Under review as a conference paper at ICLR 2025

RDHNET: ADDRESSING ROTATIONAL AND PERMUTA-
TIONAL SYMMETRIES IN CONTINUOUS MULTI-AGENT
SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Symmetry is prevalent in multi-agent systems. The presence of symmetry, cou-
pled with the misuse of absolute coordinate systems, often leads to a large amount
of redundant representation space, significantly increasing the search space for
learning policies and reducing learning efficiency. Effectively utilizing symme-
try and extracting symmetry-invariant representations can significantly enhance
multi-agent systems’ learning efficiency and overall performance by compress-
ing the model’s hypothesis space and improving sample efficiency. The issue of
rotational symmetry in multi-agent reinforcement learning has received little at-
tention in previous research and is the primary focus of this paper. To address
this issue, we propose a rotation-invariant network architecture for continuous ac-
tion space tasks. This architecture utilizes relative coordinates between agents,
eliminating dependence on absolute coordinate systems, and employs a hypernet-
work to enhance the model’s fitting capability, enabling it to model MDPs with
more complex dynamics. It can be used for both predicting actions and evaluating
action values/utilities. In benchmark tasks, experimental results validate the im-
pact of rotational symmetry on multi-agent decision systems and demonstrate the
effectiveness of our method.

1 INTRODUCTION

In recent years, multi-agent reinforcement learning (MARL) has made significant advancements and
has been widely applied in areas such as traffic planning (Mushtaq et al.| (2023)); [Ma et al.| (2024)),
power management |[Keren et al.| (2024)), gaming (Zhai et al.| (2021); |L1 et al.| (2018)); Berner et al.
(2019)), and Robotics (Wen et al.| (2022); |Chen et al.[(2023))). However, compared to single-agent
reinforcement learning, MARL faces more challenging issues, including credit assignment(|Yarah-
madi et al.|(2023};2024)), scalability(|Ying et al.|(2024); Ma et al.| (2024))), and imperfect information
games(|Zhang et al.|(2024))). In this paper, we primarily focus on the symmetry problem in MARL.

Symmetry is widely present in the natural world, and many studies in fields such as image process-
ing, graph neural networks, and point clouds have focused on symmetry. In multi-agent reinforce-
ment learning (MARL), research on symmetry is still in its infancy. Symmetry can be broadly cat-
egorized into permutation symmetry and rotational and mirror symmetry (in this paper, we refer to
both rotational and mirror symmetry as rotational symmetry, as they can be derived from orthogonal
transformations). Some research has been conducted on permutation symmetry in MARL (Wang
et al. (2019); Hu et al.| (2021); Jianye et al.| (2022); |[Zhou et al.| (2022)), and HPN (Jianye et al.
(2022)), with the most notable work being HPN. By designing a network structure with permutation-
invariant inductive bias, permutation-invariant representations can be naturally obtained, leading to
the corresponding action outputs. However, research on rotation invariance (RI) in MARL is still in
its early stages.

Rotational symmetry is prevalent in the real world. For instance, if a person learns traffic rules at a
driving school, they can easily generalize them to real-world traffic conditions without considering
whether they are facing north or south. Similarly, a basketball team, after training, can play in
a new arena without worrying about the actual orientation of the court. They only need to know
their relative positions to teammates, opponents, and the basket. Humans naturally incorporate prior

Under review as a conference paper at ICLR 2025

knowledge of rotational symmetry into specific tasks, resulting in higher sample efficiency when
learning a new skill. However, this is not the case for machines. Without special consideration of
rotation invariance, machines cannot generalize knowledge learned from state s to a rotated state s’,
shown in Fig. [T}

They are in the

different situation !
They are in the

same situation !

Rotate

)

Figure 1: This figure illustrates the issue of redundant representations caused by rotational sym-
metry. In the figure, nodes of different colors and sizes represent various entities. At a particular
moment, state s is rotated by a random angle, resulting in state s’. If the human is the agent marked
by the red circle in the figure, they can easily perceive the equivalence between s and s’ and take
appropriate actions. However, suppose the agent marked in the figure is a robot. In that case, it may
fail to recognize the relationship between s and s’, making it difficult to generalize the knowledge
gained from one state to another, demonstrating how rotation can create redundant state representa-
tions in MARL.

Some works([van der Pol et al.| (2021); |Yu et al.| (2024} [2023))) define the symmetry method and
quantity for the agent’s coordinate system, which improves the algorithm’s performance on specific
MARL tasks. However, it still cannot handle continuous rigid transformations in Euclidean space.
Continuous rigid transformations involve rotating the agent’s coordinates around a fixed point by
arbitrary angles rather than assuming rotations are only multiples of 90 degrees or simple mirror
reflections. Continuous transformations are more representative of real-world scenarios. Theoret-
ically, if a reasonable model or algorithm could account for rotational symmetry, an agent could
generalize knowledge learned from state s to the rotated state s’, thereby significantly reducing the
state representation space.

We propose a Relative Direction Hypernetwork (RDHNet) architecture to extract relative directional
and positional information and then use a symmetry computation module to aggregate this informa-
tion. Effectively leveraging symmetry compresses redundant representation space, facilitating better
knowledge sharing among agents and enhancing learning efficiency and robustness. Additionally,
we utilize the high-order modeling capabilities of the hypernetwork module to improve the model’s
expressiveness, enabling it to handle tasks with more complex dynamics. RDHNet can be used to
construct not only an action value/utility evaluation network but also a policy network that produces
actions based on input states.

