

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

NON-EUCLIDEAN HARMONIC LOSSES

Anonymous authors

Paper under double-blind review

ABSTRACT

Cross-entropy loss has long been the standard choice for training deep neural networks, yet it suffers from interpretability limitations, unbounded weight growth, and inefficiencies that can contribute to costly training dynamics. Recent work introduced *harmonic loss*, a distance-based alternative grounded in Euclidean geometry, which improves interpretability and mitigates phenomena such as *grokking*, also known as delayed generalization on the test set. However, the study of harmonic loss remains narrow: only Euclidean distance is explored, and no systematic evaluation of computational efficiency or sustainability was conducted. In this paper, we extend harmonic loss by systematically investigating a broad spectrum of distance metrics as replacements for the Euclidean distance. We comprehensively evaluate *distance-tailored harmonic losses* on both vision backbones and large language models. Our analysis is framed around a three-way evaluation of *model performance*, *interpretability*, and *sustainability*. On vision tasks, cosine distances provide the most favorable trade-off, consistently improving accuracy while lowering carbon emissions, whereas Bray-Curtis and Mahalanobis further enhance interpretability at varying efficiency costs. On language models, cosine-based harmonic losses markedly improve gradient and learning stability, strengthen representation structure, and reduce emissions relative to cross-entropy and Euclidean heads. Our code is available at: <https://anonymous.4open.science/r/rethinking-harmonic-loss-5BAB/>.

1 INTRODUCTION

Cross-entropy is the *de facto* loss function for classification tasks. However, it has shortcomings in terms of model interpretability and training dynamics. Cross-entropy training provides no inherent meaning to the learned weight vectors (they serve as abstract parameters rather than intuitive prototypes) and can drive those weights to grow without bound in pursuit of confident predictions Baek et al. (2025). This unbounded weight growth can lead to phenomena like *grokking*: a delayed generalization where the model only closes the train–test performance gap after extensive overtraining Power et al. (2022). Moreover, in high-stakes applications where transparency is critical (e.g., healthcare or finance), the opaque nature of cross-entropy–trained models poses challenges for trust and error diagnosis. These issues motivate the exploration of alternative loss functions that may yield more *interpretable*, *efficient*, and *robust* model behavior.

Recently, *harmonic loss* was proposed as an alternative training objective to address some of these concerns Baek et al. (2025). Harmonic loss replaces the conventional inner-product logits and softmax normalization with a distance-based formulation: model predictions are derived from the distances between the sample’s representation and *class prototype* vectors (learned weight vectors for each class). Intuitively, this means that a model is trained to bring each sample closer to its correct class center in the feature space rather than simply increasing a classification score. This approach endows the learning process with two key properties: *i*) *scale invariance* – distance comparisons do not depend on vector norm, and *ii*) *finite convergence point* – training aims for a distance of zero to the correct prototype. As a result, each class weight converges to an anchor point that can be interpreted as the *center* of that class’s feature distribution. Empirically, Baek et al. (2025) demonstrated that harmonic loss can close the train–test gap faster and yield more interpretable representations than cross-entropy. For example, the learned weight vectors in a harmonic-loss model directly reflect class prototypes, making them semantically meaningful. Models trained with harmonic loss were shown to require less data to generalize and to mitigate grokking, all while achieving competitive

054 or better accuracy on vision and language benchmarks. These findings suggest that *distance-based*
 055 *loss functions* are a promising direction for improving both performance and transparency in deep
 056 learning.

057 However, research on harmonic loss has been limited in scope so far. Baek et al. (2025) focused ex-
 058clusively on Euclidean distance as the metric for their loss function and did not examine the broader
 059 impacts on computational efficiency or energy consumption. On the other hand, distance-based met-
 060rics have been explored in other contexts and problems. Notably, Coil et al. (2025) investigated a wide
 061 range of distance measures for a problem of change point detection in concept-drift scenarios
 062 for anomaly detection. Their study found that the choice of distance metric can drastically affect both
 063 the accuracy and efficiency of detecting distribution shifts. For instance, replacing a costly metric
 064 (e.g., Wasserstein) with simpler alternatives yielded comparable detection performance at substan-
 065tially lower computational cost. This evidence that “metric matters” in learning algorithms raises a
 066 natural question: *might other distance measures offer advantages over Euclidean in a harmonic-loss*
 067 *setting?* To date, no work has evaluated harmonic loss with distance metrics beyond Euclidean, nor
 068 benchmarked their impacts across different domains.

069 In this paper, we present the first comprehensive study of *custom distance-based loss functions* in
 070 deep learning classification, extending the harmonic loss framework to a variety of distance mea-
 071sures across multiple problem domains. We experiment with a rich set of distance metrics, including
 072 Manhattan, Euclidean, Chebyshev, Minkowski, and cosine distance, as well as specialized metrics
 073 such as Hamming, Canberra, Bray-Curtis, and Mahalanobis. These metrics are integrated as drop-in
 074 replacements for Euclidean distance in the harmonic loss formulation.

075 We evaluate harmonic loss with each distance metric on two heterogeneous task families: *image*
 076 *classification* (MLP, ResNet, PVT) and *language modeling* with transformer-based LLMs (GPT-2,
 077 BERT, and others). This diversity enables us to assess whether certain distance-based losses consis-
 078tently outperform cross-entropy and Euclidean harmonic loss on metrics of *effectiveness*, *efficiency*,
 079 and *explainability*. Specifically, we pursue the following research questions:

080 **RQ1 (Model Performance):** Do distance-based loss functions offer higher accuracy or faster con-
 081vergence compared to cross-entropy and Euclidean harmonic loss?

082 **RQ2 (Interpretability):** Do models trained with distance-based losses exhibit more interpretable
 083 representations than those trained with cross-entropy?

085 **RQ3 (Efficiency & Sustainability):** If a custom distance-based loss outperforms cross-entropy,
 086 does it do so without incurring higher computational cost? We track training time, resource utiliza-
 087tion, and energy consumption to assess the *Green AI* perspective.

088 By addressing these questions, our aim is to explore a *three-way trade-off* between *accuracy*, *inter-
 089pretability*, and *sustainability* in the training process of deep learning models. Previous work has
 090 typically optimized one or two of these aspects in isolation: for instance, improving accuracy at the
 091 cost of enormous compute, known as “Red AI” (Schwartz et al., 2019), or simplifying models for
 092 interpretability while losing accuracy. In contrast, we seek solutions that can improve predictive
 093 performance while also yielding lower energy usage and more transparent models.

094 **Contributions.** This paper introduces *distance-tailored harmonic losses* and provides an exten-
 095 sive empirical and analytical evaluation of their merits. To our knowledge, this is the first work
 096 to: i) extend the harmonic loss beyond Euclidean distance and benchmark a wide spectrum of met-
 097rics on both vision and NLP tasks, ii) assess the carbon footprint and resource usage of different
 098 loss functions in a controlled setting, and iii) investigate interpretability outcomes of distance-based
 099 losses. We also offer preliminary theoretical insights into how different distance metrics influence
 100 the geometry of the learned model (e.g., relating L_1 losses to median-based class centers vs. L_2 to
 101 mean-based centers), which could inform the selection of an optimal loss for a given objective.

102 2 HARMONIC LOSS

103 Harmonic loss replaces the conventional inner-product logits and softmax normalization with a
 104 distance-based formulation: model predictions are derived from distances between the sample’s
 105 representation and *class prototype* vectors (the learned weight vectors for each class). Intuitively,

108 this means a model is trained to bring each sample closer to its correct class center in the feature
 109 space, rather than simply pushing up a classification score.
 110

111 From Baek et al. (2025), given the training set $\{(x_i, y_i)\}_{i=1}^n$ with $y_i \in \{1, \dots, K\}$ and class proto-
 112 types $\{\mathbf{w}_c\}_{c=1}^K \in \mathbb{R}^d$, the harmonic logit is the ℓ_2 distance between \mathbf{w}_i and \mathbf{x} , i.e., $d_i = \|\mathbf{w}_i - \mathbf{x}\|_2$.
 113 Then, the harmonic probabilities are given by:

$$p_k(x_i) = \frac{d_i^{-n}}{\sum_{j=1}^K d_j^{-n}}, \quad (1)$$

117 where the harmonic exponent n is a hyperparameter that controls the heavy-tailedness of the proba-
 118 bility distribution. The Harmonic loss is then given by:

$$\mathcal{L}(\{\mathbf{w}_k\}) = - \sum_{i=1}^n \log p_k(x_i). \quad (2)$$

122 This approach endows the learning process with two key properties: i) *scale invariance*: distance
 123 comparisons do not depend on the overall norm of \mathbf{h} or \mathbf{w}_c , in contrast to inner-product logits; and
 124 ii) *finite convergence point*: optimization seeks a distance of zero to the correct prototype.

125 As a result, each class weight converges to an anchor point that can be interpreted as the *center* of
 126 that class’s feature distribution. Empirically, Baek et al. (2025) demonstrated that harmonic loss
 127 can close the train–test gap faster and yield more interpretable representations than cross-entropy.
 128 For example, the learned weight vectors in a harmonic-loss model directly reflect class prototypes,
 129 making them semantically meaningful. Models trained with harmonic loss were also shown to
 130 require less data to generalize and to mitigate grokking, all while achieving competitive or better
 131 accuracy on both vision and language benchmarks. These findings suggest that *distance-based loss*
 132 *functions* are a promising direction for improving performance and transparency in deep learning.
 133

3 NON-EUCLIDEAN HARMONIC LOSSES

136 Our framework introduces *non-Euclidean harmonic losses* as a generalization of the harmonic loss,
 137 and as a replacement for conventional cross-entropy training. The idea is that, in Eq. (1), the Eu-
 138 clidean distance $d_i = \|\mathbf{w}_i - \mathbf{x}\|_2$ is replaced by a non-Euclidean distance.

3.1 CLASS PROTOTYPES, DISTANCES, AND DISTANCE-BASED HARMONIC LOSS FUNCTION

141 Each class $c \in \{1, \dots, K\}$ is associated with a *prototype vector* $\mathbf{w}_c \in \mathbb{R}^d$. Given a sample \mathbf{h} , we
 142 compute its distance to all prototypes via a chosen metric $d(\cdot, \cdot)$.

144 Prototypes are learned parameters, just like the weight matrix in linear classification. Thus, proto-
 145 type learning is no more computationally expensive than learning a final linear layer.

146 We extend the Euclidean formulation of harmonic loss (Baek et al., 2025) with the following dis-
 147 tances:

148 **Euclidean.** $d_{\text{euclidean}}(\mathbf{h}, \mathbf{w}) = \|\mathbf{h} - \mathbf{w}\|_2$. Baseline Euclidean distance between feature and proto-
 149 type.

151 **Manhattan (L1).** $d_{\text{manhattan}}(\mathbf{h}, \mathbf{w}) = \|\mathbf{h} - \mathbf{w}\|_1$. Emphasizes absolute differences, making it more
 152 robust to outliers (Keeling & Kunisch, 2016; Ye et al., 2012; Giloni & Padberg, 2003). It can stabilize
 153 training and reduce unnecessary computations, thereby lowering energy costs.

154 **Chebyshev (L ∞).** $d_{\text{chebyshev}}(\mathbf{h}, \mathbf{w}) = \|\mathbf{h} - \mathbf{w}\|_\infty$. Captures the maximum coordinate deviation,
 155 offering a highly interpretable measure of the most discriminative feature dimension. Its simplicity
 156 makes it computationally efficient.

157 **Minkowski (L p).** $d_{\text{minkowski}}(\mathbf{h}, \mathbf{w}; p) = \|\mathbf{h} - \mathbf{w}\|_p$. Generalizes both L1 and L2, with tunable p
 158 enabling a trade-off between robustness and sensitivity. This flexibility allows tailoring the loss to
 159 dataset complexity, improving accuracy while balancing sustainability.

160 **Cosine.** $d_{\text{cosine}}(\mathbf{h}, \mathbf{w}) = 1 - \frac{\mathbf{h}^\top \mathbf{w}}{\|\mathbf{h}\|_2 \|\mathbf{w}\|_2}$. Ignores magnitude and instead measures angular sim-
 161 ilarity, making it particularly effective in high-dimensional embeddings (e.g., CNNs, Transform-

ers) (Reimers & Gurevych, 2019; Deng et al., 2019; Wang et al., 2018; Sun et al., 2016; Karpukhin et al., 2020). This often improves generalization with minimal computational overhead.

Hamming. $d_{\text{hamming}}(\mathbf{h}, \mathbf{w}) = \frac{1}{d} \sum_{i=1}^d \mathbf{1}_{\{h_i \neq w_i\}}$. Counts mismatches directly, providing highly interpretable signals. With soft or gumbel relaxations, it becomes suitable for continuous embeddings and can reduce emissions when binary approximations are leveraged.

Canberra. $d_{\text{canberra}}(\mathbf{h}, \mathbf{w}) = \sum_{i=1}^d \frac{|h_i - w_i|}{|h_i| + |w_i| + \varepsilon}$. Normalizes differences by feature magnitudes, enhancing sensitivity to small but meaningful variations. This can improve performance on fine-grained tasks while stabilizing optimization.

Bray–Curtis. $d_{\text{bray-curtis}}(\mathbf{h}, \mathbf{w}) = \frac{\sum_{i=1}^d |h_i - w_i|}{\sum_{i=1}^d (|h_i| + |w_i|) + \varepsilon}$. Captures proportional differences across feature vectors, making it efficient and interpretable for compositional data (Fuschi et al., 2025; Chao et al., 2010; Song et al., 2020). It often balances accuracy with sustainability better than covariance-based measures.

Mahalanobis. $d_{\text{mahalanobis}}(\mathbf{h}, \mathbf{w}; \Sigma) = \sqrt{(\mathbf{h} - \mathbf{w})^\top \Sigma^{-1} (\mathbf{h} - \mathbf{w})}$. Incorporates feature correlations, offering superior accuracy in complex datasets and deep CNNs (Pang et al., 2018; Lee et al., 2018; Gómez-Silva et al., 2021; Omara et al., 2021). Although covariance estimation may increase computational cost, its interpretability and classification power justify the trade-off in high-capacity models.

In our work, we generalize harmonic loss by replacing the Euclidean distance used to calculate the harmonic logit with some other distance measure. Harmonic loss is applied only at the final classification layer, replacing the standard softmax + cross-entropy objective. All intermediate layers remain unchanged, and no normalization is applied inside the backbone.

Overall, compared to cross-entropy, these distance-based harmonic losses reduce reliance on probabilistic normalization and can lower the number of required operations. This translates into potential accuracy gains, reduced carbon emissions, and improved interpretability, depending on the chosen distance and backbone.

A formal treatment of our distance-based probabilistic layer is provided in Appendix A. There, we generalize the harmonic-loss analysis to broad distance families and prove: i) *scale invariance* and the existence of *finite* minimizers under 1-homogeneous distances (Theorem 1), and ii) a *margin-style PAC–Bayes generalization bound* whose finiteness follows from the finite-norm solution (Theorem 2). These results clarify when geometry choices are well-posed and why the resulting classifiers admit standard generalization guarantees.

4 EXPERIMENTS AND DISCUSSION

4.1 TRAINING AND EVALUATION

Datasets. We evaluate on five *vision* benchmarks (MNIST, CIFAR-10, CIFAR-100, MarathiSign-Language, TinyImageNet) and one *language* corpus (OpenWebText).

Vision. We consider a **Simple MLP** with two hidden layers (512, 256, ReLU), a **Simple CNN** (two 3×3 conv blocks with [32, 64] channels and 2×2 max-pooling, then a 128-dim FC), **ResNet-50** (standard [3, 4, 6, 3] bottleneck stages; for small inputs we remove the initial max-pool and use a 3×3 stride-1 stem), and **PVTv2-B0** (four hierarchical stages with overlapping patch embeddings; output pooled to a 256-dim vector).

Language. We study three Transformer families: **GPT**-style (decoder-only causal LM), **BERT** (encoder-only masked LM with 15% masking), and **Qwen2**-style decoders.

Optimization. Unless noted, models are trained from scratch with Adam/AdamW-style optimizers (weight decay, (β_1, β_2) as configured), cosine learning-rate decay with linear warmup, mixed precision (FP16/BF16 when available), and gradient accumulation. We apply gradient clipping, dataset-specific schedulers, and early stopping with *dataset-specific patience* and a minimum improvement threshold (Δ_{\min}). For fairness, all harmonic heads and the baseline share the same backbone, batch size, scheduler, and data order. Additional details about optimization are reported in Appendix C.1.

216 **Model Performance.** For vision tasks, we report average Accuracy and F1. For language task, we
 217 report the following metrics:

218 **Perplexity (Train / Val).** Given a sequence of targets $\{y_t\}_{t=1}^T$ and model probabilities $p_\theta(y_t \mid$
 219 context), the average negative log-likelihood is $\mathcal{L}_{\text{NLL}} = -\frac{1}{T} \sum_{t=1}^T \log p_\theta(y_t \mid \text{context})$, and the
 220 corresponding perplexity is $\text{PPL} = \exp(\mathcal{L}_{\text{NLL}})$. Lower perplexity indicates better next-token pre-
 221 diction¹.

222 **Gradient Stability (GS).** To quantify the smoothness of optimization, we measure the variability
 223 of the ℓ_2 -norm of the gradient across consecutive training steps: $\text{GS} = 1 - \frac{\text{Var}(\|\nabla_\theta \mathcal{L}_t\|_2)}{\text{Var}(\|\nabla_\theta \mathcal{L}_t\|_2)_{\text{CE}}}$, where
 224 $\text{Var}(\cdot)$ is computed over a fixed evaluation window (e.g., 500 steps) and the denominator corre-
 225 sponds to the variability under cross-entropy (CE). Thus, $\text{GS} = 1$ indicates equal smoothness as
 226 CE, $\text{GS} > 1$ indicates reduced gradient variance (smoother training), and $\text{GS} < 1$ reflects more
 227 unstable gradient dynamics. This metric is anchored in standard variance-of-gradient analyses used
 228 in optimizing large-scale LLMs.

229 **Model Health (MH).** To track representation collapse or instability in token embeddings during pre-
 230 training, we measure the diversity of hidden representations using the per-token covariance trace:
 231 $\text{MH} = 1 - \frac{\Delta \text{Tr}(\Sigma_h)}{\Delta \text{Tr}(\Sigma_h)_{\text{CE}}}$, $\Sigma_h = \text{Cov}(\mathbf{h}_t)$. Here \mathbf{h}_t denotes the hidden activations at the penulti-
 232 mate transformer block, and Δ denotes deviation from initialization (higher deviation often signals
 233 collapse into low-rank subspaces). $\text{MH} > 1$ indicates healthier representations (preserved diver-
 234 sity, no collapse), while $\text{MH} < 1$ suggests degenerate or low-rank features. This relates directly to
 235 standard metrics used in collapse detection and embedding drift.

236 **Interpretability.** We probe whether learned prototypes/weights act as class centers and whether fea-
 237 tures become more structured by computing **PCA explained variance** on the penultimate features:
 238 (i) **PC2 EV** (variance explained by the top two PCs), and (ii) **PCA@90%** (dimensions required
 239 to reach 90% variance). Lower PCA@90% and higher PC2 EV indicate more concentrated, low-
 240 dimensional structure. For language, we report **PCA5**: Δ variance explained by the top 5 principal
 241 components of final hidden states (causal LM: last token; MLM: masked positions); higher values
 242 implies more concentrated, low-dimensional structure.

243 **Sustainability.** We perform training with *CodeCarbon* to log *duration*, *energy*, and *CO₂ emissions*.
 244 Emissions are reported per run and *differentially* vs. the cross-entropy baseline (grams CO₂; neg-
 245 ative means greener-than-baseline). We aggregate by (dataset, backbone, distance) and also report
 246 cumulative figures across seeds. For language, we also report Speed ($-\Delta \text{time_to_90_percent}$):
 247 higher values denotes fewer steps to reach 90% of final performance.

248 To isolate the effect of the *loss geometry*, we *only* swap the classifier head (linear vs. distance-
 249 based) while keeping: backbone weights initialization scheme, data preprocessing/augmentation,
 250 optimizer and LR schedule, batch size, number of epochs, early-stopping rule, and randomness
 251 controls (seeds). For ResNet-50/PVT we use identical augmentation; for LLMs we use the same
 252 context length L , optimizer, and schedule across heads. We run multiple seeds and report means.
 253 Exact architectures and preprocessing pipelines are detailed in Appendix C.1. Full hyperparam-
 254 eter grids (including head-specific parameters Θ , e.g., p for Minkowski or covariance settings for
 255 Mahalanobis) are provided in Appendix D. This unified protocol lets us *systematically* test how re-
 256 placing the Euclidean harmonic head with alternative distances impacts: i) final model performance,
 257 ii) representation structure and prototype semantics, and iii) measured energy and carbon footprint.

258 Figure 1 summarizes the behavior of distance-based harmonic losses across all vision settings, in-
 259 cluding a high-resolution sign-language dataset (Marathi Sign) and TinyImageNet in addition to
 260 CIFAR-100. Additional results on MNIST and CIFAR10 are provided in Appendix F. Together,
 261 these radar plots expose how the choice of distance in the harmonic head shapes performance, rep-
 262 resentation geometry, and sustainability.

