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Abstract. Knowledge graph embeddings that generate vector space
representations of knowledge graph triples, have gained considerable pop-
ularity in past years. Several embedding models have been proposed that
achieve state-of-the-art performance for the task of triple completion in
knowledge graphs. Relying on the presumed semantic capabilities of the
learned embeddings, they have been leveraged for various other tasks
such as entity typing, rule mining and conceptual clustering. However, a
critical analysis of the utility as well as limitations of these embeddings
for semantic representation of the underlying entities and relations has
not been performed by previous work.
In this paper, we performed a systematic evaluation of popular knowl-
edge graph embedding models to obtain a better understanding of their
semantic capabilities as compared to a non-embedding based approach.
Our analysis brings attention to the fact that semantic representation
in the knowledge graph embeddings is not universal, but restricted to a
small subset of the entities based on dataset characteristics. We provide
further insights into the reasons for this behaviour. The results of our
experiments indicate that careful analysis of benefits of the embeddings
needs to be performed when employing them for semantic tasks.

Keywords: knowledge graph embeddings · semantic representation ·
entity similarity.

1 Introduction

Knowledge graphs (KGs) serve as structured repositories of real-world facts in
the form of triples comprising of entities and relations e.g. (head entity, rela-
tion, tail entity). Popular KGs such as Yago [17], Freebase [4] and DBpedia [2]
have been applied to a number of applications including question answering, rule
mining and web search. Despite being composed of millions of facts, KGs still
suffer from the issue of incompleteness, where entities or facts about entities are
missing. A number of solutions have been suggested to cope with KG incom-
pleteness, from statistical methods [27, 22] to the more recent latent embedding
based techniques. Following the introduction of the TransE embeddings by Bor-
des et al. in 2013 [5], a flurry of different models have been proposed in the recent
years, as summarized by Wang et al. [30].
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The fundamental idea behind latent embedding models or knowledge graph
embedding models (used interchangeably throughout this paper) is the repre-
sentation of entities and relations by low-dimensional dense vectors that can
capture the interactions within the knowledge graph. Due to their success on
the link prediction task towards knowledge graph completion, these models have
garnered considerable attention. The intense popularity and frequency of novel
ideas towards better KG embedding models has also encouraged the research
community to exploit these embeddings for other tasks as well. Since the basic
premise of KG embeddings is centered around the semantic relationships be-
tween various entities, there is a widespread notion that embeddings must be
able to capture the semantics and features of KG entities and relations very well.
As such, embeddings have been used for many similarity-based tasks including
entity similarity [26] and relation similarity [16], as well as conceptual cluster-
ing [9, 10, 29]. Moreover, several previous works have attempted to leverage KG
embeddings for performing reasoning with rules [31, 12, 32].

While the results look promising, none of these previous works have per-
formed a detailed analysis of the benefits of the embeddings across different
datasets as well as across different entities within a single dataset. In some cases,
a measurement of the consistency and scalability of the proposed embedding-
based approach for different real-world datasets is largely lacking. The oversight
of the limitations of KG embeddings and emphasis on the success for the sim-
pler cases might prove misleading to research community. Our work aims to
address this issue by studying the characteristics of the latent vectors obtained
from several KG embedding models and quantitatively measuring their ability
for semantic representation. With the aid of a systematic evaluation, we report
that while embeddings can learn certain semantic features of KG entities on
which they are trained, this learning is non-uniform and the quality of semantic
representation varies largely across different entities within the dataset.

Our analysis shows that though it seems intuitive to leverage KG embeddings
for semantic interpretability (just like word embeddings successfully have been),
this is not always the case. The performance of embeddings is, in fact, limited
in reality and heavily dependent on the dataset characteristics. We show that
even straightforward tasks, such as finding semantically similar entities, do not
yield uniformly good results for all entities in the data when relying on the
vector representations of these entities. These observations raise doubts about
the applicability of KG embeddings not only for semantic reasoning, but also
for triple completion and link prediction. Other recent works have also put the
efficacy of KG embeddings techniques under scrutiny [24, 25, 1]. These papers
evaluate and criticize the KG embedding models primarily in terms of their
performance on the link prediction task. In this work, we focus instead on the
utility of the KG embeddings for providing semantic interpretations (or rather,
the lack thereof). Furthermore, we provide a detailed discussion of the insights
from our experimental analysis and identify the factors that determine a good
semantic representation of the entities and relations for any given KG as well
as the reasons for the shortcomings of current embedding models. We hope our
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efforts towards a first comprehensive analysis on semantics in KG embeddings
will encourage further investigation into this problem space and assist researchers
with a proper inspection of the popular KG embedding models for different
semantic tasks. Our datasets and code are publicly available1.

