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ABSTRACT

Cross-entropy loss has long been the standard choice for training deep neural net-
works, yet it suffers from interpretability limitations, unbounded weight growth,
and inefficiencies that can contribute to costly training dynamics. Recent work in-
troduced harmonic loss, a distance-based alternative grounded in Euclidean geom-
etry, which improves interpretability and mitigates phenomena such as grokking,
also known as delayed generalization on the test set. However, the study of har-
monic loss remains narrow: only Euclidean distance is explored, and no system-
atic evaluation of computational efficiency or sustainability was conducted. In
this paper, we extend harmonic loss by systematically investigating a broad spec-
trum of distance metrics as replacements for the Euclidean distance. We compre-
hensively evaluate distance-tailored harmonic losses on both vision backbones
and large language models. Our analysis is framed around a three-way evalua-
tion of model performance, interpretability, and sustainability. On vision tasks,
cosine distances provide the most favorable trade-off, consistently improving ac-
curacy while lowering carbon emissions, whereas Bray-Curtis and Mahalanobis
further enhance interpretability at varying efficiency costs. On language mod-
els, cosine-based harmonic losses markedly improve gradient and learning sta-
bility, strengthen representation structure, and reduce emissions relative to cross-
entropy and Euclidean heads. Our code is available at: https://anonymous.
4open.science/r/rethinking-harmonic-loss—-5BABR/.

1 INTRODUCTION

Cross-entropy is the de facto loss function for classification tasks. However, it has shortcomings in
terms of model interpretability and training dynamics. Cross-entropy training provides no inherent
meaning to the learned weight vectors (they serve as abstract parameters rather than intuitive proto-
types) and can drive those weights to grow without bound in pursuit of confident predictions |Baek:
et al.| (2025). This unbounded weight growth can lead to phenomena like grokking: a delayed
generalization where the model only closes the train—test performance gap after extensive overtrain-
ing |[Power et al.[(2022). Moreover, in high-stakes applications where transparency is critical (e.g.,
healthcare or finance), the opaque nature of cross-entropy—trained models poses challenges for trust
and error diagnosis. These issues motivate the exploration of alternative loss functions that may
yield more interpretable, efficient, and robust model behavior.

Recently, harmonic loss was proposed as an alternative training objective to address some of these
concerns |Baek et al.| (2025). Harmonic loss replaces the conventional inner-product logits and soft-
max normalization with a distance-based formulation: model predictions are derived from the dis-
tances between the sample’s representation and class prototype vectors (learned weight vectors for
each class). Intuitively, this means that a model is trained to bring each sample closer to its correct
class center in the feature space rather than simply increasing a classification score. This approach
endows the learning process with two key properties: i) scale invariance — distance comparisons do
not depend on vector norm, and ii) finite convergence point — training aims for a distance of zero to
the correct prototype, rather than driving logits to +co as in cross-entropy. As a result, each class
weight converges to an anchor point that can be interpreted as the center of that class’s feature dis-
tribution. Empirically, Baek et al.| (2025)) demonstrated that harmonic loss can close the train—test
gap faster and yield more interpretable representations than cross-entropy. For example, the learned
weight vectors in a harmonic-loss model directly reflect class prototypes, making them semantically
meaningful. Models trained with harmonic loss were shown to require less data to generalize and to
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mitigate grokking, all while achieving competitive or better accuracy on vision and language bench-
marks Baek et al.| (2025)). These findings suggest that distance-based loss functions are a promising
direction for improving both performance and transparency in deep learning.

However, research on harmonic loss has been limited in scope so far. [Baek et al.|(2025) focused ex-
clusively on Euclidean distance as the metric for their loss function and did not examine the broader
impacts on computational efficiency or energy consumption. On the other hand, distance-based met-
rics have been explored in other contexts and problems. Notably, |Coil et al.| (2025) investigated a
wide range of distance measures for a problem of change point detection in concept-drift scenarios
for anomaly detection. Their study found that the choice of distance metric can drastically affect both
the accuracy and efficiency of detecting distribution shifts. For instance, replacing a costly metric
(e.g., Wasserstein) with simpler alternatives yielded comparable detection performance at substan-
tially lower computational cost. This evidence that “metric matters” in learning algorithms raises a
natural question: might other distance measures offer advantages over Euclidean in a harmonic-loss
setting? To date, no work has evaluated harmonic loss with distance metrics beyond Euclidean, nor
benchmarked their impacts across different domains.

In this paper, we present the first comprehensive study of custom distance-based loss functions in
deep learning classification, extending the harmonic loss framework to a variety of distance mea-
sures across multiple problem domains. We experiment with a rich set of distance metrics, including
Manhattan, Euclidean, Chebyshev, Minkowski, and cosine distance, as well as specialized metrics
such as Hamming, Canberra, Bray-Curtis, and Mahalanobis. These metrics are integrated as drop-in
replacements for Euclidean distance in the harmonic loss formulation.

We evaluate harmonic loss with each distance metric on two heterogeneous task families: image
classification (MLP, ResNet, PVT) and language modeling with transformer-based LLMs (GPT-2,
BERT, and others). This diversity enables us to assess whether certain distance-based losses consis-
tently outperform cross-entropy and Euclidean harmonic loss on metrics of effectiveness, efficiency,
and explainability. Specifically, we pursue the following research questions:

RQ1 (Model Performance): Do distance-based loss functions offer higher accuracy or faster con-
vergence compared to cross-entropy and Euclidean harmonic loss?

RQ2 (Interpretability): Do models trained with distance-based losses exhibit more interpretable
representations than those trained with cross-entropy?

RQ3 (Efficiency & Sustainability): If a custom distance-based loss outperforms cross-entropy,
does it do so without incurring higher computational cost? We track training time, resource utiliza-
tion, and energy consumption to assess the Green Al perspective |Schwartz et al.| (2019).

By addressing these questions, our aim is to explore a three-way trade-off between accuracy, inter-
pretability, and sustainability in the training process of deep learning models. Previous work has
typically optimized one or two of these aspects in isolation: for instance, improving accuracy at the
cost of enormous compute, known as “Red AI” (Schwartz et al., 2019)), or simplifying models for
interpretability while losing accuracy. In contrast, we seek solutions that can improve predictive
performance while also yielding lower energy usage and more transparent models.

Contributions. This paper introduces distance-tailored harmonic losses and provides an exten-
sive empirical and analytical evaluation of their merits. To our knowledge, this is the first work
to: i) extend the harmonic loss beyond Euclidean distance and benchmark a wide spectrum of met-
rics on both vision and NLP tasks, ii) assess the carbon footprint and resource usage of different
loss functions in a controlled setting, and iii) investigate interpretability outcomes of distance-based
losses. We also offer preliminary theoretical insights into how different distance metrics influence
the geometry of the learned model (e.g., relating L, losses to median-based class centers vs. Lo to
mean-based centers), which could inform the selection of an optimal loss for a given objective.

2  HARMONIC LOSS

Harmonic loss replaces the conventional inner-product logits and softmax normalization with a
distance-based formulation: model predictions are derived from distances between the sample’s
representation and class prototype vectors (the learned weight vectors for each class). Intuitively,
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this means a model is trained to bring each sample closer to its correct class center in the feature
space, rather than simply pushing up a classification score.

From Baek et al.| (2025), given the training set {(x;, y;)}7", with y; € {1,..., K} and class proto-
types {w.}X ; € RY, the harmonic logit is the £ distance between w; and x, i.e., d; = ||w; — x||2.
Then, the harmonic probabilities are given by:

;"
K —n’
Zj:l d;

where the harmonic exponent 7 is a hyperparameter that controls the heavy-tailedness of the proba-
bility distribution. The Harmonic loss is then given by:

pr(zi) = ey

L{wy}) =~ Z log p.(;). 2

This approach endows the learning process with two key properties: i) scale invariance: distance
comparisons do not depend on the overall norm of h or w, in contrast to inner-product logits; and
ii) finite convergence point: optimization seeks a distance of zero to the correct prototype, rather
than driving logits to =00 as in cross-entropy.

As a result, each class weight converges to an anchor point that can be interpreted as the center of
that class’s feature distribution. Empirically, Baek et al.| (2025) demonstrated that harmonic loss
can close the train—test gap faster and yield more interpretable representations than cross-entropy.
For example, the learned weight vectors in a harmonic-loss model directly reflect class prototypes,
making them semantically meaningful. Models trained with harmonic loss were also shown to
require less data to generalize and to mitigate grokking, all while achieving competitive or better
accuracy on both vision and language benchmarks. These findings suggest that distance-based loss
functions are a promising direction for improving performance and transparency in deep learning.

3 NON-EUCLIDEAN HARMONIC LOSSES

Our framework introduces non-Euclidean harmonic losses as a generalization of the harmonic loss,
and as a replacement for conventional cross-entropy training. The idea is that, in Eq. (I), the Eu-
clidean distance d; = ||w; — x|z is replaced by a non-Euclidean distance.

3.1 CLASS PROTOTYPES, DISTANCES, AND DISTANCE-BASED HARMONIC LOSS FUNCTION

Each class ¢ € {1,..., K} is associated with a prototype vector w. € R%. Given a sample h,
we compute its distance to all prototypes via a chosen metric d(-,-). We extend the Euclidean
formulation of harmonic loss (Baek et al.,[2025)) with the following distances:

Euclidean. deycligean(h, w) = ||h — w||2. Baseline Euclidean distance between feature and proto-
type.
Manhattan (L1). dmanhanan(h, w) = ||h — w||;. Emphasizes absolute differences, making it more

robust to outliers (Keeling & Kunisch, 2016;|Ye et al.,2012;|Giloni & Padberg,|2003)). It can stabilize
training and reduce unnecessary computations, thereby lowering energy costs.

Chebyshev (Loo). dchebyshev(h, W) = [[h — w||. Captures the maximum coordinate deviation,
offering a highly interpretable measure of the most discriminative feature dimension. Its simplicity
makes it computationally efficient.

Minkowski (Lp). dminkowski(, w;p) = ||h — w||,. Generalizes both L1 and L2, with tunable p
enabling a trade-off between robustness and sensitivity. This flexibility allows tailoring the loss to
dataset complexity, improving accuracy while balancing sustainability.

. T . . .
Cosine. deogine(h,w) = 1 — thl\]zﬁ Ignores magnitude and instead measures angular sim-

ilarity, making it particularly effective in high-dimensional embeddings (e.g., CNNs, Transform-
ers) (Reimers & Gurevych,|2019;|Deng et al., 2019; |Wang et al., [2018}[Sun et al.| 2016; Karpukhin
et al.,[2020). This often improves generalization with minimal computational overhead.
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Hamming. dhamming(h, w) = % 2?21 1¢p,w,}- Counts mismatches directly, providing highly in-
terpretable signals. With soft or gumbel relaxations, it becomes suitable for continuous embeddings
and can reduce emissions when binary approximations are leveraged.

Canberra. depperra(h, w) = Z?Zl m Normalizes differences by feature magnitudes,
enhancing sensitivity to small but meaningful variations. This can improve performance on fine-
grained tasks while stabilizing optimization.

_ Zgzl [ —w; |

T X (hil w4
ture vectors, making it efficient and interpretable for compositional data (Fuschi et al.| 2025} (Chao
et al., 2010; Song et al., 2020). It often balances accuracy with sustainability better than covariance-
based measures.

Bray-Curtis. dbray_cmis(h, w) . Captures proportional differences across fea-

Mahalanobis. dahalanobis(h, w; ) = \/ (h — w)TX~1(h — w). Incorporates feature correlations,
offering superior accuracy in complex datasets and deep CNNs (Pang et al.,[2018; [Lee et al., 2018;
Gomez-Silva et al.l 20215 |Omara et al.l |2021). Although covariance estimation may increase com-
putational cost, its interpretability and classification power justify the trade-off in high-capacity
models.