We conducted experiments on two continuous action tasks, Cooperative Prey Predator and Coop-
erative Navigation. The results demonstrate that, compared to other methods, RDHNet achieves
superior performance. Moreover, during execution, RDHNet does not require absolute coordinate
and directional information; it can make appropriate decisions based solely on relative observations
from the agent’s perspective, indicating that in situations where geographic positioning informa-
tion is unavailable, our method remains effective, whereas other methods may fail to function. We
summarize our contributions as follows:

Under review as a conference paper at ICLR 2025

* We formalized the symmetry problem in multi-agent systems, classifying it into permuta-
tion symmetry and rotational symmetry, providing a clearer problem definition for future
research on symmetry.

* We propose a network architecture that can eliminate the redundant representation space
caused by symmetry without significantly reducing the network’s expressiveness.

* We compare different methods on benchmark tasks to analyze and confirm the real impact
of symmetry on MARL problems. We also conduct separate ablation studies for rotation
invariance (RI) and permutation invariance (PI).

2 RELATED WORKS

2.1 SYMMTRY IN GNNS AND POINT CLOUDS

Recent advances in symmetry studies within Graph Neural Networks (GNNs) and point cloud pro-
cessing have significantly influenced the development of invariant models to permutations, rotations,
and translations. For instance, the introduction of Graph Convolutional Networks (GCNs) (Kipf &
Welling| (2016))) laid the foundation for permutation invariance in GNNs. In the context of point
clouds, PointNet (Q1 et al.| (2017a)) and its successor PointNet++ (Q1 et al.[(2017b)) pioneered ap-
proaches that handle unordered point sets directly, enabling permutation invariance.

Building on these foundational works, recent studies have explored rotational and translational
equivariance in graph neural networks (GNNs) and point cloud networks. Tensor Field Net-
works (Thomas et al.| (2018)) and SE(3)-Transformers (Fuchs et al.| (2020)) exemplify this trend
by incorporating roto-translation equivariant features, enabling more accurate and robust processing
of 3D point clouds and molecular structures. Additionally, work (Maron et al.[(2019)) extended the
expressive power of GNNs by proving the capability of certain architectures to universally approxi-
mate permutation-invariant functions, further advancing the theoretical understanding of symmetry
in GNNs. DimeNet (Gasteiger et al.| (2020)) captures angular dependencies between atoms in a
molecular graph, which enhances the network’s ability to model geometric structures without being
affected by the specific orientation or position of the molecule in space.

2.2 SYMMTRY IN MARL

Some works have begun to address the issue of redundant space caused by symmetry in multi-agent
reinforcement learning (MARL). Methods such as ASN (Wang et al.| (2019)), UPDeT (Hu et al.
(2021)), and HPN (Jianye et al.| (2022)) have focused on the redundancy problem due to permuta-
tion symmetry. They modify the actor network by incorporating prior knowledge to compress the
redundant representation space caused by permutation order. The primary differences among them
are: ASN (Wang et al.| (2019)) uses MLP as the basic network module, UPDeT (Hu et al.| (2021))
uses transformers, and HPN (Jianye et al.|(2022))) uses hypernetworks. Essentially, they all integrate
permutation symmetry into the network inductive bias to address the redundancy problem caused by
different permutations of semantically identical states. However, these approaches do not address
the issue of rotational symmetry.

Work(van der Pol et al|(2021)) was the first to address the rotational symmetry issue in MARL,
which involves symmetry operator pairs (L, K) to the model. Works (Yu et al.| (2023} 2024)) gen-
erate rotated samples during training and introduce a rotational symmetry loss function to exploit
symmetry. However, a major limitation of these works is that they can only handle rotational sym-
metry at multiples of 90 degrees. They neither consider nor can be applied to continuous random
rotational symmetry, which is precisely the focus of our work and is more aligned with real-world
scenarios.

3 PROBLEM FORMULATION

A Multi-Agent Reinforcement Learning (MARL) problem is often considered a Markov decision
process, which is a tuple of the form (M, S, 0, A, T, R, p,v, 7). Here, N is the set of all agents, S
is the set of states, @ = O x 02 ... x OVl s the set of joint observations where O indicates the

Under review as a conference paper at ICLR 2025

set of k-th agent” observations, A = A' x AF x ... x AN T S x AxS — [0, 1] is a transition
function that specifies the probability of reaching state s’ € S after all agents taking their joint
action a in state s, reward function R : S x A — R is to return a reward value to agents to evaluate
the quality of the agent’s action, p is the initial state distribution, -y is the discount factor. At one
timestep, each agent needs to take action to the environment based on their observation, and then the
state of the environment will change naturally. After this, agents will be rewarded » = R(s, a) and
new observations. A joint policy 7 is a function that maps joint observation o € O to joint action
a € A. 7 often can be divided into a set of all agents’ policies (7!,...7% ... 7V1), where 7" is
the policy function that maps k-th agent’ observation to its action. The core objective of MARL
is to find the optimal policy 7* = argmax, Y.~ E(o,,a,)~p, [7'7(5¢, ar)], where the subscript ¢
represents the variable value at the ¢-th timestep. However, if we directly handle a MARL problem
as formalized above without addressing symmetry, it typically results in a substantial amount of
redundant representations, leading to low sample efficiency.