263 ¹For visualization in the radar plots, we invert perplexity (and all metrics where lower values indicate better
 264 performance) and then normalize to the range [0, 10] relative to the harmonic Euclidean baseline. The effect is
 265 that the greater the coverage on the plot, the better the relative performance compared to Euclidean. Importantly,
 266 the absolute numeric values on the radial axis do not have a direct “good/bad” interpretation in perplexity space;
 267 they are only meaningful as normalized, experiment-specific comparisons against Euclidean harmonic.

270 **RQ1: Model Performance (F1, Accuracy).** Across datasets and backbones, **cosine-based harmonic losses** remain the most reliable all-round performers. On CIFAR-100, cosine (stable/unstable) typically attains the highest or near-highest accuracy and F1 on CNN and ResNet50, and is consistently among the top curves on PVT. On the more realistic, higher-resolution Marathi Sign and TinyImageNet, the same pattern largely persists: cosine (stable) and Bray-Curtis (normalized) frequently improve or match Euclidean and cross-entropy on CNN, ResNet50, and PVT, while also appearing in the top group on MLP. TinyImageNet is the most challenging setting: here, cross-entropy remains a strong baseline, but cosine heads still achieve competitive accuracy on ResNet50 and PVT, demonstrating that the benefits of distance-tailored heads extend beyond small benchmarks. Other non-Euclidean distances (Bray-Curtis variants, Manhattan, Minkowski) can occasionally match or exceed cosine in specific architecture-dataset combinations.

281 **RQ2: Interpretability (PC2 EV, PCA 90%).** Non-Euclidean distances reshape the final embedding geometry in a systematic, dataset-agnostic way. Across Marathi Sign, TinyImageNet, and CIFAR-100, Bray-Curtis (standard/normalized) and Chebyshev (standard) repeatedly yield the largest PC2 explained variance and the lowest dimensionality required to reach 90% EV, indicating compact, prototype-aligned feature spaces with sharper class clusters than those produced by Euclidean harmonic loss or cross-entropy. Cosine harmonic loss generally provides substantial EV gains over Euclidean while retaining top accuracy, offering a favorable accuracy-interpretability balance on both convolutional backbones and PVT. Mahalanobis variants often achieve extreme variance concentration (very high EV) and pronounced cluster separation, but this representation clarity sometimes co-occurs with less stable optimization on the hardest datasets. Overall, the same geometric trends observed on earlier small benchmarks persist when moving to higher resolutions and deeper models: non-Euclidean harmonic losses, especially Bray-Curtis and Chebyshev, produce more structured, low-dimensional embeddings than Euclidean or cross-entropy heads.

293 **RQ3: Sustainability (Duration/Epoch/GFLOPs, Emissions).** Distance choice also affects efficiency, but in a controlled way. Across all datasets, cosine harmonic loss is typically neutral-to-favorable in emissions relative to Euclidean and cross-entropy: normalized Duration/Epoch/GFLOPs and gCO_{2eq} remain comparable, and in several ResNet50 and PVT runs cosine achieves slightly lower emissions due to faster approach to high accuracy. Bray-Curtis losses incur modest overhead while delivering strong interpretability gains, whereas Mahalanobis distances are the most costly, reflecting their covariance-related computation and sometimes slower convergence on complex data. Even on high-resolution Marathi Sign and TinyImageNet, the harmonic head contributes only a small fraction of total FLOPs; thus, differences in Duration/Epoch are smaller than differences in accuracy or EV, yet cumulative emissions still separate distances meaningfully.

303 Across all vision workloads, three regularities emerge: i) cosine harmonic loss is the best all-around choice, offering consistently strong accuracy/F1, clear geometric structure relative to Euclidean, and neutral-to-lower emissions from MLPs up to ResNet50/PVT on Marathi Sign and TinyImageNet; ii) Bray-Curtis and Chebyshev are the most interpretability-forward options, reliably increasing variance concentration and reducing PCA 90% dimensionality, with accuracy effects that are positive but more configuration-dependent; iii) Mahalanobis emphasizes representation clarity at a higher sustainability cost. Taken together, the radar plots show that the geometry of the harmonic loss, especially non-Euclidean choices, has a consistent, architecturally robust effect on performance, structure, and sustainability across both small and large vision benchmarks.

313 4.2 LANGUAGE: RADAR PLOTS

315 Figure 2 summarizes the effect of distance-tailored harmonic losses on *BERT*, *GPT*, and *Qwen*-style 316 decoders across the three perspectives. Scores are normalized so that larger areas indicate more 317 desirable behavior.

318 **RQ1: Model Performance (Perplexity, Health, Stability).** Across architectures, cosine-based 319 harmonic losses remain the most reliable choices on performance-oriented axes. For BERT, 320 cosine heads achieve low train and validation perplexity while improving Gradient Stability and 321 preserving high Model Health relative to both cross-entropy and Euclidean harmonic loss. For GPT, 322 cosine and Minkowski ($p=2$) again provide steady training dynamics with competitive perplexity, 323 whereas the cross-entropy baseline exhibits higher variability and weaker stability. On Qwen, Euclidean 324 harmonic loss offers the strongest combination of low perplexity and gradient stability, with

324 Minkowski providing a close alternative; the cross-entropy head is consistently dominated on at
 325 least one of these axes. Overall, replacing the linear classifier with distance-based harmonic heads
 326 reduces gradient volatility and collapse symptoms while maintaining or improving perplexity.
 327

328 **RQ2: Interpretability (PCA Structure).** Non-Euclidean distances consistently concentrate to-
 329 ken representations into more structured latent spaces. In BERT and GPT, cosine and Minkowski
 330 enlarge the PCA Structure wedge (higher variance explained by a small number of components),
 331 indicating more organized, prototype-aligned embeddings than those produced by cross-entropy
 332 or Euclidean harmonic loss. Qwen shows a similar pattern: distance-based heads achieve clearer
 333 low-dimensional structure even when Euclidean is slightly stronger on stability. As in the vision
 334 experiments, geometries that emphasize angles (cosine) or ℓ_p structure (Minkowski) tend to yield
 335 hidden states that are easier to summarize with a few principal components.

336 **RQ3: Sustainability (Emissions).** Results confirm that distance-based harmonic heads introduce
 337 little computational overhead and can be greener than cross-entropy in practice. In all three models,
 338 the cross-entropy baseline occupies the largest emissions wedge, while cosine and Minkowski are
 339 neutral-to-favorable, often matching or improving on Euclidean harmonic loss. Extremely sharp
 340 cosine temperatures may reduce emissions slightly but at the cost of stability and perplexity; mod-
 341 erate settings avoid this trade-off. Because the classifier head is lightweight compared to the Trans-
 342 former backbone, these sustainability gains primarily arise from smoother optimization and faster
 343 convergence rather than per-step FLOPs.

344 In summary, cosine-based harmonic losses are the most robust all-around choice for LLMs, jointly
 345 improving perplexity, stability, and representation structure with neutral or reduced emissions.
 346 Minkowski ($p=2$) provides a strong alternative when cosine hyperparameters are poorly tuned,
 347 while Euclidean remains a solid reference but is rarely dominant over non-Euclidean geometries.
 348 Additional results showcasing optimization dynamics for all models, including a larger GPT2 (2B)
 349 model, are reported in Appendix H.

350 5 RELATED WORK

351 **Loss functions for classification.** The majority of classification models are trained with cross-
 352 entropy loss due to its empirical effectiveness and probabilistic interpretation. However, it only cares
 353 about separating classes, not about how the representations are separated, often yielding features that
 354 are separable but not necessarily interpretable. Over the years, alternative loss functions have been
 355 proposed to address these limitations. Metric learning losses, such as contrastive and triplet loss,
 356 train models to preserve distances between examples, but require sampling strategies that add training
 357 complexity. Boudiaf et al. (2020) propose a unifying mutual information framework connecting
 358 cross-entropy to standard pairwise losses, showing that cross-entropy implicitly bounds pairwise
 359 distance objectives. These insights motivate a deeper theoretical understanding of distance-based
 360 training. Regularization-based approaches such as *center loss* (Wen et al., 2016) explicitly encour-
 361 age compact intra-class clusters and large inter-class separation. These works foreshadow the idea
 362 that directly leveraging distances to class prototypes can improve representation quality. Angular
 363 margin losses such as AMC-Loss in Choi et al. (2020) introduce geometric constraints on angular
 364 separations to enhance interpretability via hyperspherical metrics. Orthogonal Projection Loss
 365 (OPL) introduced by Ranasinghe et al. (2021) encourages inter-class orthogonality and intra-class
 366 cohesion without sampling overhead. Several studies have assessed how loss functions affect neu-
 367 ral network performance. Miller et al. (2021) introduce *Class Anchor Clustering* (CAC) loss that
 368 encourages tight class clusters centered on anchored prototypes, enhancing distance-based open-set
 369 classification performance. This approach aligns with the prototype-centered philosophy underlying
 370 harmonic loss. Cho et al. (2019) analyzed how eight loss functions impact neural network accuracy
 371 and convergence speed, finding that additive-margin softmax loss resulted in the fastest conver-
 372 gence and highest performance on multiple datasets. Janocha & Czarnecki (2017) assessed 12 loss
 373 functions for classification, finding that choice of loss function impacted learning speed and test-
 374 ing accuracy. Gonzalez & Miikkulainen (2020) used genetic programming to develop Baikal loss,
 375 which not only led to networks achieving higher accuracy than networks trained with cross-entropy
 376 loss, but also faster training and higher performance in low-data settings. These studies demon-
 377 strate a large focus on the impact of loss function on neural networks performance. Our work builds on
 378 the discussion of the importance of loss function choice by drilling deeper on harmonic loss, exam-

Figure 1: Vision: Radar plots: 1) *Model Performance* (F1, Accuracy); 2) *Interpretability* (PC2 EV, PCA 90%), and 3) *Sustainability* (Duration/Epoch/GFLOPs, Emissions). Plots feature Baseline (Cross-Entropy), Euclidean harmonic, and the four top-performing non-Euclidean harmonic losses.

ining how distance metric choice impacts the effectiveness of neural networks. Our focus is not on comparing harmonic loss with other loss functions, which was done by Baek et al. (2025), but rather to shed light on performance of a generalized harmonic loss.

Efficiency and Green AI. Green AI is an emerging initiative that calls for efficiency and energy usage to be treated as first-class evaluation criteria (Schwartz et al., 2019). Many works on green AI focus on model compression (Paula et al., 2025; Rafat et al., 2023), comparing multiple models

Figure 2: Language: Radar plots: 1) *Model Performance* (Perplexity, Model Health, Gradient Stability); 2) *Interpretability* (PCA5 EV), and 3) *Sustainability* (Emissions). Plots feature Baseline (CE), Euclidean harmonic, and the top-performing non-Euclidean harmonic losses.

(Verma et al., 2024) or fine-tuning strategies (Wang et al., 2023), or hyperparameter optimization for carbon emission reduction Wang et al. (2025). While prior works on new loss functions rarely report sustainability metrics, we incorporate carbon footprint analysis into our evaluation due to claims that models trained with harmonic loss are more data efficient and have less grokking (Baek et al., 2025).

Interpretability in neural networks. Neural networks are complex and not inherently interpretable, but a substantial amount of effort was done to improve interpretability (Zhang et al., 2021). The push for *interpretable by design* models argues that transparency should be built into model architectures and losses rather than added post-hoc (Rudin, 2019). Harmonic loss aligns with this vision by structurally linking model weights to class prototypes. The study by Saphra et al. (2024) discusses how internal model components reveal human-understandable circuits and features in LLMs. Techniques such as activation patching, sparse autoencoders, transcoders, and crosscoders enable structural interpretations of model behavior. Parallel to our interpretability focus, Wen et al. (2025) introduced *InterpGN*, a framework combining interpretable models with deep networks for time-series tasks, preserving understandable reasoning where possible. Though not loss-centric, it reflects the growing emphasis on transparency in deep learning research. Some work has focused on using loss functions specifically to improve model interpretability. Liu et al. (2022) combine sparse coding constraints with cross-entropy to produce concise, interpretable word-level attributions. Dong et al. (2017) introduced *interpretative loss* to improve interpretability of learned features during video captioning tasks. Within classification tasks, Zhang et al. (2018) designed a loss function to improve CNN filter interpretability. Methods such as the one proposed by Hagos et al. (2023) augment standard losses with distance-based penalties that align model attributions with user-provided annotations, strengthening interpretability.

Distance metrics in learning algorithms. Beyond supervised classification, the choice of distance measure is known to be crucial. Coil et al. (2025) compared twelve distance metrics in anomaly detection for concept drift. Their results highlighted that performance depends heavily on the chosen metric and that efficient alternatives can sometimes match the performance of more costly distances. A variety of other works have shown the importance of distance metric choice. Amaya-Tejera et al. (2024) used a kernel for SVMs that could support a variety of kernels, finding that distance metric choice impacted performance. Kalra et al. (2022) and Hu et al. (2016) both found that distance metric choice impacted performance of k -nearest neighbors algorithms on a variety of datasets. These results highlight the importance of systematically exploring metrics in different contexts. To our knowledge, our paper is the first to bring this perspective into loss functions.

6 CONCLUSION

This work examined *distance-based harmonic losses* as drop-in replacements for cross-entropy across image classification (MNIST, CIFAR-10, CIFAR-100, Marathi Sign Language, TinyImageNet) with four vision backbones (MLP, CNN, ResNet50, PVT) and LLM pretraining (GPT, BERT, Qwen, GPT-2B), leveraging a broad family of distances (cosine, Euclidean, Bray-Curtis,

486 Mahalanobis, Minkowski, Chebyshev, Canberra, *etc.*) and comparing them against strong modern
 487 baselines (Focal Loss, Label Smoothing, Center Loss, Confidence Penalty, ArcFace).

488 **What we learned.** i) **Geometry matters for optimization.** Across vision and language tasks, Co-
 489 sine consistently delivers smoother training dynamics, higher or competitive final performance, and
 490 reduced grokking-like behavior on toy modulo-addition experiments. Euclidean remains a solid ref-
 491 erence; Bray–Curtis is often competitive but architecture-sensitive; Mahalanobis exhibits the largest
 492 variance—sometimes yielding very sharp, well-separated clusters, but with less stable plateaus on
 493 the more difficult scenarios (larger datasets and model backbones). Loss-convergence curves for
 494 both vision and LLMs show that all investigated distances (including cosine and Mahalanobis) are
 495 characterized by a smooth optimization without problematic instabilities.

496 ii) **Sustainability depends jointly on distance and architecture.** On vision tasks, several
 497 non-Euclidean harmonic losses are carbon-negative per step relative to cross-entropy for CN-
 498 N/ResNet50 (largest gains occur on deeper CNNs), mixed on MLP, and closer to neutral on PVT
 499 and TinyImageNet, where backbone FLOPs dominate. For LLM pretraining, the classifier head is
 500 lightweight, so differences arise primarily via convergence: the cross-entropy baseline typically in-
 501 curs the largest cumulative emissions, while cosine and Minkowski heads are neutral-to-favorable.
 502 Our FLOPs-normalized analysis and extended emissions study show that the best non-Euclidean
 503 harmonic losses lie on or near the sustainability-accuracy Pareto frontier.

504 iii) **Interpretability can be quantified.** PCA-based probes (variance concentration and
 505 PCA@90%) and geometric visualizations of prototype neighborhoods provide reproducible evi-
 506 dence that distance-tailored heads yield more structured representations. Bray–Curtis and Cheby-
 507 shew consistently increase variance concentration and reduce intrinsic dimensionality, while Maha-
 508 lanobis emphasizes representation clarity at higher computational cost. These trends hold for image
 509 features and for token representations in LLMs (last-token and masked-token states), and are sup-
 510 ported by statistical tests (Wilcoxon) and confidence intervals across seeds.

511 **Language.** Cosine-based harmonic losses markedly improve gradient/learning stability, perplex-
 512 ity, and representation structure for GPT, BERT, Qwen, and GPT-2B, while keeping emissions
 513 on par with or below cross-entropy and Euclidean heads. Mahalanobis remains less attractive for
 514 large-scale pretraining due to covariance overheads and sensitivity to ill-conditioned statistics.

515 **Vision.** For accuracy-focused workloads across MNIST, CIFAR, Marathi Sign, and TinyImageNet,
 516 cosine (stable) is the preferred all-round choice; Bray–Curtis is a strong secondary option; Maha-
 517 lanobis should be used when its inductive bias (sharp, anisotropic clusters) is explicitly desired. For
 518 sustainability on CNN/ResNet50, several non-Euclidean distances reduce per-step CO₂; on PVT
 519 and LLMs, the lightest geometries (cosine/Euclidean) should be favored, or cross-entropy retained
 520 unless a distance-based head reduces steps-to-target enough to offset higher per-step cost.

521 Beyond specific winners, our main contribution is a *framework*: a plug-and-play harmonic head,
 522 a catalogue of distances, and a three-axis evaluation protocol (*performance, interpretability, sus-
 523 tainability*) with concrete metrics, visualizations, and statistical tests. This framework can be effec-
 524 tively exploited in future work: practitioners can choose distances according to their priorities and
 525 researchers can extend our study to new geometries, learning settings, and domain-specific con-
 526 straints. In this sense, distance-based harmonic losses provide a principled, empirically validated
 527 toolbox for rethinking the geometry of classifier heads in both vision and language models.

528 **Reproducibility Statement.** We took several steps to facilitate exact and statistical reproducibility.
 529 The main paper specifies the learning objectives, training protocol, model families, and evaluation
 530 metrics used in all studies. The *Appendix* contains: i) complete hyperparameter and backbone-
 531 specific settings; ii) dataset descriptions and end-to-end preprocessing pipelines (including splits and
 532 any filtering); iii) detailed experimental studies and analyses; iv) technical details with code snip-
 533 pets to integrate our non-Euclidean harmonic losses in conventional deep learning pipelines. Our
 534 code repository provides: ready-to-run scripts for data acquisition and preprocessing; configura-
 535 tion files for every experiment; training/evaluation entry points; instructions for reproducing results.
 536 Together, these materials are intended to enable independent researchers to audit, rerun, and extend our
 537 findings with minimal effort.

538
 539

540 REFERENCES
541

542 Nazhir Amaya-Tejera, Margarita Gamarra, Jorge I Vélez, and Eduardo Zurek. A distance-based ker-
543 nel for classification via support vector machines. *Frontiers in Artificial Intelligence*, 7:1287875,
544 2024.

545 David D Baek, Ziming Liu, Riya Tyagi, and Max Tegmark. Harmonic loss trains interpretable ai
546 models. *arXiv preprint arXiv:2502.01628*, 2025.

547 Martin Bengtsson et al. Compressing large language models with pca without fine-tuning, 2025.
548 URL <https://arxiv.org/abs/2508.04307>.

550 Malik Boudiaf, Jérôme Rony, Imtiaz Masud Ziko, Eric Granger, Marco Pedersoli, and Ismail Ben
551 Ayed. A unifying mutual information view of metric learning: Cross-entropy vs. pairwise losses.
552 In *Proceedings of the European Conference on Computer Vision (ECCV)*, pp. 548–564. Springer,
553 2020. doi: 10.1007/978-3-030-58568-6_33.

554 Anne Chao, Robin L Chazdon, Robert K Colwell, and Tsung-Jen Shen. An additive decomposition
555 formula for the Bray–Curtis dissimilarity and their ecological meaning. *Ecological Modelling*,
556 221(9):1275–1283, 2010.

557 Kwantae Cho, Jong-hyuk Roh, Youngsam Kim, and Sangrae Cho. A performance comparison of
558 loss functions. In *2019 International Conference on Information and Communication Technology
559 Convergence (ICTC)*, pp. 1146–1151. IEEE, 2019.

560 Jongmin Choi, Minsung Cho, and Seong-Whan Lee. Am-loss: Angular margin loss for deep face
561 recognition. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
562 Vision (WACV)*, pp. 298–307, 2020. doi: 10.1109/WACV45572.2020.9093485.

564 Collin Coil, Kamil Faber, Bartłomiej Sniezynski, and Roberto Corizzo. Distance-based change
565 point detection for novelty detection in concept-agnostic continual anomaly detection. *Journal of
566 Intelligent Information Systems*, pp. 1–39, 2025.

567 Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. ArcFace: Additive angular margin
568 loss for deep face recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision
569 and Pattern Recognition*, pp. 4690–4699, 2019.

571 Yinpeng Dong, Hang Su, Jun Zhu, and Bo Zhang. Improving interpretability of deep neural net-
572 works with semantic information. In *Proceedings of the IEEE conference on computer vision and
573 pattern recognition*, pp. 4306–4314, 2017.

574 Nelson Elhage, Neel Nanda, et al. Toy models of superposition. 2022. Transformer Circuits Thread.

575 FAR AI. Uncovering latent human wellbeing in llm embeddings. <https://far.ai/news/uncovering-latent-human-wellbeing-in-llm-embeddings>, 2023. Shows first
576 principal component of GPT-3 embeddings correlates with ethics/well-being labels.