In our work, we generalize harmonic loss by replacing the Euclidean distance used to calculate
the harmonic logit with some other distance measure. Overall, compared to cross-entropy, these
distance-based harmonic losses reduce reliance on probabilistic normalization and can lower the
number of required operations. This translates into potential accuracy gains, reduced carbon emis-
sions, and improved interpretability, depending on the chosen distance and backbone.

A formal treatment of our distance—based probabilistic layer is provided in Appendix [A] There we
generalize the harmonic-loss analysis to broad distance families and prove: i) scale invariance and
the existence of finite minimizers under 1-homogeneous distances (Theorem [I), and ii) a margin-
style PAC—Bayes generalization bound whose finiteness follows from the finite—-norm solution (The-
orem[2). These results clarify when geometry choices are well-posed and why the resulting classi-
fiers admit standard generalization guarantees.

4 EXPERIMENTS AND DISCUSSION

4.1 TRAINING AND EVALUATION

Datasets. We evaluate on three vision benchmarks (MNIST, CIFAR-10, CIFAR-100) and one lan-
guage corpus (OpenWebText).

Vision. We consider a Simple MLP with two hidden layers (512, 256, ReLU), a Simple CNN (two
3x3 conv blocks with [32,64] channels and 2x2 max-pooling, then a 128-dim FC), ResNet-50
(standard [3, 4, 6, 3] bottleneck stages; for small inputs we remove the initial max-pool and use a
3x3 stride-1 stem), and PVTv2-B0 (four hierarchical stages with overlapping patch embeddings;
output pooled to a 256-dim vector).

Language. We study three Transformer families: GPT-style (decoder-only causal LM), BERT
(encoder-only masked LM with 15% masking), and Qwen2-style decoders.

Optimization. Unless noted, models are trained from scratch with Adam/AdamW-style optimizers
(weight decay, (51, B2) as configured), cosine learning-rate decay with linear warmup, mixed preci-
sion (FP16/BF16 when available), and gradient accumulation. We apply gradient clipping, dataset-
specific schedulers, and early stopping with dataset-specific patience and a minimum improvement
threshold (A in). For fairness, all harmonic heads and the baseline share the same backbone, batch
size, scheduler, and data order. Additional details about optimization are reported in Appendix

Model Performance. For vision tasks, we report average Accuracy and F1. For language task, we
report Gradient Stability (higher values indicate smoother training with lower variance in gradient
norms), Model Health (—Amodel_collapse_score): higher values means stronger resistance
to representation collapse, Clipping Quality (higher scores indicate healthier gradient flow without
extreme values requiring intervention), and Learning Quality (captures both how well the model
learned and how much it improved).
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Interpretability. We probe whether learned prototypes/weights act as class centers and whether fea-
tures become more structured by computing PCA explained variance on the penultimate features:
(1) PC2 EV (variance explained by the top two PCs), and (ii) PCA@90% (dimensions required
to reach 90% variance). Lower PCA@90% and higher PC2 EV indicate more concentrated, low-
dimensional structure. For language, we report PCA5: A variance explained by the top 5 principal
components of final hidden states (causal LM: last token; MLM: masked positions); higher values
implies more concentrated, low-dimensional structure.

Sustainability. We instrument training with CodeCarbon to log duration, energy, and COq
emissions. Emissions are reported per run and differentially vs. the cross-entropy baseline
(grams COq; negative means greener-than-baseline). We aggregate by (dataset, backbone, dis-
tance) and also report cumulative figures across seeds. For language, we also report Speed
(—Atime_to_90 _percent): higher values denotes fewer steps to reach 90% of final perfor-
mance.

To isolate the effect of the loss geometry, we only swap the classifier head (linear vs. distance-
based) while keeping: backbone weights initialization scheme, data preprocessing/augmentation,
optimizer and LR schedule, batch size, number of epochs, early-stopping rule, and randomness
controls (seeds). For ResNet-50/PVT we use identical augmentation; for LLMs we use the same
context length L, optimizer, and schedule across heads. We run multiple seeds and report means.
Exact architectures and preprocessing pipelines are detailed in Appendix Full hyperparame-
ter grids (including head-specific parameters ©, e.g., p for Minkowski or covariance settings for
Mahalanobis) are provided in Appendix [D}]

This unified protocol lets us systematically test how replacing the Euclidean harmonic head with
alternative distances impacts: i) final model performance, ii) representation structure and prototype
semantics, and iii) measured energy and carbon footprint.

4.2 VISION: RADAR PLOTS

Figure [I] provides a multi-criteria comparison of distance-based harmonic loss variants across
MNIST, CIFAR-10, and CIFAR-100 with MLP, CNN, and ResNet50 backbones. The radar plots
allow us to visualize trade-offs among model performance, interpretability, and sustainability.

RQ1: Model Performance (F1, Test Accuracy). Across architectures, cosine-based harmonic
losses are the most reliable performers. On MNIST and CIFAR-10, cosine typically achieves the
highest or near-highest accuracy and F1 and reaches those plateaus with smooth training dynamics.
On CIFAR-100, where capacity and data difficulty are more significant, cosine remains competitive
and frequently leads in CNN and ResNet50. Moreover, it is often among the top curves for PVT
as well. Euclidean and cross-entropy baselines are stable references, but are rarely the best once
a distance-based head is available. Other distances (e.g., Bray—Curtis, Mahalanobis) can match or
exceed cosine in isolated settings, but do so less consistently.

RQ2: Interpretability (PC2 EV, PCA 90%). Non-Euclidean distances shape the geometry of the
learned representation in a consistent way. Bray—Curtis and Chebyshev (standard) produce the
largest explained variance (PC2 EV) and reduce the number of principal components required to
cover 90% of the variance, indicating compact, prototype-aligned feature spaces. Cosine gener-
ally provides substantial EV gains while preserving strong performance, yielding a favorable accu-
racy—interpretability balance. Mahalanobis often achieves extreme concentration (very high EV),
reflecting strong alignment to class structure, but this effect can co-occur with less stable optimiza-
tion on harder datasets.

RQ3: Sustainability (Duration/Epoch, Emissions). Distance choice also influences efficiency.
Cosine tends to be neutral-to-favorable on emissions relative to Euclidean/cross-entropy across
backbones, with modest or no penalties in Duration/Epoch. Mahalanobis variants frequently in-
cur higher emissions, reflecting covariance-related computation, while Bray—Curtis shows mixed
but often moderate cost. Changes in Duration/Epoch are smaller than changes in accuracy or EV
(the final layer is light compared to the backbone), yet cumulative emissions still separate distances
meaningfully over many epochs and runs.

Three significant regularities emerge: i) Cosine is the best all-around choice: consistently high accu-
racy/F1, clear gains in EV, and neutral-to-lower emissions across MLP, CNN, ResNet50, and PVT;
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ii) Bray—Curtis (standard/normalized) is the best option for interpretability: it reliably increases
EV and reduces PCA 90% dimensionality; accuracy effects are positive but more configuration-
dependent; iii) Mahalanobis emphasizes representation clarity (very high EV) at a potential sus-
tainability cost; it is attractive when prototype sharpness is prioritized over efficiency.

4.3 LANGUAGE: RADAR PLOTS

Figure summarizes the effect of distance-tailored harmonic losses on BERT, GPT, and Qwen-style
decoders across the three perspectives. Scores are normalized so that larger areas indicate more
desirable behavior.

RQ1: Model Performance (Health, Stability, Clipping). Across architectures, cosine-based har-
monic losses are the most consistently strong on stability-oriented axes. In BERT, cosine heads
improve Gradient Stability and Learning Stability while maintaining high Model Health; Clipping
Quality remains favorable, indicating fewer extreme updates. In GPT, cosine with a very low tem-
perature can overconstrain the logits and slightly degrade learning stability, whereas cosine (simple)
and Minkowski (p=2) provide a steadier training signal. Qwen exhibits similar trends: Minkowski
and Euclidean remain competitive in stability, but cosine variants typically match or exceed them
in the combined performance envelope. Overall, non-Euclidean distances reduce gradient volatility
and collapse symptoms relative to the Euclidean head and the cross-entropy baseline.

RQ2: Interpretability (PCA Structure). Non-Euclidean distances tend to concentrate the token
representations. Cosine and Minkowski enlarge the PCA Structure slice (greater variance explained
by a few components), suggesting more organized, prototype-aligned hidden spaces. BERT benefits
the most, reflecting its bidirectional encoding and MLM target, while GPT and Qwen still show clear
gains over cross-entropy and Euclidean. These results mirror the vision findings: distances that
compare directions (cosine) or emphasize ¢,, geometry (Minkowski) yield more low-dimensional
structure.

RQ3: Sustainability (Emissions). The Emissions wedges indicate that replacing the linear clas-
sifier with a distance head introduces little overhead and can even be greener than cross-entropy.
In GPT and Qwen, the cross-entropy baseline typically occupies the largest emissions footprint,
whereas cosine and Minkowski are neutral-to-favorable. Extremely sharp cosine temperatures
may trade off stability for small emission gains; moderate settings avoid this. Since the head
is lightweight relative to the Transformer, differences accumulate through faster convergence and
steadier optimization rather than per-step cost.

Overall, Cosine is the most reliable all-around choice for LLMs, improving stability and representa-
tion structure with neutral or reduced emissions. Minkowski (p=2) offers a robust alternative when
cosine (with overly low temperature) harms stability, preserving strong PCA structure. The cross-
entropy baseline tends to be the least sustainable, while Euclidean harmonic loss is a solid reference
but rarely dominates once distance-based heads are allowed.

5 RELATED WORK

Loss functions for classification. The majority of classification models are trained with cross-
entropy loss due to its empirical effectiveness and probabilistic interpretation. However, it only
cares about separating classes, not about how the representations are separated, often yielding fea-
tures that are separable but not necessarily interpretable. Over the years, alternative loss functions
have been proposed to address these limitations. Metric learning losses such as contrastive and
triplet loss train models to preserve distances between examples, but require sampling strategies that
add training complexity. |Boudiaf et al.| (2020) propose a unifying mutual information framework
connecting cross-entropy to standard pairwise losses, showing that cross-entropy implicitly bounds
pairwise distance objectives. These insights motivate a deeper theoretical understanding of distance-
based training. Regularization-based approaches such as center loss (Wen et al., [2016) explicitly
encourage compact intra-class clusters and large inter-class separation. These works foreshadow
the idea that directly leveraging distances to class prototypes can improve representation quality.
Angular margin losses such as AMC-Loss in [Choi et al.| (2020) introduce geometric constraints on
angular separations to enhance interpretability via hyperspherical metrics. Orthogonal Projection
Loss (OPL) introduced by |[Ranasinghe et al.| (2021) encourages inter-class orthogonality and intra-
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Figure 1: Vision: Radar plots: 1) Model Performance (F1, Accuracy); 2) Interpretability (PC2
EV, PCA 90%), and 3) Sustainability (Duration/Epoch, Emissions). Plots feature Baseline (Cross-
Entropy), Euclidean harmonic, and the four top-performing non-Euclidean harmonic losses.

class cohesion without sampling overhead. Several studies have assessed how loss functions affect
neural network performance. Miller et al.| (2021) introduce Class Anchor Clustering (CAC) loss that
encourages tight class clusters centered on anchored prototypes, enhancing distance-based open-set
classification performance. This approach aligns with the prototype-centered philosophy underlying

harmonic loss.

