant to

the joint rescaling (x,w) — (cx,cw) and attains a global minimum at finite {wy, }. In particular,
increasing ||wy || further does not reduce L.

Proof. Following the proof of Sec. G Thm. 1 in [Baek et al.| (2025), the probabilities remain un-
changed under uniform scaling for any 1-homogeneous distance d. For the probabilities, if we
replace z; by c,i and w; with cw;, then d(cx;, cw;) = cd(x;,w;), so the scaling factors cancel
when using a harmonic link «. Therefore, once the correct classification is achieved, no further
reduction in loss is obtained by increasing ||wy|| and the loss achieves a global minimum at a finite

{wy}.
O

A.2 MARGIN-STYLE GENERALIZATION (PAC-BAYES VIEW)

Sec. G gives a PAC-Bayes margin bound that is finite because the harmonic solution has finite norm
(Thm. 2) in Baek et al.| (2025)).

Definition 2 (Distance margin). Given prototypes W = {wy}, define (W) = min; [d(z;, wy,) —
min;y, d(z;,w;)].
Theorem 2 (Generalization with metric margin). Assume all x; lie in a ball of radius R (in the

native norm of d or its inducing space). Let |W||. denote a capacity measure compatible with d.
With probability at least 1 — 0, the generalization error of the classifier satisfies

RIW. logu/a)) |

Y(W)vn n

where hy (z) = arg maxy, p(x) denotes the predicted class and n is the number of training sam-
ples. For the harmonic link, ||W || is finite by Thm.|l| yielding a finite bound (cf. Sec. G Thm. 2) in
Baek et al.|(2025).

Er [hw (z) #y] = O(
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Proof. Mirroring the proof for Sec. G Thm. 2 in [Baek et al.| (2025)), applying the standard PAC-
Bayes margin bounds, one obtains that with at least probability 1 — 6,

_ R|W log(1/6)
& lhw@) #4] = 0 AWyym n

Since ||W||. is finite by Thm. [I} the bound is finite. O

B INTEGRATION INTO DEEP LEARNING PIPELINES

The DistLayer abstraction highlights that distance-based harmonic loss functions are highly
modular and can be seamlessly integrated into existing deep learning pipelines. The forward
method requires only three operations: i) computing pairwise distances between sample embed-
dings and class prototype weights, ii) clamping values for numerical stability, and iii) applying a
softmin via 1log_softmax to obtain normalized class probabilities. This makes the substitution
of Euclidean distance with alternative metrics essentially a one-line change in the distance registry,
with no modifications required in the broader training loop.

Several design choices make the implementation robust. First, all distance functions are imple-
mented in a vectorized form, ensuring GPU efficiency and avoiding explicit loops. Second, nu-
merical safeguards (e.g., -offsets, clamping before roots and divisions, regularization of covariance
matrices) prevent instability across diverse datasets and architectures. Third, the registry-based de-
sign allows new distance functions to be added without disrupting the existing workflow, reinforcing
the flexibility of harmonic loss as a general framework.

From a methodological perspective, this implementation highlights one of the key contributions of
this work: the ease of replacing cross-entropy with distance-based harmonic loss. Unlike cross-
entropy, which relies on unbounded logit growth, the harmonic formulation treats classification as a
problem of minimizing distances to interpretable class prototypes. The plug-and-play nature of the
DistLayer demonstrates that alternative geometries (e.g., cosine, Mahalanobis, Bray—Curtis) can
be explored at negligible engineering cost, paving the way for systematic evaluation of accuracy,
sustainability, and interpretability across diverse tasks.

class DistLayer (nn.Module) :
"""pFinal classification head using harmonic loss: logits =

— —distance."""
def _ init_ (self, in_features, n_classes, dist_name="euclidean",
— xxdist_kwargs) :

super () .__init__ ()

self.W = nn.Parameter (torch.empty(n_classes, in_features))
nn.init.kaiming_uniform_(self.W, a=5xx0.5)

self.dist_name = dist_name
self.dist_fn = DIST_REGISTRY [dist_name]
self.dist_kwargs = dist_kwargs # e.g., p for minkowski,

< cov_inv for mahalanobis

def forward(self, h):
h: (B, D) features from backbone.
Returns log-probs for harmonic loss: log_softmax(-distance).
mmwn
d = self.dist_fn(h, self.W, xxself.dist_kwargs) # (B, C)
d = torch.clamp(d, min=le-6, max=1eb) # general safety clamp
logits = -d # softmin over distances
return F.log_softmax(logits, dim=-1)
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def

def

def

def

def

def

def

import torch
import torch.nn as nn
import torch.nn.functional as F

_pairwise (fn) :
""rrift a vector distance fn(h, w) —-> scalar into a batched
— pairwise form."""
def lifted(h, W):
# h: (B, D), W: (C, D) —> (B, C)
h_exp = h.unsqueeze (1) # (B, 1, D)
W_exp = W.unsqueeze (0) # (1, C, D)
return fn(h_exp, W_exp)
return lifted

euclidean (h, W, eps=le-4):

diff = h - W

return torch.sqgrt (torch.clamp ((diff % diff).sum(-1) + eps,
— min=eps))

manhattan (h, W, eps=le-4):
return (h - W) .abs().sum(-1) + eps

cosine(h, W, eps=le-6, stable=True):
if stable:
h n = F.normalize(h, p=2, dim=-1)
W_n = F.normalize (W, p=2, dim=-1)
cos = (h_.n * W_n).sum(-1)
else:
num = (h * W) .sum(-1)
den = torch.clamp (h.norm(dim=-1) * W.norm(dim=-1) + eps,
— min=eps)
cos = num / den
return 1.0 - cos + eps

minkowski (h, W, p=1.5, eps=le-6):

diff = torch.clamp((h - W) .abs() + eps, min=eps)

dist_p = torch.clamp(diff.pow(p).sum(-1) + eps, min=eps)
return dist_p.pow (1.0 / p)

chebyshev (h, W, eps=le-6, smooth=False, alpha=10.0):
diff = (h - W) .abs()
if smooth:
# soft-max norm
return torch.logsumexp (alpha * diff, dim=-1) / alpha + eps
return diff.max(dim=-1) .values + eps

canberra(h, W, eps=le-4, variant="standard", min_denom=le-3,
weight_power=1.0, normalize_weights=True) :
num = (h - W) .abs/()
den = h.abs () + W.abs() + eps
if variant == "robust":
den = torch.clamp (den, min=min_denom)
if variant == "weighted":
w = (den.pow (weight_power))
if normalize_weights:
w=w / (w.sum(-1, keepdim=True) + eps)
return (w * (num / den)).sum(-1) + eps
return (num / den) .sum(-1) + eps
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def bray_curtis(h, W, eps=le-3, variant="standard", min_sum=1le-3):
num = (h - W) .abs().sum(-1)
if variant == "abs":
den = (h.abs () + W.abs()) .sum(-1)
else: # standard/normalized
den = (h + W).sum(-1) .abs ()
den = torch.clamp(den + eps, min=10 * eps, max=1leb)
return torch.clamp (num / den + eps, min=eps, max=1e6)

def mahalanobis (h, W, eps=le-6, cov_inv=None, reg_lambda=le-2):
# h: (B, 1, D), w: (1, C, D) expected (use _palirwise wrapper)
diff = h -W # (B, C, D)
try:
if cov_inv is None:
# Identity with mild regularization
return torch.sqgrt (torch.clamp ((diff » diff).sum(-1) + eps,
— min=eps))
cov_inv_reg = cov_inv + torch.eye(cov_inv.size (0),
— device=cov_inv.device) x reg_lambda
diff M = torch.einsum('bcd,dd->bcd', diff, cov_inv_req)
dist2 = (diff_ M » diff).sum(-1)
return torch.sqgrt (torch.clamp(dist2 + eps, min=eps))
except Exception:
# Safe fallback: Euclidean
return torch.sqgrt (torch.clamp((diff % diff).sum(-1) + eps,
— min=eps))

C MODEL ARCHITECTURES

C.1 VISION

We detail the architectures of the vision models used in our experiments — including a simple MLP,
a small CNN, ResNet-50, and PVTv2-B0 — specifying their layers and neuron counts for repro-
ducibility. All models were implemented in PyTorch, and for distance-based variants, the final
fully-connected layer is replaced by a specialized distance layer as noted below.

MLP: Input Layer: Accepts the flattened image input (e.g., 28 x 28 = 784 features for MNIST,
32x32x3 = 3072 for CIFAR). Hidden Layer 1: Fully-connected layer with 512 neurons, followed
by ReLU. Hidden Layer 2: Fully-connected layer with 256 neurons, followed by ReL.U. Output
Layer: Linear mapping from 256 units to the number of classes (10 for MNIST/CIFAR-10, 100 for
CIFAR-100). In _DIST variants, this layer is replaced with a distance-based classification head (e.g.
Euclidean, cosine) that computes distances between the embedding and class prototypes, outputting
negative distances as logits.

CNN: Conv Layer 1: 2D convolution, 32 filters, kernel size 3 x 3, padding 1, followed by ReLU,
then 2 x 2 max pooling. Conv Layer 2: 2D convolution, 64 filters, kernel size 3 x 3, padding 1,
followed by ReLU, then 2 x 2 max pooling. Fully Connected Layer: Flattened output fed into a
128-unit linear layer with ReLU. Qutput Layer: Linear layer mapping the 128-D representation to
the number of classes. In _DIST variants, this is replaced by a distance metric layer.

ResNet-50: Stem: Standard 7 x 7 convolution with 64 filters and stride 2, batch norm, ReLU,
then 3 x 3 max pooling. For CIFAR/MNIST, we use a 3 X 3 conv with stride 1 and remove max
pooling. Stage 1: 3 bottleneck blocks, output 256 channels. Stage 2: 4 bottleneck blocks, output
512 channels. Stage 3: 6 bottleneck blocks, output 1024 channels. Stage 4: 3 bottleneck blocks,
output 2048 channels. Global Pooling and Output: Global average pooling yields a 2048-D vector.
In the baseline, a linear FC layer maps to logits. In _DIST variants, the FC is replaced by a distance
layer (e.g. cosine similarity) that outputs similarity-based logits.

Pyramid Vision Transformer (PVTv2-B0): Stage 1: Overlapping patch embedding witha 7 x 7
conv (stride 4), output 32 channels, followed by 2 Transformer encoder layers (1 attention head).
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Stage 2: 3 x 3 conv (stride 2), output 64 channels, followed by 2 encoder layers (2 heads). Stage
3: 3 x 3 conv (stride 2), output 160 channels, followed by 2 encoder layers (5 heads). Stage 4:
3 x 3 conv (stride 2), output 256 channels, followed by 2 encoder layers (8 heads). Global Pooling
and Output: Global average pooling yields a 256-D vector. A linear classifier maps to the number
of classes in the baseline, while in _-DIST variants this is replaced with a distance layer producing
log-similarity or negative distance scores.

Preprocessing Pipelines: MNIST: For MLP/CNN, grayscale input normalized to mean 0.5, std 0.5.
For ResNet, normalization uses dataset statistics (mean 0.1307, std 0.3081). For PVT, grayscale con-
verted to 3 channels, resized to 32 (PVT), normalized to mean/std 0.5. CIFAR-10: Normalization
with mean (0.4914, 0.4822, 0.4465) and std (0.2023, 0.1994, 0.2010). ResNet uses data augmenta-
tion (random flips, crops, small rotations). CIFAR-100: Normalization with mean (0.5071, 0.4867,
0.4408) and std (0.2675, 0.2565, 0.2761). Stronger augmentation (random flips, crops, rotations,
color jitter). PVT models use 32 x 32 resized inputs with normalization.

C.2 LLMs

This section documents the LLM configurations used in our experiments for reproducibility.
We report data preprocessing, architectural details for GPT, BERT, and Qwen2-style mod-
els, how distance-based heads are integrated in place of the standard linear classifier, and the
training/evaluation/emissions-logging pipeline. All models are implemented in PyTorch and trained
with mixed precision when available.

Data and Preprocessing Corpus and Storage. We pre-process a text corpus into contiguous token
ID arrays and store them as memory-mapped files:

* train.binand val.bin: np.memmap arrays of type uint16 containing token IDs.

* meta.pkl: contains metadata including vocab_size (used to configure model embed-
dings).

Let V denote the discovered vocabulary size from meta.pkl (fallback V=>50304 if not found).

Batching. For a given block_size L, batches are sampled by picking random starting indices
and slicing L tokens:

X = datali : 1i+L], Y = datal[i+l : i+1+L] (causal LM)

All batching is performed on-device with pinned memory. We denote batch_size by B.

Masking for MLLM (BERT). For BERT runs, we construct masked language modeling (MLM)
batches with the standard 15% corruption:

* Select ~ 15% token positions per sequence to form mask indices M.

» For each ¢ € M: with 80% probability replace z; with [MASK] (id < 103 or capped by
V —1), with 10% replace by a random token in [0, V'), with 10% keep z; unchanged.

» Labels use the original token at masked positions and —100 (ignore index) elsewhere.

This yields input_ids, attention_mask (all-ones here), and 1abels containing ground-truth
only at masked positions.

Architectures Across models below, the principal hyperparameters are:
layers (n¢), heads (ny), embedding dim (d), context length (L=block_size), vocab size (V).