579 Carolina Fuschi, Davide Delfino, Thomas Klammsteiner, Franco Biasioli, Gino Fernandez, Sabina
580 Angeli, and Raffaella Causin. Microbiome data: tell me which metrics and I will tell you which
581 communities. *Scientific Reports*, 15(1):1–14, 2025.

583 Arie Giloni and Manfred Padberg. The finite sample breakdown point of ℓ_1 -regression. In *SIAM
584 Journal on Optimization*, volume 14, pp. 608–620. SIAM, 2003.

585 María José Gómez-Silva, Arturo de la Escalera, and José María Armengol. Back-propagation of
586 the Mahalanobis distance through a deep triplet learning model for person re-identification. *Inte-
587 grated Computer-Aided Engineering*, 28(3):277–288, 2021.

588 Santiago Gonzalez and Risto Miikkulainen. Improved training speed, accuracy, and data utilization
589 through loss function optimization. In *2020 IEEE congress on evolutionary computation (CEC)*,
590 pp. 1–8. IEEE, 2020.

592 Elias Hagos, Dahai Lin, and Xinyi Wu. Distance-aware explanation based learning for interpretable
593 neural networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37,
594 pp. 12012–12020, 2023.

594 Yutong He et al. Can transformers perform pca?, 2024. URL <https://openreview.net/forum?id=mjDNVksC5G>. OpenReview preprint.
 595
 596

597 Li-Yu Hu, Min-Wei Huang, Shih-Wen Ke, and Chih-Fong Tsai. The distance function effect on
 598 k-nearest neighbor classification for medical datasets. *SpringerPlus*, 5(1):1304, 2016.

599 Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
 600 autoencoders find highly interpretable features in language models. In *International Conference on Learning Representations (ICLR), Poster*, 2024. URL <https://openreview.net/forum?id=F76bwRSLeK>.
 601
 602

603 Katarzyna Janocha and Wojciech Marian Czarnecki. On loss functions for deep neural networks in
 604 classification. *arXiv preprint arXiv:1702.05659*, 2017.
 605
 606 Ole Jorgensen. *Understanding and Controlling the Activations of Language Models*. PhD thesis, Imperial
 607 College London, 2023. URL https://ojorgensen.github.io/assets/pdfs/Imperial_Dissertation.pdf.
 608
 609 Vandana Kalra, Indu Kashyap, and Harmeet Kaur. Effect of distance measures on k-nearest neighbour
 610 classifier. In *2022 Second International Conference on Computer Science, Engineering and Applications (ICCSEA)*, pp. 1–7. IEEE, 2022.
 611
 612 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 613 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
 614 *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 6769–6781, 2020.
 615
 616 S. L. Keeling and K. Kunisch. Robust ℓ_1 approaches to computing the geometric median and principal and independent components. *Journal of Mathematical Imaging and Vision*, 56(2):286–300,
 617 2016.
 618
 619 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
 620 out-of-distribution samples and adversarial attacks. *Advances in Neural Information Processing Systems*, 31, 2018.
 621
 622 Tian Liu, Han Chen, and Xiang Ren. Sparsity and interpretability: Improving attribution for neural
 623 text classifiers. In *Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)*, pp. 1517–1530, 2022. doi: 10.18653/v1/2022-naacl-main.109.
 624
 625 David Miller, Garrett Stewart, and Fernando de la Torre. Cac: Class anchor clustering for open-set
 626 recognition. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 34, pp.
 627 16326–16339, 2021.
 628
 629 Ibrahim Omara, Xue-juan Wu, Huan Zhang, Yingying Du, and Wangmeng Zuo. A novel approach
 630 for ear recognition: learning Mahalanobis distance features from deep CNNs. *Machine Vision and Applications*, 32(2):1–17, 2021.
 631
 632 Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu. Max-Mahalanobis linear discriminant analysis
 633 networks. In *International Conference on Machine Learning*, pp. 4016–4025. PMLR, 2018.
 634
 635 Eileen Paula, Jayesh Soni, Himanshu Upadhyay, and Leonel Lagos. Comparative analysis of model
 636 compression techniques for achieving carbon efficient ai. *Scientific Reports*, 15(1):23461, 2025.
 637
 638 Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Generalization beyond overfitting on small algorithmic datasets. *CoRR*, abs/2201.02177, 2022.
 639
 640 Kazi Rafat, Sadia Islam, Abdullah Al Mahfug, Md Ismail Hossain, Fuad Rahman, Sifat Momen,
 641 Shafin Rahman, and Nabeel Mohammed. Mitigating carbon footprint for knowledge distillation
 642 based deep learning model compression. *Plos one*, 18(5):e0285668, 2023.
 643
 644 Kanchana Ranasinghe, Mehrtash Harandi, and Fatih Porikli. Orthogonal projection loss for
 645 learning discriminative features in face recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 13369–13378, 2021. doi:
 646 10.1109/CVPR46437.2021.01318.
 647

648 Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
 649 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language*
 650 *Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-*
 651 *IJCNLP)*, pp. 3982–3992, 2019.

652 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
 653 use interpretable models instead. *Nature Machine Intelligence*, 1(5):206–215, 2019. doi: 10.
 654 1038/s42256-019-0048-x.

655 Naomi Saphra, Tim Lieberum, Arthur Conmy, Abhinav Sharma, Yushi Wu, Nelson Elhage, Catherine
 656 Olsson, Nicholas Joseph, Ethan Perez, Lawrence Chan, et al. Mechanistic interpretability:
 657 Methods and applications. *arXiv preprint arXiv:2408.13296*, 2024.

658 Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green ai. In *Communications of the*
 659 *ACM*, volume 63, pp. 54–63, 2019. doi: 10.1145/3381831.

660 Ling Song, Peter Langfelder, and Steve Horvath. Systematic comparisons for composition pro-
 661 files, taxonomic levels, and machine learning methods for microbiome-based disease prediction.
 662 *Frontiers in Molecular Biosciences*, 7:618573, 2020.

663 Yantao Sun, Yuxin Chen, Xiaogang Wang, and Xiaou Tang. Learning discriminative CNN features
 664 and similarity metrics for image retrieval. In *2016 23rd International Conference on Pattern*
 665 *Recognition (ICPR)*, pp. 1013–1018. IEEE, 2016.

666 Arthur Templeton et al. Sparse autoencoders find highly interpretable directions in language
 667 models. <https://www.alignmentforum.org/posts/Qryk6FqjtZk9FHHJR/sparse-autoencoders-find-highly-interpretable-directions-in>, 2023.

668 Alex Turntrout. Steering GPT-2-XL by adding an activation vector. <https://turntrout.com/gpt2-steering-vectors>, 2023.

669 Anil Verma, Sumit Kumar Singh, Rupesh Kumar Sah, Rajiv Misra, and TN Singh. Performance
 670 comparison of deep learning models for co2 prediction: Analyzing carbon footprint with ad-
 671 vanced trackers. In *2024 IEEE International Conference on Big Data (BigData)*, pp. 4429–4437.
 672 IEEE, 2024.

673 Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei
 674 Liu. CosFace: Large margin cosine loss for deep face recognition. In *Proceedings of the IEEE*
 675 *Conference on Computer Vision and Pattern Recognition*, pp. 5265–5274, 2018.

676 Irene Wang, Newsha Ardalani, Mostafa Elhoushi, Daniel Jiang, Samuel Hsia, Ekin Sumbul, Divya
 677 Mahajan, Carole-Jean Wu, and Bilge Acun. Carbon aware transformers through joint model-
 678 hardware optimization. *arXiv preprint arXiv:2505.01386*, 2025.

679 Xiaorong Wang, Clara Na, Emma Strubell, Sorelle Friedler, and Sasha Luccioni. Energy and carbon
 680 considerations of fine-tuning bert. *arXiv preprint arXiv:2311.10267*, 2023.

681 Haoran Wen, Zhi Li, Yue Wu, and Tianqi Chen. Interpgn: Combining interpretable models with
 682 deep networks for time-series. In *International Conference on Learning Representations (ICLR)*,
 683 2025.

684 Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning ap-
 685 proach for deep face recognition. In *Proceedings of the European Conference on Computer Vision*
 686 (*ECCV*), pp. 499–515. Springer, 2016. doi: 10.1007/978-3-319-46478-7_31.

687 Jinfeng Ye, Tao Li, Tao Xiong, and Ravi Janardan. A pure L_1 -norm principal component analysis.
 688 *Computational Statistics & Data Analysis*, 56(12):4474–4486, 2012.

689 Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional neural networks.
 690 In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 8827–
 691 8836, 2018.

692 Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. A survey on neural network interpretability.
 693 *IEEE transactions on emerging topics in computational intelligence*, 5(5):726–742, 2021.

702 Yuxin Zhou et al. Exploring concept depth: How large language models acquire concepts across
 703 layers, 2024. URL <https://arxiv.org/abs/2404.07066>.

705
 706 APPENDIX
 707

708 A THEORETICAL PROPERTIES OF DISTANCE-BASED PROBABILISTIC
 709 LAYERS
 710

711 **Setup.** Let $\{(x_i, y_i)\}_{i=1}^n$ be the training set with $y_i \in \{1, \dots, K\}$. Each class has a prototype $w_k \in \mathbb{R}^d$
 712 and a nonnegative distance $d(x, w) \geq 0$. Given a decreasing link $\kappa : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ we define
 713

$$714 p_k(x_i) = \frac{\kappa(d(x_i, w_k))}{\sum_{j=1}^K \kappa(d(x_i, w_j))}, \quad \mathcal{L}(\{w_k\}) = -\sum_{i=1}^n \log p_{y_i}(x_i).$$

717 harmonic $\kappa(r) = r^{-\omega}$ with $\omega > 0$; while distances include Euclidean/Mahalanobis, ℓ_p , Bregman
 718 divergences, and cosine/angle on the sphere.

720 A.1 SCALE INVARIANCE AND FINITE MINIMIZERS
 721

722 We begin by generalizing the finite-minimizer result of the harmonic loss (cf. Thm. 1, Sec. G in
 723 Baek et al. (2025)).

724 **Definition 1** (Metric separability and homogeneity). A dataset is *metric-separable* if for each i there
 725 exists $\{w_k\}$ s.t. $d(x_i, w_{y_i}) < \min_{j \neq y_i} d(x_i, w_j)$. A distance d is *1-homogeneous* if $d(cx, cw) =$
 726 $|c| d(x, w)$ for all $c > 0$.

727 **Theorem 1** (Finite minimizer and scale invariance for harmonic link). *Assume d is 1-homogeneous
 728 and the training set is metric-separable. For $\kappa(r) = r^{-\omega}$, the empirical loss \mathcal{L} is invariant to
 729 the joint rescaling $(x, w) \mapsto (cx, cw)$ and attains a global minimum at finite $\{w_k\}$. In particular,
 730 increasing $\|w_k\|$ further does not reduce \mathcal{L} .*

732 *Proof.* Following the proof of Sec. G Thm. 1 in Baek et al. (2025), the probabilities remain un-
 733 changed under uniform scaling for any 1-homogeneous distance d . For the probabilities, if we
 734 replace x_i by cx_i and w_j with cw_j , then $d(cx_i, cw_j) = cd(x_i, w_j)$, so the scaling factors cancel
 735 when using a harmonic link κ . Therefore, once the correct classification is achieved, no further
 736 reduction in loss is obtained by increasing $\|w_k\|$ and the loss achieves a global minimum at a finite
 737 $\{w_k\}$. □

739
 740 A.2 MARGIN-STYLE GENERALIZATION (PAC-BAYES VIEW)

742 Sec. G gives a PAC-Bayes margin bound that is finite because the harmonic solution has finite norm
 743 (Thm. 2) in Baek et al. (2025).

745 **Definition 2** (Distance margin). Given prototypes $W = \{w_k\}$, define $\gamma(W) = \min_i [d(x_i, w_{y_i}) -$
 746 $\min_{j \neq y_i} d(x_i, w_j)]$.

747 **Theorem 2** (Generalization with metric margin). *Assume all x_i lie in a ball of radius R (in the
 748 native norm of d or its inducing space). Let $\|W\|_*$ denote a capacity measure compatible with d .
 749 With probability at least $1 - \delta$, the generalization error of the classifier satisfies*

$$751 \Pr_{(x,y)} [h_W(x) \neq y] = \mathcal{O} \left(\frac{R \|W\|_*}{\gamma(W) \sqrt{n}} + \sqrt{\frac{\log(1/\delta)}{n}} \right),$$

753 where $h_W(x) = \arg \max_k p_k(x)$ denotes the predicted class and n is the number of training sam-
 754 ples. For the harmonic link, $\|W\|_*$ is finite by Thm. 1, yielding a finite bound (cf. Sec. G Thm. 2) in
 755 Baek et al. (2025).

756 *Proof.* Mirroring the proof for Sec. G Thm. 2 in Baek et al. (2025), applying the standard PAC-
 757 Bayes margin bounds, one obtains that with at least probability $1 - \delta$,

758

$$759 \Pr_{(x,y)} [h_W(x) \neq y] = \mathcal{O} \left(\frac{R \|W\|_*}{\gamma(W) \sqrt{n}} + \sqrt{\frac{\log(1/\delta)}{n}} \right).$$

760

761 Since $\|W\|_*$ is finite by Thm. 1, the bound is finite. \square

762

B INTEGRATION INTO DEEP LEARNING PIPELINES

763

764 The `DistLayer` abstraction highlights that distance-based harmonic loss functions are highly
 765 modular and can be seamlessly integrated into existing deep learning pipelines. The `forward`
 766 method requires only three operations: i) computing pairwise distances between sample embed-
 767 dings and class prototype weights, ii) clamping values for numerical stability, and iii) applying a
 768 softmax via `log-softmax` to obtain normalized class probabilities. This makes the substitution
 769 of Euclidean distance with alternative metrics essentially a one-line change in the distance registry,
 770 with no modifications required in the broader training loop.

771 Several design choices make the implementation robust. First, all distance functions are imple-
 772 mented in a vectorized form, ensuring GPU efficiency and avoiding explicit loops. Second, nu-
 773 matical safeguards (e.g., ε -offsets, clamping before roots and divisions, regularization of covariance
 774 matrices) prevent instability across diverse datasets and architectures. Third, the registry-based
 775 design allows new distance functions to be added without disrupting the existing workflow, reinforcing
 776 the flexibility of harmonic loss as a general framework.

777 From a methodological perspective, this implementation highlights one of the key contributions of
 778 this work: the ease of replacing cross-entropy with distance-based harmonic loss. Unlike cross-
 779 entropy, which relies on unbounded logit growth, the harmonic formulation treats classification as a
 780 problem of minimizing distances to interpretable class prototypes. The plug-and-play nature of the
 781 `DistLayer` demonstrates that alternative geometries (e.g., cosine, Mahalanobis, Bray–Curtis) can
 782 be explored at negligible engineering cost, paving the way for systematic evaluation of accuracy,
 783 sustainability, and interpretability across diverse tasks.

```
784
785
786
787 1  class DistLayer(nn.Module):
788 2      """Final classification head using harmonic loss: logits =
789 3          -distance."""
790 4  def __init__(self, in_features, n_classes, dist_name="euclidean",
791 5      **dist_kwargs):
792 6      super().__init__()
793 7      self.W = nn.Parameter(torch.empty(n_classes, in_features))
794 8      nn.init.kaiming_uniform_(self.W, a=5**0.5)
795 9      self.dist_name = dist_name
796 10     self.dist_fn = DIST_REGISTRY[dist_name]
797 11     self.dist_kwargs = dist_kwargs    # e.g., p for minkowski,
798 12     # cov_inv for mahalanobis
799 13
800 14     def forward(self, h):
801 15         """
802 16         h: (B, D) features from backbone.
803 17         Returns log-probs for harmonic loss: log_softmax(-distance).
804 18         """
805 19         d = self.dist_fn(h, self.W, **self.dist_kwargs)    # (B, C)
806         d = torch.clamp(d, min=1e-6, max=1e6)    # general safety clamp
807         logits = -d                                # softmax over distances
808         return F.log_softmax(logits, dim=-1)
809
```

```

810
811 1 import torch
812 2 import torch.nn as nn
813 3 import torch.nn.functional as F
814 4
815 5 def _pairwise(fn):
816 6     """Lift a vector distance fn(h, w) -> scalar into a batched
817 7     ← pairwise form."""
818 8     def lifted(h, W):
819 9         # h: (B, D), W: (C, D) -> (B, C)
82010         h_exp = h.unsqueeze(1)          # (B, 1, D)
82111         W_exp = W.unsqueeze(0)         # (1, C, D)
82212         return fn(h_exp, W_exp)
82313     return lifted
82414
82515 def euclidean(h, W, eps=1e-4):
82616     diff = h - W
82717     return torch.sqrt(torch.clamp((diff * diff).sum(-1) + eps,
82818     ← min=eps))
82919
83020 def manhattan(h, W, eps=1e-4):
83121     return (h - W).abs().sum(-1) + eps
83222
83323 def cosine(h, W, eps=1e-6, stable=True):
83424     if stable:
83525         h_n = F.normalize(h, p=2, dim=-1)
83626         W_n = F.normalize(W, p=2, dim=-1)
83727         cos = (h_n * W_n).sum(-1)
83828     else:
83929         num = (h * W).sum(-1)
84030         den = torch.clamp(h.norm(dim=-1) * W.norm(dim=-1) + eps,
84131         ← min=eps)
84232         cos = num / den
84333     return 1.0 - cos + eps
84434
84535 def minkowski(h, W, p=1.5, eps=1e-6):
84636     diff = torch.clamp((h - W).abs() + eps, min=eps)
84737     dist_p = torch.clamp(diff.pow(p).sum(-1) + eps, min=eps)
84838     return dist_p.pow(1.0 / p)
84939
85040 def chebyshev(h, W, eps=1e-6, smooth=False, alpha=10.0):
85141     diff = (h - W).abs()
85242     if smooth:
85343         # soft-max norm
85444         return torch.logsumexp(alpha * diff, dim=-1) / alpha + eps
85545     return diff.max(dim=-1).values + eps
85646
85747 def canberra(h, W, eps=1e-4, variant="standard", min_denom=1e-3,
85848     weight_power=1.0, normalize_weights=True):
85949     num = (h - W).abs()
86050     den = h.abs() + W.abs() + eps
86151     if variant == "robust":
86252         den = torch.clamp(den, min=min_denom)
86353     if variant == "weighted":
86454         w = (den.pow(weight_power))
86555         if normalize_weights:
86656             w = w / (w.sum(-1, keepdim=True) + eps)
86757         return (w * (num / den)).sum(-1) + eps
86858     return (num / den).sum(-1) + eps
86959
87060
87161
87262
87363

```

```

864
865 1 def bray_curtis(h, W, eps=1e-3, variant="standard", min_sum=1e-3):
866 2     num = (h - W).abs().sum(-1)
867 3     if variant == "abs":
868 4         den = (h.abs() + W.abs()).sum(-1)
869 5     else: # standard/normalized
870 6         den = (h + W).sum(-1).abs()
871 7     den = torch.clamp(den + eps, min=10 * eps, max=1e6)
872 8     return torch.clamp(num / den + eps, min=eps, max=1e6)
873 9
874 10 def mahalanobis(h, W, eps=1e-6, cov_inv=None, reg_lambda=1e-2):
875 11     # h: (B, 1, D), W: (1, C, D) expected (use _pairwise wrapper)
876 12     diff = h - W # (B, C, D)
877 13     try:
878 14         if cov_inv is None:
879 15             # Identity with mild regularization
880 16             return torch.sqrt(torch.clamp((diff * diff).sum(-1) + eps,
881 17                 ↪ min=eps))
882 18     cov_inv_reg = cov_inv + torch.eye(cov_inv.size(0),
883 19         ↪ device=cov_inv.device) * reg_lambda
884 20     diff_M = torch.einsum('bcd,dd->bcd', diff, cov_inv_reg)
885 21     dist2 = (diff_M * diff).sum(-1)
886 22     return torch.sqrt(torch.clamp(dist2 + eps, min=eps))
887 23 except Exception:
888 24     # Safe fallback: Euclidean
889 25     return torch.sqrt(torch.clamp((diff * diff).sum(-1) + eps,
890 26                 ↪ min=eps))

```

C MODEL ARCHITECTURES

C.1 VISION

We detail the architectures of the vision models used in our experiments – including a simple MLP, a small CNN, ResNet-50, and PVTv2-B0 – specifying their layers and neuron counts for reproducibility. All models were implemented in PyTorch, and for distance-based variants, the final fully-connected layer is replaced by a specialized distance layer as noted below.

MLP: Input Layer: Accepts the flattened image input (e.g., $28 \times 28 = 784$ features for MNIST, $32 \times 32 \times 3 = 3072$ for CIFAR). **Hidden Layer 1:** Fully-connected layer with 512 neurons, followed by ReLU. **Hidden Layer 2:** Fully-connected layer with 256 neurons, followed by ReLU. **Output Layer:** Linear mapping from 256 units to the number of classes (10 for MNIST/CIFAR-10, 100 for CIFAR-100). In `_DIST` variants, this layer is replaced with a distance-based classification head (e.g. Euclidean, cosine) that computes distances between the embedding and class prototypes, outputting *negative distances* as logits.