2019) analyzed how eight loss functions impact neural network accuracy

and convergence speed, finding that additive-margin softmax loss resulted in the fastest conver-
gence and highest performance on multiple datasets. Janocha & Czarnecki| (2017) assessed 12 loss
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Figure 2: Language: Radar plots: 1) Model Performance (Model Health, Gradient Stability, Learn-
ing Quality, Clipping Quality); 2) Interpretability (PCAS EV), and 3) Sustainability (Emissions).
Plots feature Baseline (Cross-Entropy), Euclidean harmonic, and the top-performing non-Euclidean
harmonic losses.

functions for classification, finding that choice of loss function impacted learning speed and test-
ing accuracy. |Gonzalez & Miikkulainen| (2020) used genetic programming to develop Baikal loss,
which not only led to networks achieving higher accuracy than networks trained with cross-entropy
loss, but also faster training and higher performance in low-data settings. These studies demonstrate
a large focus on the impact of loss function on neural networks performance. Our work builds on
the discussion of the importance of loss function choice by drilling deeper on harmonic loss, exam-
ining how distance metric choice impacts the effectiveness of neural networks. Our focus is not on
comparing harmonic loss with other loss functions, which was done by|Baek et al.| (2025), but rather
to shed light on performance of a generalized harmonic loss.

Efficiency and Green AI. Green Al is an emerging initiative that calls for efficiency and energy
usage to be treated as first-class evaluation criteria (Schwartz et al., 2019). Many works on green
Al focus on model compression (Paula et al., 2025; Rafat et al., [2023)), comparing multiple models
(Verma et al.| [2024)) or fine-tuning strategies (Wang et al.,|2023)), or hyperparameter optimization for
carbon emission reduction Wang et al.|(2025). While prior works on new loss functions rarely report
sustainability metrics, we incorporate carbon footprint analysis into our evaluation due to claims that
models trained with harmonic loss are more data efficient and have less grokking (Baek et al.,[2025).

Interpretability in neural networks. Neural networks are complex and not inherently interpretable,
but a substantial amount of effort was done to improve interpretability (Zhang et al.|2021). The push
for interpretable by design models argues that transparency should be built into model architectures
and losses rather than added post-hoc (Rudinl 2019). Harmonic loss aligns with this vision by struc-
turally linking model weights to class prototypes. The study by Saphra et al.| (2024)) discusses how
internal model components reveal human-understandable circuits and features in LLMs. Techniques
such as activation patching, sparse autoencoders, transcoders, and crosscoders enable structural in-
terpretations of model behavior. Parallel to our interpretability focus, Wen et al.| (2025) introduced
InterpGN, a framework combining interpretable models with deep networks for time-series tasks,
preserving understandable reasoning where possible. Though not loss-centric, it reflects the growing
emphasis on transparency in deep learning research. Some work has focused on using loss functions
specifically to improve model interpretability. [Liu et al|(2022) combine sparse coding constraints
with cross-entropy to produce concise, interpretable word-level attributions. |Dong et al.|(2017) in-
troduced interpretative loss to improve interpretability of learned features during video captioning
tasks. Within classification tasks, |[Zhang et al. (2018)) designed a loss function to improve CNN
filter interpretabiltiy. Methods such as the one proposed by |[Hagos et al.| (2023) augment standard
losses with distance-based penalties that align model attributions with user-provided annotations,
strengthening interpetability.

Distance metrics in learning algorithms. Beyond supervised classification, the choice of distance
measure is known to be crucial. |Coil et al.| (2025) compared twelve distance metrics in anomaly
detection for concept drift. Their results highlighted that performance depends heavily on the chosen
metric and that efficient alternatives can sometimes match the performance of more costly distances.
A variety of other works have shown the importance of distance metric choice in different contexts.
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Amaya-Tejera et al.[(2024) used a kernel for SVMs that could support a variety of kernels, finding
that distance metric choice impacted performance. |Kalra et al.[ (2022) and [Hu et al.| (2016) both
found that distance metric choice impacted performance of k-nearest neighbors algorithms on a
variety of datasets. These result highlights the importance of systematically exploring metrics in
different contexts. To our knowledge, our paper is the first to bring this comparative perspective into
loss functions for deep neural networks.

6 CONCLUSION

This work examined distance—based harmonic losses as drop—in replacements for cross—entropy
across image classification (MNIST, CIFAR-10, CIFAR-100) with four vision backbones (MLP,
CNN, ResNet50, PVT) and LLM pretraining (GPT, BERT, Qwen), leveraging a broad family of
distances (cosine, Euclidean, Bray-Curtis, Mahalanobis, Minkowski, Chebyshev, Canberra, efc.).

What we learned. i) Geometry matters for optimization. Across vision and language, cosine
(stable) consistently delivered smoother training and the most reliable final performance; Euclidean
remained a solid reference; Bray-Curtis was often competitive but architecture—sensitive; Maha-
lanobis showed the largest variance: occasionally strong early learning, yet less stable plateaus.
Adding transformer—style PVT corroborated these vision trends. ii) Sustainability depends on
distance and architecture. On vision tasks, several distances are carbon—negative per step rel-
ative to cross—entropy for CNN/ResNet50 (largest gains on deeper CNNs), mixed on MLP, and
frequently carbon—positive on PVT. For LLM pretraining, the classifier head is lightweight, so dif-
ferences accrue mainly via convergence: the cross—entropy baseline typically exhibits the largest
cumulative emissions, while cosine and Minkowski are neutral-to—favorable. These results motivate
reporting both per—step deltas and energy—to—target—quality. iii) Interpretability can be quanti-
fied. PCA-based probes (PC concentration and PCA@90%) provide reproducible evidence that
distance—tailored heads yield more structured representations; this holds for image features and for
token representations in LLMs (causal last—token and MLM masked—token states).

Language: Cosine—based harmonic losses markedly improve gradient/learning stability and rep-
resentation structure (higher PCA concentration) for GPT, BERT, and Qwen, while reducing emis-
sions relative to both cross—entropy and Euclidean heads. Mahalanobis is less reliable for pretraining
due to covariance overheads and stability sensitivity.

Vision: For accuracy-focused workloads, cosine (stable) is preferred; Bray—Curtis is a viable sec-
ondary option; Mahalanobis should be used when its inductive bias yields clear benefits. For sustain-
ability on CNN/ResNet50, several distances reduce per—step COs; on PVT and LLMs, the lightest
geometries (cosine/Euclidean) should be favored, or cross-entropy should be retaind unless distance-
based losses reduce steps-to-target enough to offset higher per—step cost.

Future Work. Promising directions include scalable covariance estimation for Mahalanobis—style
heads, token—prototype curricula for language modeling, principled temperature control, and ex-
tending our sustainability analysis to instruction—tuning and multi-node regimes.

Reproducibility Statement. We took several steps to facilitate exact and statistical reproducibility.
The main paper specifies the learning objectives, training protocol, model families, and evaluation
metrics used in all studies. The Appendix contains: i) complete hyperparameter and backbone-
specific settings; ii) dataset descriptions and end-to-end preprocessing pipelines (including splits
and any filtering); iii) detailed experimental studies and analyses; iv) technical details with code
snippets to integrate our non-Euclidean harmonic losses in conventional deep learning pipelines.
An anonymous code repository (see Abstract) provides: ready-to-run scripts for data acquisition and
preprocessing; configuration files for every experiment; training/evaluation entry points; instructions
for reproducing results. Together, these materials are intended to enable independent researchers to
audit, rerun, and extend our findings with minimal effort.
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APPENDIX

A THEORETICAL PROPERTIES OF DISTANCE-BASED PROBABILISTIC
LAYERS

Setup. Let {(z;,y;)}"; be the training set with y; € {1, ..., K }. Each class has a prototype wy, € R¢
and a nonnegative distance d(x,w) > 0. Given a decreasing link « : Ry — R we define

o) = ;(d(%wk))

Zj:l ’i(d(mawj))’

harmonic k(r) = r~% with w > 0; and Typical distances include Euclidean/Mahalanobis, ¢,,
Bregman divergences, and cosine/angle on the sphere.

L({un}) = =Y logpy(a).

A.1 SCALE INVARIANCE AND FINITE MINIMIZERS

We begin by generalizing the finite-minimizer result of the harmonic loss (cf. Thm. 1, Sec. G in
Baek et al.[(2025))).

Definition 1 (Metric separability and homogeneity). A dataset is metric-separable if for each ¢ there
exists {wy} s.t. d(z;, wy,) < minj,, d(z;, w;). A distance d is I-homogeneous if d(cx, cw) =
le| d(x, w) for all ¢ > 0.

Theorem 1 (Finite minimizer and scale invariance for harmonic link). Assume d is 1-homogeneous
and the training set is metric-separable. For k(r) = r~%, the empirical loss L is invariant to

the joint rescaling (z,w) — (cx, cw) and attains a global minimum at finite {wy, }. In particular,
increasing ||wy || further does not reduce L.

Proof. Following the proof of Sec. G Thm. 1 in [Baek et al.| (2025), the probabilities remain un-
changed under uniform scaling for any 1-homogeneous distance d. For the probabilities, if we
replace z; by c,i and w; with cw;, then d(cx;, cw;) = cd(x;,w;), so the scaling factors cancel
when using a harmonic link . Therefore, once the correct classification is achieved, no further
reduction in loss is obtained by increasing ||wy|| and the loss achieves a global minimum at a finite

{wy}.
O

A.2 MARGIN-STYLE GENERALIZATION (PAC-BAYES VIEW)

Sec. G gives a PAC-Bayes margin bound that is finite because the harmonic solution has finite norm
(Thm. 2) in Baek et al.| (2025)).

Definition 2 (Distance margin). Given prototypes W = {wy}, define (W) = min; [d(z;, wy,) —
min;y, d(z;,w;)].
Theorem 2 (Generalization with metric margin). Assume all x; lie in a ball of radius R (in the

native norm of d or its inducing space). Let |W||. denote a capacity measure compatible with d.
With probability at least 1 — 0, the generalization error of the classifier satisfies

RIW. logu/a)) |

Y(W)vn n

where hy (z) = arg maxy, p(x) denotes the predicted class and n is the number of training sam-
ples. For the harmonic link, ||W || is finite by Thm.|l| yielding a finite bound (cf. Sec. G Thm. 2) in
Baek et al.|(2025).

Er [hw (z) #y] = O(
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Proof. Mirroring the proof for Sec. G Thm. 2 in [Baek et al.| (2025)), applying the standard PAC-
Bayes margin bounds, one obtains that with at least probability 1 — 6,

_ RW | log(1/6)
(Ei) [hw (2) #y] = O('y(W)\/ﬁ + p ) .

Since ||W||. is finite by Thm. [I} the bound is finite. O

B INTEGRATION INTO DEEP LEARNING PIPELINES

The DistLayer abstraction highlights that distance-based harmonic loss functions are highly
modular and can be seamlessly integrated into existing deep learning pipelines. The forward
method requires only three operations: (i) computing pairwise distances between sample embed-
dings and class prototype weights, (ii) clamping values for numerical stability, and (iii) applying a
softmin via 1log_softmax to obtain normalized class probabilities. This makes the substitution
of Euclidean distance with alternative metrics essentially a one-line change in the distance registry,
with no modifications required in the broader training loop.

Several design choices make the implementation robust. First, all distance functions are imple-
mented in a vectorized form, ensuring GPU efficiency and avoiding explicit loops. Second, nu-
merical safeguards (e.g., -offsets, clamping before roots and divisions, regularization of covariance
matrices) prevent instability across diverse datasets and architectures. Third, the registry-based de-
sign allows new distance functions to be added without disrupting the existing workflow, reinforcing
the flexibility of harmonic loss as a general framework.