2 Related Work

KG embeddings have been used for a variety of applications over the years. We
provide an overview of the related works that follow embeddings-based approach
and discuss them in the context of semantics in the embeddings.

Entity Typing Finding missing type information for entities in KGs has been a
long standing problem. Early techniques usually relied on probabilistic methods
for predicting the class membership of entities based on their properties [22].
More recently, KG embeddings have been used together with classification al-
gorithms. As an example, Nickel et al. use RESCAL to predict new type in-
formation in a small Yago dataset and show good results on high-level classes
such as persons, locations and movies [21]. Moon et al. propose a new embed-
ding technique for performing entity typing [19]. In the example illustration for
clustering shown in this paper, it can already be observed that the embedding
technique seems to be problematic at distinguishing fine-granular classes such as
author and actor. To a certain degree, their results show that entity typing with
KG embeddings is far from being an ideal solution. More recently, an improved
embedding technique for entity typing has been proposed [33]. Similar to us,
the authors perform an evaluation of embeddings on Freebase and Yago for the
entity typing task. While the results already reveal some problems when using
entity embeddings for typing, a larger analysis is not performed. In contrast, our
work undertakes a detailed analysis of the limits of entity typing when using
KG embeddings and shows how classical techniques (e.g. SDType [22]) are often
superior.

Entity Clustering Besides link prediction, entity clustering is another popular
application of KG embeddings. In [9], Gad-elrab et al. perform a limited analysis
of several clustering algorithms on fine-grained classes. In a related work, the au-
thors leverage rules and embeddings in conjunction to derive explainable clusters
from the dataset [10]. However, the results have been shown to work well only
for relatively easy relational datasets having well-defined relations between the
entities and for small, targeted subsets of Yago. A scalability analysis of these
techniques for actual knowledge graphs where their applicability would be most
useful is missing. Another related work is presented by Jain et al. [15] where
the authors incorporate type information of entities to design better embedding
models and demonstrate their results on entity clustering. However, clustering

1https://github.com/nitishajain/KGESemanticAnalysis
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results are illustrated only for limited classes such as persons, organizations and
locations without any details on the performance across all classes in the dataset.

Another branch of research concerns with using path-based graph embed-
dings to perform node classification and clustering tasks [13]. Generally, these
techniques aim at creating node (or entity) embeddings using longer paths, in-
stead of relying only on triples like common KG embeddings. However, these
techniques are usually evaluated on datasets that do not share the characteris-
tics of knowledge graphs in terms of having fine-grained entity types. Still, as
a representative for path-based embeddings, we also evaluate RDF2Vec [23] in
this work.

Other Applications Besides knowledge graph completion, KG embeddings
have been employed in a number of other settings. Similar to previous tasks, it
is crucial that KG semantics are captured properly for embeddings to scale well
for arbitrary real-world datasets. Embedding approaches have been explored in
the context of rule mining on KGs by many previous works with seemingly good
results. Existing techniques have either attempted to mine rules directly from
the embeddings [31], or use embeddings to support rule mining for confidence
computation [12, 32] such that rules of higher quality can be mined. The latter
works have not studied or quantified the benefits of embeddings on their work
or explored which entities are positively impacted by them.

Furthermore, embeddings are often used to measure the semantic similarity
of the entities and relations to perform data integration via entity or relation
alignments [16, 7]. An overview of several entity alignment techniques which
are based on embeddings is presented in [26]. In our work, embeddings based
approaches are compared to classical non-embedding approaches showing no
real advantages. This result may already imply that entity semantics is not
represented properly in embeddings.