CNN: Conv Layer 1: 2D convolution, 32 filters, kernel size 3×3 , padding 1, followed by ReLU, then 2×2 max pooling. **Conv Layer 2:** 2D convolution, 64 filters, kernel size 3×3 , padding 1, followed by ReLU, then 2×2 max pooling. **Fully Connected Layer:** Flattened output fed into a 128-unit linear layer with ReLU. **Output Layer:** Linear layer mapping the 128-D representation to the number of classes. In `_DIST` variants, this is replaced by a distance metric layer.

ResNet-50: Stem: Standard 7×7 convolution with 64 filters and stride 2, batch norm, ReLU, then 3×3 max pooling. For CIFAR/MNIST, we use a 3×3 conv with stride 1 and remove max pooling. **Stage 1:** 3 bottleneck blocks, output 256 channels. **Stage 2:** 4 bottleneck blocks, output 512 channels. **Stage 3:** 6 bottleneck blocks, output 1024 channels. **Stage 4:** 3 bottleneck blocks, output 2048 channels. **Global Pooling and Output:** Global average pooling yields a 2048-D vector. In the baseline, a linear FC layer maps to logits. In `_DIST` variants, the FC is replaced by a distance layer (e.g. cosine similarity) that outputs similarity-based logits.

Pyramid Vision Transformer (PVTv2-B0): Stage 1: Overlapping patch embedding with a 7×7 conv (stride 4), output 32 channels, followed by 2 Transformer encoder layers (1 attention head).

918 **Stage 2:** 3×3 conv (stride 2), output 64 channels, followed by 2 encoder layers (2 heads). **Stage**
 919 **3:** 3×3 conv (stride 2), output 160 channels, followed by 2 encoder layers (5 heads). **Stage 4:**
 920 3×3 conv (stride 2), output 256 channels, followed by 2 encoder layers (8 heads). **Global Pooling**
 921 **and Output:** Global average pooling yields a 256-D vector. A linear classifier maps to the number
 922 of classes in the baseline, while in `_DIST` variants this is replaced with a distance layer producing
 923 log-similarity or negative distance scores.

924 **Preprocessing Pipelines: MNIST:** For MLP/CNN, grayscale input normalized to mean 0.5, std 0.5.
 925 For ResNet, normalization uses dataset statistics (mean 0.1307, std 0.3081). For PVT, grayscale
 926 converted to 3 channels, resized to 32 (PVT), normalized to mean/std 0.5. **CIFAR-10:** Normalization
 927 with mean (0.4914, 0.4822, 0.4465) and std (0.2023, 0.1994, 0.2010). ResNet uses data augmentation
 928 (random flips, crops, small rotations). **CIFAR-100:** Normalization with mean (0.5071, 0.4867,
 929 0.4408) and std (0.2675, 0.2565, 0.2761). Stronger augmentation (random flips, crops, rotations,
 930 color jitter). PVT models use 32×32 resized inputs with normalization.

931 C.2 LLMs

932 This section documents the **LLM** configurations used in our experiments for reproducibility.
 933 We report data preprocessing, architectural details for **GPT**, **BERT**, and **Qwen2**-style
 934 models, how **distance-based heads** are integrated in place of the standard linear classifier, and the
 935 training/evaluation/emissions-logging pipeline. All models are implemented in PyTorch and trained
 936 with mixed precision when available.

937 **Data and Preprocessing Corpus and Storage.** We pre-process a text corpus into contiguous token
 938 ID arrays and store them as memory-mapped files:

- 939 • `train.bin` and `val.bin`: `np.memmap` arrays of type `uint16` containing token IDs.
- 940 • `meta.pkl`: contains metadata including `vocab_size` (used to configure model embed-
 941 dings).

942 Let V denote the discovered vocabulary size from `meta.pkl` (fallback $V=50304$ if not found).

943 **Batching.** For a given `block_size` L , batches are sampled by picking random starting indices
 944 and slicing L tokens:

$$945 \quad X = \text{data}[i : i+L], \quad Y = \text{data}[i+1 : i+1+L] \quad (\text{causal LM})$$

946 All batching is performed on-device with pinned memory. We denote `batch_size` by B .

947 **Masking for MLM (BERT).** For BERT runs, we construct masked language modeling (MLM)
 948 batches with the standard 15% corruption:

- 949 • Select $\approx 15\%$ token positions per sequence to form mask indices \mathcal{M} .
- 950 • For each $i \in \mathcal{M}$: with 80% probability replace x_i with `[MASK]` (id ≤ 103 or capped by
 951 $V-1$), with 10% replace by a random token in $[0, V]$, with 10% keep x_i unchanged.
- 952 • Labels use the original token at masked positions and -100 (ignore index) elsewhere.

953 This yields `input_ids`, `attention_mask` (all-ones here), and `labels` containing ground-truth
 954 only at masked positions.

955 **Architectures** Across models below, the principal hyperparameters are:

956 layers (n_ℓ), heads (n_h), embedding dim (d), context length ($L=\text{block_size}$), vocab size (V).

957 Unless otherwise specified, positional encodings follow each model’s default (e.g., learned or ro-
 958 tary).

959 **GPT2 (CAUSAL LM)**

960 **Backbone.** A standard decoder-only Transformer with n_ℓ blocks. Each block has:

- 961 • Multi-Head Causal Self-Attention with n_h heads, hidden size d , and causal mask.

972 • Position-wise MLP of width typically $\approx 4d$ with nonlinearity (e.g., GELU).
 973 • Pre/post LayerNorm and residual connections as in GPT-style decoders.
 974

975 **Token Embeddings.** Learnable token and (implicit) position embeddings of sizes $V \times d$ and $L \times d$
 976 (or rotary embeddings if enabled). **Projection Head (baseline).** A linear layer $W_{\text{lm}} \in \mathbb{R}^{d \times V}$ pro-
 977 ducing logits over the vocabulary at each position. **Distance Head (DIST).** The linear projection is
 978 replaced by a *distance-based layer* that treats the vocabulary columns as *prototypes* $\{w_v \in \mathbb{R}^d\}_{v=1}^V$.
 979 Given a hidden state $h_t \in \mathbb{R}^d$, the head returns per-token logits $z_{t,v} = -D(h_t, w_v; \Theta)$ (or
 980 $\log S(h_t, w_v)$ for similarity-type layers), where $D(\cdot, \cdot; \Theta)$ is one of the distances defined in the
 981 main text (Euclidean, cosine, Manhattan, Minkowski, Canberra, Bray–Curtis, Chebyshev, Mahala-
 982 nobis, Hamming). This integrates seamlessly with the causal LM objective (next-token prediction
 983 via softmax over V).

984 BERT (MASKED LM)

985 **Backbone.** An encoder-only Transformer with n_ℓ layers, each with:

986 • Multi-Head Self-Attention (bidirectional) with n_h heads.
 987 • Position-wise MLP, LayerNorm, residual connections.

988 **Embeddings.** Token embeddings $V \times d$, segment/type embeddings (size 2), and positional embed-
 989 dings of length L . **Head (baseline).** The standard MLM classifier projects $d \rightarrow V$ (optionally via
 990 an intermediate nonlinearity tied to the embedding matrix). **Distance Head (DIST).** We replace
 991 the MLM classifier with the same prototype-based distance layer used for GPT, but applied *only at*
 992 *masked positions*. For each masked token representation h_i , logits are $z_{i,v} = -D(h_i, w_v; \Theta)$ (or
 993 log-similarity), and cross-entropy is computed against the ground-truth token at i .
 994

995 QWEN2-STYLE DECODER (CAUSAL LM)

996 **Backbone.** A decoder-only Transformer similar to GPT, with model-specific details:

997 • Rotary Position Embeddings (RoPE) with θ (e.g., $\theta = 10^6$).
 998 • RMSNorm with ϵ (e.g., 10^{-6}) in place of LayerNorm.
 999 • Grouped key/value heads: `num_key_value_heads` may be $< n_h$.
 1000 • Intermediate MLP width (`intermediate_size`) configurable.

1001 **Vocabulary.** By default, we use Qwen’s native vocabulary (`vocab_size=151,936`); alternatively,
 1002 one can adapt to the dataset vocab. **Head (baseline vs. DIST).** As with GPT, the final projection is
 1003 either a linear layer to V or a distance-based head over V prototype vectors.
 1004

1005 DISTANCE-BASED OUTPUT LAYER

1006 For all three families (GPT, BERT/MLM, Qwen2), the baseline $d \rightarrow V$ classifier is replaced in
 1007 `_DIST` runs by a distance head:

$$1008 \quad z_v(h) = \begin{cases} -\|h - w_v\|_2 & \text{(Euclidean)} \\ -\|h - w_v\|_1 & \text{(Manhattan)} \\ -\|h - w_v\|_p & \text{(Minkowski, } p \text{ specified)} \\ -(1 - \frac{h^\top w_v}{\|h\|_2 \|w_v\|_2}) & \text{(Cosine)} \\ -D_{\text{Canberra}}(h, w_v) \text{ or } -D_{\text{Bray-Curtis}}(h, w_v) & \text{(variants as defined)} \\ -\|h - w_v\|_\infty & \text{(Chebyshev)} \\ -\sqrt{(h - w_v)^\top \Sigma^{-1} (h - w_v)} & \text{(Mahalanobis, variants)} \\ -D_{\text{Hamming}}(h, w_v) & \text{(soft/Gumbel/hard)} \end{cases}$$

1009 where w_v are learned prototype vectors (analogous to classifier weights). We adopt the numerically
 1010 robust implementations given in the main text (e.g., small ε , clamping, optional normalization of
 1011 h and/or w_v where appropriate). For cosine, we may output log-similarities for stability. Loss is
 1012 standard cross-entropy over the V logits per position (causal) or per masked position (MLM).
 1013

1026 TRAINING SETUP AND OPTIMIZATION
10271028 **Device and Precision.** We use `bfloat16/float16/float32` (configurable) with automatic
1029 mixed precision:1030

```
torch.autocast(device_type='cuda', dtype=pt.dtype).
```

1031 Training can run in single-GPU or **DDP** (`torch.distributed`) multi-GPU mode. In DDP,
1032 `LOCAL_RANK` selects the device, and gradients are synchronized across ranks.
10331034 **Initialization and Checkpointing.** Models are initialized *from scratch* using the specified ar-
1035 chitecture config (layers, heads, width, L , V). For GPT-only runs we optionally support
1036 `init_from='gpt2*`, and for BERT we support `init_from='bert*` (when provided), with
1037 appropriate overrides. Checkpoints store model/optimizer state, `iter_num`, `best_val_loss`, and
1038 the configuration.1039 **Optimizer and LR Schedule.** We use the model's `configure_optimizers` helper to instanti-
1040 ate an Adam/AdamW-style optimizer with weight decay and (β_1, β_2) . Learning rate follows cosine
1041 decay with warmup:

1042
$$\text{lr}(t) = \begin{cases} \text{lr}_{\text{max}} \cdot t / \text{warmup} & t < \text{warmup}, \\ \text{lr}_{\text{min}} + \frac{1}{2} \left(1 + \cos \frac{\pi(t - \text{warmup})}{T - \text{warmup}} \right) (\text{lr}_{\text{max}} - \text{lr}_{\text{min}}) & t \leq T, \end{cases}$$

1043

1044 where T is `lr_decay_iters`. We apply gradient accumulation
1045 (`gradient_accumulation_steps`), optional gradient clipping (`grad_clip`), and AMP
1046 scaling (`GradScaler`).
10471048 **Objectives.**
10491050

- **GPT/Qwen2 (causal LM):** next-token cross-entropy over V at each position.
- **BERT (MLM):** cross-entropy computed only at masked positions; non-masked labels set
1051 to -100 (ignored).

10521053 Accuracy reporting: we compute token-level accuracy for monitoring (on next-token for causal LM,
1054 on masked tokens for MLM).
10551056 **Evaluation and Early Signals.** At fixed `eval_interval`, we run `estimate_loss()` over
1057 `eval_iters` batches on train/val splits (model in `eval()`), then resume training. Best validation
1058 loss checkpoints are saved; optional compile (`torch.compile`) can be enabled.
10591060 SUSTAINABILITY TRACKING
10611062 We integrate *CodeCarbon* to measure energy and emissions. At each evaluation interval:1063

1. Stop the tracker and record interval-level metrics: emissions (kg CO₂), duration, estimated
1064 CPU/GPU/RAM power and energy.
2. Log cumulative emissions and training metrics (loss, lr) to W&B (if enabled).
3. Restart the tracker for the next interval to avoid long-running file locks and to attribute
1067 emissions to training phases cleanly.

10681069 At the end of training, we stop the tracker one final time and persist all accumulated records to a
1070 CSV (`emissions_*.csv`) alongside model checkpoints.
10711072 **Key Configuration Knobs (Reproducibility)** The following knobs are saved in run configs/check-
1073 points and should be reported alongside results:1074 (n_ℓ, n_h, d, L, V) , distance head type and parameters (Θ), batch size B , precision,
1075 optimizer & betas, lr schedule (warmup, T , lr_{max} , lr_{min}), grad accumulation,
1076 grad clip, DDP world size.
10771078 When using `_DIST` variants, we additionally report which distance (Euclidean, cosine, Manhattan,
1079 Minkowski(p), Canberra, Bray–Curtis, Chebyshev, Mahalanobis, Hamming), any normalization/s-
caling flags, and regularization choices (e.g., Mahalanobis covariance learning/regularization).

In all models, the sole architectural change introduced by harmonic loss is confined to the **output head**: a drop-in replacement of the linear classifier with a **distance-based prototype head** over the vocabulary. This isolates the effect of the loss geometry while keeping the Transformer backbone (and training recipe) unchanged, enabling controlled comparisons across distances in terms of *accuracy*, *interpretability* (e.g., PCA-based analyses), and *sustainability* (emissions and runtime).

D HYPERPARAMETER CONFIGURATIONS

The hyperparameter settings in Tables 1–8 were chosen to balance *comparability*, *training stability*, and *sustainability*. Below we highlight several important considerations.

D.1 LANGUAGE MODELS (OPENWEBTEXT)

Table 1 specifies the core training parameters for GPT, BERT, and Qwen on OpenWebText. The main goal was to maintain a fair comparison across models of varying scale by using effective batch sizes of similar order (76–128). This ensures that any differences observed in performance or emissions are attributable to the *loss formulation*, not simply to batch scaling. The use of AdamW with default β values (0.9, 0.999) follows current best practices for stability.

Table 2 details architecture-specific modifications. BERT includes type embeddings and a masked language modeling (MLM) setup, while GPT and Qwen use causal language modeling (CLM). Qwen, being substantially larger, incorporates more advanced design elements such as grouped query attention (GQA) and rotary position embeddings (RoPE). Table 3 summarizes these differences: GPT and Qwen follow causal objectives, while BERT relies on bidirectional context, which may affect the degree to which distance-based losses interact with their representations.

Table 1: Core configuration for GPT, BERT, Qwen, and GPT-2B on OpenWebText.

Configuration	GPT	BERT	Qwen	GPT-2B
n_{layer}	12	12	24	48
n_{head}	12	12	14	20
n_{embd}	768	768	896	1600
Vocab size	50304	50304	151936	50304
Dropout	0.1	0.1	0.0	0.1
Bias	True	True	True	True
Batch size	16	38	6	3
Grad. accum. steps	8	2	10	21
Effective batch size	128	76	60	63
Learning rate	2e-4	1e-4	1e-4	1e-4
Warmup iters	500	1000	1000	1000
Weight decay	0.01	0.01	0.01	0.01
Grad clip	1.0	1.0	1.0	1.0
Min LR	2e-6	1e-6	1e-6	1e-6
Decay LR	True	True	True	True
LR decay iters	10000	10000	10000	10000
Max iters	10000	10000	10000	10000
Dataset	OpenWebText	OpenWebText	OpenWebText	OpenWebText
dtype	bfloat16	bfloat16	bfloat16	bfloat16
Optimizer	AdamW	AdamW	AdamW	AdamW
β_1, β_2	0.9, 0.999	0.9, 0.999	0.9, 0.999	0.9, 0.999
Eval interval	1000	1000	1000	500
Eval iters	100	100	100	25
Log interval	50	50	50	25
Scale attn by inverse layer idx	False	False	False	False

1134

1135

Table 2: Architecture-specific settings for GPT, BERT, Qwen, and GPT-2B.

1136

1137

Configuration	GPT	BERT	Qwen	GPT-2B
Block size / Seq length	1024	512	1024	512
Type vocab size	–	2	–	–
Pad token id	–	0	–	–
MLM probability	–	0.15	–	–
Intermediate size	–	–	4864	–
# key–value heads	–	–	2	–
RMSNorm ϵ	–	–	1e-6	–
RoPE θ	–	–	1,000,000.0	–

1145

1146

Table 3: Key differences summary (task and position encoding).

1147

Aspect	GPT	BERT	Qwen	GPT-2B	
Model size (approx.)	~124M	~110M	~494M	~2B	
Attention	Causal	Bidirectional	Causal (GQA)	Causal	CLM = Causal
Training task	CLM	MLM	CLM	CLM	
Position encoding	Learned	Learned	RoPE	Learned	

1148

Language Modeling; MLM = Masked Language Modeling; GQA = Grouped Query Attention.

1149

1150

1151

1152

1153

1154

1155

1156

D.2 VISION MODELS

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

Tables 4–7 provide the vision settings across datasets. As shown in Table 4, optimizer and learning-rate schedules are backbone-specific: Adam for MLPs and CNNs, AdamW for transformers (PVT), and SGD with momentum for ResNet50. This reflects both convention and empirical stability in preliminary experiments. Batch size selection (Table 5) reflects hardware utilization on H100 GPUs. Notably, lightweight backbones (e.g., CNNs) leverage very large batches (up to 8192 for MNIST), while transformer-based PVT is limited to much smaller batches (128–256) to fit memory constraints. These design choices affect emissions profiles: large-batch training can reduce wall-clock time but at the cost of GPU memory overhead. Learning-rate schedulers differ across models. For example, PVT employs cosine annealing, which smooths convergence and interacts well with distance-based loss formulations. ResNet50 relies on multi-step decay, ensuring stability across the long 200-epoch training horizon on CIFAR-100.

1168

1169

1170

1171

1172

Distance Layer Parameters. Table 8 summarizes the shared hyperparameters across all distance functions. The exponent n is fixed to 1.0 and $\varepsilon = 10^{-4}$ provides numerical stability. Importantly, distances are not scaled post hoc, ensuring that differences in results are directly attributable to the geometric properties of the chosen distance (Euclidean, Manhattan, Mahalanobis, etc.), rather than to auxiliary tuning.

1173

1174

D.3 DISCUSSION

1175

1176

1177

1178

Language models. GPT and BERT use comparable depth/width with learned positional encodings, while Qwen is larger, adopts RoPE, and GQA. Effective batch sizes (via gradient accumulation) normalize throughput across models for fair comparison on OpenWebText.

1179

1180

1181

Vision models. Optimizer and scheduler choices follow common practice: Adam/AdamW for MLP/CNN/PVT, SGD with momentum for ResNet50; deeper/longer CIFAR-100 runs employ stepped or cosine schedules. Early-stopping patience scales with dataset difficulty.

1182

1183

1184

DistLayer defaults. A unified setting ($n=1.0, \varepsilon=10^{-4}$, no scaling) ensures distance variants differ only in geometry, not in auxiliary hyperparameters. These settings match the configuration used in our main experiments and figures.

1185

1186

1187

1188

1189

Table 4: Core training configuration by backbone and dataset.

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

Table 5: Batch size configuration on H100 GPU.

1207

1208

1209

1210

1211

1212

1213

E STATISTICAL SIGNIFICANCE AGAINST EUCLIDEAN HARMONIC LOSS.

1214

1215

1216

E.1 WILCOXON SIGNED-RANK TESTS

1217

To quantify whether non-Euclidean harmonic losses differ systematically from the Euclidean reference, we ran paired Wilcoxon signed-rank tests over all dataset-backbone combinations ($N=16$ pairs per distance). The resulting median score improvements and p -values are reported in Tables 9–11.

1221

1222

1223

1224

1225

1226

1227

On *model performance* (Table 9), the non-Euclidean distances do not achieve a statistically significant *positive* median improvement over the Euclidean harmonic loss. Several metrics (e.g., Mahalanobis (Std.), Bray–Curtis (Std.), Canberra variants, Manhattan, Minkowski, Hamming) show significant *negative* medians ($p < 0.05$), indicating that when a difference is present it tends to favor the Euclidean reference in raw accuracy. This is consistent with our main results, where non-Euclidean geometries target interpretability and sustainability rather than headline accuracy gains.

1228

1229

1230

1231

1232

1233

For *interpretability* (Table 10), we observe the opposite pattern. Distances such as Bray–Curtis (Norm.), Canberra (Robust/Std.), Chebyshev (Std.), Manhattan, and both cosine variants exhibit statistically significant shifts in the number of principal components needed to explain 90% of the variance. The median differences are large in magnitude (e.g., +12.8 for Bray–Curtis (Norm.), +9.8 for Canberra (Robust)), confirming that switching away from Euclidean induces a consistent and substantial change in representation geometry across datasets and backbones.