From a methodological perspective, this implementation highlights one of the key contributions of
this work: the ease of replacing cross-entropy with distance-based harmonic loss. Unlike cross-
entropy, which relies on unbounded logit growth, the harmonic formulation treats classification as a
problem of minimizing distances to interpretable class prototypes. The plug-and-play nature of the
DistLayer demonstrates that alternative geometries (e.g., cosine, Mahalanobis, Bray—Curtis) can
be explored at negligible engineering cost, paving the way for systematic evaluation of accuracy,
sustainability, and interpretability across diverse tasks.
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class DistLayer (nn.Module) :
"""Final classification head using harmonic loss: logits =

— —distance."""
def _ init_ (self, in_features, n_classes, dist_name="euclidean",
— xxdist_kwargs) :

super () .__init__ ()

self.W = nn.Parameter (torch.empty (n_classes, in_features))
nn.init.kaiming_uniform_(self.W, a=5%x%0.5)

self.dist_name = dist_name
self.dist_fn = DIST_REGISTRY [dist_name]
self.dist_kwargs = dist_kwargs # e.g., p for minkowski,

< cov_inv for mahalanobis

def forward(self, h):

mmn

h: (B, D) features from backbone.

Returns log-probs for harmonic loss: log_softmax(-distance).
mmn

d = self.dist_fn(h, self.W, xxself.dist_kwargs) # (B, C)

d = torch.clamp(d, min=le-6, max=1e6) # general
— safety clamp
logits = -d # softmin

— over distances
return F.log_softmax(logits, dim=-1)

import torch
import torch.nn as nn
import torch.nn.functional as F

def _pairwise (fn):
"""rift a vector distance fn(h, w) —-> scalar into a batched
— pairwise form."""
def lifted(h, W):
# h: (B, D), wW: (C, D) -> (B, C)
h_exp = h.unsqueeze (1) # (B, 1, D)
W_exp = W.unsqueeze (0) # (1, C, D)
return fn(h_exp, W_exp)
return lifted

def euclidean (h, W, eps=le-4):
diff = h - W
return torch.sqgrt (torch.clamp((diff % diff).sum(-1) + eps,
— min=eps))
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def

def

def

def

def

def

manhattan(h, W, eps=le-4):
return (h - W) .abs().sum(-1) + eps

cosine(h, W, eps=le-6, stable=True):
if stable:
h. n = F.normalize(h, p=2, dim=-1)
W_n = F.normalize (W, p=2, dim=-1)

cos = (h_n % W_n).sum(-1)
else:
num = (h * W).sum(-1)
den = torch.clamp (h.norm(dim=-1) * W.norm(dim=-1) + eps,
— min=eps)
cos = num / den
return 1.0 - cos + eps

minkowski (h, W, p=1.5, eps=le-6):

diff = torch.clamp((h - W) .abs() + eps, min=eps)

dist_p = torch.clamp(diff.pow(p).sum(-1) + eps, min=eps)
return dist_p.pow (1.0 / p)

chebyshev (h, W, eps=le-6, smooth=False, alpha=10.0):
diff = (h - W) .abs()
if smooth:
# soft-max norm
return torch.logsumexp (alpha » diff, dim=-1) / alpha + eps
return diff.max (dim=-1) .values + eps

canberra(h, W, eps=le-4, variant="standard", min_denom=1le-3,
weight_power=1.0, normalize_weights=True) :
num = (h - W) .abs /()
den = h.abs() + W.abs() + eps
if variant == "robust":
den = torch.clamp (den, min=min_denom)
if variant == "weighted":
w = (den.pow(weight_power))
if normalize_weights:
w=w / (w.sum(-1, keepdim=True) + eps)
return (w » (num / den)).sum(-1) + eps
return (num / den) .sum(-1) + eps

bray_curtis(h, W, eps=le-3, variant="standard", min_sum=le-3):
num = (h — W).abs().sum(-1)

if variant == "abs":
den = (h.abs () + W.abs()).sum(-1)
else: # standard/normalized
den = (h + W).sum(-1) .abs ()
den = torch.clamp(den + eps, min=10 * eps, max=1leb)

return torch.clamp (num / den + eps, min=eps, max=1e6)
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def mahalanobis (h, W, eps=le-6, cov_inv=None, reg_lambda=le-2):
# h: (B, 1, D), wW: (1, C, D) expected (use _pairwise wrapper)
diff = h - W # (B, C, D)
try:
if cov_inv is None:
# Identity with mild regularization
return torch.sqgrt (torch.clamp ((diff » diff).sum(-1) + eps,
— min=eps))
cov_inv_reg = cov_inv + torch.eye(cov_inv.size (0),
— device=cov_inv.device) *x reg_lambda
diff_M = torch.einsum('bcd,dd->bcd', diff, cov_inv_req)
dist2 = (diff_M % diff).sum(-1)
return torch.sqgrt (torch.clamp(dist2 + eps, min=eps))
except Exception:
# Safe fallback: Euclidean
return torch.sqgrt (torch.clamp((diff » diff).sum(-1) + eps,
— min=eps))

# Lift to pairwise batch form

EUCLIDEAN = _pairwise (euclidean)
MANHATTAN = _pairwise (manhattan)
COSINE = _pairwise(cosine)
MINKOWSKI = _pairwise (minkowski)
CHEBYSHEV = _pairwise (chebyshev)
CANBERRA = _pairwise (canberra)
BRAY_CURTIS = _pairwise (bray_curtis)
MAHALANOBIS = _pairwise (mahalanobis)

DIST_REGISTRY = {

"euclidean": lambda h, W, *xkw: EUCLIDEAN (h, W, *xkw),
"manhattan": lambda h, W, *+kw: MANHATTAN (h, W, *+kw),
"cosine": lambda h, W, *xkw: COSINE (h, W, *xkw),
"minkowski": lambda h, W, *+kw: MINKOWSKI (h, W, **kw),
"chebyshev": lambda h, W, *xkw: CHEBYSHEV (h, W, *xkw),
"canberra": lambda h, W, *+kw: CANBERRA (h, W, **kw),
"bray-curtis": lambda h, W, xxkw: BRAY_CURTIS (h, W, =xxkw),
"mahalanobis": lambda h, W, *xkw: MAHALANOBIS (h, W, =**kw),

C MODEL ARCHITECTURES

C.1 VISION

We detail the architectures of the vision models used in our experiments — including a simple MLP,
a small CNN, ResNet-50, and PVTv2-B0 — specifying their layers and neuron counts for repro-
ducibility. All models were implemented in PyTorch, and for distance-based variants, the final
fully-connected layer is replaced by a specialized distance layer as noted below.

MLP: Input Layer: Accepts the flattened image input (e.g., 28 x 28 = 784 features for MNIST,
32x32x3 = 3072 for CIFAR). Hidden Layer 1: Fully-connected layer with 512 neurons, followed
by ReLU. Hidden Layer 2: Fully-connected layer with 256 neurons, followed by ReLU. Output
Layer: Linear mapping from 256 units to the number of classes (10 for MNIST/CIFAR-10, 100 for
CIFAR-100). In _DIST variants, this layer is replaced with a distance-based classification head (e.g.
Euclidean, cosine) that computes distances between the embedding and class prototypes, outputting
negative distances as logits.

CNN: Conv Layer 1: 2D convolution, 32 filters, kernel size 3 x 3, padding 1, followed by ReLU,
then 2 x 2 max pooling. Conv Layer 2: 2D convolution, 64 filters, kernel size 3 x 3, padding 1,
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followed by ReLU, then 2 x 2 max pooling. Fully Connected Layer: Flattened output fed into a
128-unit linear layer with ReLU. Output Layer: Linear layer mapping the 128-D representation to
the number of classes. In _DIST variants, this is replaced by a distance metric layer.

ResNet-50: Stem: Standard 7 x 7 convolution with 64 filters and stride 2, batch norm, ReLU,
then 3 x 3 max pooling. For CIFAR/MNIST, we use a 3 x 3 conv with stride 1 and remove max
pooling. Stage 1: 3 bottleneck blocks, output 256 channels. Stage 2: 4 bottleneck blocks, output
512 channels. Stage 3: 6 bottleneck blocks, output 1024 channels. Stage 4: 3 bottleneck blocks,
output 2048 channels. Global Pooling and Output: Global average pooling yields a 2048-D vector.
In the baseline, a linear FC layer maps to logits. In -DIST variants, the FC is replaced by a distance
layer (e.g. cosine similarity) that outputs similarity-based logits.

Pyramid Vision Transformer (PVTv2-B0): Stage 1: Overlapping patch embedding witha 7 x 7
conv (stride 4), output 32 channels, followed by 2 Transformer encoder layers (1 attention head).
Stage 2: 3 x 3 conv (stride 2), output 64 channels, followed by 2 encoder layers (2 heads). Stage
3: 3 x 3 conv (stride 2), output 160 channels, followed by 2 encoder layers (5 heads). Stage 4:
3 x 3 conv (stride 2), output 256 channels, followed by 2 encoder layers (8 heads). Global Pooling
and Output: Global average pooling yields a 256-D vector. A linear classifier maps to the number
of classes in the baseline, while in _DIST variants this is replaced with a distance layer producing
log-similarity or negative distance scores.

Preprocessing Pipelines: MNIST: For MLP/CNN, grayscale input normalized to mean 0.5, std 0.5.
For ResNet/VGG, normalization uses dataset statistics (mean 0.1307, std 0.3081). For ViT/PVT,
grayscale converted to 3 channels, resized to 224 (ViT) or 32 (PVT), normalized to mean/std 0.5.
CIFAR-10: Normalization with mean (0.4914, 0.4822, 0.4465) and std (0.2023, 0.1994, 0.2010).
ResNet/VGG use data augmentation (random flips, crops, small rotations). ViT inputs are resized
to 224 x 224. CIFAR-100: Normalization with mean (0.5071, 0.4867, 0.4408) and std (0.2675,
0.2565, 0.2761). Stronger augmentation (random flips, crops, rotations, color jitter). ViT inputs
resized to 224 x 224. PVT models use 32 x 32 resized inputs with normalization.

C.2 LLMs

This section documents the LLM configurations used in our experiments for reproducibility.
We report data preprocessing, architectural details for GPT, BERT, and Qwen2-style mod-
els, how distance-based heads are integrated in place of the standard linear classifier, and the
training/evaluation/emissions-logging pipeline. All models are implemented in PyTorch and trained
with mixed precision when available.

Data and Preprocessing Corpus and Storage. We pre-process a text corpus into contiguous token
ID arrays and store them as memory-mapped files:
* train.binand val.bin: np.memmap arrays of type uint 16 containing token IDs.
* meta.pkl: contains metadata including vocab_size (used to configure model embed-
dings).
Let V' denote the discovered vocabulary size from meta .pk1 (fallback V' =50304 if not found).
Batching. For a given block_size L, batches are sampled by picking random starting indices
and slicing L tokens:

X = datal[i : i+L], Y = data[i+l : 1i+1+L] (causal LM)

All batching is performed on-device with pinned memory. We denote batch_size by B.
Masking for MLLM (BERT). For BERT runs, we construct masked language modeling (MLM)
batches with the standard 15% corruption:

* Select ~ 15% token positions per sequence to form mask indices M.

* For each i € M: with 80% probability replace x; with [MASK] (id < 103 or capped by
V' —1), with 10% replace by a random token in [0, V'), with 10% keep x; unchanged.

* Labels use the original token at masked positions and —100 (ignore index) elsewhere.
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This yields input_ids, attention_mask (all-ones here), and 1abels containing ground-truth
only at masked positions.