Criticism of KG embedding models. For several years, a large variety of
knowledge graph embeddings has been developed to perform link prediction to
cope with incomplete information in KG. A recent re-evaluation of knowledge
graph embedding methods shows several quality problems in the evaluation of
KG embedding models as well as the carefully curated benchmark datasets that
have been universally used for performance comparison [1]. Akrami et al. demon-
strate that existing datasets show several redundancies and cross-product rela-
tions. Redundancies in the datasets lead to heavy data leakage thereby making
them unrealistically simple in contrast to real-world KG. Furthermore, cross-
product relations, connecting all entities to all other entities are frequently used.
The authors point out that predictions for these relations is trivial and leads
to overestimating the performance of embedding techniques. They show that
cleaning the datasets from these defects significantly reduces the link prediction
quality of KG embeddings. In another study, the performance gains claimed by
newer and more complex models in comparison with the first KG embedding
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models has also been questioned [25]. Our work extensively analyzes the prob-
lems of current embedding models in terms of their semantic utility, casting
doubt on their overall usability in complex real-world KG settings.

3 Analysis of the Semantics of Embeddings

In this section, we explain our approach to perform a systematic evaluation of
the embeddings for checking their semantic soundness. We also elaborate on the
design of our experiments based on popular benchmark datasets.

3.1 Categorization of Entities

KG embeddings are trained to capture the structural information of the under-
lying dataset. Ideally, if latent embeddings were able to embody all the latent
features of entities, then entities with similar features would be similar in the
vector space as well. That is, entities belonging to a particular type, and there-
fore having similar features would result in similar vectors [29]. Inversely, the
embeddings that are close to each other in the vector space would correspond
to entities having similar types or features [19]. This implies that it should be
possible to identify the entities belonging to a particular type from the KG em-
beddings. Therefore, in this work we focus on verifying whether the entities can
be categorized or assigned to their respective types from their corresponding
latent vector representations.

While this is similar to the task of entity typing as discussed in Section 2,
in this work we chose to follow a comparatively straightforward approach to
analyse whether the embeddings in high dimensional space can indeed express
the similarities between entities belonging to the same class or concept. We
perform a systematic investigation with two distinct sets of classification and
clustering experiments for the entity embeddings in the vector space.

Both these methods are suitable for semantic analysis as they can identify
salient features of the embeddings, if any. These can be used to assign the correct
class label to the entities in the case of classification, and segregate the entities
into separate clusters as per their classes in the case of clustering. If latent
embeddings are able to capture the connotations of entities, then this should be
reflected in the performance of classification and clustering results obtained by
using the embedding vectors as representation. The intentional choice of these
techniques is also, in part, to their simplicity, which will enable us to lay the
focus on the quality of the embeddings instead of the quality of the evaluation
technique itself.

Classification With the aid of the supervised approach of classification, we
hope to discover the salient semantic features that the latent embeddings are as-
sumed to have learned and use these features to identify the correct class labels
for entities. Since an entity can belong to multiple classes in a KG, this entity
typing task is a multi-label classification problem where one or many class/type
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labels can be assigned to an entity. For our experiments, we employed three
different types of classification algorithms which work well for multi-label data.
The Multi Layer Perceptron (MLP) classifier is a neural-network-based classi-
fier using a simple feed-forward network. We chose the most basic architecture
with a single hidden layer with 100 units. As a second classification technique,
we chose a K-Nearest-Neighbour (KNN) classifier. Lastly, Random Forest (RF)
classification is used as a decision-tree-based algorithm.

Clustering Being an unsupervised task, clustering is used for identifying the
class membership of entities by assigning them to separate clusters, each cluster
ideally representing a class. For our experiments, since the ground truth for class
labels of entities is known, we are able to measure the quality of clustering by
comparing the actual labels with the predicted class labels. Previous works have
attempted to identify conceptual clusters in a vector space by applying simple
techniques such as K-Means to entity embeddings obtained from KG embedding
models [10]. We expand our analysis to multiple clustering techniques to weigh
the merits and flaws of the techniques and draw conclusions about the charac-
teristics of the underlying embeddings on which clustering is performed. In our
experiments, we leverage Spectral clustering, Optics clustering as well as Hier-
archical Agglomerative clustering techniques in addition to the simple K-Means
technique. While hierarchical clustering is particularly suitable for representing
the class hierarchy present in most KG ontologies, Spectral clustering has shown
promising performance for graph based data. Optics is a density-based technique
that is suited for identifying clusters in spatial data and fits well to our use case.