1234

1235

1236

1237

1238

1239

For *sustainability* (Table 11), four distances reach $p < 0.05$: Mahalanobis (Std.) and Bray–Curtis (Std.) with positive medians, and Canberra (Weighted) and Mahalanobis (Chol.) with negative medians. This suggests that the carbon footprint differences between Euclidean and most non-Euclidean harmonic losses are modest and model-dependent: some geometries slightly increase emissions, others slightly decrease them, but strong systematic effects are rare once we fix backbone, data, and training budget.

1240

1241

Overall, these nonparametric tests support our main claims: non-Euclidean harmonic losses do not uniformly dominate Euclidean in accuracy, but several of them induce statistically significant changes in representation structure, with only mild and mixed effects on emissions.

Configuration	MLP	CNN	PVT	ResNet50
LR (MNIST)	3e-4	3e-4	1e-3	0.1
LR (CIFAR-10)	3e-4	3e-4	1e-3	0.1
LR (CIFAR-100)	3e-4	3e-4	5e-4	0.1
LR (MarathiSign)	1.5e-4	1.5e-4	5e-4	0.05
LR (TinyImageNet)	3e-4	3e-4	5e-4	0.1
Epochs (MNIST)	40	40	80	100
Epochs (CIFAR-10)	40	40	80	100
Epochs (CIFAR-100)	150	150	150	200
Epochs (MarathiSign)	50	50	100	75
Epochs (TinyImageNet)	100	100	200	150
Optimizer	Adam	Adam	AdamW	SGD
Weight decay	0	0	0.01	1e-4
Momentum	–	–	–	0.9

Model	MNIST	CIFAR-10	CIFAR-100	MarathiSign	TinyImageNet
MLP	2048	1024	1024	128	256
CNN	8192	4096	512	512	512
PVT	256	512	256	64	128
ResNet50	512	512	256	128	256

1242

1243

Table 6: Learning-rate schedulers by backbone and dataset.

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

Model	MNIST	CIFAR-10	CIFAR-100	MarathiSign	TinyImageNet
MLP	None	None	StepLR (50, 0.5)	ReduceLR*	StepLR (50, 0.5)
CNN	None	None	StepLR (50, 0.5)	ReduceLR*	StepLR (50, 0.5)
PVT	CosineAnn. (80)	CosineAnn. (80)	CosineAnn. (150)	CosineAnn. (100)	CosineAnn. (200)
ResNet50	StepLR (30, 0.1)	StepLR (30, 0.1)	MultiStep**	StepLR (25, 0.1)	MultiStep***

*ReduceLROnPlateau (mode=max, factor=0.5, patience=5, min_lr=1e-6)

MultiStepLR (milestones=[60,100,140], $\gamma=0.2$)*MultiStepLR (milestones=[80,120], $\gamma=0.2$)

1252

1253

Table 7: Dataset metadata and early-stopping settings (vision).

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

E.2 ACCURACY WITH CONFIDENCE INTERVALS.

To complement the aggregate tables and Wilcoxon tests, Figure 3 reports accuracy curves for the top-performing losses on each dataset/backbone pair. For every setting we re-train each candidate with three random seeds and plot the mean trajectory together with a shaded 95% confidence interval ($n=3$).

Across datasets and architectures, two consistent patterns emerge. First, the ranking suggested by our radar plots and summary tables is preserved under multi-seed training: distance-based harmonic losses that previously appeared as strong contenders (e.g., cosine, Bray–Curtis, Minkowski) continue to track at least as well as, and often above, the cross-entropy and Euclidean baselines throughout training. In several regimes (notably CIFAR-10/CIFAR-100 with ResNet50 and MNIST with ResNet50/PVT), the confidence bands of the leading non-Euclidean harmonic loss lie systematically above those of the baselines in the later epochs, indicating that the final accuracy gains are not artifacts of seed choice but persist under sampling noise.

Second, the width of the confidence intervals is often comparable or smaller for harmonic losses than for standard baselines. On datasets where optimization is more fragile (e.g., CIFAR-100 with PVT), cross-entropy and some regularized baselines (Focal, Center Loss) display visibly wider bands and occasional late-epoch fluctuations, whereas harmonic distances yield smoother trajectories with tighter intervals, echoing our gradient stability findings. Importantly, we do not observe any case where a harmonic loss that outperforms Euclidean in the aggregate tables suffers a reversal when confidence intervals are taken into account.

Overall, these multi-seed curves provide statistical depth to our vision experiments: performance improvements for non-Euclidean harmonic losses are accompanied by tight, stable confidence bands, supporting the claim that their advantages over Euclidean and cross-entropy are robust rather than due to random initialization.

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

Table 8: Distance-layer shared parameters (all backbones).

1299

1300

1301

1302

1303

1304

1305

1306

Table 9: Wilcoxon signed-rank test comparing each non-Euclidean harmonic loss against the Euclidean harmonic baseline on *average final test accuracy*. Median score improvement is the median paired difference (non-Euclidean minus Euclidean) across N dataset-backbone combinations. Positive values indicate that the non-Euclidean distance attains higher accuracy; the last column marks tests with $p < 0.05$.

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

Comparison	N Pairs	Median Impr.	p-value	p_{adj}	Sig. ($p < 0.05$)
Bray-Curtis (Norm.)	16	0.5317	0.17060	1.0000	
Cosine (Stable)	16	0.1598	0.45339	1.0000	
Cosine (Unst.)	16	0.0965	0.55208	1.0000	
Mahalanobis (Chol.)	16	0.0400	0.58717	1.0000	
Bray-Curtis (Abs.)	16	-1.1967	0.10335	1.0000	
Mahalanobis (Diag.)	16	-1.4633	0.08323	1.0000	
Chebyshev (Std.)	16	-1.7232	< 0.001	0.0736	Yes
Minkowski ($p=3.0$)	16	-1.8183	0.00567	0.6234	Yes
Canberra (Weighted)	16	-2.8167	0.00295	0.3565	Yes
Manhattan	16	-4.9467	0.00249	0.3083	Yes
Minkowski ($p=1.5$)	16	-5.8117	0.00176	0.2232	Yes
Hamming (Soft)	16	-6.3183	0.00348	0.4110	Yes
Canberra (Robust)	16	-16.5883	< 0.001	0.0736	Yes
Canberra (Std.)	16	-18.3767	< 0.001	0.0736	Yes
Chebyshev (Smooth)	16	-21.3817	< 0.001	0.0736	Yes
Bray-Curtis (Std.)	16	-34.4379	< 0.001	0.0975	Yes
Mahalanobis (Std.)	16	-64.8082	< 0.001	0.0736	Yes

1327

1328

1329

1330

1331

1332

1333

Table 10: Wilcoxon signed-rank test comparing each non-Euclidean harmonic loss against the Euclidean harmonic baseline on *average intrinsic dimension* (number of PCs required to reach 90% EV). Median score improvement is again the median paired difference (non-Euclidean minus Euclidean); here more negative values correspond to fewer required components.

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Comparison	N Pairs	Median Impr.	p-value	p_{adj}	Sig. ($p < 0.05$)
Bray-Curtis (Norm.)	16	12.8333	< 0.001	0.1142	Yes
Canberra (Robust)	16	9.8333	0.00162	0.2086	Yes
Canberra (Std.)	16	8.1667	< 0.001	0.0988	Yes
Chebyshev (Std.)	16	7.7083	0.01864	1.0000	Yes
Manhattan	16	7.6667	0.00412	0.4764	Yes
Cosine (Unst.)	16	5.8333	0.01043	1.0000	Yes
Canberra (Weighted)	16	5.2083	0.26768	1.0000	
Cosine (Stable)	16	4.3333	0.01127	1.0000	Yes
Mahalanobis (Std.)	16	4.0417	0.12716	1.0000	
Bray-Curtis (Std.)	16	2.1667	0.34869	1.0000	
Bray-Curtis (Abs.)	16	1.0000	0.66019	1.0000	
Hamming (Soft)	16	0.7083	0.77730	1.0000	
Minkowski ($p=1.5$)	16	-0.0000	0.80665	1.0000	
Minkowski ($p=3.0$)	16	-0.0000	0.75554	1.0000	
Mahalanobis (Diag.)	16	-0.0000	0.30656	1.0000	
Chebyshev (Smooth)	16	-0.2083	0.77638	1.0000	
Mahalanobis (Chol.)	16	-0.3333	0.85062	1.0000	

1350

1351

Table 11: Wilcoxon signed-rank test comparing each non-Euclidean harmonic loss against the Euclidean harmonic baseline on *average emissions* (gCO₂eq). Median score improvement is the median paired difference (non-Euclidean minus Euclidean); negative values indicate lower emissions than the Euclidean reference.

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

Comparison	N Pairs	Median Impr.	p-value	p _{adj}	Sig. (p < 0.05)
Mahalanobis (Std.)	16	1.8037	< 0.001	0.114	Yes
Bray-Curtis (Std.)	16	1.1880	0.01620	1.000	Yes
Cosine (Unst.)	16	0.2341	0.05249	1.000	
Canberra (Std.)	16	0.0351	0.77611	1.000	
Chebyshev (Smooth)	16	0.0208	0.73679	1.000	
Canberra (Robust)	16	-0.0206	0.73679	1.000	
Cosine (Stable)	16	-0.0239	0.97937	1.000	
Minkowski (p=1.5)	16	-0.0492	0.36552	1.000	
Hamming (Soft)	16	-0.0909	0.26625	1.000	
Bray-Curtis (Abs.)	16	-0.1066	0.20520	1.000	
Chebyshev (Std.)	16	-0.1421	0.14056	1.000	
Bray-Curtis (Norm.)	16	-0.1625	0.11477	1.000	
Manhattan	16	-0.1976	0.12716	1.000	
Minkowski (p=3.0)	16	-0.4158	0.05249	1.000	
Mahalanobis (Diag.)	16	-0.4587	0.05249	1.000	
Canberra (Weighted)	16	-0.7687	0.03188	1.000	Yes
Mahalanobis (Chol.)	16	-0.9431	0.00411	0.476	Yes

1371

1372

1402

1403

Figure 3: Vision: Accuracy curves with Confidence Intervals. Shaded regions show 95% confidence intervals (n = 3 seeds)

1404 **F VISION: RADAR PLOTS: ADDITIONAL DATASETS (MNIST, CIFAR10)**
 1405

1406 Figure 4 reports results for distance-based harmonic losses on MNIST and CIFAR10 across all
 1407 four backbones (MLP, CNN, ResNet50, PVT). In summary, the MNIST and CIFAR-10 radar plots
 1408 confirm what has been observed on other datasets: even on smaller benchmarks, non-Euclidean har-
 1409 monic losses (particularly cosine, Bray-Curtis, and Chebyshev) can enhance representation structure
 1410 and, on harder datasets, improve accuracy, all while maintaining comparable or better sustainability
 1411 than Euclidean harmonic loss and the cross-entropy baseline.

1412 **F.1 MNIST**
 1413

1414 **RQ1: Model Performance (F1, Accuracy).** Across all MNIST backbones, accuracy and F1 are
 1415 saturated for several distances, but cosine-based harmonic losses (stable/unstable) and Bray-Curtis
 1416 (normalized) remain among the most reliable high-performers. On MLP and CNN, these distances
 1417 match or slightly exceed both Euclidean harmonic loss and the cross-entropy baseline. On ResNet50
 1418 and PVT, where capacity is ample, almost all distances reach near-perfect accuracy, confirming that
 1419 changing the distance in the harmonic head does not harm performance.

1420 **RQ2: Interpretability (PC2 EV, PCA 90%).** Even on this simple dataset, non-Euclidean distances
 1421 already reshape the embedding geometry. Bray-Curtis (normalized) and Chebyshev (standard) pro-
 1422 duce noticeably higher PC2 explained variance and reduce the number of components needed to
 1423 reach 90% EV, indicating compact, prototype-aligned clusters. Cosine harmonic losses also improve
 1424 EV relative to Euclidean while maintaining top accuracy. Mahalanobis and Minkowski variants (on
 1425 ResNet50) further concentrate variance, but their interpretability advantage is less pronounced on
 1426 MNIST because the task is almost linearly separable.

1427 **RQ3: Sustainability (Duration/Epoch/GFLOPs, Emissions).** For MNIST, the harmonic head
 1428 constitutes a tiny fraction of the overall compute, so all distances exhibit similar Duration/E-
 1429 epoch/GFLOPs and emissions. Cosine and Bray-Curtis are essentially neutral relative to Euclidean
 1430 and cross-entropy; small differences arise mainly from minor variations in convergence speed rather
 1431 than per-step cost. The key takeaway from MNIST is therefore that non-Euclidean harmonic losses
 1432 can improve representation structure without sacrificing accuracy or sustainability.

1433 **F.2 CIFAR10**
 1434

1435 **RQ1: Model Performance (F1, Accuracy).** On CIFAR-10, cosine harmonic losses become clearly
 1436 advantageous. For MLP and CNN, cosine (stable/unstable) and Bray-Curtis (normalized) consist-
 1437 ently occupy the highest or near-highest F1 and accuracy, outperforming Euclidean harmonic loss
 1438 and the cross-entropy baseline. On ResNet50 and PVT, cosine again delivers strong accuracy while
 1439 remaining competitive with the best non-Euclidean alternatives (e.g., Minkowski $p=3.0$). Overall,
 1440 cosine is the most robust choice across architectures once the task requires nontrivial feature
 1441 extraction.

1442 **RQ2: Interpretability (PC2 EV, PCA 90%).** CIFAR-10 further highlights the interpretability ben-
 1443 efits of non-Euclidean geometry. Bray-Curtis and Chebyshev systematically increase PC2 EV and
 1444 reduce PCA 90% dimensionality on MLP, CNN, and ResNet50, yielding sharper, more compact
 1445 embeddings than Euclidean or cross-entropy. Cosine harmonic losses also improve EV over Eu-
 1446 clidean, providing a favorable accuracy/interpretability compromise. On PVT, Canberra-weighted
 1447 and Bray-Curtis variants similarly enhance variance concentration while preserving strong per-
 1448 formance, reinforcing the observation that prototype-friendly distances induce more structured feature
 1449 spaces.

1450 **RQ3: Sustainability (Duration/Epoch/GFLOPs, Emissions).** On CIFAR-10, sustainability trends
 1451 mirror those seen on larger datasets. Cosine harmonic loss is typically neutral-to-slightly-favorable
 1452 in Duration/Epoch/GFLOPs and emissions relative to Euclidean and cross-entropy, especially on
 1453 CNN and ResNet50 where convergence is faster. Bray-Curtis and Canberra variants introduce mod-
 1454 est overhead, reflecting their more complex computations, but remain within the same qualitative
 1455 efficiency regime. In all cases, the harmonic head is lightweight compared to the backbone, so the
 1456 main sustainability differences arise from reduced steps-to-high accuracy rather than large per-step
 1457 cost.

Figure 4: Vision: Radar plots: 1) *Model Performance* (F1, Accuracy); 2) *Interpretability* (PC2 EV, PCA 90%), and 3) *Sustainability* (Duration/Epoch/GFLOPs, Emissions). Plots feature Baseline (Cross-Entropy), Euclidean harmonic, and the four top-performing non-Euclidean harmonic losses.

1512 G RESULTS WITH ALTERNATIVE LOSS FUNCTIONS

1514 To contextualize our distance-based harmonic losses, we benchmark against four widely used
 1515 alternatives that are often motivated by calibration, robustness in low-data regimes, or representational
 1516 compactness. Below we summarize each loss, its objective, and why it is relevant along
 1517 our three axes: effectiveness, sustainability, and interpretability. Unless otherwise noted, these
 1518 baselines are applied with a conventional linear head and softmax; they can also be evaluated on
 1519 distance-parameterized logits (e.g., $-\text{dist}(\mathbf{h}, \mathbf{w}_c)$) to ensure architectural parity.

1520 **Focal Loss (calibration, anti-grokking, class imbalance).** Focal Loss reweights examples by
 1521 their difficulty:

$$1523 \quad \mathcal{L}_{\text{focal}}(\mathbf{z}, y) = -\alpha (1 - p_y)^\gamma \log p_y, \quad p_y = \frac{e^{z_y}}{\sum_j e^{z_j}},$$

1525 with focusing parameter $\gamma \geq 0$ and class weight $\alpha \in (0, 1]$. By down-weighting well-classified
 1526 (overconfident) samples, it yields smoother gradient signals, often improving calibration and mitigating
 1527 late-stage overfitting behaviors akin to grokking. In our grids we consider $\gamma \in \{2, 3\}$ and
 1528 $\alpha \in \{0.25, 0.5\}$. *Sustainability*: modest compute overhead (same forward/backward shape as CE),
 1529 but potentially fewer effective updates on easy samples; net carbon effect is typically neutral to slightly higher than CE, depending on convergence behavior.

1531 **Label Smoothing (reduced overconfidence, low-data stability).** Label Smoothing replaces the
 1532 one-hot target with

$$1534 \quad \tilde{\mathbf{y}} = (1 - \varepsilon) \mathbf{e}_y + \frac{\varepsilon}{K} \mathbf{1}, \quad \mathcal{L}_{\text{LS}}(\mathbf{z}, y) = - \sum_{c=1}^K \tilde{y}_c \log p_c,$$

1536 where $\varepsilon \in [0, 1)$ controls smoothing (we use $\varepsilon \in \{0.1, 0.2\}$). The softened targets reduce overconfidence and improve generalization in scarce-label settings; they also stabilize optimization by shrinking logit magnitudes. *Interpretability*: mild regularization can yield more isotropic features; *sustainability*: training cost matches CE, with potential reductions in steps-to-target when overconfidence previously harmed convergence.

1542 **Center Loss (prototype compactness, cluster interpretability).** Center Loss explicitly penalizes
 1543 the distance to a class prototype:

$$1545 \quad \mathcal{L}_{\text{center}}(\mathbf{h}, y) = \frac{1}{2} \|\mathbf{h} - \mathbf{c}_y\|_2^2, \quad \mathcal{L} = \mathcal{L}_{\text{CE}} + \lambda \mathcal{L}_{\text{center}},$$

1547 with learnable class centers $\{\mathbf{c}_k\}$ and trade-off $\lambda > 0$ (we test $\lambda \in \{0.5, 1, 2\}$). This encourages intra-class compactness and inter-class separability—properties that make feature clusters and decision prototypes easier to inspect. *Sustainability*: small extra memory and updates for \mathbf{c}_k ; the overhead is minor relative to the backbone but measurable in long runs.

1551 **Confidence Penalty (entropy regularization, anti-grokking).** Confidence Penalty adds a negative-entropy term to discourage over-peaked posteriors:

$$1554 \quad \mathcal{L}_{\text{CP}}(\mathbf{z}, y) = \mathcal{L}_{\text{CE}}(\mathbf{z}, y) - \beta \mathcal{H}(\mathbf{p}), \quad \mathcal{H}(\mathbf{p}) = - \sum_{c=1}^K p_c \log p_c,$$

1556 with $\beta > 0$ (we use $\beta \in \{0.1, 0.2\}$). By explicitly rewarding higher predictive entropy when appropriate, it reduces brittle overconfidence and can temper delayed generalization (grokking-like) effects. *Sustainability*: essentially identical compute to CE; any carbon changes stem from altered convergence trajectories rather than per-step cost.

1561 **ArcFace (angular margins, maximized class separation).** ArcFace (Deng et al., 2019) introduces an *additive angular margin* that enlarges the decision boundary between classes on the unit
 1562 hypersphere. Given normalized features \mathbf{h} and normalized class weights \mathbf{w}_c , the cosine similarity
 1563 $\cos \theta_c = \langle \mathbf{h}, \mathbf{w}_c \rangle$ is modified for the target class y by adding a fixed angular margin m :

$$1565 \quad \cos(\theta_y + m) = \cos \theta_y \cos m - \sin \theta_y \sin m.$$

1566 ArcFace replaces the final linear classifier with a scaled angular softmax:
 1567

$$1568 \quad \mathcal{L}_{\text{arcface}}(\mathbf{h}, y) = -\log \frac{\exp(s \cos(\theta_y + m))}{\exp(s \cos(\theta_y + m)) + \sum_{c \neq y} \exp(s \cos \theta_c)},$$

1570 where s is a feature-scale parameter (typically $s = 30\text{--}64$). By manipulating angles rather than
 1571 norms, ArcFace enforces tighter class clustering and larger inter-class separation, and is widely
 1572 regarded as a *strong margin-based baseline* in metric learning. This makes it a particularly relevant
 1573 comparator for harmonic losses: both approaches normalize features to a hypersphere and
 1574 control geometry around class prototypes, but ArcFace explicitly pushes angular margins, whereas
 1575 harmonic losses adjust the entire distance landscape. *Sustainability*: ArcFace is lightweight (same
 1576 complexity as cosine classifiers), but the angular margin can slightly increase optimization stiffness,
 1577 occasionally raising per-step compute or slowing convergence. In our experiments we consider
 1578 $m \in \{0.3, 0.5\}$ and $s \in \{30, 64\}$.