Unless otherwise specified, positional encodings follow each model’s default (e.g., learned or ro-
tary).

GPT2 (CAUSAL LM)

Backbone. A standard decoder-only Transformer with n, blocks. Each block has:

¢ Multi-Head Causal Self-Attention with n;, heads, hidden size d, and causal mask.
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* Position-wise MLP of width typically ~ 4d with nonlinearity (e.g., GELU).

* Pre/post LayerNorm and residual connections as in GPT-style decoders.

Token Embeddings. Learnable token and (implicit) position embeddings of sizes V' x d and L x d
(or rotary embeddings if enabled). Projection Head (baseline). A linear layer Wi, € R4*" pro-
ducing logits over the vocabulary at each position. Distance Head (_DIST). The linear projection is
replaced by a distance-based layer that treats the vocabulary columns as prototypes {w, € R4}V_,.
Given a hidden state h; € RY, the head returns per-token logits z;, = —D(hs, wy;0) (or
log S(h¢, w,) for similarity-type layers), where D(-,-;©) is one of the distances defined in the
main text (Euclidean, cosine, Manhattan, Minkowski, Canberra, Bray—Curtis, Chebyshev, Maha-
lanobis, Hamming). This integrates seamlessly with the causal LM objective (next-token prediction
via softmax over V).

BERT (MASKED LM)
Backbone. An encoder-only Transformer with n, layers, each with:

e Multi-Head Self-Attention (bidirectional) with n;, heads.
* Position-wise MLP, LayerNorm, residual connections.

Embeddings. Token embeddings V' x d, segment/type embeddings (size 2), and positional embed-
dings of length L. Head (baseline). The standard MLM classifier projects d — V' (optionally via
an intermediate nonlinearity tied to the embedding matrix). Distance Head (_DIST). We replace
the MLM classifier with the same prototype-based distance layer used for GPT, but applied only at
masked positions. For each masked token representation h;, logits are z; , = —D(h;, w,;©) (or
log-similarity), and cross-entropy is computed against the ground-truth token at i.

QWEN2-STYLE DECODER (CAUSAL LM)
Backbone. A decoder-only Transformer similar to GPT, with model-specific details:

« Rotary Position Embeddings (RoPE) with  (e.g., § = 10°).
« RMSNorm with € (e.g., 1075) in place of LayerNorm.
* Grouped key/value heads: num_key_value_heads may be < np,.
* Intermediate MLP width (intermediate_size) configurable.
Vocabulary. By default, we use Qwen’s native vocabulary (vocab_size=151,936); alternatively,

one can adapt to the dataset vocab. Head (baseline vs. _DIST). As with GPT, the final projection is
either a linear layer to V' or a distance-based head over V' prototype vectors.

DISTANCE-BASED OUTPUT LAYER

For all three families (GPT, BERT/MLM, Qwen?2), the baseline d — V classifier is replaced in
_DIST runs by a distance head:

— ||h — wy||2 (Euclidean)
—||h — wy |1 (Manhattan)
—|Ih = wollp (Minkowski, p specified)
T .
i) = 47 TRl (Cosine)
— Dcanverra(h, wy) of  — Dpay—curiis(h, w,)  (variants as defined)
—|h — wy]|oo (Chebyshev)
—/(h —w,) TS (h —w,) (Mahalanobis, variants)
— Dtamming (7, wy) (soft/Gumbel/hard)

where w,, are learned prototype vectors (analogous to classifier weights). We adopt the numerically
robust implementations given in the main text (e.g., small ¢, clamping, optional normalization of
h and/or w, where appropriate). For cosine, we may output log-similarities for stability. Loss is
standard cross-entropy over the V' logits per position (causal) or per masked position (MLM).

19



Under review as a conference paper at ICLR 2026

TRAINING SETUP AND OPTIMIZATION

Device and Precision. Weuse bfloatl6/floatl6/float32 (configurable) with automatic
mixed precision:

torch.autocast (device_type='cuda’, dtype=ptdtype).

Training can run in single-GPU or DDP (torch.distributed) multi-GPU mode. In DDP,
LOCAL_RANK selects the device, and gradients are synchronized across ranks.

Initialization and Checkpointing. Models are initialized from scratch using the specified ar-
chitecture config (layers, heads, width, L, V). For GPT-only runs we optionally support
init_from='gpt2x’,and for BERT we support init_from='bert’ (when provided), with
appropriate overrides. Checkpoints store model/optimizer state, iter_num, best_val_loss, and
the configuration.

Optimizer and LR Schedule. We use the model’s configure_optimizers helper to instanti-
ate an Adam/AdamW-style optimizer with weight decay and (1, 32). Learning rate follows cosine
decay with warmup:

. Iryax - t/wWarmup t < warmup,

r(t) = —w

B =9y ¢ %(1 4 cos%m) (max — Irenin) ¢ < T,

where T is lr_decay-iters. We  apply  gradient  accumulation

(gradient_accumulation_steps), optional gradient clipping (grad.clip), and AMP
scaling (GradScaler).

Objectives.

* GPT/Qwen2 (causal LM): next-token cross-entropy over V' at each position.
* BERT (MLM): cross-entropy computed only at masked positions; non-masked labels set
to —100 (ignored).

Accuracy reporting: we compute token-level accuracy for monitoring (on next-token for causal LM,
on masked tokens for MLM).

Evaluation and Early Signals. At fixed eval_interval, we run estimate_loss () over
eval_iters batches on train/val splits (model in eval () ), then resume training. Best validation
loss checkpoints are saved; optional compile (torch.compile) can be enabled.

SUSTAINABILITY TRACKING
We integrate CodeCarbon to measure energy and emissions. At each evaluation interval:

1. Stop the tracker and record interval-level metrics: emissions (kg COz), duration, estimated
CPU/GPU/RAM power and energy.

2. Log cumulative emissions and training metrics (loss, Ir) to W&B (if enabled).

3. Restart the tracker for the next interval to avoid long-running file locks and to attribute
emissions to training phases cleanly.

At the end of training, we stop the tracker one final time and persist all accumulated records to a
CSV (emissions_x.csv) alongside model checkpoints.

Key Configuration Knobs (Reproducibility) The following knobs are saved in run configs/check-
points and should be reported alongside results:
(ng, np, d, L, V), distance head type and parameters (©), batch size B, precision,
optimizer & betas, Ir schedule (warmup, 7', Iryax, Irmin), grad accumulation,
grad clip, DDP world size.

When using _DIST variants, we additionally report which distance (Euclidean, cosine, Manhattan,

Minkowski(p), Canberra, Bray—Curtis, Chebyshev, Mahalanobis, Hamming), any normalization/s-
caling flags, and regularization choices (e.g., Mahalanobis covariance learning/regularization).
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In all models, the sole architectural change introduced by harmonic loss is confined to the output
head: a drop-in replacement of the linear classifier with a distance-based prototype head over
the vocabulary. This isolates the effect of the loss geometry while keeping the Transformer back-
bone (and training recipe) unchanged, enabling controlled comparisons across distances in terms of
accuracy, interpretability (e.g., PCA-based analyses), and sustainability (emissions and runtime).

D HYPERPARAMETER CONFIGURATIONS

The hyperparameter settings in Tables [IH8| were chosen to balance comparability, training stability,
and sustainability. Below we highlight several important considerations.

D.1 LANGUAGE MODELS (OPENWEBTEXT)

Table [T] specifies the core training parameters for GPT, BERT, and Qwen on OpenWebText. The
main goal was to maintain a fair comparison across models of varying scale by using effective
batch sizes of similar order (76—128). This ensures that any differences observed in performance or
emissions are attributable to the loss formulation, not simply to batch scaling. The use of AdamW
with default 3 values (0.9, 0.999) follows current best practices for stability.

Table [2] details architecture-specific modifications. BERT includes type embeddings and a masked
language modeling (MLM) setup, while GPT and Qwen use causal language modeling (CLM).
Qwen, being substantially larger, incorporates more advanced design elements such as grouped
query attention (GQA) and rotary position embeddings (RoPE). Table [3] summarizes these differ-
ences: GPT and Qwen follow causal objectives, while BERT relies on bidirectional context, which
may affect the degree to which distance-based losses interact with their representations.

Table 1: Core configuration for GPT, BERT, Qwen, and GPT-2B on OpenWebText.

Configuration GPT BERT Qwen GPT-2B
Nayer 12 12 24 48
Nhead 12 12 14 20
Tembd 768 768 896 1600
Vocab size 50304 50304 151936 50304
Dropout 0.1 0.1 0.0 0.1
Bias True True True True
Batch size 16 38 6 3
Grad. accum. steps 8 2 10 21
Effective batch size 128 76 60 63
Learning rate 2e-4 le-4 le-4 le-4
Warmup iters 500 1000 1000 1000
Weight decay 0.01 0.01 0.01 0.01
Grad clip 1.0 1.0 1.0 1.0
Min LR 2e-6 le-6 le-6 le-6
Decay LR True True True True
LR decay iters 10000 10000 10000 10000
Max iters 10000 10000 10000 10000
Dataset OpenWebText OpenWebText OpenWebText OpenWebText
dtype bfloat16 bfloat16 bfloat16 bfloat16
Optimizer AdamW AdamW AdamW AdamW
B B2 0.9, 0.999 0.9,0.999 0.9, 0.999 0.9, 0.999
Eval interval 1000 1000 1000 500
Eval iters 100 100 100 25
Log interval 50 50 50 25
Scale attn by inverse layer idx False False False False
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Table 2: Architecture-specific settings for GPT, BERT, Qwen, and GPT-2B.

Configuration GPT BERT Qwen GPT-2B
Block size / Seq length 1024 512 1024 512
Type vocab size - 2 - -
Pad token id - 0 - -
MLM probability - 0.15 - -
Intermediate size - - 4864 -

# key—value heads - - 2 -
RMSNorm € - - le-6 -
RoPE 6 - - 1,000,000.0 -

Table 3: Key differences summary (task and position encoding).

Aspect GPT BERT Qwen GPT-2B

Model size (approx.) ~124M ~110M ~494M ~2B

Attention Causal  Bidirectional Causal (GQA)  Causal CLM = Causal
Training task CLM MLM CLM CLM

Position encoding Learned Learned RoPE Learned

Language Modeling; MLM = Masked Language Modeling; GQA = Grouped Query Attention.

D.2 VISION MODELS

Tables #H7| provide the vision settings across datasets. As shown in Table[d] optimizer and learning-
rate schedules are backbone-specific: Adam for MLPs and CNNs, AdamW for transformers (PVT),
and SGD with momentum for ResNet50. This reflects both convention and empirical stability
in preliminary experiments. Batch size selection (Table [5) reflects hardware utilization on H100
GPUs. Notably, lightweight backbones (e.g., CNNs) leverage very large batches (up to 8192 for
MNIST), while transformer-based PVT is limited to much smaller batches (128-256) to fit memory
constraints. These design choices affect emissions profiles: large-batch training can reduce wall-
clock time but at the cost of GPU memory overhead. Learning-rate schedulers differ across models.
For example, PVT employs cosine annealing, which smooths convergence and interacts well with
distance-based loss formulations. ResNet50 relies on multi-step decay, ensuring stability across the
long 200-epoch training horizon on CIFAR-100.

Distance Layer Parameters. Table [§| summarizes the shared hyperparameters across all distance
functions. The exponent 7 is fixed to 1.0 and ¢ = 10~* provides numerical stability. Importantly,
distances are not scaled post hoc, ensuring that differences in results are directly attributable to the
geometric properties of the chosen distance (Euclidean, Manhattan, Mahalanobis, etc.), rather than
to auxiliary tuning.

D.3 DISCUSSION

Language models. GPT and BERT use comparable depth/width with learned positional encodings,
while Qwen is larger, adopts RoPE, and GQA. Effective batch sizes (via gradient accumulation)
normalize throughput across models for fair comparison on OpenWebText.

Vision models. Optimizer and scheduler choices follow common practice: Adam/AdamW for
MLP/CNN/PVT, SGD with momentum for ResNet50; deeper/longer CIFAR-100 runs employ
stepped or cosine schedules. Early-stopping patience scales with dataset difficulty.

DistLayer defaults. A unified setting (n=1.0, e=10"%, no scaling) ensures distance variants differ
only in geometry, not in auxiliary hyperparameters. These settings match the configuration used in
our main experiments and figures.
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Table 4: Core training configuration by backbone and dataset.

Configuration MLP CNN PVT ResNet50
LR (MNIST) 3e-4 3e-4 le-3 0.1
LR (CIFAR-10) 3e-4 3e-4 le-3 0.1
LR (CIFAR-100) 3e-4 3e-4 Se-4 0.1
LR (MarathiSign) 1.5e-4 1.5e-4 Se-4 0.05
LR (TinyImageNet) 3e-4 3e-4 Se-4 0.1
Epochs (MNIST) 40 40 80 100
Epochs (CIFAR-10) 40 40 80 100
Epochs (CIFAR-100) 150 150 150 200
Epochs (MarathiSign) 50 50 100 75
Epochs (TinyImageNet) 100 100 200 150
Optimizer Adam Adam AdamW SGD
Weight decay 0 0 0.01 le-4
Momentum - - - 0.9

Table 5: Batch size configuration on H100 GPU.
Model MNIST CIFAR-10 CIFAR-100 MarathiSign TinyImageNet

MLP 2048 1024 1024 128 256
CNN 8192 4096 512 512 512
PVT 256 512 256 64 128
ResNet50 512 512 256 128 256

E STATISTICAL SIGNIFICANCE AGAINST EUCLIDEAN HARMONIC LOSS.