It is to be noted that our intention for performing clustering in this work
is not to discover new concepts but rather to re-discover the existing concepts
that the entities are already associated with. Therefore, we provide the required
parameter of the number of expected clusters and calculate cluster quality based
on ground truth class labels of the entities under consideration.

3.2 Datasets

For the experiments, we have chosen the popular benchmark datasets Yago3-10
and FB15K-237. This allows for our results to be put in the correct context with
regard to the numerous other related works that have shown good performance
on these datasets [6]. Here, we discuss the main characteristics of these datasets
and describe the selection of a suitable subset for the clustering and classification
experiments.

Yago3-10 This dataset was created from the Yago3 knowledge graph [17] by
filtering out the entities having less than 10 relations. It consists of a total
of 1,079,040 triples with 123,181 entities and 37 relations. Yago is a semantic
knowledge base associated with a hierarchical ontology that was derived from
Wordnet taxonomy [18] combined with Wikipedia categories that are often fine-
grained and noisy.
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Fig. 1: Yago3-10 class frequency analysis.

In order to explore the differences in semantic representation for entities with
varying type granularity, we proceeded to extract entities belonging to classes
at different levels of the Yago ontology that resembles a tree-like structure. We
limited our analysis to the concepts in Yago that are directly mapped to the
Wordnet taxonomy to obtain a clean sub-tree of classes that are related to
each other. Starting with the main branches of Yago class hierarchy, we chose
the classes person, organization, body of water and product, then progressively
explored their sub-trees to design experiments at different levels of the class hi-
erarchy. For this, we manually performed a systematic analysis of the sub-classes
of the above four classes and chose the most frequent classes for our experiments.
This was a non-trivial task for the Yago3-10 dataset due to the presence of a
highly skewed class frequency distribution. As reported previously [11], a large
proportion of the entities in this dataset belongs to very few classes, while a long
list of classes have very few representative entities. Almost 62% of all the entities
belong to the 1% most frequent classes in this dataset. The frequency distribu-
tion of the classes (having at least 1000 entities) is graphically represented by
Fig. 1 which shows that the class frequency distribution follows Zipf’s law.

Due to the constraint of sparse entities in many cases, for each class, a list of
sub-classes having entities above a minimum threshold were explored and used
for designing the experiments (sub-classes leading to a high skew were omitted
to ensure data balance). This was done for three levels starting with the main
Yago classes as stated above. Each experiment contains a set of classes that
belong to the same level in the ontology. This is important for a fair comparison
of the semantic representation of the classes at different granularity levels of the
class hierarchy. Table 1 lists all the experiments at different levels along with
their classes. For each experiment all the entities belonging to the set of classes
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Table 1: Yago3-10 experiments for different levels.

Experiment Classes

Level-1 person, organization, body of water, product

Level-2-organization institution, musical organization, party, enterprise, non-
governmental organization

Level-2-body of water stream, lake, ocean, bay, sea

Level-2-person artist, politician, scientist, officeholder, writer

Level-3-person-writer journalist, poet, novelist, scriptwriter, dramatist, essayist, bi-
ographer

Level-3-person-artist painter, sculptor, photographer, illustrator, printmaker

Level-3-person-player hockey player, soccer player, ballplayer, volleyball player,
golfer

Level-3-person-
scientist

social scientist, biologist, physicist, mathematician, chemist,
linguist, psychologist, geologist, computer scientist, re-
search worker

Table 2: FB15K-237 experiments for different levels.