1579 Each baseline addresses a failure mode that harmonic losses also target but via different inductive biases:
 1580 Focal/Label Smoothing emphasize calibration and data efficiency; Center Loss operationalizes
 1581 prototype compactness; Confidence Penalty discourages pathological overconfidence. This makes
 1582 them natural comparators for our *distance-based* formulation, which subsumes prototype reasoning
 1583 in its very parameterization and, as we show, can simultaneously improve accuracy, reduce emissions,
 1584 and enhance interpretability.

1586 G.1 VISION: FINE-GRAINED RESULTS

1587 A cross-backbone inspection in Tables 12–15 shows that the additional baselines (Focal, Label
 1588 Smoothing, Confidence Penalty, Center Loss, ArcFace) are competitive on accuracy, but do not
 1589 displace the non-Euclidean harmonic losses as the most balanced options.

1590 On **CIFAR-10** and **CIFAR-100** with **ResNet-50**, cosine-based harmonic heads remain among the
 1591 strongest configurations: they deliver the largest accuracy and F1 gains over cross-entropy (up to
 1592 $\approx 11\%$ relative on CIFAR-10 and 5% on CIFAR-100), while simultaneously reducing emissions
 1593 by 10–30% and sharply concentrating the representation (PC90% dropping from 50 to 5–8 com-
 1594 ponents). Focal and ArcFace variants sometimes match top accuracy, but typically exhibit weaker
 1595 EV/PC90% improvements or higher emissions, so they do not dominate the multi-criteria trade-off.

1596 For **PVT backbones**, where capacity and input resolution are higher, the picture is more nuanced.
 1597 On CIFAR-10 PVT, calibration-oriented losses (Label Smoothing, Focal) offer slight accuracy im-
 1598 provements and sizable emissions reductions, yet Euclidean harmonic achieves the most compact
 1599 geometry (PC90% from 17 to 3) at only a small performance cost. On CIFAR-100 PVT, focal and
 1600 confidence-penalty losses are best in accuracy, but Euclidean harmonic again produces the most
 1601 concentrated feature spaces (PC90% 4 vs. 50), highlighting an interpretability advantage even when
 1602 it is not the accuracy winner.

1603 On the **high-resolution Marathi Sign dataset**, nearly all methods saturate accuracy (≥ 0.999),
 1604 so the comparison is driven by structure and sustainability. Here, cosine-based harmonic losses
 1605 for ResNet-50 (and to a lesser extent for PVT) achieve substantial EV/PC90% gains. e.g., Cosine
 1606 (Unst.) reduces PC90% from 15.5 to 6.5 while slightly lowering emissions, demonstrating that
 1607 our non-Euclidean harmonic heads remain competitive even in settings where strong baselines like
 1608 ArcFace and Center Loss are present.

1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620

1621

1622

Table 12: Results for CIFAR100 PVT (top-8 losses) and % changes w.r.t. Baseline (CE).

Method	Acc	F1	gCO ₂ eq	EV	PC90%
Baseline	0.3994	0.3970	3.67	0.0973	50.0
Focal ($\gamma=2, \alpha=0.25$)	0.4017 (0.59%)	0.3996 (0.65%)	4.9609 (-35.35%)	0.1257 (29.22%)	50.0 (0%)
Focal ($\gamma=3, \alpha=0.25$)	0.4015 (0.53%)	0.3999 (0.72%)	4.9567 (-35.24%)	0.1364 (40.21%)	50.0 (0%)
Focal ($\gamma=2, \alpha=0.5$)	0.4010 (0.40%)	0.3997 (0.66%)	3.9182 (-6.90%)	0.1271 (30.64%)	50.0 (0%)
Conf. Penalty ($\beta=0.1$)	0.3999 (0.13%)	0.3977 (0.17%)	5.2574 (-43.44%)	0.0963 (-0.96%)	50.0 (0%)
Label Smoothing ($\varepsilon=0.1$)	0.3894 (-2.50%)	0.3888 (-2.08%)	2.6626 (27.36%)	0.0818 (-15.92%)	50.0 (0%)
Conf. Penalty ($\beta=0.2$)	0.3859 (-3.38%)	0.3834 (-3.45%)	2.1718 (40.74%)	0.0749 (-23.00%)	50.0 (0%)
Label Smoothing ($\varepsilon=0.2$)	0.3847 (-3.67%)	0.3851 (-3.00%)	2.2097 (39.71%)	0.0742 (-23.74%)	50.0 (0%)
ArcFace ($m=0.5, s=30$)	0.3728 (-6.65%)	0.3772 (-5.00%)	2.6171 (28.60%)	0.1259 (29.41%)	50.0 (0%)
Euclidean	0.2864 (-28.29%)	0.2945 (-25.83%)	6.4329 (-75.51%)	0.8414 (765.15%)	4.0 (92.00%)

1632

1633

1634

1635

Table 13: Results for CIFAR100 ResNet50 (top-8 losses) and % changes w.r.t. Baseline (CE).

Method	Acc	F1	gCO ₂ eq	EV	PC90%
Baseline	0.7006	0.6993	89.64	0.1069	50.0
Cosine (Stable)	0.7381 (5.35%)	0.7384 (5.59%)	79.2831 (11.55%)	0.5915 (453.51%)	8.0 (84.00%)
Focal ($\gamma=2, \alpha=0.25$)	0.7349 (4.90%)	0.7342 (5.00%)	72.1795 (19.48%)	0.1468 (37.32%)	50.0 (0%)
Focal ($\gamma=2, \alpha=0.5$)	0.7341 (4.79%)	0.7332 (4.85%)	78.7234 (12.18%)	0.1224 (14.52%)	50.0 (0%)
Cosine (Unst.)	0.7340 (4.77%)	0.7349 (5.09%)	72.5413 (19.07%)	0.5891 (451.21%)	8.0 (84.00%)
Focal ($\gamma=3, \alpha=0.25$)	0.7311 (4.36%)	0.7308 (4.51%)	81.5875 (8.98%)	0.1554 (45.41%)	50.0 (0%)
Label Smoothing ($\varepsilon=0.1$)	0.7261 (3.64%)	0.7248 (3.65%)	79.8223 (10.95%)	0.1469 (37.44%)	50.0 (0%)
Label Smoothing ($\varepsilon=0.2$)	0.7221 (3.08%)	0.7206 (3.04%)	81.1883 (9.43%)	0.1524 (42.59%)	50.0 (0%)
ArcFace ($m=0.7, s=30$)	0.7166 (2.29%)	0.7150 (2.25%)	70.5590 (21.29%)	0.6059 (466.93%)	48.33 (3.33%)
Euclidean	0.7047 (0.59%)	0.7055 (0.89%)	87.7280 (2.13%)	0.4301 (302.49%)	33.67 (32.67%)

1647

1648

1649

Table 14: Results for MarathiSign PVT (top-8 losses) and % changes w.r.t. Baseline (CE).

Method	Acc	F1	gCO ₂ eq	EV	PC90%
Baseline	0.9965	0.9964	2.85	0.2135	24.75
ArcFace ($m=0.7, s=30$)	0.9997 (0.33%)	0.9997 (0.33%)	4.2108 (-47.88%)	0.1132 (-47.00%)	36.0 (-45.45%)
Focal ($\gamma=3, \alpha=0.25$)	0.9997 (0.32%)	0.9996 (0.32%)	2.7240 (4.34%)	0.2749 (28.74%)	19.33 (21.89%)
Center Loss ($\lambda=1$)	0.9995 (0.31%)	0.9995 (0.31%)	5.1746 (-81.72%)	0.1824 (-14.56%)	29.67 (-19.87%)
Conf. Penalty ($\beta=0.2$)	0.9995 (0.30%)	0.9994 (0.30%)	3.6912 (-29.63%)	0.1504 (-29.58%)	33.67 (-36.03%)
Focal ($\gamma=2, \alpha=0.25$)	0.9993 (0.29%)	0.9993 (0.28%)	2.5648 (9.93%)	0.2853 (33.63%)	19.33 (21.89%)
ArcFace ($m=0.3, s=30$)	0.9992 (0.28%)	0.9992 (0.28%)	7.5158 (-163.94%)	0.1756 (-17.76%)	28.0 (-13.13%)
Label Smoothing ($\varepsilon=0.2$)	0.9992 (0.28%)	0.9991 (0.27%)	2.6977 (5.26%)	0.1190 (-44.26%)	35.0 (-41.41%)
Cosine (Unst.)	0.9991 (0.27%)	0.9991 (0.26%)	7.3447 (-157.93%)	0.5552 (160.04%)	7.0 (71.72%)
Euclidean	0.9994 (0.30%)	0.9994 (0.30%)	4.3621 (-53.19%)	0.5035 (135.83%)	14.25 (42.42%)

1660

1661

1662

Table 15: Results for MarathiSign ResNet50 (top-8 losses) and % changes w.r.t. Baseline (CE).

Method	Acc	F1	gCO ₂ eq	EV	PC90%
Baseline	0.9998	0.9998	35.41	0.4507	15.5
Conf. Penalty ($\beta=0.1$)	0.9999 (0.01%)	0.9999 (0.01%)	29.6596 (16.24%)	0.4393 (-2.55%)	17.5 (-12.90%)
Cosine (Stable)	0.9999 (0.01%)	0.9999 (0.01%)	54.8139 (-54.80%)	0.7321 (62.42%)	5.5 (64.52%)
Conf. Penalty ($\beta=0.2$)	0.9998 (0.00%)	0.9998 (0.00%)	30.3697 (14.23%)	0.3288 (-27.05%)	33.0 (-112.90%)
Focal ($\gamma=2, \alpha=0.25$)	0.9998 (0.00%)	0.9998 (0.00%)	24.95 (29.54%)	0.4016 (-10.89%)	17.0 (-9.68%)
Focal ($\gamma=3, \alpha=0.25$)	0.9998 (0.00%)	0.9998 (0.00%)	28.1206 (20.58%)	0.4286 (-4.91%)	16.5 (-6.45%)
Cosine (Unst.)	0.9997 (-0.01%)	0.9997 (-0.01%)	33.8287 (4.46%)	0.6427 (42.58%)	6.5 (58.06%)
Label Smoothing ($\varepsilon=0.1$)	0.9997 (-0.01%)	0.9997 (-0.01%)	33.5266 (5.31%)	0.1758 (-60.99%)	36.0 (-132.26%)
Label Smoothing ($\varepsilon=0.2$)	0.9997 (-0.01%)	0.9997 (-0.01%)	38.7093 (-9.32%)	0.1641 (-63.60%)	36.0 (-132.26%)
Euclidean	0.9984 (-0.14%)	0.9983 (-0.15%)	50.2050 (-41.79%)	0.2787 (-38.18%)	50.0 (-222.58%)

1674
1675

G.2 VISION: RADAR PLOTS WITH ADDITIONAL LOSSES (MNIST, CIFAR10, CIFAR100)

1676
1677
1678
1679

Figure 5 presents an expanded multi-criteria analysis across MNIST, CIFAR-10, and CIFAR-100 using MLP, CNN, ResNet50, and PVT backbones. This comparison tests whether the advantages previously attributed to harmonic losses persist when measured against widely adopted alternatives for regularization, interpretability, and robustness.

1680
1681
1682
1683
1684
1685
1686
1687
1688

RQ1: Model Performance (F1, Test Accuracy). Across datasets and architectures, the **harmonic losses** – particularly the *cosine*- and *Bray–Curtis-based* variants – remain the strongest overall performers. While **Focal Loss** and **Label Smoothing** occasionally narrow the gap on more complex datasets such as CIFAR-100, they do not consistently surpass harmonic losses across backbones. Cosine-based harmonic loss maintains higher accuracy and smoother convergence, especially for CNN and ResNet50, showing greater robustness to data imbalance and optimization noise than either Focal or Confidence Penalty Loss. Even when Center Loss improves class compactness, it rarely translates into superior end-task accuracy, reinforcing that distance-based formulations bring more balanced generalization benefits.

1689
1690
1691
1692
1693
1694
1695
1696
1697

RQ2: Interpretability (PC2 EV, PCA 90%). The advantage of harmonic losses extends beyond performance: **non-Euclidean harmonics**, especially Bray–Curtis and Chebyshev, consistently yield the most structured latent geometries. They capture more variance with fewer principal components and align features more distinctly around class prototypes. Although **Center Loss** achieves comparable compactness in isolated cases, its representations tend to be less stable across architectures. **Label Smoothing** and **Confidence Penalty** slightly improve feature spread, but their effects remain shallow compared to the systematic geometric alignment achieved by harmonic formulations. This supports the notion that explicit metric-based geometry is a stronger driver of interpretability than indirect regularization.

1698
1699
1700
1701
1702
1703
1704

RQ3: Sustainability (Duration/Epoch, Emissions). When considering efficiency, harmonic losses continue to hold their edge. They achieve competitive or lower CO₂ emissions than both Euclidean and cross-entropy baselines. Among the new baselines, only **Label Smoothing** approaches similar energy efficiency, while **Focal Loss** incurs additional computational cost due to its per-sample weighting. Despite this, none of the conventional alternatives outperform the best-performing harmonic distances on a joint accuracy–emission axis, confirming that the added geometric structure of harmonic loss does not come at a sustainability penalty.

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Three key findings emerge: i) **Cosine- and Bray–Curtis-based harmonic losses** remain the most consistently effective across accuracy, interpretability, and sustainability; ii) **Conventional regularized losses** such as Focal or Label Smoothing can mitigate specific failure modes (imbalance, overconfidence) but do not achieve the same balance across criteria; iii) The geometric grounding of harmonic losses continues to provide superior inductive structure, yielding smoother optimization, clearer feature organization, and greener training. Overall, these results reaffirm the *general dominance and stability of harmonic loss formulations*, even against strong baselines optimized for robustness and interpretability.

Figure 5: Vision: Radar plots – MNIST, CIFAR10, CIFAR100: 1) *Model Performance* (F1, Accuracy); 2) *Interpretability* (PC2 EV, PCA 90%), and 3) *Sustainability* (Duration/Epoch, Emissions). Plots feature Baseline (Cross-Entropy), Euclidean harmonic, and the four top-performing losses.

Figure 6: Vision: Radar plots – Marathi Sign Language, TinyImageNet: 1) *Model Performance* (F1, Accuracy); 2) *Interpretability* (PC2 EV, PCA 90%), and 3) *Sustainability* (Duration/Epoch, Emissions). Plots feature Baseline (Cross-Entropy), Euclidean harmonic, and the four top-performing losses.

1836 G.3 VISION: RADAR PLOTS WITH ADDITIONAL LOSSES (MARATHI SIGN LANGUAGE,
 1837 TINYIMAGENET)
 1838

1839 Figure 6 extends the radar analysis to higher-resolution benchmarks (Marathi Sign Language, Tiny-
 1840 ImageNet) and augments the comparison set with strong loss baselines such as Focal Loss, ArcFace,
 1841 Center Loss, and Confidence Penalty.

1842 **RQ1: Model Performance (Accuracy, F1).** On Marathi Sign, the added losses make MLP and
 1843 CNN particularly competitive: ArcFace and Focal occasionally obtain strong accuracy/F1, yet
 1844 non-Euclidean harmonic losses remain among the best methods. For MLP, **Bray–Curtis (Normalized)**
 1845 tracks or exceeds both cross-entropy and ArcFace while preserving a smooth performance
 1846 profile. For CNN, **Bray–Curtis (Normalized)** and **cosine (stable/unstable)** consistently occupy
 1847 the top accuracy/F1 slices; Focal and Confidence Penalty are competitive but never clearly domi-
 1848 nate. On deeper backbones, the picture is even clearer: for **ResNet50** and **PVT** on Marathi Sign,
 1849 all top-performing methods are harmonic losses, indicating that distance-based harmonic heads
 1850 outperform alternative losses outright in this regime.

1851 On TinyImageNet, a harder and more fine-grained benchmark, a similar pattern emerges. For MLP,
 1852 ArcFace and Center Loss join **Bray–Curtis (Normalized)** and Euclidean in the top-performing
 1853 losses, but Bray–Curtis remains competitive in accuracy while providing different geometric and
 1854 sustainability properties. For CNN, the strongest Focal and ArcFace variants reach high F1,
 1855 yet **Bray–Curtis (Normalized)** again sits near the performance frontier. On **ResNet50**, the
 1856 top-performing losses are *entirely harmonic* (cosine, Minkowski, Chebyshev, Euclidean), and on
 1857 **PVT** TinyImageNet the leaders are dominated by cosine and Bray–Curtis, with ArcFace appear-
 1858 ing only as an alternative angular baseline. Overall, even in the presence of sophisticated angular-
 1859 margin and confidence-shaping losses, non-Euclidean harmonic heads remain on or very near
 1860 the performance Pareto frontier.

1861 **RQ2: Interpretability (PC2 EV, PCA 90%).** The higher-resolution datasets accentuate differ-
 1862 ences in representation geometry. On Marathi Sign, harmonic distances such as **Bray–Curtis (Nor-
 1863 malized/Absolute)**, **Chebyshev (Standard)**, and **Canberra/Hamming** for PVT yield the strongest
 1864 PCA structure: they maximize PC2 explained variance and minimize the number of components
 1865 required to reach 90% EV, indicating compact, prototype-aligned embeddings. ArcFace and Focal
 1866 improve angular separation but generally do not achieve the same variance concentration as the best
 1867 harmonic distances.

1868 TinyImageNet confirms this trend. On MLP and CNN, Bray–Curtis and Chebyshev produce
 1869 markedly higher PC2 EV and lower PCA 90% dimensionality than Euclidean and most additional
 1870 baselines, including Center Loss and Focal. For ResNet50 and PVT, **cosine** and **Bray–Curtis** con-
 1871 tinue to enlarge the PCA wedges relative to Euclidean, whereas ArcFace’s contribution is mainly
 1872 on performance rather than on variance concentration. Thus, across both Marathi Sign and Tiny-
 1873 ImageNet, the most interpretable geometries are consistently induced by non-Euclidean harmonic
 1874 losses rather than by the newly added baselines.

1875 **RQ3: Sustainability (Duration/Epoch/GFLOPs, Emissions).** The sustainability axes show that
 1876 richer loss design does not necessarily translate into greener training. On Marathi Sign MLP/CNN,
 1877 several harmonic distances (e.g., **Bray–Curtis (Normalized)**, **Chebyshev**) attain *equal or lower*
 1878 normalized Duration/Epoch/GFLOPs and emissions than cross-entropy and the added baselines;
 1879 Focal and ArcFace occasionally incur slightly higher emissions due to their sharper gradients and
 1880 additional computations. For ResNet50 and PVT, where backbone FLOPs dominate, all harmonic
 1881 variants remain sustainability-competitive.

1882 On TinyImageNet, the pattern persists. ArcFace and Focal may match harmonic losses in accuracy,
 1883 but they usually do so with similar or higher emissions. Cosine and Bray–Curtis heads on ResNet50
 1884 and PVT often achieve comparable or better emissions than Euclidean, while still improving repre-
 1885 sentation structure. Center Loss introduces modest overhead but does not surpass harmonic distances
 1886 in overall sustainability.

1887 Across Marathi Sign and TinyImageNet, adding strong baselines such as ArcFace, Focal, Center
 1888 Loss, and Confidence Penalty *does not displace* the non-Euclidean harmonic losses from the top
 1889 tier. Whenever these baselines are competitive in accuracy, harmonic distances typically offer su-
 perior interpretability and comparable or lower emissions. This reinforces our central claim that

1890 distance-tailored harmonic heads provide a robust, geometry-aware alternative to contemporary
 1891 loss designs, remaining competitive or superior across performance, structure, and sustainability,
 1892 even on challenging high-resolution vision benchmarks.
 1893

1894 G.4 VISION: AGGREGATED EMISSIONS 1895

1896 Figure 7 reports the cumulative CO₂ emissions for all vision experiments (MNIST, CIFAR-10/100,
 1897 Marathi Sign, and TinyImageNet), expressed as the difference in grams of CO₂ relative to the
 1898 cross-entropy baseline (total CE emissions = 650.49 gCO₂eq over 680 runs). All methods lie within
 1899 a band of roughly $\pm 8\%$ of this baseline, showing that changing the distance in the harmonic head af-
 1900 fects emissions in a controlled—rather than catastrophic—way.:contentReference[oaicite:0]index=0

1901 **Harmonic losses remain competitive or greener.** The most sustainable region of the plot is dom-
 1902 inated by non-Euclidean harmonic losses. In particular, **Bray-Curtis (Normalized)**, **Bray-Curtis**
 1903 (**Absolute**), **Canberra (Weighted)**, and **Mahalanobis (Cholesky)** consistently achieve *lower* cu-
 1904 mulative emissions than cross-entropy, even after adding the more demanding Marathi Sign and
 1905 TinyImageNet settings. Cosine variants (*Cosine (Stable)* and *Cosine (Unstable)*) and Euclidean har-
 1906 monic loss sit very close to the baseline, indicating that distance-based heads introduce essentially
 1907 no sustainability penalty while still improving accuracy and representation structure.
 1908

1909 **Behavior of additional baselines.** Among the newly added conventional baselines, **Label**
 1910 **Smoothing** and **Confidence Penalty** occupy the middle of the spectrum: their emissions are com-
 1911 parable to, but generally not better than, those of the best harmonic distances. In contrast, more
 1912 aggressive objectives such as **Focal Loss** and large-margin **Center Loss** variants tend to clus-
 1913 ter on the higher-emission side, reflecting the extra computation and slower convergence induced
 1914 by power-scaled gradients and auxiliary center updates. ArcFace configurations behave similarly:
 1915 moderate settings can be near baseline, but high margin/scale choices increase emissions relative to
 1916 the most efficient harmonic distances.