Permutation Symmetry occurs when the order of agent information does not affect the overall ob-
servation information, resulting in redundant representation space due to the fixed order setting. Let
0; = e = [e1,ea,...,em|", where(e, denotes the information of the k-th entity (an entity can be
an enemy, a teammate, or other things that can influence agent making decision) observed by agent
i. Specifically, let e = [eq,ea,...,em]T = T = [v1,72,...,2,]T. When the order of the entities’
information in o; changes, i.e., e = [e1,€2,...,en]T = [11,22,...,2,]T - 9,9 € G, where G is
the set of all permutation matrices and g is a specific permutation matrix in G. It can be seen that
regardless of the value of g, the physical information contained in o; remains unaffected. In other
words, the permutation order of the entity information is actually redundant in the decision-making
process of agent . However, if we do not address this issue, the permutation-induced symmetry
will lead to a large amount of redundant representation space, i.e., © - g1, - g2, ... Will all be
recognized by the model as different observation information, thus resulting in redundant space.
A function f : X — Y, where X = [z1,22,...,2,]7 and Y = [y1,%2,...,ym|T. If f satisfies
flx1, 22, om]t *9) = f([x1, 29, ..y 2m]T) = [y1,y2, .-, ym]T, Vg € G, then we call f a
permutation-invariant function. If we can construct a model that satisfies the properties of the f
function, then permutation symmetry can be effectively addressed.

Rotational Symmetry refers to the condition where rotating a state as a whole does not affect the
relative physical information contained within that state. This implies that many rotational mappings
of the same state lead to representational space redundancy. Let us further refine the observation o;.
We distinguish the features of each entity into spatial coordinates p; and other information zj, so the

observation can be represented as o; = [[p1, z1]7, [p2, 22]7, ..., [Pm, 2m]T]. We then reconstruct
0; as [[p1,p2, -+, pm] T, [21, 22, - - 2m]"]. Consider a binary function h : (P,Z) — Y, where
P=p1,p2,-,0m)ts Z = [21,22, -, 2] T, and Y = [y1, 92, . .., Ym|T. U is the setof all mxm

rotation matrices, and v € U is a specific rotation matrix. If h(P - u, Z) = h(P,Z) = Y,Vu € U,
then h is called a rotation-invariant function. If a model satisfies the properties of the h function, we
can say that the model possesses rotational invariance.

4 ROTATIONAL-INVARIANT MULTI-AGENT REINFORCEMENT LEARNING

Rotation-invariant multi-agent reinforcement learning (MARL) does not require an absolute coordi-
nate reference system; it only considers the relative positional relationships between entities. This
approach aligns more closely with human intuition and facilitates better knowledge generalization.
This chapter provides a detailed overview of the RDHNet framework’s structure.

4.1 DIRECTIONAL INFORMATION PROCCESS

To address the issue of rotational symmetry, it is first necessary to distinguish which elements are
direction-related and which are direction-independent in a decision-making scenario involving mul-
tiple entities. Information such as the volume and mass of entities is typically direction-invariant.
In contrast, the position, motion direction, and force direction of entities are closely related to the
reference direction (changing with the reference frame).

Under review as a conference paper at ICLR 2025

a ly; Emb,;
t Pij Emb
7]
== Zij1 Emb,
B - | dijy_——>{ Embg_F—>| Hypernet©:
Relative / 0i11 ,[Emby]/’
Direction
Layer Evaluator qij
0; diji H[m]—n Hypernetck

‘
9”](H Embg I'
Zijn Embz
dijn Embg]—>|Hypernet,‘c7l

91'!'“ Embg

=

2 I O
N/

Figure 2: The overall framework of RDHNet. Initially, the information E of the k-th entity in the
agent’s observation is decomposed into coordinates p; and direction-independent information zy.
Then Relative Direction Layer (RDL) maps the positions of entities ¢ and 7, converting the Cartesian
coordinates Py, into the corresponding polar coordinates (d;;x, 6;;1). If we need RDHNet to output
the action value/utility, the agent’s action vector a; should also be transferred to /;; and the relative
angle ¢;; by the RDL. Each type of information is then encoded by its respective encoder and input
into the hypernetworks for each entity type. The symmetry module aggregates this information to
obtain direction-invariant representations. Finally, these representations are input into the actor or
critic module to output the corresponding actions a;; or action values g;.

Fig.[3]shows the observation of agent 7 at a spe- Zijn
cific moment in the Cooperative Prey Preda- N, Zij
tor task. In this observation, it can be seen that ‘@')
regardless of the choice of reference direction, > -
. . ijn diiaf 0. E;
the angles and lengths of the lines connecting ij1 ij1]

each entity to agent ¢ do not change. We need —ij1
to leverage this invariance in multi-agent sce- N :
narios to compress the representation dimen-
sions of observation information. This involves
deconstructing and reorganizing the original EQ
information structure, replacing the reference Zijk
frame based on absolute direction with a ref-

erence frame defined by the line connecting a Fjgyre 3: An observation from agent in Coopera-
specific entity and the agent itself. tive Prey Predator. This figure is an example of an
observation, where circles of different colors rep-
resent different types of entities (corresponding to
Fig.[2). Regardless of the state’s rotation, the vari-
ables shown in the figure remain unchanged in the
polar coordinate system where the zero axis is de-
fined by the agent and entity j. Specifically, this
means that the length of the line segments con-
necting each entity to the agent and their angles
with respect to the zero axis are invariant.