E.1 WILCOXON SIGNED-RANK TESTS

To quantify whether non—Euclidean harmonic losses differ systematically from the Euclidean ref-
erence, we ran paired Wilcoxon signed-rank tests over all dataset-backbone combinations (N=16
pairs per distance). The resulting median score improvements and p—values are reported in Tables[9}-

On model performance (Table[9), the non-Euclidean distances do not achieve a statistically signif-
icant positive median improvement over the Euclidean harmonic loss. Several metrics (e.g., Ma-
halanobis (Std.), Bray—Curtis (Std.), Canberra variants, Manhattan, Minkowski, Hamming) show
significant negative medians (p < 0.05), indicating that when a difference is present it tends to
favor the Euclidean reference in raw accuracy. This is consistent with our main results, where non—
Euclidean geometries target interpretability and sustainability rather than headline accuracy gains.

For interpretability (Table [I0), we observe the opposite pattern. Distances such as Bray—Curtis
(Norm.), Canberra (Robust/Std.), Chebyshev (Std.), Manhattan, and both cosine variants exhibit
statistically significant shifts in the number of principal components needed to explain 90% of the
variance. The median differences are large in magnitude (e.g., +12.8 for Bray—Curtis (Norm.),
+9.8 for Canberra (Robust)), confirming that switching away from Euclidean induces a consistent
and substantial change in representation geometry across datasets and backbones.

For sustainability (Table [T, four distances reach p < 0.05: Mahalanobis (Std.) and Bray—
Curtis (Std.) with positive medians, and Canberra (Weighted) and Mahalanobis (Chol.) with neg-
ative medians. This suggests that the carbon footprint differences between Euclidean and most
non—Euclidean harmonic losses are modest and model-dependent: some geometries slightly in-
crease emissions, others slightly decrease them, but strong systematic effects are rare once we fix
backbone, data, and training budget.

Overall, these nonparametric tests support our main claims: non-Euclidean harmonic losses do
not uniformly dominate Euclidean in accuracy, but several of them induce statistically significant
changes in representation structure, with only mild and mixed effects on emissions.
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Table 6: Learning-rate schedulers by backbone and dataset.

Model MNIST CIFAR-10 CIFAR-100 MarathiSign TinyImageNet
MLP None None StepLR (50, 0.5) ReducelLR* StepLR (50, 0.5)
CNN None None StepLR (50, 0.5) ReducelLR* StepLR (50, 0.5)
PVT CosineAnn. (80) CosineAnn. (80) CosineAnn. (150) CosineAnn. (100)  CosineAnn. (200)
ResNet50  StepLR (30,0.1)  StepLR (30, 0.1) MultiStep™** StepLR (25, 0.1) MultiStep***

*ReduceLROnPlateau (mode=max, factor=0.5, patience=5, min_Ir=1e-6)
**MultiStepLR (milestones=[60,100,140], v=0.2)
*#k*¥MultiStepLR (milestones=[80,120], v=0.2)

Table 7: Dataset metadata and early-stopping settings (vision).

Parameter MNIST CIFAR-10 CIFAR-100 MarathiSign TinyImageNet
Num classes 10 10 100 43 200
Early stopping patience 15 15 25 10 15

Min improvement (%) 0.01 0.01 0.01 0.01 0.01
Native image size 28x28x1  32x32x3  32x32x3 varies 64 x64x3
Processed size (MLP/CNN/PVT) 28x28x1 32x32x3  32x32x3 32x32x3 224 x224 %3
Processed size (ResNet50) 28x28x1  32x32x3  32x32x3  224x224x3 224 x224x 3

E.2 ACCURACY WITH CONFIDENCE INTERVALS.

To complement the aggregate tables and Wilcoxon tests, Figure [3| reports accuracy curves for the
top-performing losses on each dataset/backbone pair. For every setting we re-train each candidate
with three random seeds and plot the mean trajectory together with a shaded 95% confidence interval
(n=3).

Across datasets and architectures, two consistent patterns emerge. First, the ranking suggested by
our radar plots and summary tables is preserved under multi-seed training: distance-based harmonic
losses that previously appeared as strong contenders (e.g., cosine, Bray—Curtis, Minkowski) con-
tinue to track at least as well as, and often above, the cross-entropy and Euclidean baselines through-
out training. In several regimes (notably CIFAR-10/CIFAR-100 with ResNet50 and MNIST with
ResNet50/PVT), the confidence bands of the leading non-Euclidean harmonic loss lie systemati-
cally above those of the baselines in the later epochs, indicating that the final accuracy gains are not
artifacts of seed choice but persist under sampling noise.

Second, the width of the confidence intervals is often comparable or smaller for harmonic losses
than for standard baselines. On datasets where optimization is more fragile (e.g., CIFAR-100 with
PVT), cross-entropy and some regularized baselines (Focal, Center Loss) display visibly wider
bands and occasional late-epoch fluctuations, whereas harmonic distances yield smoother trajec-
tories with tighter intervals, echoing our gradient stability findings. Importantly, we do not observe
any case where a harmonic loss that outperforms Euclidean in the aggregate tables suffers a reversal
when confidence intervals are taken into account.

Overall, these multi-seed curves provide statistical depth to our vision experiments: performance im-
provements for non-Euclidean harmonic losses are accompanied by tight, stable confidence bands,
supporting the claim that their advantages over Euclidean and cross-entropy are robust rather than
due to random initialization.
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Table 8: Distance-layer shared parameters (all backbones).

Parameter Value
n 1.0
€ le-4

Scale distances  False

Table 9: Wilcoxon signed-rank test comparing each non—-Euclidean harmonic loss against the Eu-
clidean harmonic baseline on average final test accuracy. Median score improvement is the median
paired difference (non—Euclidean minus Euclidean) across /N dataset—backbone combinations. Pos-
itive values indicate that the non—Euclidean distance attains higher accuracy; the last column marks
tests with p < 0.05.

Comparison N Pairs Median Impr.  p-value Dagj  Sig. (p < 0.05)
Bray—Curtis (Norm.) 16 0.5317 0.17060  1.0000

Cosine (Stable) 16 0.1598  0.45339  1.0000

Cosine (Unst.) 16 0.0965 0.55208  1.0000
Mahalanobis (Chol.) 16 0.0400 0.58717  1.0000

Bray—Curtis (Abs.) 16 -1.1967  0.10335  1.0000
Mabhalanobis (Diag.) 16 -1.4633  0.08323  1.0000

Chebyshev (Std.) 16 -1.7232 < 0.001 0.0736 Yes
Minkowski (p=3.0) 16 -1.8183  0.00567 0.6234 Yes
Canberra (Weighted) 16 -2.8167  0.00295 0.3565 Yes
Manhattan 16 -4.9467  0.00249 0.3083 Yes
Minkowski (p=1.5) 16 -5.8117 0.00176  0.2232 Yes
Hamming (Soft) 16 -6.3183  0.00348 0.4110 Yes
Canberra (Robust) 16 -16.5883 < 0.001 0.0736 Yes
Canberra (Std.) 16 -18.3767 < 0.001 0.0736 Yes
Chebyshev (Smooth) 16 -21.3817 < 0.001 0.0736 Yes
Bray—Curtis (Std.) 16 -34.4379 < 0.001 0.0975 Yes
Mahalanobis (Std.) 16 -64.8082 < 0.001 0.0736 Yes

Table 10: Wilcoxon signed-rank test comparing each non—-Euclidean harmonic loss against the Eu-
clidean harmonic baseline on average intrinsic dimension (number of PCs required to reach 90%
EV). Median score improvement is again the median paired difference (non—Euclidean minus Eu-
clidean); here more negative values correspond to fewer required components.

Comparison N Pairs Median Impr.  p-value DPagj  Sig. (p < 0.05)
Bray—Curtis (Norm.) 16 12.8333 < 0.001 0.1142 Yes
Canberra (Robust) 16 9.8333  0.00162 0.2086 Yes
Canberra (Std.) 16 8.1667 < 0.001 0.0988 Yes
Chebyshev (Std.) 16 7.7083  0.01864  1.0000 Yes
Manhattan 16 7.6667 0.00412 0.4764 Yes
Cosine (Unst.) 16 5.8333  0.01043  1.0000 Yes
Canberra (Weighted) 16 5.2083 0.26768  1.0000

Cosine (Stable) 16 4.3333  0.01127  1.0000 Yes
Mahalanobis (Std.) 16 4.0417  0.12716  1.0000
Bray—Curtis (Std.) 16 2.1667 0.34869  1.0000
Bray—Curtis (Abs.) 16 1.0000 0.66019  1.0000

Hamming (Soft) 16 0.7083  0.77730  1.0000

Minkowski (p=1.5) 16 -0.0000  0.80665 1.0000

Minkowski (p=3.0) 16 -0.0000  0.75554  1.0000
Mahalanobis (Diag.) 16 -0.0000  0.30656  1.0000

Chebyshev (Smooth) 16 -0.2083  0.77638  1.0000
Mabhalanobis (Chol.) 16 -0.3333  0.85062  1.0000
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Table 11: Wilcoxon signed-rank test comparing each non—-Euclidean harmonic loss against the Eu-
clidean harmonic baseline on average emissions (gCO2eq). Median score improvement is the me-
dian paired difference (non-Euclidean minus Euclidean); negative values indicate lower emissions
than the Euclidean reference.

Comparison N Pairs Median Impr.  p-value Dagj  Sig. (p < 0.05)

Mahalanobis (Std.) 16 1.8037 < 0.001 0.114 Yes
Bray—Curtis (Std.) 16 1.1880  0.01620  1.000 Yes
Cosine (Unst.) 16 0.2341  0.05249 1.000
Canberra (Std.) 16 0.0351 0.77611  1.000
Chebyshev (Smooth) 16 0.0208  0.73679  1.000
Canberra (Robust) 16 -0.0206  0.73679  1.000
Cosine (Stable) 16 -0.0239  0.97937 1.000
Minkowski (p=1.5) 16 -0.0492  0.36552  1.000
Hamming (Soft) 16 -0.0909  0.26625 1.000
Bray—Curtis (Abs.) 16 -0.1066  0.20520  1.000
Chebyshev (Std.) 16 -0.1421  0.14056  1.000
Bray—Curtis (Norm.) 16 -0.1625  0.11477  1.000
Manbhattan 16 -0.1976  0.12716  1.000
Minkowski (p=3.0) 16 -0.4158  0.05249  1.000
Mahalanobis (Diag.) 16 -0.4587  0.05249 1.000
Canberra (Weighted) 16 -0.7687  0.03188  1.000 Yes
Mahalanobis (Chol.) 16 -0.9431  0.00411 0.476 Yes
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F VISION: RADAR PLOTS: ADDITIONAL DATASETS (MNIST, CIFAR10)

Figure [] reports results for distance-based harmonic losses on MNIST and CIFARI10 across all
four backbones (MLP, CNN, ResNet50, PVT). In summary, the MNIST and CIFAR-10 radar plots
confirm what has been observed on other datasets: even on smaller benchmarks, non—Euclidean har-
monic losses (particularly cosine, Bray-Curtis, and Chebyshev) can enhance representation structure
and, on harder datasets, improve accuracy, all while maintaining comparable or better sustainability
than Euclidean harmonic loss and the cross—entropy baseline.

F.1 MNIST

RQ1: Model Performance (F1, Accuracy). Across all MNIST backbones, accuracy and F1 are
saturated for several distances, but cosine—based harmonic losses (stable/unstable) and Bray—Curtis
(normalized) remain among the most reliable high—performers. On MLP and CNN, these distances
match or slightly exceed both Euclidean harmonic loss and the cross—entropy baseline. On ResNet50
and PVT, where capacity is ample, almost all distances reach near—perfect accuracy, confirming that
changing the distance in the harmonic head does not harm performance.

RQ2: Interpretability (PC2 EV, PCA 90%). Even on this simple dataset, non—Euclidean distances
already reshape the embedding geometry. Bray—Curtis (normalized) and Chebyshev (standard) pro-
duce noticeably higher PC2 explained variance and reduce the number of components needed to
reach 90% EV, indicating compact, prototype-aligned clusters. Cosine harmonic losses also improve
EV relative to Euclidean while maintaining top accuracy. Mahalanobis and Minkowski variants (on
ResNet50) further concentrate variance, but their interpretability advantage is less pronounced on
MNIST because the task is almost linearly separable.

RQ3: Sustainability (Duration/Epoch/GFLOPs, Emissions). For MNIST, the harmonic head
constitutes a tiny fraction of the overall compute, so all distances exhibit similar Duration/E-
poch/GFLOPs and emissions. Cosine and Bray—Curtis are essentially neutral relative to Euclidean
and cross—entropy; small differences arise mainly from minor variations in convergence speed rather
than per—step cost. The key takeaway from MNIST is therefore that non—Euclidean harmonic losses
can improve representation structure without sacrificing accuracy or sustainability.