Architectures Across models below, the principal hyperparameters are:
layers (ng), heads (ny), embedding dim (d), context length (L=block_size), vocab size (V).

Unless otherwise specified, positional encodings follow each model’s default (e.g., learned or ro-
tary).

GPT2 (CAUSAL LM)

Backbone. A standard decoder-only Transformer with n, blocks. Each block has:

¢ Multi-Head Causal Self-Attention with n;, heads, hidden size d, and causal mask.
* Position-wise MLP of width typically = 4d with nonlinearity (e.g., GELU).

* Pre/post LayerNorm and residual connections as in GPT-style decoders.

Token Embeddings. Learnable token and (implicit) position embeddings of sizes V' x d and L x d
(or rotary embeddings if enabled). Projection Head (baseline). A linear layer W, € RxV pro-
ducing logits over the vocabulary at each position. Distance Head (_LDIST). The linear projection is
replaced by a distance-based layer that treats the vocabulary columns as prototypes {w, € R4}V_,.
Given a hidden state h; € R¢, the head returns per-token logits ztw = —D(hy,w,;0) (or
log S(h¢, w,) for similarity-type layers), where D(-,-;©) is one of the distances defined in the
main text (Euclidean, cosine, Manhattan, Minkowski, Canberra, Bray—Curtis, Chebyshev, Maha-
lanobis, Hamming). This integrates seamlessly with the causal LM objective (next-token prediction
via softmax over V).

BERT (MASKED LM)

Backbone. An encoder-only Transformer with n, layers, each with:

e Multi-Head Self-Attention (bidirectional) with n;, heads.

* Position-wise MLP, LayerNorm, residual connections.

Embeddings. Token embeddings V' x d, segment/type embeddings (size 2), and positional embed-
dings of length L. Head (baseline). The standard MLM classifier projects d — V' (optionally via
an intermediate nonlinearity tied to the embedding matrix). Distance Head (_DIST). We replace
the MLM classifier with the same prototype-based distance layer used for GPT, but applied only at
masked positions. For each masked token representation h;, logits are z; , = —D(h;, w,;©) (or
log-similarity), and cross-entropy is computed against the ground-truth token at i.

QWEN2-STYLE DECODER (CAUSAL LM)

Backbone. A decoder-only Transformer similar to GPT, with model-specific details:
* Rotary Position Embeddings (RoPE) with 6 (e.g., § = 10).
« RMSNorm with € (e.g., 1079) in place of LayerNorm.

* Grouped key/value heads: num_key_value_heads may be < ny.
* Intermediate MLP width (intermediate_size) configurable.
Vocabulary. By default, we use Qwen’s native vocabulary (vocab_size=151,936); alternatively,

one can adapt to the dataset vocab. Head (baseline vs. _DIST). As with GPT, the final projection is
either a linear layer to V' or a distance-based head over V' prototype vectors.
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DISTANCE-BASED OUTPUT LAYER

For all three families (GPT, BERT/MLM, Qwen?2), the baseline d — V classifier is replaced in
_DIST runs by a distance head:

— ||h — wy|2 (Euclidean)
—|h — wyl|1 (Manhattan)
—||h — wyl|p (Minkowski, p specified)
T .

(k) = . (1 — ”hﬁ;‘%) (C0§1ne)
— Dcanberra(h, wy) O — Dgray_curis(h, wy,)  (variants as defined)
—|h — wyl|oo (Chebyshev)
—vV/(h—w,) T2 1(h — w,) (Mahalanobis, variants)
- DHamming(ha wv) (soft/gumbellhard)

where w, are learned prototype vectors (analogous to classifier weights). We adopt the numerically
robust implementations given in the main text (e.g., small €, clamping, optional normalization of
h and/or w, where appropriate). For cosine, we may output log-similarities for stability. Loss is
standard cross-entropy over the V' logits per position (causal) or per masked position (MLM).

TRAINING SETUP AND OPTIMIZATION

Device and Precision. Weuse bfloatl6/floatl6/float32 (configurable) with automatic
mixed precision:

torch.autocast (device_type=’cuda’, dtype=ptdtype).

Training can run in single-GPU or DDP (torch.distributed) multi-GPU mode. In DDP,
LOCAL_RANK selects the device, and gradients are synchronized across ranks.

Initialization and Checkpointing. Models are initialized from scratch using the specified ar-
chitecture config (layers, heads, width, L, V). For GPT-only runs we optionally support
init_from='gpt2x’,and for BERT we support init_from='bert’ (when provided), with
appropriate overrides. Checkpoints store model/optimizer state, iter _num,best_val_loss, and
the configuration.

Optimizer and LR Schedule. We use the model’s configure_optimizers helper to instanti-
ate an Adam/AdamW-style optimizer with weight decay and (31, 82). Learning rate follows cosine
decay with warmup:

. Iryax - t/wWarmup t < warmup,

r(t) = ~wi

( ) 1rmin + %(1 + COS%) (1rmax - lrmin) t S T7

where T is lr_decay_iters. We apply gradient accumulation

(gradient_accumulation_steps), optional gradient clipping (grad_-clip), and AMP
scaling (GradScaler).

Objectives.

* GPT/Qwen2 (causal LM): next-token cross-entropy over V' at each position.
 BERT (MLM): cross-entropy computed only at masked positions; non-masked labels set
to —100 (ignored).
Accuracy reporting: we compute token-level accuracy for monitoring (on next-token for causal LM,

on masked tokens for MLM).

Evaluation and Early Signals. At fixed eval_interval, we run estimate_loss () over
eval_iters batches on train/val splits (model in eval () ), then resume training. Best validation
loss checkpoints are saved; optional compile (torch.compile) can be enabled.
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SUSTAINABILITY TRACKING
We integrate CodeCarbon to measure energy and emissions. At each evaluation interval:

1. Stop the tracker and record interval-level metrics: emissions (kg CO,), duration, estimated
CPU/GPU/RAM power and energy.

2. Log cumulative emissions and training metrics (loss, Ir) to W&B (if enabled).

3. Restart the tracker for the next interval to avoid long-running file locks and to attribute
emissions to training phases cleanly.

At the end of training, we stop the tracker one final time and persist all accumulated records to a
CSV (emissions_*.csv) alongside model checkpoints.

Key Configuration Knobs (Reproducibility) The following knobs are saved in run configs/check-
points and should be reported alongside results:

(ng, np, d, L, V), distance head type and parameters (©), batch size B, precision,
optimizer & betas, Ir schedule (warmup, 7', Iryax, Itmin), grad accumulation,
grad clip, DDP world size.

When using _DIST variants, we additionally report which distance (Euclidean, cosine, Manhattan,
Minkowski(p), Canberra, Bray—Curtis, Chebyshev, Mahalanobis, Hamming), any normalization/s-
caling flags, and regularization choices (e.g., Mahalanobis covariance learning/regularization).

Summary. In all models, the sole architectural change introduced by harmonic loss is confined to
the output head: a drop-in replacement of the linear classifier with a distance-based prototype
head over the vocabulary. This isolates the effect of the loss geometry while keeping the Trans-
former backbone (and training recipe) unchanged, enabling controlled comparisons across distances
in terms of accuracy, interpretability (e.g., PCA-based analyses), and sustainability (emissions and
runtime).

D HYPERPARAMETER CONFIGURATIONS

The hyperparameter settings in Tables were chosen to balance comparability, training stability,
and sustainability. Below we highlight several important considerations.

D.1 LANGUAGE MODELS (OPENWEBTEXT)

Table [I] specifies the core training parameters for GPT, BERT, and Qwen on OpenWebText. The
main goal was to maintain a fair comparison across models of varying scale by using effective
batch sizes of similar order (76—128). This ensures that any differences observed in performance or
emissions are attributable to the loss formulation, not simply to batch scaling. The use of AdamW
with default 3 values (0.9, 0.999) follows current best practices for stability.

Table [2] details architecture-specific modifications. BERT includes type embeddings and a masked
language modeling (MLM) setup, while GPT and Qwen use causal language modeling (CLM).
Qwen, being substantially larger, incorporates more advanced design elements such as grouped
query attention (GQA) and rotary position embeddings (RoPE). Table [3] summarizes these differ-
ences: GPT and Qwen follow causal objectives, while BERT relies on bidirectional context, which
may affect the degree to which distance-based losses interact with their representations.

D.2 VisioN MODELS (MNIST, CIFAR-10, CIFAR-100)

Tables provide the vision settings across MNIST, CIFAR-10, and CIFAR-100. As shown in
Table || optimizer and learning-rate schedules are backbone-specific: Adam for MLPs and CNNss,
AdamW for transformers (PVT), and SGD with momentum for ResNet50. This reflects both conven-
tion and empirical stability in preliminary experiments. Longer schedules are used for CIFAR-100
due to its greater difficulty, with patience for early stopping (Table[6) scaled accordingly.
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Table 1: Core configuration for GPT, BERT, and Qwen on OpenWebText.

Configuration GPT BERT Qwen
Niayer 12 12 24
Nhead 12 12 14
Nembd 768 768 896
Vocab size 50304 50304 151936
Dropout 0.1 0.1 0.0
Bias True True True
Batch size 16 38 6
Grad. accum. steps 8 2 10
Effective batch size 128 76 60
Learning rate 2e-4 le-4 le-4
Warmup iters 500 1000 1000
Weight decay 0.01 0.01 0.01
Grad clip 1.0 1.0 1.0
Min LR 2e-6 le-6 le-6
Decay LR True True True
LR decay iters 10000 10000 10000
Max iters 10000 10000 10000
Dataset OpenWebText OpenWebText OpenWebText
dtype bfloat16 bfloat16 bfloat16
Optimizer AdamW AdamW AdamW
B, Ba 0.9, 0.999 0.9, 0.999 0.9, 0.999
Eval interval 1000 1000 1000
Eval iters 100 100 100
Log interval 50 50 50
Scale attn by inverse layer idx False False False

Table 2: Architecture-specific settings for GPT, BERT, and Qwen.

Configuration GPT BERT Qwen
Block size / Seq length 1024 512 1024
Type vocab size - 2 -

Pad token id - 0 -
MLM probability - 0.15 -
Mask token id - 103 -
Intermediate size - - 4864

# key—value heads - - 2
RMSNorm € - - le-6
RoPE 6 - - 1,000,000.0

Batch size selection (Table [3)) reflects hardware utilization on HI00 GPUs. Notably, lightweight
backbones (e.g., CNNs) leverage very large batches (up to 8192 for MNIST), while transformer-
based models (ViT, PVT) are limited to much smaller batches (128-256) to fit memory constraints.
These design choices affect emissions profiles: large-batch training can reduce wall-clock time but
at the cost of GPU memory overhead.

Learning-rate schedulers differ across models. For example, PVT employs cosine annealing, which
smooths convergence and interacts well with distance-based loss formulations. ResNet50 relies on
multi-step decay, ensuring stability across the long 200-epoch training horizon on CIFAR-100.

Distance Layer Parameters. Table [8| summarizes the shared hyperparameters across all distance
functions. The exponent 7 is fixed to 1.0 and ¢ = 10~* provides numerical stability. Importantly,
distances are not scaled post hoc, ensuring that differences in results are directly attributable to the
geometric properties of the chosen distance (Euclidean, Manhattan, Mahalanobis, etc.), rather than
to auxiliary tuning.
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Table 3: Key differences summary (task and position encoding).

Aspect GPT BERT Qwen
Model size (approx.) ~124M ~110M ~494M
Attention Causal  Bidirectional Causal (GQA)
Training task CLM MLM CLM
Position encoding Learned Learned RoPE

CLM = Causal Language Modeling; MLM = Masked Language Modeling; GQA = Grouped Query

Attention.