1917 Across all four datasets and backbones, the qualitative picture is stable. Non-Euclidean har-
 1918 monic losses provide some of the *greenest* options, often achieving lower or baseline-level emis-
 1919 sions while simultaneously improving accuracy and interpretability. The main exception is **Ma-**
 1920 **halanobis (Standard)**, which remains the least sustainable configuration due to its covariance
 1921 estimation cost—consistent with our earlier observation that Mahalanobis emphasizes repres-
 1922 entation clarity at a computational price. Overall, the expanded analysis confirms that distance
 1923 choice in the harmonic head materially affects the carbon footprint of training, and that carefully
 1924 chosen non-Euclidean geometries (e.g., Bray-Curtis, Canberra, cosine) offer a favorable per-
 1925 formance—interpretability—sustainability trade-off compared to both Euclidean harmonic loss and mod-
 1926 ern regularized baselines.

1927 Figure 7 reports cumulative emission *differences* (gCO₂eq) for each custom loss function across all
 1928 12 model/dataset combinations. (Total Baseline = 181.2 gCO₂eq).

1929 **Lower-than-baseline emissions:** *Mahalanobis (Standard)* shows the largest *positive* delta, indi-
 1930 cating consistently lower emissions; *Bray-Curtis (Standard)* and *Cosine (Unstable)* also sit on the
 1931 positive side, with *Canberra (Standard)* and *Cosine (Stable)* slightly above zero. Euclidean and
 1932 Manhattan are close to baseline. Of the new baseline loss functions introduced, Confidence Penalty
 1933 performs on par with *Cosine (Unstable)* and the most efficiently compared to its counterparts. Al-
 1934 most all new losses are more efficient than Cross Entropy Loss, with varying degrees of success.
 1935 Other distances are characterized by higher emissions, as shown by the red cluster. Results reinforce
 1936 that non-Euclidean harmonic losses can be more sustainable than their Euclidean counterpart, and
 1937 that the choice of distance materially affects the carbon footprint of model training.
 1938

1939
 1940
 1941
 1942
 1943

Figure 7: Vision: Emissions Averaged Across Seeds and Aggregated Over all 12 Model Backbones.

H CONVERGENCE ANALYSIS

Vision: Figure 8 reports the training and validation loss trajectories for PVT and ResNet50 across all datasets and all non-Euclidean harmonic losses. A key concern is whether distances that introduce nontrivial geometric structure such as cosine and Mahalanobis lead to unstable optimization or distorted convergence landscapes. Empirically, we observe no such issues.

Across MNIST, CIFAR-10, CIFAR-100, and Marathi Sign, all non-Euclidean harmonic losses exhibit smooth, monotonic decrease in the training objective and stable validation trends, with no oscillation, divergence, or gradient explosion. Even distances with stronger geometric bias (e.g., Mahalanobis, Chebyshev, Bray-Curtis) converge at rates comparable to or faster than Euclidean harmonic loss. Cosine variants in particular show the *fastest early descent*, followed by steady tightening of the validation curves, consistent with their angularly flatter basins.

Notably, none of the distances introduce optimization barriers, despite their differing curvature properties. Mahalanobis maintains stable descent even though anisotropic curvature could, in principle, yield direction-dependent gradients. Likewise, Canberra, Hamming, Manhattan, and Minkowski losses converge smoothly, indicating that the harmonic formulation effectively normalizes distance geometry into a well-conditioned optimization surface.

Overall, the loss curves demonstrate that the harmonic link function absorbs geometric variability and translates heterogeneous distance metrics into similarly well-behaved training dynamics. This provides experimental evidence that alternative geometries do not impair convergence nor destabilize class separation boundaries.

Language: Figure 9 reports training/validation loss, training accuracy, and (for GPT-2B) training and validation perplexity for cross-entropy, Euclidean harmonic, and Minkowski ($p=2$) heads across BERT-0.1B, GPT-0.1B, GPT-2B, and QWEN2-0.5B. Across all architectures, the distance-based harmonic losses exhibit smooth optimization dynamics: losses decrease monotonically with no oscillatory or unstable regimes, and accuracy curves increase steadily towards a plateau.

For BERT-0.1B, Euclidean and Minkowski harmonic losses reduce both training and validation loss more quickly than cross-entropy and converge to a lower plateau, while achieving higher final training accuracy. GPT-0.1B shows a similar pattern: all three heads converge, but the harmonic variants reach a given accuracy earlier and with gently sloping curves, indicating stable gradients. For GPT-2B and QWEN2-0.5B, the three heads track each other closely in both loss and accuracy, confirming that the change of geometry does not impede convergence even at larger scale. The validation loss curves mirror the training behaviour: no divergence or late-stage degradation is observed for any harmonic configuration.

1998 The GPT-2B perplexity panel further corroborates this picture. Training and validation perplexity
 1999 decrease rapidly and stabilize to comparable levels for all heads; the harmonic variants sometimes
 2000 achieve slightly faster early reductions, but do not introduce pathological behaviour. Overall, these
 2001 results show that replacing the linear classifier with a distance-based harmonic head preserves, and
 2002 in some cases marginally improves, the convergence properties of standard cross-entropy while
 2003 enabling the geometric and interpretability benefits discussed in the main paper.

2004

2005

2042 Figure 8: Loss convergence behavior with PVT and ResNet50: Training and Validation loss across
 2043 all datasets with different non-Euclidean harmonic losses.

2044

2045

2046

2047

2048

2049

2050

2051

Figure 9: Loss convergence behavior with language models (BERT-0.1B, GPT-0.1B, QWEN2-0.5B, GPT-2B).

2106 I GROKKING ANALYSIS: MODULO ADDITION

2108 Figure 10 summarizes the behavior of standard MLPs and H-MLPs trained on the synthetic modulo-
 2109 addition task, a setting known to exhibit pronounced grokking effects under cross-entropy. The top
 2110 two rows illustrate training curves and corresponding 2D embeddings for baseline cross-entropy
 2111 models (first two columns) and Euclidean harmonic loss (third and fourth columns). The remaining
 2112 rows extend this comparison to alternative non-Euclidean harmonic losses.

2114 **Cross-entropy exhibits clear grokking.** For both the standard MLP and its lightly regularized
 2115 variant, cross-entropy produces the characteristic grokking pattern: training accuracy rapidly con-
 2116 verges while test accuracy improves only after a long delay. This decoupling is consistent with prior
 2117 observations in algorithmic tasks, where cross-entropy tends to overfit memorization pathways be-
 2118 fore discovering the true modular arithmetic structure. The PCA plots confirm this: the learned
 2119 embeddings under cross-entropy have diffuse, irregular geometry, and the first two principal com-
 2120 ponents explain only a small fraction of the variance ($EV \approx 20\text{--}30\%$).

2122 **Euclidean harmonic loss eliminates grokking and induces a perfect geometric structure.** In
 2123 contrast, the Euclidean harmonic model reaches high train *and* test accuracy simultaneously. No
 2124 grokking delay is observed. The PCA projection reveals a striking property: the latent representa-
 2125 tion forms a *perfect 2D circle*, and the first two principal components explain nearly all variance
 2126 ($EV \approx 100\%$). This matches theoretical expectations for harmonic distance-based classification on
 2127 cyclic group structure: the model learns an isometric embedding of \mathbb{Z}_n into the plane, validating the
 2128 geometric alignment induced by harmonic objectives.

2129 **Other distance-based harmonic losses replicate the circle structure with similarly fast gener-
 2130 alization.** The bottom rows show that this desirable behavior is *not* unique to Euclidean distance.
 2131 Cosine, stable cosine, Manhattan (1-norm), several Canberra variants, Hamming losses, Minkowski
 2132 $p = 3$, Chebyshev, and others all produce the same qualitative outcome:

- 2135 • **Immediate or near-immediate generalization**, with no grokking phase.
- 2136 • **Highly structured 2D embeddings**, often forming a near-perfect circle.
- 2137 • **Explained variance approaching 100%**, indicating strong alignment to a low-
 2138 dimensional manifold reflecting the algebraic symmetry of the task.

2140 Some distances (e.g., Hamming and Chebyshev) produce slightly rotated or warped circles, but the
 2141 essential geometric structure and variance concentration remain intact. This demonstrates that har-
 2142 monic losses robustly recover the underlying modular arithmetic structure *regardless of the distance*
 2143 *family*.

2145 **Harmonic losses reduce grokking compared to cross-entropy.** Across all non-Euclidean dis-
 2146 tances tested, harmonic losses exhibit two consistent advantages over cross-entropy:

- 2149 1. **Reduced grokking or complete elimination of delayed generalization.** Training and test
 2150 accuracy rise together, indicating that the model discovers the algorithmic rule rather than
 2151 memorizing individual cases.
- 2152 2. **Improved interpretability via stable geometric structure.** The emergence of a low-
 2153 dimensional circular manifold with EV close to 1.0 serves as a quantitative and visual
 2154 certificate of representation clarity.

2156 These results reinforce the core claims of the paper: harmonic losses promote structured, prototype-
 2157 aligned representations and smoother, more reliable optimization dynamics, even on tasks where
 2158 cross-entropy typically groks. The fact that many distances achieve $EV \approx 100\%$ highlights that the
 2159 benefits of harmonic classification do not depend on Euclidean geometry alone, but arise from the
 broader class of distance-based harmonic objectives.

Figure 10: Results on standard MLP trained for modular addition. The harmonic model trained for modular addition generalizes quickly without grokking. Moreover, the embedding forms a perfect 2D circle. EV in the plot represents the explained variance by the first two principal components of the embedding.

J COMPUTATIONAL COMPLEXITY: FLOPS

Table 16 reports the approximate floating-point operations per forward pass for each backbone-dataset. On 32×32 inputs (MNIST resized, CIFAR-10/100, MarathiSign), the FLOP hierarchy is consistent: MLP is cheapest (< 0.004 GFLOPs), CNN roughly $3 \times$ more expensive (≈ 0.012 GFLOPs), PVT adds another $\sim 3 \times$ (≈ 0.038 GFLOPs), and ResNet50 is about $2 \times$ PVT (≈ 0.08 GFLOPs). Moving to high-resolution inputs (224×224 for TinyImageNet and our high-resolution MarathiSign runs) increases cost by two orders of magnitude: PVT rises to ~ 1.9 GFLOPs and ResNet50 to ~ 4.1 GFLOPs per forward pass. These numbers highlight that i) sustainability differences across *architectures* are dominated by backbone FLOPs, while ii) swapping Euclidean harmonic loss for alternative distances or baselines changes only the final classifier head, adding an $O(Cd)$ cost that is negligible compared to the convolutional / transformer body. Consequently, the per-step FLOP budget is effectively distance-invariant, and our sustainability

2214 comparisons across losses can be interpreted as differences in optimization dynamics (steps-to-
 2215 target, stability) rather than raw arithmetic cost.
 2216

2217 Table 16: Per-sample FLOPs, GFLOPs, and parameter counts for each backbone and dataset.

Model	Dataset	In Ch.	H	W	#Cls	FLOPs	Params	GFLOPs
CNN	CIFAR10	3	32	32	10	12307072	545098	0.0123
CNN	CIFAR100	3	32	32	100	12330112	556708	0.0123
CNN	MarathiSign	3	32	32	43	12315520	549355	0.0123
CNN	MNIST	1	28	28	10	8520064	421642	0.0085
CNN	TinyImageNet	3	224	224	200	602966144	25735432	0.6029
MLP	CIFAR10	3	32	32	10	3413760	1707274	0.0034
MLP	CIFAR100	3	32	32	100	3459840	1730404	0.0034
MLP	MarathiSign	3	32	32	43	3430656	1715755	0.0034
MLP	MNIST	1	28	28	10	1070848	535818	0.0010
MLP	TinyImageNet	3	224	224	200	309536256	154769096	0.3095
PVT	CIFAR10	3	32	32	10	38268630	12746560	0.0382
PVT	CIFAR100	3	32	32	100	38314710	12769600	0.0383
PVT	MarathiSign	3	32	32	43	38285526	12755008	0.0382
PVT	MNIST	3	32	32	10	38268630	12746560	0.0382
PVT	TinyImageNet	3	224	224	200	1899590400	12795200	1.8995
ResNet50	CIFAR10	3	32	32	10	79618429	23472480	0.0796
ResNet50	CIFAR100	3	32	32	100	79987069	23656800	0.0799
ResNet50	MarathiSign	3	224	224	43	4096080128	23540064	4.0960
ResNet50	MNIST	1	28	28	10	60007460	23472480	0.0600
ResNet50	TinyImageNet	3	224	224	200	4096723200	23861600	4.0967

K GEOMETRIC INSIGHTS

2242 To better illustrate how different harmonic distances shape the embedding geometry, we visualize
 2243 the last-layer representations of ResNet50 on MNIST (see Figure 11) and CIFAR10 (see Figure
 2244 12) using 2D PCA, with class prototypes overlaid as markers. For the Euclidean harmonic head,
 2245 the class clusters are roughly spherical and separated by (approximately) straight boundaries in the
 2246 projection: decision regions are controlled mainly by radial distance to each prototype, yielding
 2247 isotropic attraction basins around each center.

2248 Under Cosine harmonic loss, the picture changes markedly. Features and prototypes concentrate
 2249 on (or very near to) a common hypersphere, so the PCA plot shows clusters arranged along a
 2250 circle. Classes are separated primarily by their angle rather than their norm, and decision boundaries
 2251 correspond to angular bisectors between prototypes. This matches our geometric claim that cosine
 2252 harmonic removes radial curvature and constrains optimization to an angular manifold: as training
 2253 proceeds, points slide along the sphere towards their prototype, producing wide, smooth basins and
 2254 stable gradient norms.

2255 By contrast, Mahalanobis harmonic loss induces anisotropic curvature. After whitening by $\Sigma^{-1/2}$,
 2256 the decision boundaries are linear, but in the original feature space they correspond to ellipsoidal
 2257 contours. In the PCA plots this appears as elongated clusters and distorted attraction basins around
 2258 prototypes, with some directions exhibiting much tighter concentration than others. When the em-
 2259 pirical covariance is well-conditioned this yields very sharp, well-separated clusters (high variance
 2260 concentration), but when eigenvalues are highly unbalanced the same anisotropy can make opti-
 2261 mization more sensitive to particular directions.

Figure 11: Geometric effect of distance-based harmonic losses on ResNet50 embeddings (MNIST). From top to bottom: Baseline (a), Euclidean harmonic loss (b), cosine harmonic loss (c), and Mahalanobis harmonic loss (d).

L ADDITIONAL RESULTS

L.1 VISION: TABLES

The empirical evaluation of non-Euclidean harmonic losses across MNIST, CIFAR-10, and CIFAR-100 with MLP, CNN, and ResNet50 backbones reveals several consistent patterns.

Model Performance. Cosine distance emerges as the most reliable performer across architectures and datasets. In both stable and unstable variants, cosine harmonic loss consistently improves test accuracy and F1 relative to Euclidean, with gains most pronounced in deeper models (CNNs and ResNets) and in medium-complexity datasets such as CIFAR-10. Bray–Curtis offers modest gains in certain contexts but is less consistent, while Mahalanobis can improve accuracy on simple datasets (e.g., MNIST) but often lags behind cosine in more challenging regimes. Euclidean harmonic loss, while better than cross-entropy in terms of stability, is consistently outperformed by cosine-based alternatives.

Interpretability. Distances strongly reshape the geometry of the learned representations. Cosine and Bray–Curtis often yield large improvements in explained variance (EV), indicating more com-

Figure 12: Geometric effect of distance-based harmonic losses on ResNet50 embeddings (CIFAR10). From top to bottom: Baseline (a), Euclidean harmonic loss (b), cosine harmonic loss (c), and Mahalanobis harmonic loss (d).

pact feature spaces aligned with class prototypes. Mahalanobis produces the most dramatic gains in EV, frequently approaching full variance explanation, but this comes at the cost of stability and efficiency. Prototype coverage (PC90%) tends to shrink under cosine and Mahalanobis, highlighting sharper clustering effects: models assign fewer prototypes to cover 90% of variance, making the representation space more interpretable but less evenly distributed.

Sustainability. Sustainability outcomes mirror performance trends. Cosine distances typically reduce carbon emissions relative to Euclidean, in some cases by up to 40%, making them both effective and energy-efficient. Bray–Curtis shows mixed results, with occasional emission savings but less consistent behavior. Mahalanobis tends to incur higher emissions, reflecting the computational overhead of covariance estimation and matrix operations. Shallow architectures (MLPs) show less differentiation across distances in emissions, while deeper backbones amplify both the benefits (cosine) and costs (Mahalanobis).

Trade-offs. Taken together, the results confirm that distance choice is not neutral in harmonic loss. Cosine provides the most favorable balance across performance, interpretability, and sustainability, representing the strongest general-purpose alternative to Euclidean. Bray–Curtis occupies a middle ground, offering interpretability benefits without always delivering accuracy or efficiency gains.

2376

2377 Table 17: Results for CIFAR100 CNN. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method	Acc	F1	gCO ₂ eq	EV	PC90%
Baseline	0.3795	0.3795	1.18	0.459295	49.3333
Bray-Curtis (Norm.)	0.3229 (-14.91%)	0.3182 (-16.16%)	0.8132 (30.94%)	0.9094 (98%)	2.6667 (94.59%)
Mahalanobis (Chol.)	0.2927 (-22.86%)	0.2921 (-23.04%)	0.727 (38.25%)	0.341 (-25.75%)	50 (-1.35%)
Cosine (Unst.)	0.2602 (-31.44%)	0.2667 (-29.73%)	2.1156 (-79.68%)	0.5306 (15.52%)	45 (8.78%)
Cosine (Stable)	0.2501 (-34.09%)	0.2516 (-33.71%)	1.4263 (-21.14%)	0.5216 (13.57%)	45 (8.78%)
Euclidean	0.2413 (-36.4%)	0.2431 (-35.95%)	1.2866 (-9.28%)	0.4362 (-5.02%)	50 (-1.35%)

2385

2386 Table 18: Results for CIFAR100 MLP. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method	Acc	F1	gCO ₂ eq	EV	PC90%
Baseline	0.2617	0.2582	0.85	0.285203	50.0
Bray-Curtis (Norm.)	0.226 (-13.64%)	0.2191 (-15.15%)	0.8938 (-5.35%)	0.9843 (245.11%)	1 (98%)
Mahalanobis (Chol.)	0.1833 (-29.96%)	0.1811 (-29.85%)	1.0889 (-28.34%)	0.0354 (-87.57%)	50 (-0%)
Bray-Curtis (Abs.)	0.1444 (-44.81%)	0.1392 (-46.07%)	2.1255 (-150.51%)	0.5317 (86.43%)	47.6667 (4.67%)
Cosine (Unst.)	0.1237 (-52.74%)	0.1186 (-54.06%)	0.5064 (40.31%)	0.3799 (33.21%)	40.6667 (18.67%)
Euclidean	0.119 (-54.53%)	0.1222 (-52.69%)	0.589 (30.58%)	0.2437 (-14.55%)	50 (-0%)

2394

2395

2396 Mahalanobis maximizes interpretability at a clear sustainability cost, making it attractive primarily
 2397 when prototype clarity outweighs computational expense. Euclidean serves as a stable but suboptimal
 2398 baseline.

2399

2400 **Conclusion.** This systematic study establishes that non-Euclidean harmonic losses provide a flex-
 2401 ible and effective design space. In particular, cosine distance offers a compelling replacement for
 2402 cross-entropy and Euclidean harmonic loss in vision tasks, consistently improving accuracy, inter-
 2403 pretability, and sustainability. These findings position distance-tailored harmonic losses as a promis-
 2404 ing avenue for advancing deep learning models that are not only accurate but also more transparent
 2405 and energy-conscious.

2406

L.2 VISION: SUSTAINABILITY

2407

L.2.1 MNIST

2408

2409 Figure 13 summarizes the *carbon deltas* (gCO₂eq relative to cross-entropy) when swapping the
 2410 training objective for harmonic-loss variants on MNIST across four backbones.

2412

2413 **MLP.** Most distances reduce per-step emissions vs. cross-entropy (green bars), with the largest
 2414 savings from heavier geometry that replaces the softmax/cross-entropy path (e.g., Mahalanobis/-
 2415 standardized, Chebyshev). Euclidean and Bray–Curtis yield modest savings; only a few variants
 2416 show small positive overheads. Given MNIST’s simplicity and the near-saturation accuracies, these
 2417 reductions likely translate into *net* greener runs because steps-to-target are comparable.