F.2 CIFARI10

RQ1: Model Performance (F1, Accuracy). On CIFAR-10, cosine harmonic losses become clearly
advantageous. For MLP and CNN, cosine (stable/unstable) and Bray—Curtis (normalized) consis-
tently occupy the highest or near—highest F1 and accuracy, outperforming Euclidean harmonic loss
and the cross—entropy baseline. On ResNet50 and PVT, cosine again delivers strong accuracy while
remaining competitive with the best non—Euclidean alternatives (e.g., Minkowski p=3.0). Over-
all, cosine is the most robust choice across architectures once the task requires nontrivial feature
extraction.

RQ2: Interpretability (PC2 EV, PCA 90%). CIFAR-10 further highlights the interpretability ben-
efits of non—Euclidean geometry. Bray—Curtis and Chebyshev systematically increase PC2 EV and
reduce PCA 90% dimensionality on MLP, CNN, and ResNet50, yielding sharper, more compact
embeddings than Euclidean or cross—entropy. Cosine harmonic losses also improve EV over Eu-
clidean, providing a favorable accuracy/interpretability compromise. On PVT, Canberra—weighted
and Bray—Curtis variants similarly enhance variance concentration while preserving strong perfor-
mance, reinforcing the observation that prototype—friendly distances induce more structured feature
spaces.

RQ3: Sustainability (Duration/Epoch/GFLOPs, Emissions). On CIFAR-10, sustainability trends
mirror those seen on larger datasets. Cosine harmonic loss is typically neutral-to—slightly—favorable
in Duration/Epoch/GFLOPs and emissions relative to Euclidean and cross—entropy, especially on
CNN and ResNet50 where convergence is faster. Bray—Curtis and Canberra variants introduce mod-
est overhead, reflecting their more complex computations, but remain within the same qualitative
efficiency regime. In all cases, the harmonic head is lightweight compared to the backbone, so the
main sustainability differences arise from reduced steps—to—high accuracy rather than large per—step
cost.
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Figure 4: Vision: Radar plots: 1) Model Performance (F1, Accuracy); 2) Interpretability (PC2
EV, PCA 90%), and 3) Sustainability (Duration/Epoch/GFLOPs, Emissions). Plots feature Baseline
(Cross-Entropy), Euclidean harmonic, and the four top-performing non-Euclidean harmonic losses.
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G RESULTS WITH ALTERNATIVE LOSS FUNCTIONS

To contextualize our distance—based harmonic losses, we benchmark against four widely used al-
ternatives that are often motivated by calibration, robustness in low—data regimes, or representa-
tional compactness. Below we summarize each loss, its objective, and why it is relevant along
our three axes: effectiveness, sustainability, and interpretability. Unless otherwise noted, these
baselines are applied with a conventional linear head and softmax; they can also be evaluated on
distance—parameterized logits (e.g., —dist(h, w.)) to ensure architectural parity.

Focal Loss (calibration, anti-grokking, class imbalance). Focal Loss reweights examples by
their difficulty:
e*v

Lfocal(zay) = -« (1 *py)v IngZN Py = Z er’
J

with focusing parameter v > 0 and class weight « € (0,1]. By down-weighting well—classified
(overconfident) samples, it yields smoother gradient signals, often improving calibration and mit-
igating late—stage overfitting behaviors akin to grokking. In our grids we consider y € {2, 3} and
a €{0.25,0.5}. Sustainability: modest compute overhead (same forward/backward shape as CE),
but potentially fewer effective updates on easy samples; net carbon effect is typically neutral to
slightly higher than CE, depending on convergence behavior.

Label Smoothing (reduced overconfidence, low—data stability). Label Smoothing replaces the
one—hot target with

vy=(01—-¢)e, +

K

g ~

? 1, ELS(zvy) = - Zyc Ingca
c=1

where € € [0,1) controls smoothing (we use € € {0.1,0.2}). The softened targets reduce over-
confidence and improve generalization in scarce—label settings; they also stabilize optimization by
shrinking logit magnitudes. Interpretability: mild regularization can yield more isotropic features;
sustainability: training cost matches CE, with potential reductions in steps—to—target when overcon-
fidence previously harmed convergence.

Center Loss (prototype compactness, cluster interpretability). Center Loss explicitly penalizes
the distance to a class prototype:

1
£cenler(hay) = 5 Hh - Cl/|

with learnable class centers {cy} and trade—off A > 0 (we test A € {0.5,1,2}). This encourages
intra—class compactness and inter—class separability—properties that make feature clusters and de-
cision prototypes easier to inspect. Sustainability: small extra memory and updates for c; the
overhead is minor relative to the backbone but measurable in long runs.

2
PH L= ECE +A £center>

Confidence Penalty (entropy regularization, anti-grokking). Confidence Penalty adds a nega-
tive—entropy term to discourage over—peaked posteriors:

K
Lep(z,y) = Lee(z,y) — BH(P), H(p)=—)_ pelogpe,
c=1

with 8 > 0 (we use § € {0.1,0.2}). By explicitly rewarding higher predictive entropy when ap-
propriate, it reduces brittle overconfidence and can temper delayed generalization (grokking-like)
effects. Sustainability: essentially identical compute to CE; any carbon changes stem from altered
convergence trajectories rather than per—step cost.

ArcFace (angular margins, maximized class separation). ArcFace (Deng et al., |2019) intro-
duces an additive angular margin that enlarges the decision boundary between classes on the unit
hypersphere. Given normalized features h and normalized class weights w,, the cosine similarity
cos 0. = (h, w,) is modified for the target class y by adding a fixed angular margin m:

cos(6, + m) = cos , cosm — sin 6, sinm.
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ArcFace replaces the final linear classifier with a scaled angular softmax:

exp (s cos(fy, +m))
exp (s cos(fy +m)) + 3, exp (s cost)’

Larcface(hv y) = - IOg

where s is a feature-scale parameter (typically s = 30-64). By manipulating angles rather than
norms, ArcFace enforces tighter class clustering and larger inter-class separation, and is widely
regarded as a strong margin-based baseline in metric learning. This makes it a particularly rel-
evant comparator for harmonic losses: both approaches normalize features to a hypersphere and
control geometry around class prototypes, but ArcFace explicitly pushes angular margins, whereas
harmonic losses adjust the entire distance landscape. Sustainability: ArcFace is lightweight (same
complexity as cosine classifiers), but the angular margin can slightly increase optimization stiffness,
occasionally raising per-step compute or slowing convergence. In our experiments we consider
m€{0.3,0.5} and s € {30,64}.

Each baseline addresses a failure mode that harmonic losses also target but via different inductive bi-
ases: Focal/Label Smoothing emphasize calibration and data efficiency; Center Loss operationalizes
prototype compactness; Confidence Penalty discourages pathological overconfidence. This makes
them natural comparators for our distance—based formulation, which subsumes prototype reasoning
in its very parameterization and, as we show, can simultaneously improve accuracy, reduce emis-
sions, and enhance interpretability.

G.1 VISION: FINE-GRAINED RESULTS

A cross—backbone inspection in Tables [[2HI5] shows that the additional baselines (Focal, Label
Smoothing, Confidence Penalty, Center Loss, ArcFace) are competitive on accuracy, but do not
displace the non-Euclidean harmonic losses as the most balanced options.

On CIFAR-10 and CIFAR-100 with ResNet-50, cosine-based harmonic heads remain among the
strongest configurations: they deliver the largest accuracy and F1 gains over cross-entropy (up to
~ 11% relative on CIFAR-10 and 5% on CIFAR-100), while simultaneously reducing emissions
by 10-30% and sharply concentrating the representation (PC90% dropping from 50 to 5-8 com-
ponents). Focal and ArcFace variants sometimes match top accuracy, but typically exhibit weaker
EV/PC90% improvements or higher emissions, so they do not dominate the multi-criteria trade-off.

For PVT backbones, where capacity and input resolution are higher, the picture is more nuanced.
On CIFAR-10 PVT, calibration-oriented losses (Label Smoothing, Focal) offer slight accuracy im-
provements and sizable emissions reductions, yet Euclidean harmonic achieves the most compact
geometry (PC90% from 17 to 3) at only a small performance cost. On CIFAR-100 PVT, focal and
confidence-penalty losses are best in accuracy, but Euclidean harmonic again produces the most
concentrated feature spaces (PC90% 4 vs. 50), highlighting an interpretability advantage even when
it is not the accuracy winner.

On the high-resolution Marathi Sign dataset, nearly all methods saturate accuracy (> 0.999),
so the comparison is driven by structure and sustainability. Here, cosine-based harmonic losses
for ResNet-50 (and to a lesser extent for PVT) achieve substantial EV/PC90% gains. e.g., Cosine
(Unst.) reduces PC90% from 15.5 to 6.5 while slightly lowering emissions, demonstrating that
our non-Euclidean harmonic heads remain competitive even in settings where strong baselines like
ArcFace and Center Loss are present.
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Table 12: Results for CIFAR100 PVT (top-8 losses) and % changes w.r.t. Baseline (CE).
Method Acc F1 gCO2eq EV PC90%

Baseline 0.3994 0.3970 3.67 0.0973 50.0
Focal (v=2, @=0.25) 0.4017 (0.59%) 0.3996 (0.65%) 4.9609 (-35.35%) 0.1257 (29.22%) 50.0 (0%)
Focal (v=3, =0.25) 0.4015 (0.53%) 0.3999 (0.72%) 4.9567 (-35.24%) 0.1364 (40.21%) 50.0 (0%)
Focal (v=2, a=0.5) 0.4010 (0.40%) 0.3997 (0.66%) 3.9182 (-6.90%) 0.1271 (30.64%) 50.0 (0%)
Conf. Penalty (6=0.1) 0.3999 (0.13%) 0.3977 (0.17%) 5.2574 (-43.44%) 0.0963 (-0.96%) 50.0 (0%)
Label Smoothing (¢=0.1) 0.3894 (-2.50%) 0.3888 (-2.08%) 2.6626 (27.36%) 0.0818 (-15.92%) 50.0 (0%)
Conf. Penalty (6=0.2) 0.3859 (-3.38%) 0.3834 (-3.45%) 2.1718 (40.74%) 0.0749 (-23.00%) 50.0 (0%)
Label Smoothing (¢=0.2) 0.3847 (-3.67%) 0.3851 (-3.00%) 2.2097 (39.71%) 0.0742 (-23.74%) 50.0 (0%)
ArcFace (m=0.5,5=30) 0.3728 (-6.65%) 0.3772 (-5.00%) 2.6171 (28.60%) 0.1259 (29.41%) 50.0 (0%)
Euclidean 0.2864 (-28.29%) 0.2945 (-25.83%) 6.4329 (-75.51%) 0.8414 (765.15%) 4.0 (92.00%)

Table 13: Results for CIFAR100 ResNet50 (top-8 losses) and % changes w.r.t. Baseline (CE).

Method Acc F1 gCO2zeq EV PC90%
Baseline 0.7006 0.6993 89.64 0.1069 50.0
Cosine (Stable) 0.7381 (5.35%) 0.7384 (5.59%) 79.2831 (11.55%) 0.5915 (453.51%) 8.0 (84.00%)

Focal (v=2, =0.25) 0.7349 (4.90%) 0.7342 (5.00%) 72.1795 (19.48%) 0.1468 (37.32%) 50.0 (0%)
Focal (v=2, «=0.5) 0.7341 (4.79%) 0.7332 (4.85%) 78.7234 (12.18%) 0.1224 (14.52%) 50.0 (0%)
Cosine (Unst.) 0.7340 (4.77%) 0.7349 (5.09%) 72.5413 (19.07%) 0.5891 (451.21%) 8.0 (84.00%)
Focal (v=3, a=0.25) 0.7311 (4.36%) 0.7308 (4.51%) 81.5875 (8.98%) 0.1554 (45.41%) 50.0 (0%)
Label Smoothing (¢=0.1) 0.7261 (3.64%) 0.7248 (3.65%) 79.8223 (10.95%) 0.1469 (37.44%) 50.0 (0%)
Label Smoothing (¢=0.2) 0.7221 (3.08%) 0.7206 (3.04%) 81.1883 (9.43%) 0.1524 (42.59%) 50.0 (0%)
ArcFace (m=0.7,5=30) 0.7166 (2.29%) 0.7150 (2.25%) 70.5590 (21.29%) 0.6059 (466.93%) 48.33 (3.33%)
Euclidean 0.7047 (0.59%) 0.7055 (0.89%) 87.7280 (2.13%) 0.4301 (302.49%) 33.67 (32.67%)

Table 14: Results for MarathiSign PVT (top-8 losses) and % changes w.r.t. Baseline (CE).
Method Acc F1 gCO02eq EV PC90%

Baseline 0.9965 0.9964 2.85 0.2135 24.75
ArcFace (m=0.7,s=30) 0.9997 (0.33%) 0.9997 (0.33%) 4.2108 (-47.88%) 0.1132 (-47.00%) 36.0 (-45.45%)
Focal (v=3, «=0.25) 0.9997 (0.32%) 0.9996 (0.32%) 2.7240 (4.34%)  0.2749 (28.74%) 19.33 (21.89%)
Center Loss (A=1) 0.9995 (0.31%) 0.9995 (0.31%) 5.1746 (-81.72%) 0.1824 (-14.56%) 29.67 (-19.87%)
Conf. Penalty (5=0.2)  0.9995 (0.30%) 0.9994 (0.30%) 3.6912 (-29.63%) 0.1504 (-29.58%) 33.67 (-36.03%)
Focal (v=2, «=0.25) 0.9993 (0.29%) 0.9993 (0.28%) 2.5648 (9.93%)  0.2853 (33.63%) 19.33 (21.89%)
ArcFace (m=0.3,5=30) 0.9992 (0.28%) 0.9992 (0.28%) 7.5158 (-163.94%) 0.1756 (-17.76%) 28.0 (-13.13%)
Label Smoothing (¢=0.2) 0.9992 (0.28%) 0.9991 (0.27%) 2.6977 (526%)  0.1190 (-44.26%) 35.0 (-41.41%)
Cosine (Unst.) 0.9991 (0.27%) 0.9991 (0.26%) 7.3447 (-157.93%) 0.5552 (160.04%) 7.0 (71.72%)
Euclidean 0.9994 (0.30%) 0.9994 (0.30%) 4.3621 (-53.19%) 0.5035 (135.83%) 14.25 (42.42%)

Table 15: Results for MarathiSign ResNet50 (top-8 losses) and % changes w.r.t. Baseline (CE).