Experiment Classes

Level-1 person, organization, body of water, product

Level-2-organization institution, musical organization, party, enterprise, non-
governmental organization

Level-2-person artist, politician, scientist, officeholder, writer

Level-3-person-writer journalist, poet, novelist, scriptwriter, dramatist, essayist, bi-
ographer

in the experiment was compiled from the Yago dataset, then the corresponding
embeddings for these entities was extracted from pre-trained KG embeddings
models to serve as data for the clustering and classification experiments.

FB15K-237 This second dataset is a subset of the Freebase knowledge graph,
frequently used by knowledge graph embedding models. FB15K-237 [27] com-
prises 272,115 triples with 14,541 entities and 237 relations. It was derived from
the FB15k [5] dataset by filtering out redundant and inverse relations. With
regard to the domains, it mainly pertains to persons, organizations and products
and we aimed to design our experiments with a similar structure. We performed
the mapping of Freebase entities to Yago through existing sameAs links and
chose classes and sub-classes by following the Wordnet taxonomy. The experi-
ments were designed in the same way as described above for the Yago dataset for
allowing direct comparisons. The Freebase dataset is significantly smaller than
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the Yago dataset, such that the number of entities reduces dramatically when
considering the classes at level-3. Therefore, we had to limit ourselves to fewer
experiments as listed in Table 2.

3.3 Knowledge Graph Embeddings

For all the experiments, we obtain the pre-trained embeddings models for the
benchmark datasets from the LibKGE library [6] since extensive hyper parameter
tuning has already been performed. We used five different embedding techniques
that are widely popular : TransE[5], RESCAL[20], Complex[28], DistMult[31]
and ConvE[8]. Since for Yago3-10 only the Complex embeddings were available,
we trained the remaining embeddings ourselves by adapting the parameters that
were used for the Freebase dataset2. Another popular branch of embedding ap-
proaches is based on paths in a knowledge graph, usually showing good results
in entity typing tasks as discussed in Section 2 [23]. RDF2Vec was trained using
paths created by a random walker algorithm which created paths of length 4.
Then the model was trained for 50 iterations using pyRDF2Vec library3.

4 Experiments

In this section we present the results of our experiments for clustering and classifi-
cation on Yago3-10 and FB15k-237 datasets. Additionally, we draw comparisons
with a traditional statistical approach.

4.1 Non-Embedding Baseline

To ensure that the results are not driven solely by the performance of clustering
and classification algorithms, we found it important to include a baseline that
is unrelated to the embeddings. For this, we leveraged the SDType approach as
introduced by Paulheim et al. in 2013 [22]. This is a heuristics based technique
that simply uses the links between the entities to infer their type. Based on
the incoming and outgoing relations associated with a particular entity, the
average probability of each type for an entity is calculated. Purely relying on the
statistical distributions of the entity links, this method is robust to noisy facts in
the dataset and agnostic to existing type information. We rely on this approach
to stipulate whether any semantic features are present in the underlying data
that can help with the deduction of type information for the entities. If the
statistical approach can already leverage the semantic features in data to identify
the types for entities, this indicates that unsatisfactory scores for classification
or clustering on embeddings must be due to the failure of embedding models to
capture these semantic features during training. We report the performance of
SDtype for our experiments along with the classification results in terms of the
best F1 measure obtained (P-R curves are available on github link).

2The training parameters and performance scores are available on github link.
3https://github.com/IBCNServices/pyRDF2Vec
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4.2 Evaluation Metrics

Similar to previous works [10], we measured the Adjusted Rand Index (ARI),
Normalized Mutual Information (NMI) and the V-measure to estimate the qual-
ity of the clusters. With the true and predicted labels as input, ARI measures the
similarity of the assignments with values between -1 and 1 (0 stands for random
assignment, 1 is the perfect score). NMI measures the agreement of the assign-
ments and V-measure is the harmonic mean of homogeneity and completeness
of the clusters. For both, the values lie between 0 and 1, with 1 being a prefect
score. For the evaluation of classification experiments, an 80-20 ratio was used
to split the dataset (consisting of entity embeddings and class labels) into train
and test set. Since the task is a multi-label classification, the weighted average of
F1 measures per class (in %) in the test set was used as an evaluation measure.