dijk

Oijk

As an example, consider the observation shown
in Fig. 3] First, a reference entity j is selected.
Then, with agent 7 as the origin and the line be-
tween agent ¢ and entity j as the zero-degree
direction, a polar coordinate system is estab-
lished, and the polar coordinates of each entity
in this system are calculated. After the Rela-
tive Direction Layer (RDL), the information of
k-th entity Ej should be processed into a tuple
(2ijk, dijk, 0ijk) by the following equation:

" — Ui R
Zijk = 2k dijk = (Tk — Ti, Yk — Yi), Gijr = arctan 25— Y1 _ arctanu, (1)
T — X4 LL']' — X

where z;;;, represents some attributes of entity £ that are independent of directional changes, while
dijr and 65, correspond to the length and angle, respectively, in the polar coordinate system of
entity k. In this system, the zero axis is defined by the line from entity ¢ to entity j, with the

Under review as a conference paper at ICLR 2025

pole located at the position of entity . In practical processing, since arctan(z) is an odd function
with a period of m, it results in two possible values within a 27 range. This requires discarding
one of the values based on the specific context, complicating efficient algorithm execution. The
same issue arises when arcsin(z) and arccos(x) are used independently. To address this issue, we
propose replacing 65 in Equation (1) with m;;, = [sin(6;,1), cos(6;,1)] for representing the angle
information, for the detailed mathematical derivations, please refer to the Appendix [A]

If subsequent evaluation of action is needed, the actions must also be processed in the “Relative
Direction Layer”. Here, the action (usually a force vector) of agent ¢ originally based on the absolute
coordinate system is converted into a tuple (;;, ¢;;) based on the aforementioned polar coordinate
system.

At this point, the information of each entity has been separated and processed individually. After
passing through the Relative Direction Layer, the positional information of entities in the envi-
ronment is fully decoupled from the absolute coordinate system, making their location data solely
dependent on their relative positions to other entities.

4.2 INFORMATION EMBEDDING AND AGGREGATION

Once the direction-dependent and direction-independent information of each entity is separated, the
next step is to encode and aggregate this entity information. As shown in Fig.[2] when using entity j
as a reference, an information tuple (z;;x, d;jx, m;jx) for entity k can be obtained. Each element of
the tuple is encoded in different ways: the direction-independent information z;;, is encoded using
a multilayer perceptron (MLP), denoted as E'mb.; the distance information d;;;, is encoded using
radial basis functions (RBF), denoted as Emb,; and the angle information is encoded using sine and
cosine functions. For action value evaluation, the action vector a; is similarly processed, with the rel-
ative angle ¢;; encoded using sine and cosine functions and the magnitude of a; encoded using RBF.
Here, every entity’s information is encoded into e;;;, = [Emb,(2i;k), Embg(dijr), Embe(mijr)].
The encoded information e;;;, of entity k inputs into a specific hypernetwork to obtain an overall
abstract representation of the entity. To enhance the network’s expressive capability, different hy-
pernetworks are used for different entity categories. For example, if the category of k is CY, the
corresponding hypernetwork Hypernet©* is used, whose structure is generally consistent with that
in (Jianye et al.| (2022)). Finally, the abstract representations of each entity are aggregated using
a symmetric aggregation function, which ensures that the output is invariant to the permutation of
input variables (i.e., a permutation-invariant function f as defined in section. [3). This representation
can be computed as:

5”- = Z Mg’c (Embz(zijk),Embd(dl-jk),Embg(mijk)), (2)
keEN (i),k#]

where ./\/lg’c refers to the hypernet for the class of entity k, and NV (z) is an entity set that contains all
the entities in the entity ¢’s view. By this point, we have effectively utilized both permutation sym-
metry and rotational symmetry, achieving compression of redundant representations o;; for entity
1’s observation based on the position of entity j (i.e., the symmetric physical information is always
processed to yield the same representation). Here, if it is necessary to evaluate the action utility
value, a;; will be similarly calculated.

4.3 ALGORITHM INPLEMENTATION

Theoretically, RDHNet can be combined with any mainstream continuous-action MARL algorithm.
However, in practice, we chose COMIX (Rashid et al.|(2020)), which currently demonstrates state-
of-the-art performance in continuous multi-agent tasks, as the foundation for our implementation.
We adopt the COMIX scheme in FACMAC (Peng et al.| (2021)), which employs the cross-entropy
method (CEM) (De Boer et al.|(2005)) by QMIX-style (Rashid et al.|(2020)). Specifically, both ob-
servations and actions are processed to obtain their corresponding rotation-invariant representations
0;; and @;;. Action utility value is computed by ¢;; = Mg(6;;, a;;), where the ¢;; denotes that
the utility is computed with respect to reference entity j, and the Mg is the evaluation network in
Fig. @ We can select reference j based on different strategies and obtain ¢; from g¢;; (which will be
discussed in detail later). Once g; is obtained, the mixer network can compute (¢,; as following:

Under review as a conference paper at ICLR 2025

Quot = wi1(8)q1 + wa(s)q2 + + -+ + wn(s)gn + b(s), 3)

where w;(s) are weights generated by a hypernetwork (conditioned on the global state s) that en-
sures all w;(s) > 0 to maintain monotonicity. b(s) is a state-dependent bias, also generated by the
hypernetwork. In practice, the weights w;(s) and the bias b(s) are produced by a separate hypernet-
work that takes the state s as input. This structure can factorize the joint action-value function Q)
while respecting the monotonicity condition, making decentralized execution possible.