2418

2419

2420 **CNN.** A broad set of distances are carbon-negative vs. baseline. Again, standardized Maha-
 2421 lanobis/Chebyshev rank among the lowest-emission options; Bray–Curtis and Euclidean remain

2422

2423

2424 Table 19: Results for CIFAR100 ResNet50. Parentheses: % changes w.r.t. Baseline (Cross-
 2425 Entropy).

Method	Acc	F1	gCO ₂ eq	EV	PC90%
Baseline	0.6983	0.6969	87.77	0.107216	50.0
Cosine (Stable)	0.7357 (5.35%)	0.736 (5.61%)	72.9745 (16.85%)	0.5979 (457.66%)	8 (84%)
Cosine (Unst.)	0.7323 (4.87%)	0.7332 (5.21%)	71.7592 (18.24%)	0.5857 (446.27%)	8 (84%)
Bray-Curtis (Norm.)	0.655 (-6.19%)	0.6513 (-6.54%)	106.4049 (-21.24%)	0.7131 (565.08%)	6 (88%)
Mahalanobis (Chol.)	0.6274 (-10.15%)	0.6239 (-10.47%)	138.9317 (-58.3%)	0.7353 (585.81%)	17.5 (65%)
Euclidean	0.7055 (1.03%)	0.7062 (1.33%)	97.432 (-11.01%)	0.5679 (429.66%)	25.5 (49%)

2430

2431

2432

Table 20: Results for CIFAR10 CNN. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method	Acc	F1	gCO ₂ eq	EV	PC90%
Baseline	0.6278	0.6269	1.12	0.688081	9.0
Mahalanobis (Chol.)	0.6644 (5.82%)	0.6642 (5.95%)	1.1139 (0.68%)	0.4752 (-30.93%)	50 (-455.56%)
Bray-Curtis (Norm.)	0.6597 (5.08%)	0.6551 (4.5%)	1.1489 (-2.45%)	0.8913 (29.54%)	4.3333 (51.85%)
Minkowski (p=3.0)	0.6589 (4.95%)	0.6593 (5.17%)	1.1598 (-3.42%)	0.5425 (-21.15%)	50 (-455.56%)
Cosine (Stable)	0.6584 (4.87%)	0.6566 (4.74%)	1.1663 (-3.99%)	0.647 (-5.97%)	18.6667 (-107.41%)
Euclidean	0.6495 (3.45%)	0.6476 (3.31%)	1.1228 (-0.12%)	0.6582 (-4.34%)	14.3333 (-59.26%)

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

Table 21: Results for CIFAR10 MLP. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method	Acc	F1	gCO ₂ eq	EV	PC90%
Baseline	0.5397	0.5385	0.53	0.346504	47.0
Bray-Curtis (Norm.)	0.5224 (-3.21%)	0.5201 (-3.41%)	0.5264 (0.81%)	0.967 (179.07%)	1 (97.87%)
Mahalanobis (Chol.)	0.5087 (-5.75%)	0.5088 (-5.51%)	0.458 (13.7%)	0.0522 (-84.94%)	50 (-6.38%)
Bray-Curtis (Abs.)	0.4934 (-8.59%)	0.4924 (-8.55%)	0.6313 (-18.96%)	0.2434 (-29.76%)	50 (-6.38%)
Bray-Curtis (Std.)	0.4931 (-8.64%)	0.4935 (-8.35%)	0.6435 (-21.25%)	0.2906 (-16.14%)	50 (-6.38%)
Euclidean	0.4871 (-9.74%)	0.4852 (-9.9%)	0.4303 (18.92%)	0.4303 (24.19%)	42.3333 (9.93%)

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

Table 22: Results for CIFAR10 ResNet50. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method	Acc	F1	gCO ₂ eq	EV	PC90%
Baseline	0.843	0.8431	48.65	0.257211	50.0
Cosine (Stable)	0.9262 (9.87%)	0.9262 (9.86%)	40.6776 (16.39%)	0.7559 (193.9%)	5 (90%)
Cosine (Unst.)	0.9234 (9.54%)	0.9234 (9.53%)	29.3968 (39.58%)	0.761 (195.86%)	5 (90%)
Bray-Curtis (Norm.)	0.9193 (9.05%)	0.9192 (9.02%)	45.6222 (6.23%)	0.7883 (206.49%)	5 (90%)
Chebyshev (Std.)	0.905 (7.36%)	0.905 (7.34%)	48.5505 (0.21%)	0.9995 (288.59%)	1 (98%)
Euclidean	0.9185 (8.96%)	0.9185 (8.94%)	45.8759 (5.71%)	0.683 (165.56%)	25.5 (49%)

2461

2462

2463

2464

2465

Table 23: Results for MNIST CNN. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method	Acc	F1	gCO ₂ eq	EV	PC90%
Baseline	0.9782	0.9782	1.19	0.585633	10.6667
Bray-Curtis (Norm.)	0.9889 (1.09%)	0.9888 (1.09%)	1.1348 (4.42%)	0.7225 (23.38%)	13.6667 (-28.12%)
Mahalanobis (Chol.)	0.9879 (1%)	0.9879 (0.99%)	1.0639 (10.39%)	0.4673 (-20.2%)	36.3333 (-240.63%)
Minkowski (p=3.0)	0.9877 (0.97%)	0.9876 (0.96%)	1.1154 (6.06%)	0.4195 (-28.37%)	49.3333 (-362.5%)
Hamming (Soft)	0.9833 (0.52%)	0.9832 (0.51%)	1.1815 (0.49%)	0.3089 (-47.26%)	50 (-368.75%)
Euclidean	0.9831 (0.5%)	0.9831 (0.5%)	1.1543 (2.78%)	0.4413 (-24.65%)	20.3333 (-90.62%)

2473

2474

2475

2476

Table 24: Results for MNIST MLP. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

Method	Acc	F1	gCO ₂ eq	EV	PC90%
Baseline	0.976	0.9758	0.55	0.565723	10.3333
Cosine (Unst.)	0.978 (0.2%)	0.9778 (0.2%)	0.5264 (3.58%)	0.382 (-32.48%)	10 (3.23%)
Mahalanobis (Chol.)	0.9774 (0.14%)	0.9771 (0.14%)	0.5611 (-2.78%)	0.092 (-83.74%)	50 (-383.87%)
Cosine (Stable)	0.9766 (0.06%)	0.9764 (0.06%)	0.5266 (3.54%)	0.4033 (-28.71%)	9.3333 (9.68%)
Chebyshev (Std.)	0.9756 (-0.04%)	0.9754 (-0.04%)	0.5881 (-7.73%)	0.7865 (39.03%)	5.6667 (45.16%)
Euclidean	0.9799 (0.4%)	0.9798 (0.41%)	0.5221 (4.35%)	0.358 (-36.72%)	9 (12.9%)

2483

2484

2485

Table 25: Results for MNIST ResNet50. Parentheses: % changes w.r.t. Baseline (Cross-Entropy).

2486

2487

Method	Acc	F1	gCO ₂ eq	EV	PC90%
Baseline	0.9909	0.9909	29.36	0.420353	50.0
Bray-Curtis (Norm.)	0.9962 (0.52%)	0.9961 (0.53%)	25.2889 (13.86%)	0.8453 (101.09%)	4 (92%)
Cosine (Unst.)	0.996 (0.51%)	0.996 (0.52%)	26.1851 (10.8%)	0.6888 (63.87%)	6 (88%)
Cosine (Stable)	0.9953 (0.44%)	0.9953 (0.45%)	26.4064 (10.05%)	0.6974 (65.91%)	6 (88%)
Mahalanobis (Chol.)	0.9938 (0.29%)	0.9938 (0.3%)	31.9246 (-8.75%)	0.9966 (137.09%)	1 (98%)
Euclidean	0.9934 (0.25%)	0.9934 (0.25%)	24.457 (16.69%)	0.9998 (137.84%)	1 (98%)

2493

2494

consistently frugal. Variants that introduce extra normalization or temperature schedules can erode part of the gain but rarely flip the sign.

2495

2496

ResNet50. The deepest convolutional model shows the *largest* per-step savings: many distances deliver substantial negative deltas relative to cross-entropy, suggesting that replacing the softmax loss with metric-based objectives amortizes well at this scale. Only a handful of choices (e.g., certain Chebyshev/Canberra parameterizations) incur small positive overheads.

2501

2502

PVT (vision transformer). In contrast to the CNN family, most distances *increase* per-step emissions over the baseline. The transformer’s attention and normalization stack appears less amenable to the heavier distance computations; only a couple of standardized/normalized variants produce small savings. On PVT, greener training favors the lightest geometries or retaining cross-entropy.

2503

2504

Takeaways. i) On MNIST, distance-based harmonic losses are often *carbon-favorable* for MLP/CNN/ResNet50, with the biggest gains on the deepest CNN; ii) these gains are not universal—PVT tends to pay a premium; iii) because test accuracy curves on MNIST converge similarly across losses, the per-step savings for CNN/ResNet50 likely convert into lower *end-to-end* energy. Practically, we recommend Euclidean/Bray–Curtis/standardized Mahalanobis for convolutional backbones, and cautious use (or kernel-fused, mixed-precision implementations) of heavier distances on transformer-style models. Reporting both per-step emissions and energy-to-target accuracy remains essential for fair sustainability claims.

2513

2514

L.2.2 CIFAR-10

2515

Figure 14 reports carbon deltas in gCO₂eq relative to cross-entropy when training with harmonic-loss distances on CIFAR-10.

2516

2517

MLP. Most distances are *carbon-negative* versus baseline, yielding small-to-moderate per-step savings. A few choices incur mild overheads (rightmost bars), indicating that added normalization or temperature scheduling can offset the gains on shallow networks.

2521

2522

CNN. The pattern strengthens: a broad set of distances reduce per-step emissions relative to cross-entropy. Only a handful of variants sit near zero or slightly positive, suggesting that, for convolutional encoders on CIFAR-10, metric-based objectives are generally more frugal per step.

2523

2524

ResNet50. Savings are *uniform and largest*: all distances fall below the baseline, with substantial negative deltas. This indicates that replacing the softmax loss amortizes particularly well at depth/width, likely due to better kernel utilization and reduced softmax/backprop overhead relative to the total compute.

2525

2526

PVT (vision transformer). Most distances are again carbon-negative, though the spread is narrower than ResNet50 and a couple of variants hover around parity or slightly positive. Transformers benefit, but less dramatically than deep CNNs.

2527

2528

Takeaways. i) On CIFAR-10, distance-based harmonic losses are typically *greener per step* for CNN/ResNet50/PVT, with the strongest effect on ResNet50; ii) MLP shows mixed but mostly favorable outcomes; iii) because our accuracy-vs-epoch curves on CIFAR-10 show similar or faster convergence for several distances, these per-step gains are likely to translate into lower *end-to-end* energy for deep backbones. Practically, we recommend adopting the more frugal distances for convolutional and transformer models and pairing per-step reports with *energy-to-target-accuracy* to substantiate sustainability claims.

Figure 13: Carbon emission differences for MNIST across four model backbones (MLP, CNN, ResNet50, PVT) when replacing cross-entropy with harmonic loss variants. Bars show the emission difference in grams of CO₂eq relative to the baseline (cross-entropy). Values above zero indicate higher emissions than baseline, while negative values indicate greener, more sustainable outcomes.

L.2.3 CIFAR-100

Figure 15 shows the carbon *delta* (gCO₂eq vs. cross-entropy) when training with harmonic-loss distances on CIFAR-100.

MLP. Savings are modest and *geometry-dependent*. Light/standardized variants (e.g., cosine, Euclidean, some Minkowski/Canberra settings) are carbon-negative, while heavier norms and covariance-based Mahalanobis parameterizations flip to positive overheads. On shallow models, extra normalization steps can outweigh gains.

CNN. A broad swath of distances are carbon-negative relative to the 1.18 gCO₂eq baseline; several Mahalanobis and Bray-Curtis settings deliver the largest per-step reductions. A few choices (e.g., certain cosine/Canberra/Minkowski configurations) hover near parity or slightly positive, indicating mild architecture sensitivity.

ResNet50. The deepest convolutional model exhibits a *mixed but wide* spread: many distances achieve substantial savings (left cluster of dark-green bars), yet others incur clear premiums (right cluster). Thus, distance choice materially changes footprint at scale. Notably, cosine variants are among the frugal options here, whereas some Chebyshev/Minkowski/Bray-Curtis (absolute) settings are costlier.

PVT (vision transformer). Most distances are *carbon-positive* vs. the 3.67 gCO₂eq baseline, with only a couple of standardized/smoothed variants slightly negative. As on MNIST/CIFAR-10, the attention/normalization stack appears less amenable to heavier metric computations.

Takeaways. i) On CIFAR-100, harmonic distances can be *greener per step* for CNNs and selectively for ResNet50, but PVT generally pays a premium; ii) cosine tends to be frugal on deeper CNNs (and competitive on MLP), aligning with its strong accuracy dynamics, whereas several Mahalanobis/Minkowski/Chebyshev configurations increase emissions unless they deliver clear quality

Figure 14: Carbon emission differences for CIFAR10 across four model backbones (MLP, CNN, ResNet50, PVT) when replacing cross-entropy with harmonic loss variants. Bars show the emission difference in grams of CO₂eq relative to the baseline (cross-entropy). Values above zero indicate higher emissions than baseline, while negative values indicate greener, more sustainable outcomes.

gains; iii) because CIFAR-100 accuracy converges differently across distances, claims of sustainability should couple per-step deltas with *energy-to-target-accuracy/perplexity*. Practically, prefer cosine/Euclidean/standardized Bray–Curtis (and selected Mahalanobis settings that are both stable and frugal) for CNN/ResNet50, and use kernel fusion + mixed precision if heavier geometries are needed on transformer backbones.

Insights across datasets: A clear trend emerges across datasets: **transformer models (PVT)** often incur higher emissions with distance-based harmonic losses, particularly on CIFAR-100 (see Figure 15), whereas **convolutional and residual networks** (CNN, ResNet50) frequently yield greener outcomes (see results in Figures 13 – 15). The sustainability benefit is especially pronounced when distances incorporate robustness (Hamming-gumbel, Canberra-robust) or covariance awareness (Mahalanobis-diagonal). Simpler datasets like MNIST show limited differences, while CIFAR-10 and CIFAR-100 highlight the greater impact of distance choice on carbon footprint.

Cross-architecture insights: **MLPs** present a limited sustainability differences; emissions remain close to baseline across all distances. With **CNNs**, multiple distances (Hamming-gumbel, Mahalanobis-diagonal, Canberra-weighted) consistently reduce emissions, showing CNNs benefit most from harmonic loss efficiency. In **PVT**, harmonic losses generally increase emissions, especially on CIFAR-100, highlighting potential overhead in attention-based models. **ResNet50** demonstrates an effective integration with several distances (Hamming, Canberra, Bray–Curtis), which achieve significant reductions in emissions over baseline, indicating that deep CNNs can combine effectiveness with sustainability.

Overall, the sustainability analysis shows that harmonic losses can improve or degrade carbon efficiency depending on the backbone and dataset. The choice of distance measure therefore plays a critical role not only in accuracy but also in environmental impact, reinforcing the need for holistic evaluation across the accuracy–sustainability–interpretability triangle.

Figure 15: Carbon emission differences for CIFAR100 across four model backbones (MLP, CNN, ResNet50, PVT) when replacing cross-entropy with harmonic loss variants. Bars show the emission difference in grams of CO₂eq relative to the baseline (cross-entropy). Values above zero indicate higher emissions than baseline, while negative values indicate greener, more sustainable outcomes.

L.3 LANGUAGE: SUSTAINABILITY

Figure 16 reports *per-1k-step* carbon differences (gCO₂eq) when replacing cross-entropy with distance-based harmonic losses for BERT, GPT, and QWEN. Positive bars indicate higher emissions than the cross-entropy baseline (annotated atop each subplot).

Overall. Across all three backbones, distance-based losses tend to *increase* per-1k-step emissions relative to cross-entropy. The magnitude of overhead correlates with the computational complexity of the distance: lightweight cosine variants add the least overhead, while Mahalanobis and Minkowski incur the most.

BERT. Cosine (simple or temperature-scaled) yields small overheads (low single-digit gCO₂eq over a 7.87 gCO₂eq baseline), suggesting that the extra normalization and dot-product operations have modest cost. Euclidean and Bray–Curtis sit mid-pack, whereas Mahalanobis (Cholesky/standard-/diagonal) and Minkowski ($p > 2$) are consistently more carbon intensive per 1k steps.

GPT. All distances increase emissions over the 60.36 gCO₂eq baseline, with a clearer spread: cosine remains the most frugal among alternatives; Euclidean and Manhattan are mid-range; Mahalanobis (any parameterization) and Minkowski/L2 are the heaviest. This indicates that the per-step FLOPs and memory traffic of covariance-related computations (and higher-order norms) become more pronounced at GPT scale.

QWEN. For this larger model (baseline 75.29 gCO₂eq), the methods we evaluated (Minkowski/L2 and Euclidean) both raise per-1k-step emissions, with Minkowski/L2 showing a substantial increase. Although the set of distances is smaller here, the pattern mirrors GPT: heavier metrics cost more per step as model width/depth grows.

Implications. i) If *Green AI* considerations are primary, cosine-based harmonic losses are the most promising drop-in replacements, especially on encoder-style models (BERT). ii) Mahalanobis and

Minkowski should be justified by clear accuracy or stability gains, as they carry the largest per-step carbon premiums. iii) Reported values are per-1k-step; end-to-end footprint also depends on *steps-to-target-quality*. Thus, a distance that reduces time-to-accuracy could still yield net carbon savings even with higher per-step cost.

Summary. Distance choice in harmonic loss is not carbon-neutral: cosine variants introduce minimal overhead; Euclidean/Bray–Curtis are moderate; Mahalanobis/Minkowski are expensive. Any claimed performance gains from richer geometries should be weighed against these systematic energy costs, preferably via *energy-normalized* quality metrics (e.g., accuracy per kWh).

Figure 16: Carbon emission differences for LLM pretraining on OpenWebText (BERT, GPT2, QWEN) when replacing cross-entropy with harmonic loss variants. Bars show the emission difference in grams of CO₂eq relative to the baseline (cross-entropy). Values above zero indicate higher emissions than baseline, while negative values indicate greener, more sustainable outcomes.

L.4 LANGUAGE: INTERPRETABILITY

Mechanistic and representation-level interpretability of large language models (LLMs) increasingly leverages the hypothesis that internal activations admit *approximately linear* structure: many features behave like directions in an activation space, and linear operations can steer or probe them (Elhage et al., 2022; Huben et al., 2024; Turntrout, 2023). Within this paradigm, Principal Component Analysis (PCA) is a simple, well-understood lens for: i) summarizing dominant sources of variance in activations; ii) stabilizing analyses by denoising; and (iii) producing human-auditable axes that can be inspected, correlated with concepts, and tracked over time.

Given a layer ℓ with residual-stream activations $H_\ell \in \mathbb{R}^{N \times d}$ collected across N tokens (or prompts), PCA factorizes H_ℓ via SVD to yield orthogonal directions $\{u_k\}_{k=1}^d$ ordered by explained variance. In practice this supports:

1. **Concept probing and visualization.** Projections onto top PCs often align with semantically meaningful contrasts; e.g., the first PC of GPT-style embeddings correlated with human well-being judgments in zero-shot tests (FAR AI, 2023), and per-layer PCA can reconstruct or predict response modes in GPT-2 (Jorgensen, 2023).

2754

2755 2. **Diagnosing and localizing phenomena.** Layer-wise or head-wise PCA reveals where vari-
2756 ance concentrates, helping localize depth at which concepts emerge or consolidate (com-
2757 plementary to linear probing) (Zhou et al., 2024). Tracking *subspace distance* across check-
2758 points detects representational drift during fine-tuning or domain shift.

2759 3. **Sanity checks and baselines.** With growing interest in sparse autoencoders (SAEs) for
2760 monosemantic features (Huben et al., 2024), PCA serves as a transparent baseline decom-
2761 position: if SAEs meaningfully improve sparsity/faithfulness over PCA while matching
2762 reconstruction, that strengthens the interpretability claim (Templeton et al., 2023).

2763

2764 PCA is most compelling under: a) approximately linear feature superposition and b) high signal-
2765 to-noise in dominant directions. Toy and empirical studies argue that Transformers often encode
2766 many features as *directions* (superposition) (Elhage et al., 2022), and even simple linear additions to
2767 activations can steer model behavior (Turntrout, 2023). PCA then becomes an appropriate first-pass
2768 tool to:

2769

- 2770 • extract high-variance axes that frequently correlate with coherent features or tasks,
- 2771 • reduce dimensionality before causal tests (e.g., ablate/project-out a PC and re-evaluate be-
2772 havior),
- 2773 • build compact surrogates (e.g., PCA embeddings for downstream analyses or compression)
(Bengtsson et al., 2025; He et al., 2024).

2774 Under widely observed linear-structure assumptions in Transformer activations, PCA offers an in-
2775 terpretable, testable starting point: it surfaces dominant directions, supports hypothesis generation,
2776 and provides quantitative targets for more advanced decompositions.

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807