Table 4: Core training configuration by backbone and dataset.

Configuration MLP CNN PVT ResNet50
LR (MNIST) 3e-4 3e-4 le-4 0.1
LR (CIFAR-10) 3e-4 3e-4 le-4 0.1
LR (CIFAR-100) 3e-4 3e-4 Se-5 0.1
Epochs (MNIST) 40 40 80 100
Epochs (CIFAR-10) 40 40 80 100
Epochs (CIFAR-100) 150 150 150 200
Optimizer Adam Adam AdamW SGD
Weight decay 0 0 0.05 le-4
Momentum - - - 0.9

D.3 DISCUSSION

Language models. GPT and BERT use comparable depth/width with learned positional encodings,
while Qwen is larger, adopts RoPE, and GQA. Effective batch sizes (via gradient accumulation)

normalize throughput across models for fair comparison on OpenWebText.

Vision models. Optimizer and scheduler choices follow common practice: Adam/AdamW for
MLP/CNN/PVT, SGD with momentum for ResNet50; deeper/longer CIFAR-100 runs employ

stepped or cosine schedules. Early-stopping patience scales with dataset difficulty.

DistLayer defaults. A unified setting (n=1.0, e=10"%, no scaling) ensures distance variants differ
only in geometry, not in auxiliary hyperparameters. These settings match the configuration used in

our main experiments and figures.
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Table 5: Batch size configuration on H1I00 GPU.
Model MNIST CIFAR-10 CIFAR-100

MLP 2048 1024 1024
CNN 8192 4096 512
PVT 256 256 256
ViT 256 128 128
VGG16 4096 2048 512
ResNet50 512 512 256

Table 6: Learning-rate schedulers by backbone and dataset.

Model MNIST CIFAR-10 CIFAR-100
MLP None None StepLR (step=50, v=0.5)
CNN None None StepLR (step=50, v=0.5)

VGG16 StepLR (30, 0.1)  StepLR (30, 0.1) MultiStepLR ([75,125], 0.1)

ResNet50  StepLR (30, 0.1) StepLR (30,0.1) MultiStepLR ([60,100,140], 0.2)
ViT None None CosineAnnealingLR (7},,x=150)
PVT None None CosineAnnealingLR (7},,x=150)

E ADDITIONAL RESULTS

E.1 VISION: AGGREGATED EMISSIONS

Figure [3] reports cumulative emission differ-
ences (gCOseq) by distance across all 228
vision experiments (Total Baseline = 181.2 ¢ I

gCOzeq). Lower-than-baseline emissions: - gu=—=50 sunnnnll .
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sions; Bray—Curtis (Standard) and Cosine (Un-
stable) also sit on the positive side, with Can-
berra (Standard) and Cosine (Stable) slightly
above zero. Euclidean and Manhattan are close
to baseline. Other distances are characterized
by higher emissions, as shown by the red clus-
ter. Results reinforce that non-Euclidean har-
monic losses can be more sustainable than their
Euclidean counterpart, and that the choice of Figure 3: Vision: Aggregated Emissions.
distance materially affects the carbon footprint

of model training.
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E.2 VISION: TOP-PERFORMERS ACROSS CONFIGURATIONS

The analysis of top-performers across the 12 configurations (4 models, 3 datasets) highlights con-
sistent patterns in how non-Euclidean harmonic losses compare with Euclidean harmonic loss and
Cross-entropy.

Performance (Accuracy and F1). Bray—Curtis (normalized) leads in performance with 3 wins in
Acc and 3 wins in F1, coupled with the strongest breadth of competitiveness (10 top—5s in both Acc
and F1). Cosine (stable) remains a close, consistent performer (2 Acc wins, 2 F1 wins; 9 top—5s in
both). Cosine (unstable) secures no outright wins in Acc/F1 but is frequently competitive (9 Acc
top—-5; 8 F1 top-5), indicating high upside with occasional instability. Mahalanobis (cholesky)
contributes a handful of wins/top—5 placements.

Interpretability (Explained Variance and Prototype Coverage). For PC2 (EV), Bray-Curtis
(normalized) is the primary winner (5 wins; 6 top-5), followed by Chebyshev (standard) (4 wins;
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Table 7: Dataset meta and early-stopping settings (vision).

Parameter MNIST CIFAR-10 CIFAR-100
Num classes 10 10 100
Early stopping patience 15 15 25
Min improvement (%) 0.01 0.01 0.01
Image size 28 x28 x1 32x32x3 32x32x3

Table 8: Distance-layer shared parameters (all backbones).

Parameter Value
n 1.0
€ le-4

Scale distances  False

6 top—5). Minkowski (p=3.0) also appears among leaders (2 wins; 3 top—5). For PC90, Chebyshev
(standard) is the strongest (6 wins; 6 top-5), followed by Bray—Curtis (normalized) (4 wins; 6
top—5). Several families (Canberra robust/standard, Manhattan, Minkowski, Hamming) secure
wins or numerous top—5 placements in PC90, showing that prototype coverage is highly sensitive
to the chosen geometry. Overall, non—-Euclidean distances reshape the representation space more
aggressively than Euclidean/baseline, with Bray—Curtis (normalized) and Chebyshev (standard) the
most consistent for interpretability.

Sustainability (Emissions) Mahalanobis (standard) is the clear sustainability leader on emis-
sions with 7 wins and 10 top—5 placements, echoing its repeated aggregate advantage in total gCOo
savings. A few other methods notch isolated emissions wins (e.g., Chebyshev (smooth) with 2
wins; Bray—Curtis (abs), Canberra (weighted), Cosine (unstable) with 1 each), but none rival
Mahalanobis (standard) in consistency.

E.3 VISION: CURVE PLOTS

Accuracy dynamics across backbones (incl. PVT). Figures [E:3H4] plot test accuracy over epochs
for MNIST, CIFAR-10, and CIFAR-100 using MLP, CNN, ResNet50, and the transformer-style
PVT backbone. The curves reveal how distance choices in the harmonic loss affect speed, stability,
and asymptotic performance, and how these effects vary with model capacity.

MNIST. All backbones reach near-saturation rapidly. Cosine (stable) yields the smoothest ascent
for MLP/CNN and remains competitive on ResNet50/PVT; Euclidean and Bray—Curtis closely track
it. Mahalanobis variants occasionally show noisier plateaus but do not materially change the final
ceiling. PVT converges as quickly as CNN/ResNet50, indicating that distance choice mainly affects
early-epoch smoothness on this easy task.

CIFAR-10. Differences become more visible. For CNN and ResNet50, cosine (stable) consistently
accelerates early learning and attains higher final accuracy than Euclidean; Bray—Curtis is generally
competitive but architecture-sensitive. Mahalanobis can learn quickly at first yet tends to plateau
below cosine on deeper backbones. MLP remains the bottleneck regardless of distance. PVT reflects
the convolutional trends: cosine (stable) produces the most monotone, high-accuracy trajectory;
Euclidean lags; Bray—Curtis sits in between.

CIFAR-100. The hardest setting amplifies gaps. On CNN/ResNet50, cosine (stable) again domi-
nates in both convergence speed and final accuracy; Euclidean is a reliable baseline but systemati-
cally lower. Mahalanobis exhibits the most irregular dynamics—occasionally promising starts that
flatten early. PVT benefits markedly from cosine (stable) and, to a lesser extent, Bray—Curtis; Eu-
clidean trails, and Mahalanobis remains volatile. MLP saturates at a lower level across distances,
highlighting the limits of shallow models.

Cross-architecture takeaways. i) Cosine (stable) is the most robust choice across datasets and
backbones—including PVT—delivering smoother training and higher endpoints. ii) Bray—Curtis
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is a viable alternative with moderate gains but exhibits architecture-dependent variability. iii) Ma-
halanobis provides occasional early wins but is the least stable overall, often converging below
cosine. 1v) Euclidean remains a solid baseline yet is consistently outperformed by cosine on the
more complex settings. Overall, adding PVT corroborates the main trend observed with CNN/Res-
Net50: geometry matters, and cosine-based harmonic losses provide the most reliable improvements
in both optimization dynamics and final accuracy.
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Figure 4: Vision: Curve Plots (MLP, CNN, ResNet50, PVT).

E.4 VISION: TABLES

The empirical evaluation of non-Euclidean harmonic losses across MNIST, CIFAR-10, and CIFAR-
100 with MLP, CNN, and ResNet50 backbones reveals several consistent patterns.

Model Performance. Cosine distance emerges as the most reliable performer across architectures
and datasets. In both stable and unstable variants, cosine harmonic loss consistently improves test
accuracy and F1 relative to Euclidean, with gains most pronounced in deeper models (CNNs and
ResNets) and in medium-complexity datasets such as CIFAR-10. Bray—Curtis offers modest gains in
certain contexts but is less consistent, while Mahalanobis can improve accuracy on simple datasets
(e.g., MNIST) but often lags behind cosine in more challenging regimes. Euclidean harmonic loss,
while better than cross-entropy in terms of stability, is consistently outperformed by cosine-based
alternatives.

Interpretability. Distances strongly reshape the geometry of the learned representations. Cosine
and Bray—Curtis often yield large improvements in explained variance (EV), indicating more com-
pact feature spaces aligned with class prototypes. Mahalanobis produces the most dramatic gains
in EV, frequently approaching full variance explanation, but this comes at the cost of stability and
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Table 9: Results for CIFAR100 CNN. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method Acc F1 gCOseq EV PC90%
Baseline 0.3795 0.3795 1.18 0.459295 49.3333
Bray-Curtis (Norm.)  0.3229 (-1491%) 0.3182 (-16.16%)  0.8132 (30.94%)  0.9094 (98%) 2.6667 (94.59%)
Mahalanobis (Chol.)  0.2927 (-22.86%) 0.2921 (-23.04%)  0.727 (38.25%) 0.341 (25.75%) 50 (-1.35%)
Cosine (Unst.) 0.2602 (-31.44%) 0.2667 (-29.73%) 2.1156 (-19.68%) 0.5306 (1552%) 45 (8.78%)
Cosine (Stable) 0.2501 (-34.09%) 0.2516 (-33.71%) 1.4263 (21.14%) 0.5216 (13.57%) 45 (8.78%)
Euclidean 0.2413 (36.4%)  0.2431 (-3595%) 1.2866 (-9.28%)  0.4362 (-5.02%) 50 (-1.35%)

Table 10: Results for CIFAR100 MLP. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method Acc F1 gCO-eq EV PC90%
Baseline 0.2617 0.2582 0.85 0.285203 50.0
Bray-Curtis (Norm.)  0.226 (-13.64%) 0.2191 (-15.15%)  0.8938 (-5.35%) 0.9843 (245.11%) 1 (98%)
Mahalanobis (Chol.) 0.1833 (-29.96%) 0.1811 (-20.85%) 1.0889 (-2834%)  0.0354 (-87.57%) 50 (-0%)
Bray-Curtis (Abs.) 0.1444 (-44.81%)  0.1392 (-46.07%)  2.1255 (-15051%)  0.5317 (86.43%)  47.6667 (4.67%)
Cosine (Unst.) 0.1237 (-52.74%)  0.1186 (-54.06%) 0.5064 (40.31%) 0.3799 (3321%)  40.6667 (18.67%)
Euclidean 0.119 (-54.53%) 0.1222 (-52.69%) 0.589 (30.58%) 0.2437 (-1455%) 50 (-0%)

efficiency. Prototype coverage (PC90%) tends to shrink under cosine and Mahalanobis, highlight-
ing sharper clustering effects: models assign fewer prototypes to cover 90% of variance, making the
representation space more interpretable but less evenly distributed.