During training, the loss for the final parameter update follows the Bellman equation as described in
QMIX:
b
— 2
L) =Y (r+ymaxQuy — Quot))
i=1

where the overline denotes the target network, the target network is typically updated with a delay,
and its gradients are frozen during gradient ascent to enhance training stability (Mnih et al|(2013)).

How to Select Reference Entity? Regarding the selection of the reference entity j, we employ a
simple yet feasible approach—alternately selecting each entity within the observation range as the
reference target j. The final output (either a;; or g;;) is averaged over all reference entities to reduce
variance and enhance training stability. For example, the final action value ¢; = 711 > h_o ik, as this
approach helps to reduce variance and improve training stability.

Further details on the algorithms and training procedures are provided in Appendix

5 EXPERIMENTS

In this section, we utilize experiments to validate the effectiveness of our method. Across two types
of tasks, RDHNet demonstrates significant superiority when compared to state-of-the-art MARL
algorithms for continuous action tasks.

5.1 TASK DOMAINS AND BASELINE

We tested the algorithm on two types of tasks. The first type is Cooperative Prey Predator, in
which the prey moves at a slower speed following a fixed strategy, and the goal is to control the
predtars to get as close to the prey as possible. The second type is a cooperative navigation task,
where the objective is to control the agents to cover every target point. We adopted a simplified
strategy in both tasks to focus on the research problem studied in this paper, where agents use global
observation information in all algorithms. In both tasks, the agents’ actions are force vectors, and
there are obstacles present. The agents need to avoid obstacles as much as possible while achieving
their task goals.

Through our investigation, we found that there are relatively few multi-agent reinforcement learning
(MARL) methods specifically targeting continuous action spaces. Therefore, we selected FAC-
MAC (Peng et al.| (2021))), MADDPG (Lowe et al.| (2017)), independent DDPG (Lillicrap et al.
(2016)) (IDDPG), as well as COVDN (Peng et al.|(2021)) and COMIX (Peng et al.| (2021)), as base-
lines to evaluate the performance of our approach. COVDN and COMIX employ the cross-entropy
method (CEM) (De Boer et al.|(2005))) to successfully extend value decomposition-based methods,
such as VDN|Sunehag et al.| (2018) and QMIX (Rashid et al. (2020)), to continuous action problems.

The following methods are all off-policy methods. We maintained consistency in the most common
hyperparameters to ensure a fair comparison. Additionally, to mitigate the influence of randomness,
all experiments in this study were conducted with different random seeds.

5.2 PERFERMANCE
5.2.1 COMPARED WITH BASELINE

Fig. @] illustrates the convergence performance of each algorithm during training. From the Fig. 4
we can observe that in the Cooperative Navigation tasks, RDHNet consistently converges quickly

Under review as a conference paper at ICLR 2025

Table 1: The Mean and Standard of Returns.

Task | RDHNet (Ours) COMIX COVDN FACMAC MADDPG IDDPG
cn(3 agent) -36.50+0.80 -49.48+3.19 -39.65+1.93 -172.66£36.52 -48.11+3.79 -62.20£3.70
cn(S agent) -48.17+3.73 -76.54£7.76 -69.69+3.84 -141.53+33.84 -80.95+3.75 -92.11+8365
cn(7 agent) -61.91+4.05 -97.414£9.47 -88.91+2.36 -211.83%x115.19 -97.43+4.28 -117.51+15.39

pp(3 predator) 115.41£17.23 74.64+56.78 125.44+28.60 22.26+23.88 20.63+39.21 7.01+8.5
pp(6 predator) | 280.80+16.35 15.39£9.26 65.82+55.98 38.86+45.96 8.43+4.96 13.03+4.01

and stably to the best results. Meanwhile, COMIX, COVDN, IDDPG, and MADDPG also achieve
relatively good convergence, but FACMAC underperforms significantly, exhibiting poor conver-
gence speed, final performance, and stability. In the predator prey tasks, RDHNet also achieves the
fastest convergence and best performance across both scenarios. Furthermore, we observe that as
the number of entities in the predator prey tasks increases, the advantages of RDHNet become more
pronounced. Specifically, RDHNet demonstrates overwhelming superiority in the scenario with six
predators compared to the other algorithms. We speculate that this is because the representation
space is larger in scenarios with more entities, allowing RDHNet, which leverages rotational sym-
metry to compress the representation space, to have a more significant advantage. Tab. [I] lists the
performance of all models after trained, showing that RDHNet achieves the best performance in four
out of five tasks. The results confirm the objective presence of rotational symmetry in MARL tasks
and demonstrate the effectiveness of our proposed method in addressing this issue.