4.3 Classification Results

Fig. 2 shows the weighted F1 measures for Yago3-10 dataset across all the em-
bedding models (color coded) as well the different classifiers (pattern coded). It
can be seen from this figure that all the classifiers perform very well for level-1
experiment (refer to Table 1), where the considered classes are coarse-grained
and distinct from one another. However, the performance starts degrading once
experiments at level-2 are considered and becomes worse for level-3, where the
F1 measure drops below 20 for sub-classes of the scientist class. This is due
to the fact that classes are finer-grained for these experiments, where they all
have a common parent class and share certain common features. For instance,
different types of persons, and further, different types of artists, scientists etc.
would all share common properties of the person class (discussed in detail in
Section 5). Even though the considered classes are conceptually distinct from
one another, the classification algorithms find it hard to perform label matching
correctly based on embeddings. This behaviour is uniform across all clustering
algorithms and all embedding models, with no setting performing particularly
better or worse. Though fine-grained entity typing is indeed a hard problem, our
experiments are designed only for the top three levels of classes. It is indicated
by these results that embeddings simply do not possess the necessary semantic
features such that classification could identify correct entity types beyond the
highly coarse-grained classes.

Similar trends are also seen for the FB15k-237 dataset (Fig. 3) where classifi-
cation performs very well for the level-1 experiment, but gets worse progressively
for level-2 and level-3. A few exceptions in this trend are noticed when the dataset
is highly skewed towards entities of a particular class, such as players in case of
Yago and artists in case of Freebase. In this case, the performance is improved
to some degree as compared to other experiments at the same level. The per-
formance of Freebase is generally better than Yago due to the presence of more
relations in the dataset. Overall, the drop in classifier performance with increas-
ing levels indicates a lack of sufficient semantic representation in embeddings for
fine-grained entities for both the datasets.



Do Embeddings Actually Capture Knowledge Graph Semantics? 11

Fig. 2: F1 measure for Yago3-10 classification experiments.

Fig. 3: F1 measure for FB15K-237 classification experiments.

To compare and contrast the performance of the SDType baseline approach,
the F1 measures for SDType are also shown in Fig. 2 and Fig. 3 (coded with a
different color and symbol). Significantly, it can be seen that SDType is able to
achieve quite competitive results as compared to the embeddings, notably for the
level-3 classes. This provides strong evidence for the shortcomings of embeddings
for representing fine-grained classes for which even simple statistical approach
can already give comparable results.

4.4 Clustering Results

The results for the clustering experiments are reported in terms of the NMI
scores and shown in Fig. 4 for the Yago3-10 dataset and Fig. 5 for the FB15k-
237 dataset. Overall, clustering performs worse than classification, which raises
doubts over the expected spatial closeness of similar entities in the vector space.
Further, the clustering results also demonstrate a similar pattern to the classi-
fication results. The NMI scores are relatively better for level-1 classes but get
progressively worse for lower levels4. All embedding techniques fair similarly,
thus conveying that it is difficult to identify or re-discover even the existing en-
tity types or classes from any of the embeddings with the help of clustering,

4ARI and V-measure show similar trend, full results are available on github link.
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Fig. 4: NMI measure for YAGO3-10 clustering experiments.

Fig. 5: NMI measure for FB15K-237 clustering experiments.

except for very high-level classes. Considering the different algorithms, Optics
shows worse clustering scores in many cases. Since Optics is a density-based
clustering technique, the low quality of clusters again point towards the lack of
proper conceptual representation in the embeddings in vector space.

5 Discussion

From the experimental results on both supervised and unsupervised tasks, it is
clear that KG embeddings are unable to capture the latent features that would
be sufficient for a good semantic representation for all entities of a KG. While
entities belonging to a small set of high-level easy classes are relatively well-
represented, the same does not hold true for most of the entities corresponding
to other important classes in the dataset. We investigated further to understand
the plausible reasons for this shortcoming and discuss our findings here.

Looking beyond the flaws in the training and evaluation process of the KG
embedding models (that has been the focus of previous works as discussed in
Section 2), we studied the characteristics of the underlying KG datasets on
which the various embeddings are trained. Knowledge graphs such as Yago and
Freebase are comprised of real world entities that frequently belong to more
than one semantic type or class e.g. an artist can also be a politician in real
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Fig. 6: Representation of outgoing relations at different levels in Yago.

life. Since such entities would reflect the characteristics of multiple classes, they
are associated with a number of different relations that are neither unique nor
indicative of any single class in particular.