Method Acc F1 gCO02eq EV PC90 %
Baseline 0.9998 0.9998 35.41 0.4507 15.5

Conf. Penalty (8=0.1)  0.9999 (0.01%) 0.9999 (0.01%) 29.6596 (16.24%) 0.4393 (-2.55%) 17.5 (-12.90%)
Cosine (Stable) 0.9999 (0.01%) 0.9999 (0.01%) 54.8139 (-54.80%) 0.7321 (62.42%) 5.5 (64.52%)

Conf. Penalty (8=0.2)  0.9998 (0.00%) 0.9998 (0.00%) 30.3697 (14.23%) 0.3288 (-27.05%) 33.0 (-112.90%)
Focal (v=2, =0.25) 0.9998 (0.00%) 0.9998 (0.00%) 24.95 (29.54%) 0.4016 (-10.89%) 17.0 (-9.68%)
Focal (=3, a=0.25) 0.9998 (0.00%) 0.9998 (0.00%) 28.1206 (20.58%) 0.4286 (-4.91%) 16.5 (-6.45%)
Cosine (Unst.) 0.9997 (-0.01%) 0.9997 (-0.01%) 33.8287 (4.46%) 0.6427 (42.58%) 6.5 (58.06%)
Label Smoothing (¢=0.1) 0.9997 (-0.01%) 0.9997 (-0.01%) 33.5266 (5.31%) 0.1758 (-60.99%) 36.0 (-132.26%)
Label Smoothing (¢=0.2) 0.9997 (-0.01%) 0.9997 (-0.01%) 38.7093 (-9.32%) 0.1641 (-63.60%) 36.0 (-132.26%)
Euclidean 0.9984 (-0.14%) 0.9983 (-0.15%) 50.2050 (-41.79%) 0.2787 (-38.18%) 50.0 (-222.58%)
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G.2 VISION: RADAR PLOTS WITH ADDITIONAL LOSSES (MNIST, CIFAR10, CIFAR100)

Figure [5] presents an expanded multi-criteria analysis across MNIST, CIFAR-10, and CIFAR-100
using MLP, CNN, ResNet50, and PVT backbones. This comparison tests whether the advantages
previously attributed to harmonic losses persist when measured against widely adopted alternatives
for regularization, interpretability, and robustness.

RQ1: Model Performance (F1, Test Accuracy). Across datasets and architectures, the harmonic
losses — particularly the cosine- and Bray—Curtis—based variants — remain the strongest overall per-
formers. While Focal Loss and Label Smoothing occasionally narrow the gap on more complex
datasets such as CIFAR-100, they do not consistently surpass harmonic losses across backbones.
Cosine-based harmonic loss maintains higher accuracy and smoother convergence, especially for
CNN and ResNet50, showing greater robustness to data imbalance and optimization noise than ei-
ther Focal or Confidence Penalty Loss. Even when Center Loss improves class compactness, it
rarely translates into superior end-task accuracy, reinforcing that distance-based formulations bring
more balanced generalization benefits.

RQ2: Interpretability (PC2 EV, PCA 90%). The advantage of harmonic losses extends beyond
performance: non-Euclidean harmonics, especially Bray—Curtis and Chebyshev, consistently yield
the most structured latent geometries. They capture more variance with fewer principal components
and align features more distinctly around class prototypes. Although Center Loss achieves com-
parable compactness in isolated cases, its representations tend to be less stable across architectures.
Label Smoothing and Confidence Penalty slightly improve feature spread, but their effects remain
shallow compared to the systematic geometric alignment achieved by harmonic formulations. This
supports the notion that explicit metric-based geometry is a stronger driver of interpretability than
indirect regularization.

RQ3: Sustainability (Duration/Epoch, Emissions). When considering efficiency, harmonic losses
continue to hold their edge. They achieve competitive or lower CO5 emissions than both Euclidean
and cross-entropy baselines. Among the new baselines, only Label Smoothing approaches simi-
lar energy efficiency, while Focal Loss incurs additional computational cost due to its per-sample
weighting. Despite this, none of the conventional alternatives outperform the best-performing har-
monic distances on a joint accuracy—emission axis, confirming that the added geometric structure of
harmonic loss does not come at a sustainability penalty.

Three key findings emerge: i) Cosine- and Bray—Curtis—based harmonic losses remain the most
consistently effective across accuracy, interpretability, and sustainability; ii) Conventional regu-
larized losses such as Focal or Label Smoothing can mitigate specific failure modes (imbalance,
overconfidence) but do not achieve the same balance across criteria; iii) The geometric grounding
of harmonic losses continues to provide superior inductive structure, yielding smoother optimiza-
tion, clearer feature organization, and greener training. Overall, these results reaffirm the general
dominance and stability of harmonic loss formulations, even against strong baselines optimized for
robustness and interpretability.
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Figure 5: Vision: Radar plots — MNIST, CIFAR10, CIFAR100: 1) Model Performance (F1, Accu-
racy); 2) Interpretability (PC2 EV, PCA 90%), and 3) Sustainability (Duration/Epoch, Emissions).
Plots feature Baseline (Cross-Entropy), Euclidean harmonic, and the four top-performing losses.
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G.3 VISION: RADAR PLOTS WITH ADDITIONAL LOSSES (MARATHI SIGN LANGUAGE,
TINYIMAGENET)

Figure[6|extends the radar analysis to higher—resolution benchmarks (Marathi Sign Language, Tiny-
ImageNet) and augments the comparison set with strong loss baselines such as Focal Loss, ArcFace,
Center Loss, and Confidence Penalty.

RQ1: Model Performance (Accuracy, F1). On Marathi Sign, the added losses make MLP and
CNN particularly competitive: ArcFace and Focal occasionally obtain strong accuracy/F1, yet
non—-Euclidean harmonic losses remain among the best methods. For MLP, Bray—Curtis (Normal-
ized) tracks or exceeds both cross—entropy and ArcFace while preserving a smooth performance
profile. For CNN, Bray—Curtis (Normalized) and cosine (stable/unstable) consistently occupy
the top accuracy/F1 slices; Focal and Confidence Penalty are competitive but never clearly domi-
nate. On deeper backbones, the picture is even clearer: for ResNet50 and PVT on Marathi Sign,
all top—performing methods are harmonic losses, indicating that distance—based harmonic heads
outperform alternative losses outright in this regime.

On TinyImageNet, a harder and more fine—grained benchmark, a similar pattern emerges. For MLP,
ArcFace and Center Loss join Bray—Curtis (Normalized) and Euclidean in the top—performing
losses, but Bray—Curtis remains competitive in accuracy while providing different geometric and
sustainability properties. For CNN, the strongest Focal and ArcFace variants reach high F1,
yet Bray-Curtis (Normalized) again sits near the performance frontier. On ResNetS50, the
top—performing losses are entirely harmonic (cosine, Minkowski, Chebyshev, Euclidean), and on
PVT TinylmageNet the leaders are dominated by cosine and Bray—Curtis, with ArcFace appear-
ing only as an alternative angular baseline. Overall, even in the presence of sophisticated angu-
lar—margin and confidence—shaping losses, non—-Euclidean harmonic heads remain on or very near
the performance Pareto frontier.

RQ2: Interpretability (PC2 EV, PCA 90%). The higher-resolution datasets accentuate differ-
ences in representation geometry. On Marathi Sign, harmonic distances such as Bray—Curtis (Nor-
malized/Absolute), Chebyshev (Standard), and Canberra/Hamming for PVT yield the strongest
PCA structure: they maximize PC2 explained variance and minimize the number of components
required to reach 90% EV, indicating compact, prototype—aligned embeddings. ArcFace and Focal
improve angular separation but generally do not achieve the same variance concentration as the best
harmonic distances.

TinylmageNet confirms this trend. On MLP and CNN, Bray—Curtis and Chebyshev produce
markedly higher PC2 EV and lower PCA 90% dimensionality than Euclidean and most additional
baselines, including Center Loss and Focal. For ResNet50 and PVT, cosine and Bray—Curtis con-
tinue to enlarge the PCA wedges relative to Euclidean, whereas ArcFace’s contribution is mainly
on performance rather than on variance concentration. Thus, across both Marathi Sign and Tiny-
ImageNet, the most interpretable geometries are consistently induced by non—Euclidean harmonic
losses rather than by the newly added baselines.

RQ3: Sustainability (Duration/Epoch/GFLOPs, Emissions). The sustainability axes show that
richer loss design does not necessarily translate into greener training. On Marathi Sign MLP/CNN,
several harmonic distances (e.g., Bray—Curtis (Normalized), Chebyshev) attain equal or lower
normalized Duration/Epoch/GFLOPs and emissions than cross—entropy and the added baselines;
Focal and ArcFace occasionally incur slightly higher emissions due to their sharper gradients and
additional computations. For ResNet50 and PVT, where backbone FLOPs dominate, all harmonic
variants remain sustainability—competitive.

On TinyImageNet, the pattern persists. ArcFace and Focal may match harmonic losses in accuracy,
but they usually do so with similar or higher emissions. Cosine and Bray—Curtis heads on ResNet50
and PVT often achieve comparable or better emissions than Euclidean, while still improving repre-
sentation structure. Center Loss introduces modest overhead but does not surpass harmonic distances
in overall sustainability.

Across Marathi Sign and TinyImageNet, adding strong baselines such as ArcFace, Focal, Center
Loss, and Confidence Penalty does not displace the non—Euclidean harmonic losses from the top
tier. Whenever these baselines are competitive in accuracy, harmonic distances typically offer su-
perior interpretability and comparable or lower emissions. This reinforces our central claim that
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distance—tailored harmonic heads provide a robust, geometry—aware alternative to contemporary
loss designs, remaining competitive or superior across performance, structure, and sustainability,
even on challenging high—-resolution vision benchmarks.

G.4 VISION: AGGREGATED EMISSIONS

Figure [/|reports the cumulative CO5 emissions for all vision experiments (MNIST, CIFAR-10/100,
Marathi Sign, and TinyImageNet), expressed as the difference in grams of CO5 relative to the
cross—entropy baseline (total CE emissions = 650.49 gCOqeq over 680 runs). All methods lie within
a band of roughly +8% of this baseline, showing that changing the distance in the harmonic head af-
fects emissions in a controlled—rather than catastrophic—way.:contentReference[oaicite:0]index=0

Harmonic losses remain competitive or greener. The most sustainable region of the plot is dom-
inated by non—Euclidean harmonic losses. In particular, Bray—Curtis (Normalized), Bray—Curtis
(Absolute), Canberra (Weighted), and Mahalanobis (Cholesky) consistently achieve lower cu-
mulative emissions than cross—entropy, even after adding the more demanding Marathi Sign and
TinyImageNet settings. Cosine variants (Cosine (Stable) and Cosine (Unstable)) and Euclidean har-
monic loss sit very close to the baseline, indicating that distance—based heads introduce essentially
no sustainability penalty while still improving accuracy and representation structure.

Behavior of additional baselines. Among the newly added conventional baselines, Label
Smoothing and Confidence Penalty occupy the middle of the spectrum: their emissions are com-
parable to, but generally not better than, those of the best harmonic distances. In contrast, more
aggressive objectives such as Focal Loss and large—margin Center Loss variants tend to clus-
ter on the higher—emission side, reflecting the extra computation and slower convergence induced
by power—scaled gradients and auxiliary center updates. ArcFace configurations behave similarly:
moderate settings can be near baseline, but high margin/scale choices increase emissions relative to
the most efficient harmonic distances.