—— rdhnet —— comix —— facmac —— iddpg —— maddpg —— covdn
cn (3a) cn (5a) cn (7a)
o 50 -50
-100
-100
-150
-100
) ® -150 ® -200
= = =
5 5 S -250
% -150 % -200 *g
4 4 o -300
-250
200 -350
-300 -400
-250 350 -450
00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30
Timesteps x10° Timesteps x10° Timesteps x10°
pp (3a) pp (6a)
175 300
150 250
0 1 @ 200
£ 100 £
% % 150
o 14

30
x10°

20
Timesteps

1.0 15

30
x10°

2.0
Timesteps

0.0 0.5 1.0 15

Figure 4: Performance comparison between RDHNet and other SOTA algorithms on five represen-
tative tasks.

5.3 ABLATION STUDY

To assess the impact of different symmetries in MARL, we conducted ablation experiments focusing
on rotational and permutation symmetries. Given that rotational invariance is built upon permutation
invariance, our experimental setup compared three scenarios: baseline, baseline with IE and PE,
and baseline with only PE. The baseline used was COMIX, which is considered the best MARL
algorithm for continuous action tasks. For implementing permutation invariance (PI), we replaced
the MLP in COMIX with the HPN network. The method incorporating both permutation invariance
(PI) and rotation invariance (IE) was our proposed RDHNet network.

Under review as a conference paper at ICLR 2025

—— RI-and-PlI(rdhnet) — Pl-only —— baseline

cn (3a) cn (5a) cn (7a)

Returns

-225

0.0 0.5 1.0 1.5 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0 0.0 0.5 1.0 1.5 20 25 3.0
Timesteps x10° Timesteps x10 Timesteps x10°

pp (3a) pp (6a)
160

140
120
100

80

Returns

60
40
20

0.0 0.5 1.0 1.5 20 25 3.0 0.0 0.5 1.0 1.5 20 25 3.0
Timesteps x10° Timesteps x10°

Figure 5: Ablation studies. The baseline is COMIX, PI-only is COMIX with HPN, and PI-and-RI
is RDHNet.

The results, shown in Fig [5] reveal that introducing PE into the baseline improved performance
across various Cooperative Prey Predator task scenarios compared to the original baseline. However,
in the cooperative navigation task, performance did not significantly improve and even worsened as
the number of entities increased. We speculate that the HPN network’s use of PE reduced the policy’s
representational capacity. Nonetheless, the method incorporating both IE and PE achieved the best
performance across all task scenarios, with its advantage becoming more pronounced as the number
of entities increased. These experiments confirm that symmetry indeed exists in MARL problems
and has a tangible impact on MARL performance.

6 CONLUSION AND DISCUSSION

In this paper, we first thoroughly analyze the representation redundancy problem caused by symme-
try in multi-agent scenarios, distinguishing between permutation symmetry and rotational symmetry.
We then propose the RDHNet architecture, inspired by human observation and problem-solving ap-
proaches, to address the issue of rotational symmetry in multi-agent systems. Finally, we validate
our approach through experiments that reveal the objective hindrance posed by rotational symme-
try to multi-agent learning and demonstrate that RDHNet applies to a wide range of multi-agent
scenarios, further supporting our hypothesis: in specific scenarios and environments, Cartesian co-
ordinates are unnecessary, as human intuition perceives distance and angles rather than constructing
a Cartesian coordinate system in the mind.

We also acknowledge certain limitations of this work. For instance, the experimental scenarios
lack diversity, the algorithm’s computational complexity increases quadratically with the number
of entities in the system, and we have yet to develop more effective optimization strategies for the
actor-critic version of RDHNet. These aspects will be the focus of our future work.

REFERENCES

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Under review as a conference paper at ICLR 2025

Yuanpei Chen, Yiran Geng, Fangwei Zhong, Jiaming Ji, Jiechuang Jiang, Zongqing Lu, Hao Dong,
and Yaodong Yang. Bi-dexhands: Towards human-level bimanual dexterous manipulation. /IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134:19-67, 2005.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d roto-
translation equivariant attention networks. Advances in neural information processing systems,
33:1970-1981, 2020.

Johannes Gasteiger, Janek Grof3, and Stephan Giinnemann. Directional message passing for molec-
ular graphs. The Ninth International Conference on Learning Representations, 2020.

Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. Updet: Universal multi-agent reinforce-
ment learning via policy decoupling with transformers. arXiv preprint arXiv:2101.08001, 2021.

HAO Jianye, Xiaotian Hao, Hangyu Mao, Weixun Wang, Yaodong Yang, Dong Li, Yan Zheng, and
Zhen Wang. Boosting multiagent reinforcement learning via permutation invariant and permu-
tation equivariant networks. In The Eleventh International Conference on Learning Representa-
tions, 2022.

Sarah Keren, Chaimaa Essayeh, Stefano V Albrecht, and Thomas Mortsyn. Multi-agent reinforce-
ment learning for energy networks: Computational challenges, progress and open problems. arXiv
preprint arXiv:2404.15583, 2024.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Yiying Li, Huaimin Wang, Bo Ding, and Wei Zhou. Robocloud: augmenting robotic visions for
open environment modeling using internet knowledge. Science China Information Sciences, 61
(5):050102, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Inter-
national Conference on Learning Representations, 2016.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-
tion processing systems, 30, 2017.