Sustainability. Sustainability outcomes mirror performance trends. Cosine distances typically re-
duce carbon emissions relative to Euclidean, in some cases by up to 40%, making them both ef-
fective and energy-efficient. Bray—Curtis shows mixed results, with occasional emission savings
but less consistent behavior. Mahalanobis tends to incur higher emissions, reflecting the computa-
tional overhead of covariance estimation and matrix operations. Shallow architectures (MLPs) show
less differentiation across distances in emissions, while deeper backbones amplify both the benefits
(cosine) and costs (Mahalanobis).

Trade-offs. Taken together, the results confirm that distance choice is not neutral in harmonic loss.
Cosine provides the most favorable balance across performance, interpretability, and sustainability,
representing the strongest general-purpose alternative to Euclidean. Bray—Curtis occupies a mid-
dle ground, offering interpretability benefits without always delivering accuracy or efficiency gains.
Mahalanobis maximizes interpretability at a clear sustainability cost, making it attractive primarily
when prototype clarity outweighs computational expense. Euclidean serves as a stable but subopti-
mal baseline.

Conclusion. This systematic study establishes that non-Euclidean harmonic losses provide a flex-
ible and effective design space. In particular, cosine distance offers a compelling replacement for
cross-entropy and Euclidean harmonic loss in vision tasks, consistently improving accuracy, inter-
pretability, and sustainability. These findings position distance-tailored harmonic losses as a promis-
ing avenue for advancing deep learning models that are not only accurate but also more transparent
and energy-conscious.

E.5 VISION: SUSTAINABILITY

E.5.1 MNIST

Figure [5| summarizes the carbon deltas (gCOzeq relative to cross-entropy) when swapping the train-
ing objective for harmonic-loss variants on MNIST across four backbones.

MLP. Most distances reduce per—step emissions vs. cross-entropy (green bars), with the largest
savings from heavier geometry that replaces the softmax/cross-entropy path (e.g., Mahalanobis/-
standardized, Chebyshev). Euclidean and Bray—Curtis yield modest savings; only a few variants
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Table 11: Results for CIFAR100 ResNet50. Parentheses: % changes w.r.t. Baseline (Cross-

Entropy).
Method Acc F1 gCO-eq EV PC90%
Baseline 0.6983 0.6969 87.77 0.107216 50.0
Cosine (Stable) 0.7357 (5.35%) 0.736 (5.61%) 72.9745 (16.85%) 0.5979 (457.66%) 8 (84%)
Cosine (Unst.) 0.7323 (4.87%) 0.7332 (5.21%) 71.7592 (18.24%) 0.5857 (446.27%) 8 (84%)
Bray-Curtis (Norm.)  0.655 (-6.19%) 0.6513 (-6.54%)  106.4049 (21.24%) 0.7131 (565.08%) 6 (88%)
Mahalanobis (Chol.) 0.6274 (-10.15%)  0.6239 (-1047%) 138.9317 (-583%)  0.7353 (585.81%) 17.5 (65%)
Euclidean 0.7055 (1.03%) 0.7062 (1.33%) 97.432 (-11.01%) 0.5679 (429.66%) 25.5 (49%)
Table 12: Results for CIFAR10 CNN. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).
Method Acc F1 gCOseq EV PC90%
Baseline 0.6278 0.6269 1.12 0.688081 9.0
Mabhalanobis (Chol.) 0.6644 (5.82%) 0.6642 (595%) 1.1139 (0.68%)  0.4752 (-30.93%) 50 (-455.56%)
Bray-Curtis (Norm.)  0.6597 (5.08%) 0.6551 (45%)  1.1489 (245%) 0.8913 (29.54%)  4.3333 (51.85%)
Minkowski (p=3.0) 0.6589 (495%) 0.6593 (5.17%)  1.1598 (-3.42%)  0.5425 (21.15%) 50 (-455.56%)
Cosine (Stable) 0.6584 (487%) 0.6566 (4.74%) 1.1663 (-3.99%) 0.647 (-5.97%) 18.6667 (-107.41%)
Euclidean 0.6495 (345%) 0.6476 (331%) 1.1228 (-0.12%) 0.6582 (-434%)  14.3333 (-59.26%)

Table 13: Results for CIFAR10 MLP. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method Acc F1 gCO-eq EV PC90%
Baseline 0.5397 0.5385 0.53 0.346504 47.0
Bray-Curtis Norm.)  0.5224 (321%) 0.5201 (341%) 0.5264 (0.81%) 0.967 (179.07%) 1 (97.87%)
Mahalanobis (Chol.) 0.5087 (-5.75%)  0.5088 (-5.51%)  0.458 (13.7%) 0.0522 (-84.94%) 50 (-6.38%)
Bray-Curtis (Abs.) 0.4934 (-859%) 0.4924 (-855%) 0.6313 (-1896%) 0.2434 (29.76%) 50 (-6.38%)
Bray-Curtis (Std.) 0.4931 (-8.64%) 0.4935 (-835%) 0.6435 (-2125%) 0.2906 (-16.14%) 50 (-6.38%)

Euclidean

0.4871 (-9.74%)

0.4852 (-9.9%)

0.4303 (18.92%)

0.4303 (24.19%)

42.3333 (9.93%)

Table 14: Results for CIFAR10 ResNet50. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method Acc F1 gCOzeq EV PC90%
Baseline 0.843 0.8431 48.65 0.257211 50.0
Cosine (Stable) 0.9262 (9.87%) 0.9262 (9.86%) 40.6776 (16.39%) 0.7559 (193.9%) 5 (90%)
Cosine (Unst.) 0.9234 (954%) 0.9234 (953%) 29.3968 (39.58%) 0.761 (195.86%) 5 (90%)
Bray-Curtis (Norm.) 0.9193 (9.05%) 0.9192 (9.02%) 45.6222 (6.23%)  0.7883 (206.49%) 5 (90%)
Chebyshev (Std.) 0.905 (7.36%) 0.905 (7.34%) 48.5505 (021%)  0.9995 (288.59%) 1 (98%)
Euclidean 0.9185 (896%) 0.9185 (8.94%) 45.8759 (5.71%)  0.683 (165.56%) 25.5 (49%)

Table 15: Results for MNIST CNN. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method Acc F1 gCO2eq EV PC90%
Baseline 0.9782 0.9782 1.19 0.585633 10.6667
Bray-Curtis (Norm.)  0.9889 (1.09%) 0.9888 (1.09%) 1.1348 (4.42%)  0.7225 (23.38%)  13.6667 (-28.12%)
Mahalanobis (Chol.) 0.9879 (1%) 0.9879 (099%) 1.0639 (1039%) 0.4673 (-202%)  36.3333 (-240.63%)

Minkowski (p=3.0) 0.9877 (0.97%) 0.9876 (0.96%) 1.1154 (6.06%)  0.4195 (-28.37%) 49.3333 (-362.5%)
Hamming (Soft) 0.9833 (0.52%) 0.9832 (051%) 1.1815 (0.49%)  0.3089 (-47.26%) 50 (-368.75%)
Euclidean 0.9831 (05%)  0.9831 (0.5%) 1.1543 (2.78%)  0.4413 (-24.65%) 20.3333 (-90.62%)
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Table 16: Results for MNIST MLP. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method Acc F1 gCOseq EV PC90%
Baseline 0.976 0.9758 0.55 0.565723 10.3333
Cosine (Unst.) 0.978 (0.2%) 0.9778 (0.2%) 0.5264 (3.58%)  0.382 (-32.48%) 10 (3.23%)
Mahalanobis (Chol.) 0.9774 (0.14%)  0.9771 (0.14%)  0.5611 (2.78%)  0.092 (-83.74%) 50 (-383.87%)
Cosine (Stable) 0.9766 (0.06%) 0.9764 (0.06%) 0.5266 (3.54%)  0.4033 (-28.71%)  9.3333 (9.68%)
Chebyshev (Std.) 0.9756 (-0.04%) 0.9754 (-0.04%) 0.5881 (-7.73%)  0.7865 (39.03%)  5.6667 (45.16%)
Euclidean 0.9799 (0.4%) 0.9798 (041%)  0.5221 (435%)  0.358 (-36.72%) 9 (12.9%)

Table 17: Results for MNIST ResNet50. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method Acc F1 gCOseq EV PC90%
Baseline 0.9909 0.9909 29.36 0.420353 50.0
Bray-Curtis Norm.)  0.9962 (0.52%) 0.9961 (053%) 25.2889 (13.86%) 0.8453 (101.00%) 4 (92%)
Cosine (Unst.) 0.996 (0.51%) 0.996 (0.52%) 26.1851 (108%)  0.6888 (63.87%) 6 (88%)
Cosine (Stable) 0.9953 (0.44%) 0.9953 (0.45%) 26.4064 (1005%) 0.6974 (6591%) 6 (88%)
Mahalanobis (Chol.)  0.9938 (0.29%) 0.9938 (03%)  31.9246 (8.75%)  0.9966 (137.09%) 1 (98%)
Euclidean 0.9934 (0.25%) 0.9934 (0.25%) 24.457 (16.69%) 0.9998 (137.84%) 1 (98%)

show small positive overheads. Given MNIST’s simplicity and the near-saturation accuracies, these
reductions likely translate into ner greener runs because steps-to-target are comparable.

CNN. A broad set of distances are carbon-negative vs. baseline. Again, standardized Maha-
lanobis/Chebyshev rank among the lowest-emission options; Bray—Curtis and Euclidean remain
consistently frugal. Variants that introduce extra normalization or temperature schedules can erode
part of the gain but rarely flip the sign.

ResNet50. The deepest convolutional model shows the largest per—step savings: many distances
deliver substantial negative deltas relative to cross-entropy, suggesting that replacing the softmax
loss with metric-based objectives amortizes well at this scale. Only a handful of choices (e.g.,
certain Chebyshev/Canberra parameterizations) incur small positive overheads.

PVT (vision transformer). In contrast to the CNN family, most distances increase per—step emis-
sions over the baseline. The transformer’s attention and normalization stack appears less amenable
to the heavier distance computations; only a couple of standardized/normalized variants produce
small savings. On PVT, greener training favors the lightest geometries or retaining cross-entropy.

Takeaways. i) On MNIST, distance-based harmonic losses are often carbon-favorable for MLP/C-
NN/ResNet50, with the biggest gains on the deepest CNN; ii) these gains are not universal—PVT
tends to pay a premium; iii) because test accuracy curves on MNIST converge similarly across
losses, the per—step savings for CNN/ResNet50 likely convert into lower end-to-end energy. Prac-
tically, we recommend Euclidean/Bray—Curtis/standardized Mahalanobis for convolutional back-
bones, and cautious use (or kernel-fused, mixed-precision implementations) of heavier distances on
transformer-style models. Reporting both per—step emissions and energy-to-target accuracy remains
essential for fair sustainability claims.

E.5.2 CIFAR-10

Figure[6]reports carbon deltas in gCOseq relative to cross-entropy when training with harmonic-loss
distances on CIFAR-10.

MLP. Most distances are carbon—negative versus baseline, yielding small-to—moderate per—step
savings. A few choices incur mild overheads (rightmost bars), indicating that added normalization
or temperature scheduling can offset the gains on shallow networks.