Across all four datasets and backbones, the qualitative picture is stable. Non-Euclidean har-
monic losses provide some of the greenest options, often achieving lower or baseline—level emis-
sions while simultaneously improving accuracy and interpretability. The main exception is Ma-
halanobis (Standard), which remains the least sustainable configuration due to its covariance
estimation cost—consistent with our earlier observation that Mahalanobis emphasizes represen-
tation clarity at a computational price. Overall, the expanded analysis confirms that distance
choice in the harmonic head materially affects the carbon footprint of training, and that carefully
chosen non-Euclidean geometries (e.g., Bray—Curtis, Canberra, cosine) offer a favorable perfor-
mance—interpretability—sustainability trade—off compared to both Euclidean harmonic loss and mod-
ern regularized baselines.

Figure [7|reports cumulative emission differences (gCOzeq) for each custom loss function across all
12 model/dataset combinations. (Total Baseline = 181.2 gCOqeq).

Lower-than-baseline emissions: Mahalanobis (Standard) shows the largest positive delta, indi-
cating consistently lower emissions; Bray—Curtis (Standard) and Cosine (Unstable) also sit on the
positive side, with Canberra (Standard) and Cosine (Stable) slightly above zero. Euclidean and
Manhattan are close to baseline. Of the new baseline loss functions introduced, Confidence Penalty
performs on par with Cosine (Unstable) and the most efficiently compared to its counterparts. Al-
most all new losses are more efficient than Cross Entropy Loss, with varying degrees of success.
Other distances are characterized by higher emissions, as shown by the red cluster. Results reinforce
that non-Euclidean harmonic losses can be more sustainable than their Euclidean counterpart, and
that the choice of distance materially affects the carbon footprint of model training.
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Figure 7: Vision: Emissions Averaged Across Seeds and Aggregated Over all 12 Model Backbones.

H CONVERGENCE ANALYSIS

Vision: Figure [§]reports the training and validation loss trajectories for PVT and ResNet50 across
all datasets and all non-Euclidean harmonic losses. A key concern is whether distances that intro-
duce nontrivial geometric structure such as cosine and Mahalanobis lead to unstable optimization or
distorted convergence landscapes. Empirically, we observe no such issues.

Across MNIST, CIFAR-10, CIFAR-100, and Marathi Sign, all non—Euclidean harmonic losses ex-
hibit smooth, monotonic decrease in the training objective and stable validation trends, with no
oscillation, divergence, or gradient explosion. Even distances with stronger geometric bias (e.g.,
Mahalanobis, Chebyshev, Bray-Curtis) converge at rates comparable to or faster than Euclidean
harmonic loss. Cosine variants in particular show the fastest early descent, followed by steady
tightening of the validation curves, consistent with their angularly flatter basins.

Notably, none of the distances introduce optimization barriers, despite their differing curvature prop-
erties. Mahalanobis maintains stable descent even though anisotropic curvature could, in principle,
yield direction-dependent gradients. Likewise, Canberra, Hamming, Manhattan, and Minkowski
losses converge smoothly, indicating that the harmonic formulation effectively normalizes distance
geometry into a well-conditioned optimization surface.

Overall, the loss curves demonstrate that the harmonic link function absorbs geometric variability
and translates heterogeneous distance metrics into similarly well-behaved training dynamics. This
provides experimental evidence that alternative geometries do not impair convergence nor destabi-
lize class separation boundaries.

Language: Figure [J reports training/validation loss, training accuracy, and (for GPT-2B) train-
ing and validation perplexity for cross—entropy, Euclidean harmonic, and Minkowski (p=2) heads
across BERT-0.1B, GPT-0.1B, GPT-2B, and QWEN2-0.5B. Across all architectures, the distance—
based harmonic losses exhibit smooth optimization dynamics: losses decrease monotonically with
no oscillatory or unstable regimes, and accuracy curves increase steadily towards a plateau.

For BERT-0.1B, Euclidean and Minkowski harmonic losses reduce both training and validation
loss more quickly than cross—entropy and converge to a lower plateau, while achieving higher final
training accuracy. GPT-0.1B shows a similar pattern: all three heads converge, but the harmonic
variants reach a given accuracy earlier and with gently sloping curves, indicating stable gradients.
For GPT-2B and QWEN2-0.5B, the three heads track each other closely in both loss and accuracy,
confirming that the change of geometry does not impede convergence even at larger scale. The
validation loss curves mirror the training behaviour: no divergence or late—stage degradation is
observed for any harmonic configuration.
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The GPT-2B perplexity panel further corroborates this picture. Training and validation perplexity
decrease rapidly and stabilize to comparable levels for all heads; the harmonic variants sometimes
achieve slightly faster early reductions, but do not introduce pathological behaviour. Overall, these
results show that replacing the linear classifier with a distance—based harmonic head preserves, and
in some cases marginally improves, the convergence properties of standard cross—entropy while
enabling the geometric and interpretability benefits discussed in the main paper.
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Figure 8: Loss convergence behavior with PVT and ResNet50: Training and Validation loss across
all datasets with different non-Euclidean harmonic losses.
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Figure 9: Loss convergence behavior with language models (BERT-0.1B, GPT-0.1B, QWEN2-0.5B,
GPT-2B).
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I GROKKING ANALYSIS: MODULO ADDITION

Figure[I0]summarizes the behavior of standard MLPs and H-MLPs trained on the synthetic modulo—
addition task, a setting known to exhibit pronounced grokking effects under cross—entropy. The top
two rows illustrate training curves and corresponding 2D embeddings for baseline cross—entropy
models (first two columns) and Euclidean harmonic loss (third and fourth columns). The remaining
rows extend this comparison to alternative non—Euclidean harmonic losses.

Cross—entropy exhibits clear grokking. For both the standard MLP and its lightly regularized
variant, cross—entropy produces the characteristic grokking pattern: training accuracy rapidly con-
verges while test accuracy improves only after a long delay. This decoupling is consistent with prior
observations in algorithmic tasks, where cross—entropy tends to overfit memorization pathways be-
fore discovering the true modular arithmetic structure. The PCA plots confirm this: the learned
embeddings under cross—entropy have diffuse, irregular geometry, and the first two principal com-
ponents explain only a small fraction of the variance (EV ~ 20-30%).

Euclidean harmonic loss eliminates grokking and induces a perfect geometric structure. In
contrast, the Euclidean harmonic model reaches high train and test accuracy simultaneously. No
grokking delay is observed. The PCA projection reveals a striking property: the latent representa-
tion forms a perfect 2D circle, and the first two principal components explain nearly all variance
(EV ~ 100%). This matches theoretical expectations for harmonic distance-based classification on
cyclic group structure: the model learns an isometric embedding of Z,, into the plane, validating the
geometric alignment induced by harmonic objectives.

Other distance-based harmonic losses replicate the circle structure with similarly fast gener-
alization. The bottom rows show that this desirable behavior is not unique to Euclidean distance.
Cosine, stable cosine, Manhattan (1-norm), several Canberra variants, Hamming losses, Minkowski
p = 3, Chebyshev, and others all produce the same qualitative outcome:

* Immediate or near-immediate generalization, with no grokking phase.
* Highly structured 2D embeddings, often forming a near—perfect circle.

» Explained variance approaching 100%, indicating strong alignment to a low-—
dimensional manifold reflecting the algebraic symmetry of the task.

Some distances (e.g., Hamming and Chebyshev) produce slightly rotated or warped circles, but the
essential geometric structure and variance concentration remain intact. This demonstrates that har-
monic losses robustly recover the underlying modular arithmetic structure regardless of the distance

family.

Harmonic losses reduce grokking compared to cross—entropy. Across all non—Euclidean dis-
tances tested, harmonic losses exhibit two consistent advantages over cross—entropy:

1. Reduced grokking or complete elimination of delayed generalization. Training and test
accuracy rise together, indicating that the model discovers the algorithmic rule rather than
memorizing individual cases.

2. Improved interpretability via stable geometric structure. The emergence of a low—
dimensional circular manifold with EV close to 1.0 serves as a quantitative and visual
certificate of representation clarity.

These results reinforce the core claims of the paper: harmonic losses promote structured, prototype—
aligned representations and smoother, more reliable optimization dynamics, even on tasks where
cross—entropy typically groks. The fact that many distances achieve EV ~ 100% highlights that the
benefits of harmonic classification do not depend on Euclidean geometry alone, but arise from the
broader class of distance-based harmonic objectives.
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Figure 10: Results on standard MLP trained for modular addition. The harmonic model trained for
modular addition generalizes quickly without grokking. Moreover, the embedding forms a perfect
2D circle. EV in the plot represents the explained variance by the first two principal components of
the embedding.

J COMPUTATIONAL COMPLEXITY: FLOPS

Table [T reports the approximate floating—point operations per forward pass for each back-
bone—dataset. On 32x32 inputs (MNIST resized, CIFAR-10/100, MarathiSign), the FLOP hi-
erarchy is consistent: MLP is cheapest (<0.004 GFLOPs), CNN roughly 3x more expensive
(= 0.012GFLOPs), PVT adds another ~3x (= 0.038 GFLOPs), and ResNet50 is about 2x
PVT (= 0.08 GFLOPs). Moving to high-resolution inputs (224x224 for TinyImageNet and
our high-resolution MarathiSign runs) increases cost by two orders of magnitude: PVT rises to
~1.9 GFLOPs and ResNet50 to ~4.1 GFLOPs per forward pass. These numbers highlight that i)
sustainability differences across architectures are dominated by backbone FLOPs, while ii) swap-
ping Euclidean harmonic loss for alternative distances or baselines changes only the final classifier
head, adding an O(Cd) cost that is negligible compared to the convolutional / transformer body.
Consequently, the per—step FLOP budget is effectively distance—invariant, and our sustainability
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comparisons across losses can be interpreted as differences in optimization dynamics (steps-to-
target, stability) rather than raw arithmetic cost.

Table 16: Per-sample FLOPs, GFLOPs, and parameter counts for each backbone and dataset.
Model Dataset InCh. H W #Cls FLOPs Params GFLOPs

CNN CIFAR10 3 32 32 10 12307072 545098 0.0123
CNN CIFAR100 3 32 32 100 12330112 556708 0.0123
CNN MarathiSign 3 32 32 43 12315520 549355 0.0123
CNN MNIST 1 28 28 10 8520064 421642 0.0085
CNN TinyImageNet 3 224 224 200 602966144 25735432 0.6029
MLP CIFAR10 3 32 32 10 3413760 1707274 0.0034
MLP CIFAR100 3 32 32 100 3459840 1730404 0.0034
MLP MarathiSign 3 32 32 43 3430656 1715755 0.0034
MLP MNIST 1 28 28 10 1070848 535818 0.0010
MLP TinyImageNet 3 224 224 200 309536256 154769096 0.3095
PVT CIFAR10 3 32 32 10 38268630 12746560 0.0382
PVT CIFAR100 3 32 32 100 38314710 12769600 0.0383
PVT MarathiSign 3 32 32 43 38285526 12755008 0.0382
PVT MNIST 3 32 32 10 38268630 12746560 0.0382
PVT TinyImageNet 3 224 224 200 1899590400 12795200 1.8995
ResNet50 CIFAR10 3 32 32 10 79618429 23472480 0.0796
ResNet50 CIFAR100 3 32 32 100 79987069 23656800 0.0799
ResNet50 MarathiSign 3 224 224 43 4096080128 23540064 4.0960
ResNet50 MNIST 1 28 28 10 60007460 23472480 0.0600
ResNet50 TinyImageNet 3 224 224 200 4096723200 23861600 4.0967

K GEOMETRIC INSIGHTS

To better illustrate how different harmonic distances shape the embedding geometry, we visualize
the last-layer representations of ResNet50 on MNIST (see Figure and CIFAR10 (see Figure
[I2) using 2D PCA, with class prototypes overlaid as markers. For the Euclidean harmonic head,
the class clusters are roughly spherical and separated by (approximately) straight boundaries in the
projection: decision regions are controlled mainly by radial distance to each prototype, yielding
isotropic attraction basins around each center.

Under Cosine harmonic loss, the picture changes markedly. Features and prototypes concentrate
on (or very near to) a common hypersphere, so the PCA plot shows clusters arranged along a cir-
cle. Classes are separated primarily by their angle rather than their norm, and decision boundaries
correspond to angular bisectors between prototypes. This matches our geometric claim that cosine
harmonic removes radial curvature and constrains optimization to an angular manifold: as training
proceeds, points slide along the sphere towards their prototype, producing wide, smooth basins and
stable gradient norms.

By contrast, Mahalanobis harmonic loss induces anisotropic curvature. After whitening by ¥ ~1/2,

the decision boundaries are linear, but in the original feature space they correspond to ellipsoidal
contours. In the PCA plots this appears as elongated clusters and distorted attraction basins around
prototypes, with some directions exhibiting much tighter concentration than others. When the em-
pirical covariance is well-conditioned this yields very sharp, well-separated clusters (high variance
concentration), but when eigenvalues are highly unbalanced the same anisotropy can make opti-
mization more sensitive to particular directions.
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Figure 11: Geometric effect of distance—based harmonic losses on ResNet50 embeddings (MNIST).
From top to bottom: Baseline (a), Euclidean harmonic loss (b), cosine harmonic loss (c), and Ma-
halanobis harmonic loss (d).

L ADDITIONAL RESULTS

L.1 VISION: TABLES

The empirical evaluation of non-Euclidean harmonic losses across MNIST, CIFAR-10, and CIFAR-
100 with MLP, CNN, and ResNet50 backbones reveals several consistent patterns.