Chengdong Ma, Aming Li, Yali Du, Hao Dong, and Yaodong Yang. Efficient and scalable rein-
forcement learning for large-scale network control. Nature Machine Intelligence, pp. 1-15, 2024.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Anum Mushtaq, Irfan Ul Haq, Muhammad Azeem Sarwar, Asifullah Khan, Wajeeha Khalil, and
Muhammad Abid Mughal. Multi-agent reinforcement learning for traffic flow management of
autonomous vehicles. Sensors, 23(5):2373, 2023.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Bohmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy gra-
dients. Advances in Neural Information Processing Systems, 34:12208-12221, 2021.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets

for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652—-660, 2017a.

10

Under review as a conference paper at ICLR 2025

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space. Advances in neural information processing systems,
30, 2017b.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1-51, 2020.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. International Conference
on Autonomous Agents and Multiagent Systems, 2018.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

Elise van der Pol, Herke van Hoof, Frans A Oliehoek, and Max Welling. Multi-agent mdp homo-
morphic networks. arXiv preprint arXiv:2110.04495, 2021.

Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu, Yingfeng Chen,
Changjie Fan, and Yang Gao. Action semantics network: Considering the effects of actions in
multiagent systems. arXiv preprint arXiv:1907.11461, 2019.

Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang.
Multi-agent reinforcement learning is a sequence modeling problem. Advances in Neural Infor-
mation Processing Systems, 35:16509-16521, 2022.

Hossein Yarahmadi, Mohammad Ebrahim Shiri, Hamidreza Navidi, Arash Sharifi, and Moharram
Challenger. Bankruptcy-evolutionary games based solution for the multi-agent credit assignment
problem. Swarm and Evolutionary Computation, 77:101229, 2023.

Hossein Yarahmadi, Mohammad Ebrahim Shiri, Hamidreza Navidi, Arash Sharifi, and Moharram
Challenger. Revap: A bankruptcy-based algorithm to solve the multi-agent credit assignment
problem in task start threshold-based multi-agent systems. Robotics and Autonomous Systems,
174:104631, 2024.

Donghao Ying, Yunkai Zhang, Yuhao Ding, Alec Koppel, and Javad Lavaei. Scalable primal-dual
actor-critic method for safe multi-agent rl with general utilities. Advances in Neural Information
Processing Systems, 36, 2024.

Xin Yu, Rongye Shi, Pu Feng, Yongkai Tian, Jie Luo, and Wenjun Wu. Esp: Exploiting symmetry
prior for multi-agent reinforcement learning. In ECAI 2023, pp. 2946-2953. 10S Press, 2023.

Xin Yu, Rongye Shi, Pu Feng, Yongkai Tian, Simin Li, Shuhao Liao, and Wenjun Wu. Leveraging
partial symmetry for multi-agent reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 17583-17590, 2024.

Yuanzhao Zhai, Bo Ding, Xuan Liu, Hongda Jia, Yong Zhao, and Jie Luo. Decentralized multi-
robot collision avoidance in complex scenarios with selective communication. [EEE Robotics
and Automation Letters, 6(4):8379-8386, 2021.

Ruize Zhang, Zelai Xu, Chengdong Ma, Chao Yu, Wei-Wei Tu, Shiyu Huang, Deheng Ye, Wenbo
Ding, Yaodong Yang, and Yu Wang. A survey on self-play methods in reinforcement learning.
arXiv preprint arXiv:2408.01072, 2024.

Xing Zhou, Hao Gao, Xin Xu, Xinglong Zhang, Hongda Jia, and Dongzi Wang. Pcrl: Priority
convention reinforcement learning for microscopically sequencable multi-agent problems. In
Workshop at Conference on Neural Information Processing Systems, 2022.

11

Under review as a conference paper at ICLR 2025

A MATHMATICAL PROOF

Assume that at a certain moment, the observation of agent ¢ is

0;=[E1,....E))=1[p1,21)s s Pn, z0)] = [((z1,11),21) - - o, (T, Yn)s 20)]

where zy, yi denotes the Cartesian coordinates corresponding to entity k. Next, I can derive the
formula for calculating the angle information as follows

sin(6;;) = Yi LJ

_— cos(@zj) = ———
VY 5+

sin(f;) = y7k27 cos(fir) = i

2+ yk Vai+y?
0;;) = sin(6;x,) - cos

0;;) = cos(B;1) - cos(0;;) + sin(f;1)

sin(0;x) = sm(

cos(0;;x) = cos(bix

. sin(@ij)7
Mijk = [Sln(%k) COS(k)]
Yk _ TrY;j
\/(yi +yi) (@3 +y3) \/(wi +uR) (W2 +yd)
LrLj YiYk

+
\/(ﬂci +y2) (22 +y3) \/(yi +)2 +y3)

In the above derivation, 0;; represents the angle between the line connecting entity 4 and entity j and
the x-axis of the Cartesian coordinate system. Meanwhile, 0;;;, denotes the angle formed by entities
i, j, and k , where i is the vertex of the angle. Other notations follow a similar representation

12

Under review as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS OF COMIX-BASED RDHNET AND
EXPERIMENTAL HYPERPARAMETER SETTING

The experimental results related to RDHNet in this paper are implemented based on COMIX, and
the detailed processing steps of RDHNet are outlined in Algorithm[I] At the same time, Algorithm
2 provides a detailed description of the process by which RDHNet, combined with CEM (De Boer
et al.| (2005)), outputs actions and their utility.