To explore this further, we performed an analysis of the relations associated
with the different classes that were used in our experiments for the Yago3-10
dataset. For each class, the incoming and outgoing relations associated with all
the entities of the class were separately identified. Thereafter, the classes were
compared to each other in terms of their relations within the same experiment as
well as across experiments at different levels (as listed in Table 1). Fig. 6 shows
a comparison for classes at different levels based on their outgoing relations for a
few representative experiments. Here, a slot is shaded depending on the premise
that the relation was found for a minimum number of entities of the class. The
figure demonstrates that the classes at level-1 have different sets of relations
associated with them, i.e. there are few overlapping relations. This is less so for
level-2 classes where several relations are found to be common. Finally, at level-
3 there are hardly any unique relations that could distinguish one class from
another and the relations overlap is quite substantial.

These results stem directly from the characteristics of real-world data where,
for instance, all persons have similar properties (e.g. wasBornIn, isCitizenOf )
regardless of their profession. In Yago3-10, any specific relations that could have
uniquely identified, e.g. an artist from a politician seem to be either missing
or very sparse. This directly affects the embeddings since they are trained to
learn the associations between the different entities of a KG (a heuristics based
approach like SDType can exploit sparse links much better). The presence of
overlapping relations among entities belonging to different semantic types hin-
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ders their ability to encapsulate type-specific features. In this case, an embedding
model can only hope to learn from other entities that are found in the triples
of the entities of a particular class, and find patterns and features from those
entities. However, recent work has shown that relations in knowledge graphs
can be ambiguous in the way they connect different entities [14]. This means
that various types of entities might be connected to a particular entity by the
same relation. Such generic and noisy links make it even harder for embedding
models to derive type-specific features about the entities, thus limiting their ca-
pability to learn similar entities or identify any common traits for all entities
belonging to the same class. It is worthwhile to note that some classes such as
musical instrument and tv program in Freebase have been shown to cluster well
in the vector space [19]. A closer inspection reveals that these classes have very
few and unique incoming relations such that the embeddings would be able to
learn their features well. However, classes with unique representative properties
are not very common in real-world datasets.

The key insight from our detailed analysis in this work is that while KG em-
beddings are assumed to be representing the semantics for entities and relations,
in reality their semantic soundness is severely restricted and highly dependent
on the datasets on which they are trained. Experimental results have clearly
shown that several prominent embedding models often record worse semantic
capability for a majority of the entities in real-world datasets as compared to
a simple heuristics based approach that can derive the semantics directly from
KG triples without any additional information. These findings indicate that a
thorough inspection of the advantages and weaknesses of KG embeddings is
necessary when employing them for semantic tasks. While the semantic web
community is focused on novel architectures for training the KG embeddings
models, a careful eye on the generalizability of these models in terms of their
semantic representation also deserves more attention. We hope this work will
guide further research in this direction. Recent efforts towards the explainability
in KG embedding models [3, 10] could be the first steps towards understanding
these models that could benefit all semantic tasks that leverage them.

6 Conclusion

In this paper, we performed a comprehensive analysis of the popular knowledge
graph embedding models in terms of their semantic utility. The results from
our classification and clustering experiments on top of these embeddings brings
attention to the weaknesses in semantic representation of embeddings. We have
shown that embeddings fare poorly in terms of identifying the concepts or classes
for a majority of the entities in the underlying knowledge graph and simple statis-
tical approaches can compete very well with them. We also presented a detailed
analysis of the reasons for limited semantic understanding of the embeddings
relating to sparse and noisy links in real-world datasets. We hope the results
from this work would serve as a precautionary tale and help the research com-
munity become cognizant of the realistic semantic benefits of knowledge graph
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embeddings, such that they can make prudent decisions when applying these
embeddings to new problem statements and semantic tasks. We plan to extend
this analysis to include further and more recent embedding techniques.
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