Model Performance. Cosine distance emerges as the most reliable performer across architectures
and datasets. In both stable and unstable variants, cosine harmonic loss consistently improves test
accuracy and F1 relative to Euclidean, with gains most pronounced in deeper models (CNNs and
ResNets) and in medium-complexity datasets such as CIFAR-10. Bray—Curtis offers modest gains in
certain contexts but is less consistent, while Mahalanobis can improve accuracy on simple datasets
(e.g., MNIST) but often lags behind cosine in more challenging regimes. Euclidean harmonic loss,
while better than cross-entropy in terms of stability, is consistently outperformed by cosine-based
alternatives.

Interpretability. Distances strongly reshape the geometry of the learned representations. Cosine
and Bray—Curtis often yield large improvements in explained variance (EV), indicating more com-
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Figure 12: Geometric effect of distance—based harmonic losses on ResNet50 embeddings (CI-
FAR10). From top to bottom: Baseline (a), Euclidean harmonic loss (b), cosine harmonic loss
(c), and Mahalanobis harmonic loss (d).

pact feature spaces aligned with class prototypes. Mahalanobis produces the most dramatic gains
in EV, frequently approaching full variance explanation, but this comes at the cost of stability and
efficiency. Prototype coverage (PC90%) tends to shrink under cosine and Mahalanobis, highlight-
ing sharper clustering effects: models assign fewer prototypes to cover 90% of variance, making the
representation space more interpretable but less evenly distributed.

Sustainability. Sustainability outcomes mirror performance trends. Cosine distances typically re-
duce carbon emissions relative to Euclidean, in some cases by up to 40%, making them both ef-
fective and energy-efficient. Bray—Curtis shows mixed results, with occasional emission savings
but less consistent behavior. Mahalanobis tends to incur higher emissions, reflecting the computa-
tional overhead of covariance estimation and matrix operations. Shallow architectures (MLPs) show
less differentiation across distances in emissions, while deeper backbones amplify both the benefits
(cosine) and costs (Mahalanobis).

Trade-offs. Taken together, the results confirm that distance choice is not neutral in harmonic loss.
Cosine provides the most favorable balance across performance, interpretability, and sustainability,
representing the strongest general-purpose alternative to Euclidean. Bray—Curtis occupies a mid-
dle ground, offering interpretability benefits without always delivering accuracy or efficiency gains.
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Table 17: Results for CIFAR100 CNN. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).
Method Acc F1 gCO02eq EV PC90%

Baseline 0.3795 0.3795 1.18 0.459295 49.3333
Bray-Curtis (Norm.) 0.3229 (-14.91%) 0.3182 (-16.16%) 0.8132 (30.94%) 0.9094 (98%)  2.6667 (94.59%)
Mahalanobis (Chol.) 0.2927 (-22.86%) 0.2921 (-23.04%) 0.727 (38.25%) 0.341 (-25.75%) 50 (-1.35%)

Cosine (Unst.) 0.2602 (-31.44%) 0.2667 (-29.73%) 2.1156 (-79.68%) 0.5306 (15.52%) 45 (8.78%)
Cosine (Stable) 0.2501 (-34.09%) 0.2516 (-33.71%) 1.4263 (-21.14%) 0.5216 (13.57%) 45 (8.78%)
Euclidean 0.2413 (-36.4%) 0.2431 (-35.95%) 1.2866 (-9.28%) 0.4362 (-5.02%) 50 (-1.35%)

Table 18: Results for CIFAR100 MLP. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).
Method Acc F1 gCO02eq EV PC90%

Baseline 0.2617 0.2582 0.85 0.285203 50.0
Bray-Curtis (Norm.) 0.226 (-13.64%) 0.2191 (-15.15%) 0.8938 (-5.35%) 0.9843 (245.11%) 1 (98%)
Mahalanobis (Chol.) 0.1833 (-29.96%) 0.1811 (-29.85%) 1.0889 (-28.34%) 0.0354 (-87.57%) 50 (-0%)
Bray-Curtis (Abs.) 0.1444 (-44.81%) 0.1392 (-46.07%) 2.1255 (-150.51%) 0.5317 (86.43%) 47.6667 (4.67%)
Cosine (Unst.) 0.1237 (-52.74%) 0.1186 (-54.06%) 0.5064 (40.31%) 0.3799 (33.21%) 40.6667 (18.67%)
Euclidean 0.119 (-54.53%) 0.1222 (-52.69%) 0.589 (30.58%)  0.2437 (-14.55%) 50 (-0%)

Mahalanobis maximizes interpretability at a clear sustainability cost, making it attractive primarily
when prototype clarity outweighs computational expense. Euclidean serves as a stable but subopti-
mal baseline.

Conclusion. This systematic study establishes that non-Euclidean harmonic losses provide a flex-
ible and effective design space. In particular, cosine distance offers a compelling replacement for
cross-entropy and Euclidean harmonic loss in vision tasks, consistently improving accuracy, inter-
pretability, and sustainability. These findings position distance-tailored harmonic losses as a promis-
ing avenue for advancing deep learning models that are not only accurate but also more transparent
and energy-conscious.

L.2 VISION: SUSTAINABILITY
L.2.1 MNIST

Figure [13] summarizes the carbon deltas (gCOzeq relative to cross-entropy) when swapping the
training objective for harmonic-loss variants on MNIST across four backbones.

MLP. Most distances reduce per—step emissions vs. cross-entropy (green bars), with the largest
savings from heavier geometry that replaces the softmax/cross-entropy path (e.g., Mahalanobis/-
standardized, Chebyshev). Euclidean and Bray—Curtis yield modest savings; only a few variants
show small positive overheads. Given MNIST’s simplicity and the near-saturation accuracies, these
reductions likely translate into net greener runs because steps-to-target are comparable.

CNN. A broad set of distances are carbon-negative vs. baseline. Again, standardized Maha-
lanobis/Chebyshev rank among the lowest-emission options; Bray—Curtis and Euclidean remain

Table 19: Results for CIFAR100 ResNet50. Parentheses: % changes w.r.t. Baseline (Cross-
Entropy).

Method Acc F1 gCO2eq EV PC90 %
Baseline 0.6983 0.6969 87.77 0.107216 50.0
Cosine (Stable) 0.7357 (535%) 0.736 (5.61%)  72.9745 (16.85%) 0.5979 (457.66%) 8 (84%)
Cosine (Unst.) 0.7323 (4.87%) 0.7332 (521%) 71.7592 (18.24%) 0.5857 (446.27%) 8 (84%)

Bray-Curtis (Norm.) 0.655 (-6.19%)  0.6513 (-6.54%) 106.4049 (-21.24%) 0.7131 (565.08%) 6 (88%)
Mahalanobis (Chol.) 0.6274 (-10.15%) 0.6239 (-10.47%) 138.9317 (-58.3%) 0.7353 (585.81%) 17.5 (65%)
Euclidean 0.7055 (1.03%)  0.7062 (1.33%) 97.432 (-11.01%)  0.5679 (429.66%) 25.5 (49%)
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Table 20: Results for CIFAR10 CNN. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).
Method Acc F1 gCO02eq EV PC90%

Baseline 0.6278 0.6269 1.12 0.688081 9.0

Mahalanobis (Chol.) 0.6644 (5.82%) 0.6642 (5.95%) 1.1139 (0.68%) 0.4752 (-30.93%) 50 (-455.56%)
Bray-Curtis (Norm.) 0.6597 (5.08%) 0.6551 (4.5%) 1.1489 (-2.45%) 0.8913 (29.54%) 4.3333 (51.85%)
Minkowski (p=3.0) 0.6589 (4.95%) 0.6593 (5.17%) 1.1598 (-3.42%) 0.5425 (-21.15%) 50 (-455.56%)
Cosine (Stable) 0.6584 (4.87%) 0.6566 (4.74%) 1.1663 (-3.99%) 0.647 (-5.97%) 18.6667 (-107.41%)
Euclidean 0.6495 (3.45%) 0.6476 (3.31%) 1.1228 (-0.12%) 0.6582 (-4.34%) 14.3333 (-59.26%)

Table 21: Results for CIFAR10 MLP. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).
Method Acc F1 gCO2eq EV PC90%

Baseline 0.5397 0.5385 0.53 0.346504 47.0
Bray-Curtis (Norm.) 0.5224 (-3.21%) 0.5201 (-3.41%) 0.5264 (0.81%) 0.967 (179.07%) 1 (97.87%)
Mabhalanobis (Chol.) 0.5087 (-5.75%) 0.5088 (-5.51%) 0.458 (13.7%)  0.0522 (-84.94%) 50 (-6.38%)
Bray-Curtis (Abs.)  0.4934 (-8.59%) 0.4924 (-8.55%) 0.6313 (-18.96%) 0.2434 (-29.76%) 50 (-6.38%)
Bray-Curtis (Std.)  0.4931 (-8.64%) 0.4935 (-8.35%) 0.6435 (-21.25%) 0.2906 (-16.14%) 50 (-6.38%)
Euclidean 0.4871 (-9.74%) 0.4852 (-9.9%) 0.4303 (18.92%) 0.4303 (24.19%) 42.3333 (9.93%)

Table 22: Results for CIFAR10 ResNet50. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method Acc F1 gCO2eq EV PC90%
Baseline 0.843 0.8431 48.65 0.257211 50.0

Cosine (Stable) 0.9262 (9.87%) 0.9262 (9.86%) 40.6776 (16.39%) 0.7559 (193.9%) 5 (90%)
Cosine (Unst.) 0.9234 (9.54%) 0.9234 (9.53%) 29.3968 (39.58%) 0.761 (195.86%) 5 (90%)

Bray-Curtis (Norm.) 0.9193 (9.05%) 0.9192 (9.02%) 45.6222 (6.23%) 0.7883 (206.49%) 5 (90%)
Chebyshev (Std.) 0.905 (7.36%) 0.905 (7.34%) 48.5505 (0.21%) 0.9995 (288.59%) 1 (98%)
Euclidean 0.9185 (8.96%) 0.9185 (8.94%) 45.8759 (5.71%) 0.683 (165.56%) 25.5 (49%)

Table 23: Results for MNIST CNN. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).
Method Acc F1 gCO2eq EV PC90 %

Baseline 0.9782 0.9782 1.19 0.585633 10.6667
Bray-Curtis (Norm.) 0.9889 (1.09%) 0.9888 (1.09%) 1.1348 (4.42%) 0.7225 (23.38%) 13.6667 (-28.12%)
Mahalanobis (Chol.) 0.9879 (1%)  0.9879 (0.99%) 1.0639 (10.39%) 0.4673 (-20.2%) 36.3333 (-240.63%)
Minkowski (p=3.0) 0.9877 (0.97%) 0.9876 (0.96%) 1.1154 (6.06%) 0.4195 (-28.37%) 49.3333 (-362.5%)
Hamming (Soft) 0.9833 (0.52%) 0.9832 (0.51%) 1.1815 (0.49%) 0.3089 (-47.26%) 50 (-368.75%)
Euclidean 0.9831 (0.5%) 0.9831 (0.5%) 1.1543 (2.78%) 0.4413 (-24.65%) 20.3333 (-90.62%)

Table 24: Results for MNIST MLP. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method Acc F1 gCO2zeq EV PC90%
Baseline 0.976 0.9758 0.55 0.565723 10.3333
Cosine (Unst.) 0.978 (02%) 0.9778 (02%) 0.5264 (3.58%) 0.382 (-32.48%) 10 (3.23%)

Mahalanobis (Chol.) 0.9774 (0.14%) 0.9771 (0.14%) 0.5611 (-2.78%) 0.092 (-83.74%) 50 (-383.87%)
Cosine (Stable) 0.9766 (0.06%) 0.9764 (0.06%) 0.5266 (3.54%) 0.4033 (-28.71%) 9.3333 (9.68%)
Chebyshev (Std.) 0.9756 (-0.04%) 0.9754 (-0.04%) 0.5881 (-7.73%) 0.7865 (39.03%) 5.6667 (45.16%)
Euclidean 0.9799 (0.4%) 0.9798 (0.41%) 0.5221 (4.35%) 0.358 (-36.72%) 9 (12.9%)
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Table 25: Results for MNIST ResNet50. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method Acc F1 gCOseq EV PC90%
Baseline 0.9909 0.9909 29.36 0.420353 50.0
Bray-Curtis (Norm.) 0.9962 (0.52%) 0.9961 (0.53%) 25.2889 (13.86%) 0.8453 (101.09%) 4 (92%)
Cosine (Unst.) 0.996 (0.51%) 0.996 (0.52%) 26.1851 (10.8%) 0.6888 (63.87%) 6 (88%)

Cosine (Stable) 0.9953 (0.44%) 0.9953 (0.45%) 26.4064 (10.05%) 0.6974 (65.91%) 6 (88%)
Mahalanobis (Chol.) 0.9938 (0.29%) 0.9938 (0.3%) 31.9246 (-8.75%) 0.9966 (137.09%) 1 (98%)
Euclidean 0.9934 (0.25%) 0.9934 (0.25%) 24.457 (16.69%) 0.9998 (137.84%) 1 (98%)

consistently frugal. Variants that introduce extra normalization or temperature schedules can erode
part of the gain but rarely flip the sign.