Algorithm 1: RDHNet based on COMIX
input : £: RDHNet
w:Mixer network
T total timestep
n: number of agents
K;: timesteps of the parameters update interval
B: replay buffer
Ky sampling threshold of the replay buffer

1 Initialize all network parameters;
2 Initialize the replay buffer B;
sfort=1,2,...,T do

4 Obtain each agent’s observation o = {0;}1_, and global state s;

5 for agenti = 1,2,...,n do

6 | foreach agent € N'(i) do compute q; and a; by Algorithmwith inputing (of,€) ;
Execute joint action a = {a;}_,, and obtain reward r;

8 Store (s,0,a,r) to B;

9 if t mod T; = 0 and |B| > K, then

10 Sample a batch of trajectories from B;

1 Compute Qior = fu([q1, 92, .-, qn)) for each data by Equation

12 Compute the batch data loss ", L(§, w) by Equation

13 Update parameters £, w by gradient descent,

oatput: RDHNet with the optimal parameters &*

Algorithm 2: CEM with RDHNet
input : &: RDHNet
0;: observation of agent ¢
K iteration number of CEM
K ;: number of samples in every CEM iteration

1 Initialize the Gaussian distribution U (u, 0?) as a standard normal distribution;

2 forc=1,....k.do

3 Sample ks actions {a¥}1=, from U(p,0?);

4 | foreach agent j € N'(i) do

5 Compute: qu = fo(0i, af, p;) for each elements in {af}f;l by Equation ;
6 Compute the optimal action a; = arg ’inax qu;

7 Compute the utility of the optimal action q;; = ml?x(qu);

8 Let pn = aj;

9 Compute the utility of agent i: q; = Wl(i)l > qi
J

10 Leta; = a.
output: g;, a;

The setting of mixer network is kept the same as that of QMIX (Rashid et al.[(2020)), and the details
of the network is shown in Tab. 2]

13

Under review as a conference paper at ICLR 2025

Table 2: The network configurations used for RDHNet.

Network Configurations Value Network Congfigurations Value

embedding mlp dim 64 rbf type gaussian
embedding mlp layer 2 rbf lower bound 0
hypernet head 4 rbf upper bound 10
hypernet output dim 9 output fc dim 64
hypernet hidden dim 64 output fc layer 2

To ensure the fairness of the comparative experiments, we made every effort to keep the common
parameters consistent. Since all the methods used in this paper are off-policy, maintaining parameter
consistency is relatively easy. The parameters listed in Tab. 3] are common to all methods, and thus
they remain the same across all experiments. This strict control of parameter consistency is crucial
to ensure the validity of our experimental results.

Table 3: Hyperparameters used for RDHNet based on COMIX.

Hyperparameter Value Hyperparameter Value
buffer size 5000 episodes act noise 0.1
batch size 32 evaluate interval 2000

learning rate 0.01 grad norm clip 0.5
exploration mode gaussian noise optimizer adam
discount factor 0.99 target update interval 200

14

Under review as a conference paper at ICLR 2025

C LATENT EMBEDDING VISUALIZATION

In this section, we use the data distribution in the latent space to demonstrate RDHNet’s capability
to compress the representation space effectively. Specifically, we first interact with the environment
using a random policy to collect a dataset D. Next, we apply rotation to the data, rotating each
sample by arbitrary angles (in practice, each data point generates ten rotated versions). After con-
structing the dataset D, each (o, a) pair in the dataset is input into different models. We then extract
the features from the layer preceding the output layer as the data representation in the latent space
described by the model.

These representations are clustered using t-SNE, with the results shown in Fig.[6] The figure shows
that the representations of the baseline (COMIX) are the most dispersed in the latent space, followed
by the baseline augmented with Permutation Invariance (PI). The most compact clustering is pro-
duced by the model that incorporates both Permutation Invariance and Rotational Invariance (RI),
which is RDHNet. In our experimental setup, the degree of clustering reflects the compactness of
the representation space. Thus, we have sufficient reason to believe that integrating both PI and RI in
our RDHNet model enables the effective compression of redundant representations, as demonstrated

in Fig|6]

t-SNE Dimensionality Reduction Visualization t-SNE Dimensionality Reduction Visualization t-SNE Dimensionality Reduction Visualization

baseline < « Pl-and-Ri(rdhnet)

t-SNE Component 2

t-SNE Component 2

t-SNE Component 2
.

. Al
a® 0
T T ™ in } i T 0 5 0 B

t-SNE Component 1 t-SNE Component 1 t-SNE Component 1

(a) Baseline Peng et al.|(2021) (b) PI only Jianye et al.[(2022) (c) Both PI and RI

Figure 6: The t-SNE visualization of features with different methods in latent space.

15

	Introduction
	Related Works
	Symmtry in GNNs and Point Clouds
	Symmtry in MARL

	Problem Formulation
	Rotational-Invariant Multi-Agent Reinforcement Learning
	Directional Information Proccess
	Information Embedding and Aggregation
	Algorithm Inplementation

	Experiments
	Task Domains and Baseline
	Perfermance
	compared with baseline

	ablation study

	Conlusion and discussion
	Mathmatical proof
	implementation details of COMIX-Based RDHNet and experimental hyperparameter setting
	latent embedding visualization