CNN. The pattern strengthens: a broad set of distances reduce per—step emissions relative to cross-
entropy. Only a handful of variants sit near zero or slightly positive, suggesting that, for convolu-
tional encoders on CIFAR-10, metric-based objectives are generally more frugal per step.
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Figure 5: Carbon emission differences for MNIST across four model backbones (MLP, CNN,
ResNet50, PVT) when replacing cross-entropy with harmonic loss variants. Bars show the emission
difference in grams of COseq relative to the baseline (cross-entropy). Values above zero indicate
higher emissions than baseline, while negative values indicate greener, more sustainable outcomes.

ResNet50. Savings are uniform and largest: all distances fall below the baseline, with substan-
tial negative deltas. This indicates that replacing the softmax loss amortizes particularly well at
depth/width, likely due to better kernel utilization and reduced softmax/backprop overhead relative
to the total compute.

PVT (vision transformer). Most distances are again carbon—negative, though the spread is nar-
rower than ResNet50 and a couple of variants hover around parity or slightly positive. Transformers
benefit, but less dramatically than deep CNNs.

Takeaways. i) On CIFAR-10, distance-based harmonic losses are typically greener per step for
CNN/ResNet50/PVT, with the strongest effect on ResNet50; ii) MLP shows mixed but mostly fa-
vorable outcomes; iii) because our accuracy-vs-epoch curves on CIFAR-10 show similar or faster
convergence for several distances, these per—step gains are likely to translate into lower end-to-end
energy for deep backbones. Practically, we recommend adopting the more frugal distances for con-
volutional and transformer models and pairing per—step reports with energy-to-target-accuracy to
substantiate sustainability claims.

E.5.3 CIFAR-100

Figure[7] shows the carbon delta (gCO2eq vs. cross-entropy) when training with harmonic-loss dis-
tances on CIFAR-100.

MLP. Savings are modest and geometry—dependent. Light/standardized variants (e.g., cosine, Eu-
clidean, some Minkowski/Canberra settings) are carbon—negative, while heavier norms and covari-
ance-based Mahalanobis parameterizations flip to positive overheads. On shallow models, extra
normalization steps can outweigh gains.

CNN. A broad swath of distances are carbon—negative relative to the 1.18 gCOyeq baseline; several
Mahalanobis and Bray—Curtis settings deliver the largest per—step reductions. A few choices (e.g.,
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Figure 6: Carbon emission differences for CIFAR10 across four model backbones (MLP, CNN,
ResNet50, PVT) when replacing cross-entropy with harmonic loss variants. Bars show the emission
difference in grams of COseq relative to the baseline (cross-entropy). Values above zero indicate
higher emissions than baseline, while negative values indicate greener, more sustainable outcomes.

certain cosine/Canberra/Minkowski configurations) hover near parity or slightly positive, indicating
mild architecture sensitivity.

ResNet50. The deepest convolutional model exhibits a mixed but wide spread: many distances
achieve substantial savings (left cluster of dark-green bars), yet others incur clear premiums (right
cluster). Thus, distance choice materially changes footprint at scale. Notably, cosine variants are
among the frugal options here, whereas some Chebyshev/Minkowski/Bray—Curtis (absolute) set-
tings are costlier.

PVT (vision transformer). Most distances are carbon—positive vs. the 3.67 gCOzeq baseline, with
only a couple of standardized/smoothed variants slightly negative. As on MNIST/CIFAR-10, the
attention/normalization stack appears less amenable to heavier metric computations.

Takeaways. i) On CIFAR-100, harmonic distances can be greener per step for CNNs and selec-
tively for ResNet50, but PVT generally pays a premium; ii) cosine tends to be frugal on deeper
CNNs (and competitive on MLP), aligning with its strong accuracy dynamics, whereas several Ma-
halanobis/Minkowski/Chebyshev configurations increase emissions unless they deliver clear quality
gains; iii) because CIFAR-100 accuracy converges differently across distances, claims of sustain-
ability should couple per—step deltas with energy-to-target-accuracy/perplexity. Practically, prefer
cosine/Euclidean/standardized Bray—Curtis (and selected Mahalanobis settings that are both stable
and frugal) for CNN/ResNet50, and use kernel fusion + mixed precision if heavier geometries are
needed on transformer backbones.

Insights across datasets: A clear trend emerges across datasets: transformer models (PVT) often
incur higher emissions with distance-based harmonic losses, particularly on CIFAR-100 (see Fig-
ure [7), whereas convolutional and residual networks (CNN, ResNet50) frequently yield greener
outcomes (see results in Figures [5|—[7). The sustainability benefit is especially pronounced when
distances incorporate robustness (Hamming-gumbel, Canberra-robust) or covariance awareness
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Figure 7: Carbon emission differences for CIFAR100 across four model backbones (MLP, CNN,
ResNet50, PVT) when replacing cross-entropy with harmonic loss variants. Bars show the emission
difference in grams of COseq relative to the baseline (cross-entropy). Values above zero indicate
higher emissions than baseline, while negative values indicate greener, more sustainable outcomes.

(Mahalanobis-diagonal). Simpler datasets like MNIST show limited differences, while CIFAR-10
and CIFAR-100 highlight the greater impact of distance choice on carbon footprint.

Cross-architecture insights: MLPs present a limited sustainability differences; emissions re-
main close to baseline across all distances. With CNNs, multiple distances (Hamming-gumbel,
Mabhalanobis-diagonal, Canberra-weighted) consistently reduce emissions, showing CNNs benefit
most from harmonic loss efficiency. In PVT, harmonic losses generally increase emissions, espe-
cially on CIFAR-100, highlighting potential overhead in attention-based models. ResNet50 demon-
strates an effective integration with several distances (Hamming, Canberra, Bray—Curtis), which
achieve significant reductions in emissions over baseline, indicating that deep CNNs can combine
effectiveness with sustainability.

Overall, the sustainability analysis shows that harmonic losses can improve or degrade carbon ef-
ficiency depending on the backbone and dataset. The choice of distance measure therefore plays a
critical role not only in accuracy but also in environmental impact, reinforcing the need for holistic
evaluation across the accuracy—sustainability—interpretability triangle.

E.6 LANGUAGE: SUSTAINABILITY

Figure [§] reports per—Ik-step carbon differences (gCO2eq) when replacing cross-entropy with
distance-based harmonic losses for BERT, GPT, and QWEN. Positive bars indicate higher emis-
sions than the cross-entropy baseline (annotated atop each subplot).

Overall. Across all three backbones, distance-based losses tend to increase per—1k-step emissions
relative to cross-entropy. The magnitude of overhead correlates with the computational complex-
ity of the distance: lightweight cosine variants add the least overhead, while Mahalanobis and
Minkowski incur the most.
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BERT. Cosine (simple or temperature-scaled) yields small overheads (low single-digit gCOseq over
a 7.87 gCO,eq baseline), suggesting that the extra normalization and dot-product operations have
modest cost. Euclidean and Bray—Curtis sit mid-pack, whereas Mahalanobis (Cholesky/standard/-
diagonal) and Minkowski (p > 2) are consistently more carbon intensive per 1k steps.

GPT. All distances increase emissions over the 60.36 gCOseq baseline, with a clearer spread: cosine
remains the most frugal among alternatives; Euclidean and Manhattan are mid-range; Mahalanobis
(any parameterization) and Minkowski/L2 are the heaviest. This indicates that the per-step FLOPs
and memory traffic of covariance-related computations (and higher-order norms) become more pro-
nounced at GPT scale.

QWEN. For this larger model (baseline 75.29 gCOseq), the methods we evaluated (Minkowski/L.2
and Euclidean) both raise per—lk-step emissions, with Minkowski/L2 showing a substantial in-
crease. Although the set of distances is smaller here, the pattern mirrors GPT: heavier metrics
cost more per step as model width/depth grows.

Implications. i) If Green Al considerations are primary, cosine-based harmonic losses are the most
promising drop-in replacements, especially on encoder-style models (BERT). ii) Mahalanobis and
Minkowski should be justified by clear accuracy or stability gains, as they carry the largest per-step
carbon premiums. iii) Reported values are per—1k-step; end-to-end footprint also depends on steps-
to-target-quality. Thus, a distance that reduces time-to-accuracy could still yield net carbon savings
even with higher per-step cost.

Summary. Distance choice in harmonic loss is not carbon-neutral: cosine variants introduce min-
imal overhead; Euclidean/Bray—Curtis are moderate; Mahalanobis/Minkowski are expensive. Any
claimed performance gains from richer geometries should be weighed against these systematic en-
ergy costs, preferably via energy-normalized quality metrics (e.g., accuracy per kWh).
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Figure 8: Carbon emission differences for LLM pretraining on OpenWebText (BERT, GPT2,
QWEN) when replacing cross-entropy with harmonic loss variants. Bars show the emission differ-
ence in grams of COyeq relative to the baseline (cross-entropy). Values above zero indicate higher
emissions than baseline, while negative values indicate greener, more sustainable outcomes.
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E.7 LANGUAGE: INTERPRETABILITY

Mechanistic and representation-level interpretability of large language models (LLMs) increasingly
leverages the hypothesis that internal activations admit approximately linear structure: many fea-
tures behave like directions in an activation space, and linear operations can steer or probe them
(Elhage et al.l 2022; |Huben et al., 2024} Turntrout, |2023). Within this paradigm, Principal Com-
ponent Analysis (PCA) is a simple, well-understood lens for: i) summarizing dominant sources of
variance in activations; ii) stabilizing analyses by denoising; and (iii) producing human-auditable
axes that can be inspected, correlated with concepts, and tracked over time.

Given a layer £ with residual-stream activations H, € R™*? collected across N tokens (or prompts),
PCA factorizes H, via SVD to yield orthogonal directions {uk}ﬁzl ordered by explained variance.
In practice this supports:

1. Concept probing and visualization. Projections onto top PCs often align with seman-
tically meaningful contrasts; e.g., the first PC of GPT-style embeddings correlated with
human well-being judgments in zero-shot tests (FAR Al |2023), and per-layer PCA can
reconstruct or predict response modes in GPT-2 (Jorgensen, [2023)).

2. Diagnosing and localizing phenomena. Layer-wise or head-wise PCA reveals where vari-
ance concentrates, helping localize depth at which concepts emerge or consolidate (com-
plementary to linear probing) (Zhou et al.,[2024)). Tracking subspace distance across check-
points detects representational drift during fine-tuning or domain shift.

3. Sanity checks and baselines. With growing interest in sparse autoencoders (SAEs) for
monosemantic features (Huben et al., [2024)), PCA serves as a transparent baseline decom-
position: if SAEs meaningfully improve sparsity/faithfulness over PCA while matching
reconstruction, that strengthens the interpretability claim (Templeton et al., [2023).

PCA is most compelling under: a) approximately linear feature superposition and b) high signal-
to-noise in dominant directions. Toy and empirical studies argue that Transformers often encode
many features as directions (superposition) (Elhage et al.,[2022), and even simple linear additions to
activations can steer model behavior (Turntrout, | 2023). PCA then becomes an appropriate first-pass
tool to:

* extract high-variance axes that frequently correlate with coherent features or tasks,

* reduce dimensionality before causal tests (e.g., ablate/project-out a PC and re-evaluate be-
havior),

* build compact surrogates (e.g., PCA embeddings for downstream analyses or compression)
(Bengtsson et al., 2025 He et al., [2024]).

Under widely observed linear-structure assumptions in Transformer activations, PCA offers an in-

terpretable, testable starting point: it surfaces dominant directions, supports hypothesis generation,
and provides quantitative targets for more advanced decompositions.
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F RESULTS ON TOY DATASETS: MODULO ADDITION
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Figure 9: Results on standard MLP trained for modular addition. The harmonic model trained for
modular addition generalizes quickly without grokking. Moreover, the embedding forms a perfect
2D circle. EV in the plot represents the explained variance by the first two principal components of
the embedding.
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