ResNet50. The deepest convolutional model shows the largest per—step savings: many distances
deliver substantial negative deltas relative to cross-entropy, suggesting that replacing the softmax
loss with metric-based objectives amortizes well at this scale. Only a handful of choices (e.g.,
certain Chebyshev/Canberra parameterizations) incur small positive overheads.

PVT (vision transformer). In contrast to the CNN family, most distances increase per—step emis-
sions over the baseline. The transformer’s attention and normalization stack appears less amenable
to the heavier distance computations; only a couple of standardized/normalized variants produce
small savings. On PVT, greener training favors the lightest geometries or retaining cross-entropy.

Takeaways. i) On MNIST, distance-based harmonic losses are often carbon-favorable for MLP/C-
NN/ResNet50, with the biggest gains on the deepest CNN; ii) these gains are not universal—PVT
tends to pay a premium; iii) because test accuracy curves on MNIST converge similarly across
losses, the per—step savings for CNN/ResNet50 likely convert into lower end-to-end energy. Prac-
tically, we recommend Euclidean/Bray—Curtis/standardized Mahalanobis for convolutional back-
bones, and cautious use (or kernel-fused, mixed-precision implementations) of heavier distances on
transformer-style models. Reporting both per—step emissions and energy-to-target accuracy remains
essential for fair sustainability claims.

L.2.2 CIFAR-10

Figure [14] reports carbon deltas in gCOeq relative to cross-entropy when training with harmonic-
loss distances on CIFAR-10.

MLP. Most distances are carbon—negative versus baseline, yielding small-to—moderate per—step
savings. A few choices incur mild overheads (rightmost bars), indicating that added normalization
or temperature scheduling can offset the gains on shallow networks.

CNN. The pattern strengthens: a broad set of distances reduce per—step emissions relative to cross-
entropy. Only a handful of variants sit near zero or slightly positive, suggesting that, for convolu-
tional encoders on CIFAR-10, metric-based objectives are generally more frugal per step.

ResNet50. Savings are uniform and largest: all distances fall below the baseline, with substan-
tial negative deltas. This indicates that replacing the softmax loss amortizes particularly well at
depth/width, likely due to better kernel utilization and reduced softmax/backprop overhead relative
to the total compute.

PVT (vision transformer). Most distances are again carbon-negative, though the spread is nar-
rower than ResNet50 and a couple of variants hover around parity or slightly positive. Transformers
benefit, but less dramatically than deep CNNs.

Takeaways. i) On CIFAR-10, distance-based harmonic losses are typically greener per step for
CNN/ResNet50/PVT, with the strongest effect on ResNet50; ii) MLP shows mixed but mostly fa-
vorable outcomes; iii) because our accuracy-vs-epoch curves on CIFAR-10 show similar or faster
convergence for several distances, these per—step gains are likely to translate into lower end-fo-end
energy for deep backbones. Practically, we recommend adopting the more frugal distances for con-
volutional and transformer models and pairing per—step reports with energy-to-target-accuracy to
substantiate sustainability claims.
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Figure 13: Carbon emission differences for MNIST across four model backbones (MLP, CNN,
ResNet50, PVT) when replacing cross-entropy with harmonic loss variants. Bars show the emission
difference in grams of COseq relative to the baseline (cross-entropy). Values above zero indicate
higher emissions than baseline, while negative values indicate greener, more sustainable outcomes.

L.2.3 CIFAR-100

Figure [T3] shows the carbon delta (gCOzeq vs. cross-entropy) when training with harmonic-loss
distances on CIFAR-100.

MLP. Savings are modest and geometry—dependent. Light/standardized variants (e.g., cosine, Eu-
clidean, some Minkowski/Canberra settings) are carbon—negative, while heavier norms and covari-
ance-based Mahalanobis parameterizations flip to positive overheads. On shallow models, extra
normalization steps can outweigh gains.

CNN. A broad swath of distances are carbon—negative relative to the 1.18 gCOyeq baseline; several
Mahalanobis and Bray—Curtis settings deliver the largest per—step reductions. A few choices (e.g.,
certain cosine/Canberra/Minkowski configurations) hover near parity or slightly positive, indicating
mild architecture sensitivity.

ResNet50. The deepest convolutional model exhibits a mixed but wide spread: many distances
achieve substantial savings (left cluster of dark-green bars), yet others incur clear premiums (right
cluster). Thus, distance choice materially changes footprint at scale. Notably, cosine variants are
among the frugal options here, whereas some Chebyshev/Minkowski/Bray—Curtis (absolute) set-
tings are costlier.

PVT (vision transformer). Most distances are carbon—positive vs. the 3.67 gCOseq baseline, with
only a couple of standardized/smoothed variants slightly negative. As on MNIST/CIFAR-10, the
attention/normalization stack appears less amenable to heavier metric computations.

Takeaways. i) On CIFAR-100, harmonic distances can be greener per step for CNNs and selec-
tively for ResNet50, but PVT generally pays a premium; ii) cosine tends to be frugal on deeper
CNNs (and competitive on MLP), aligning with its strong accuracy dynamics, whereas several Ma-
halanobis/Minkowski/Chebyshev configurations increase emissions unless they deliver clear quality
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Figure 14: Carbon emission differences for CIFAR10 across four model backbones (MLP, CNN,
ResNet50, PVT) when replacing cross-entropy with harmonic loss variants. Bars show the emission
difference in grams of COseq relative to the baseline (cross-entropy). Values above zero indicate
higher emissions than baseline, while negative values indicate greener, more sustainable outcomes.

gains; iii) because CIFAR-100 accuracy converges differently across distances, claims of sustain-
ability should couple per—step deltas with energy-to-target-accuracy/perplexity. Practically, prefer
cosine/Euclidean/standardized Bray—Curtis (and selected Mahalanobis settings that are both stable
and frugal) for CNN/ResNet50, and use kernel fusion + mixed precision if heavier geometries are
needed on transformer backbones.

Insights across datasets: A clear trend emerges across datasets: transformer models (PVT) often
incur higher emissions with distance-based harmonic losses, particularly on CIFAR-100 (see Fig-
ure[I3), whereas convolutional and residual networks (CNN, ResNet50) frequently yield greener
outcomes (see results in Figures —[I5). The sustainability benefit is especially pronounced
when distances incorporate robustness (Hamming-gumbel, Canberra-robust) or covariance aware-
ness (Mahalanobis-diagonal). Simpler datasets like MNIST show limited differences, while CIFAR-
10 and CIFAR-100 highlight the greater impact of distance choice on carbon footprint.

Cross-architecture insights: MLPs present a limited sustainability differences; emissions re-
main close to baseline across all distances. With CNNs, multiple distances (Hamming-gumbel,
Mahalanobis-diagonal, Canberra-weighted) consistently reduce emissions, showing CNNs benefit
most from harmonic loss efficiency. In PVT, harmonic losses generally increase emissions, espe-
cially on CIFAR-100, highlighting potential overhead in attention-based models. ResNet50 demon-
strates an effective integration with several distances (Hamming, Canberra, Bray—Curtis), which
achieve significant reductions in emissions over baseline, indicating that deep CNNs can combine
effectiveness with sustainability.

Overall, the sustainability analysis shows that harmonic losses can improve or degrade carbon ef-
ficiency depending on the backbone and dataset. The choice of distance measure therefore plays a
critical role not only in accuracy but also in environmental impact, reinforcing the need for holistic
evaluation across the accuracy—sustainability—interpretability triangle.
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Figure 15: Carbon emission differences for CIFAR100 across four model backbones (MLP, CNN,
ResNet50, PVT) when replacing cross-entropy with harmonic loss variants. Bars show the emission
difference in grams of COseq relative to the baseline (cross-entropy). Values above zero indicate
higher emissions than baseline, while negative values indicate greener, more sustainable outcomes.

L.3 LANGUAGE: SUSTAINABILITY

Figure [I6] reports per—Ik-step carbon differences (2CO2eq) when replacing cross-entropy with
distance-based harmonic losses for BERT, GPT, and QWEN. Positive bars indicate higher emis-
sions than the cross-entropy baseline (annotated atop each subplot).

Overall. Across all three backbones, distance-based losses tend to increase per—1k-step emissions
relative to cross-entropy. The magnitude of overhead correlates with the computational complex-
ity of the distance: lightweight cosine variants add the least overhead, while Mahalanobis and
Minkowski incur the most.

BERT. Cosine (simple or temperature-scaled) yields small overheads (low single-digit gCOseq over
a 7.87 gCO,eq baseline), suggesting that the extra normalization and dot-product operations have
modest cost. Euclidean and Bray—Curtis sit mid-pack, whereas Mahalanobis (Cholesky/standard/-
diagonal) and Minkowski (p > 2) are consistently more carbon intensive per 1k steps.

GPT. All distances increase emissions over the 60.36 gCOseq baseline, with a clearer spread: cosine
remains the most frugal among alternatives; Euclidean and Manhattan are mid-range; Mahalanobis
(any parameterization) and Minkowski/L2 are the heaviest. This indicates that the per-step FLOPs
and memory traffic of covariance-related computations (and higher-order norms) become more pro-
nounced at GPT scale.

QWEN. For this larger model (baseline 75.29 gCOseq), the methods we evaluated (Minkowski/L2
and Euclidean) both raise per—lk-step emissions, with Minkowski/L2 showing a substantial in-
crease. Although the set of distances is smaller here, the pattern mirrors GPT: heavier metrics
cost more per step as model width/depth grows.

Implications. i) If Green Al considerations are primary, cosine-based harmonic losses are the most
promising drop-in replacements, especially on encoder-style models (BERT). ii) Mahalanobis and
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Minkowski should be justified by clear accuracy or stability gains, as they carry the largest per-step
carbon premiums. iii) Reported values are per—1k-step; end-to-end footprint also depends on steps-
to-target-quality. Thus, a distance that reduces time-to-accuracy could still yield net carbon savings
even with higher per-step cost.

Summary. Distance choice in harmonic loss is not carbon-neutral: cosine variants introduce min-
imal overhead; Euclidean/Bray—Curtis are moderate; Mahalanobis/Minkowski are expensive. Any
claimed performance gains from richer geometries should be weighed against these systematic en-
ergy costs, preferably via energy-normalized quality metrics (e.g., accuracy per kWh).
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Figure 16: Carbon emission differences for LLM pretraining on OpenWebText (BERT, GPT2,
QWEN) when replacing cross-entropy with harmonic loss variants. Bars show the emission differ-
ence in grams of COseq relative to the baseline (cross-entropy). Values above zero indicate higher
emissions than baseline, while negative values indicate greener, more sustainable outcomes.

L.4 LANGUAGE: INTERPRETABILITY

Mechanistic and representation-level interpretability of large language models (LLMs) increasingly
leverages the hypothesis that internal activations admit approximately linear structure: many fea-
tures behave like directions in an activation space, and linear operations can steer or probe them
(Elhage et al.l 2022; |Huben et al., 2024} Turntrout, |2023). Within this paradigm, Principal Com-
ponent Analysis (PCA) is a simple, well-understood lens for: i) summarizing dominant sources of
variance in activations; ii) stabilizing analyses by denoising; and (iii) producing human-auditable
axes that can be inspected, correlated with concepts, and tracked over time.

Given a layer ¢ with residual-stream activations H, € R *? collected across N tokens (or prompts),
PCA factorizes Hy via SVD to yield orthogonal directions {uk}zzl ordered by explained variance.
In practice this supports:

1. Concept probing and visualization. Projections onto top PCs often align with seman-
tically meaningful contrasts; e.g., the first PC of GPT-style embeddings correlated with
human well-being judgments in zero-shot tests (FAR All 2023)), and per-layer PCA can
reconstruct or predict response modes in GPT-2 (Jorgensen, [2023)).
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2. Diagnosing and localizing phenomena. Layer-wise or head-wise PCA reveals where vari-
ance concentrates, helping localize depth at which concepts emerge or consolidate (com-
plementary to linear probing) (Zhou et al.,[2024)). Tracking subspace distance across check-
points detects representational drift during fine-tuning or domain shift.

3. Sanity checks and baselines. With growing interest in sparse autoencoders (SAEs) for
monosemantic features (Huben et al.| 2024)), PCA serves as a transparent baseline decom-
position: if SAEs meaningfully improve sparsity/faithfulness over PCA while matching
reconstruction, that strengthens the interpretability claim (Templeton et al., [2023).

PCA is most compelling under: a) approximately linear feature superposition and b) high signal-
to-noise in dominant directions. Toy and empirical studies argue that Transformers often encode
many features as directions (superposition) (Elhage et al.,[2022), and even simple linear additions to
activations can steer model behavior (Turntrout, |2023). PCA then becomes an appropriate first-pass
tool to:

* extract high-variance axes that frequently correlate with coherent features or tasks,

* reduce dimensionality before causal tests (e.g., ablate/project-out a PC and re-evaluate be-
havior),

* build compact surrogates (e.g., PCA embeddings for downstream analyses or compression)
(Bengtsson et al., 2025} |He et al., 2024).

Under widely observed linear-structure assumptions in Transformer activations, PCA offers an in-
terpretable, testable starting point: it surfaces dominant directions, supports hypothesis generation,
and provides quantitative targets for more advanced decompositions.
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