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Abstract

In this article we investigate blow up phenomena for gradient descent optimization methods
in the training of artificial neural networks (ANNs). Our theoretical analysis is focused on
shallow ANNs with one neuron on the input layer, one neuron on the output layer, and
one hidden layer. For ANNs with ReLLU activation and at least two neurons on the hidden
layer we establish the existence of a target function such that there exists a lower bound for
the risk values of the critical points of the associated risk function which is strictly greater
than the infimum of the image of the risk function. This allows us to demonstrate that
every gradient flow trajectory with an initial risk smaller than this lower bound diverges.
Furthermore, we analyze and compare various popular types of activation functions with
regard to the divergence of gradient flow trajectories and gradient descent trajectories in
the training of ANNs and with regard to the closely related question concerning the existence
of global minimum points of the risk function.
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1 Introduction

While artificial neural networks (ANNs) are widely used and increasingly popular in a large
variety of scientific and industrial applications, training methods for ANNs are still far from
being well-understood from an analytical perspective.

In the training of ANNs one is ultimately interested in mimimizing the true risk, i.e., the
expected loss of the realization function associated to the ANN. A natural direction of research
aiming at a better theoretical understanding of such optimization problems concerns the analysis
of the associated gradient flow (GF) differential equations. Loosely speaking, each GF trajectory
represents a path of steepest descent in the risk landscape. In order to render the concept of GF's
useful for the practical training of ANNs, at least two types of approximation have to be taken
into account. First, the unknown true risk function has to be approximated by an empirical
risk function based on the training data at hand. Second, the continuous-time GF has to be
approximated by a discrete-time gradient descent (GD) optimization scheme. Discretization
parameters associated to these types of approximation are the size of the training data set and
the learning rate respectively. A possible further approximation regarding the gradient of the
empirical risk function by means of Monte Carlo estimation leads to the class of stochastic GD
optimization methods, involving the batch size as an additional approximation parameter.

In order to ensure that a GD optimization scheme produces trajectories which lie suitably
close to the corresponding GF trajectories associated to the true risk, the discretization param-
eters, say, the learning rate and the size of the training data set, have to be chosen sufficiently
small and large respectively. However, just how small or large the discretization parameters
need to be chosen is generally relative to the object to be approximated, i.e., relative to the GF.
In particular, if a GF trajectory is such that the norm of the ANN parameter vector specifying
the realization function diverges to infinity, problems concerning an adequate choice of the dis-
cretization parameters specifying the approximation of the GF may arise. As a matter of fact,
available results in the research literature pertaining to the convergence analysis of GFs and
GD type optimization algorithms are typically based, either explicitly or implicitly, on suitable
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Figure 1: Graphical illustration of the shallow ANN architecture considered in Theorems 1.1-1.4
in the special case of h = 5 neurons on the hidden layer. In this situation every ANN parameter
vector § € R3 1 = R16 gpecifies a realization function #?: R — R which depends on the choice
of the activation function A: R — R and maps the scalar input x € [«, #] to the scalar output

./lfe(w) = 03h+1 + Z?:l 02h+iA(0h+i + (921') € R.

boundedness assumptions concerning the GF and GD trajectories; see the literature overview
in Subsection 1.4 below.

It is the contribution of this article to uncover and analyze situations where the standard
boundedness assumptions on GF and GD trajectories fail to hold and blow up phenomena occur
instead. In our theoretical analysis we focus on shallow ANNs with one neuron in the input
layer, one neuron in the output layer, and one hidden layer made up of an arbitrary number
of neurons. In this introductory section we present four selected key results of this article to
elucidate the scope of the study. The first key result, see Theorem 1.1 below, concerns ANNs
with ReLLU activation function and establishes the existence of a target function such that every
GF trajectory with an initial risk below a certain threshhold diverges, assuming that the hidden
layer consists of at least two neurons. In the second key result of this article, see Theorem 1.2
below, we show for various popular types of activation functions that there exist target functions
such that GF and GD trajectories diverge whenever the associated risk values satisfy certain
asymptotic optimality conditions and the hidden layer consists of at least two neurons. From
an analytical perspective, blow up phenomena in the training of ANNs are closely connected to
the question whether there exist global minimum points of the risk function. Further key results
of this article, see Theorem 1.3 and Theorem 1.4 below, therefore concern the existence and
non-existence of global minima of the risk function depending on the choice of the activation
function and a superior role played in this regard by piecewise affine activation functions.

In the remainder of this introductory section we provide the precise statements of the selected
results mentioned above together with some additional comments in Subsections 1.1-1.3, we
give a short overview of related research literature in Subsection 1.4, and we outline the overall
structure of this article in Subsection 1.5.



1.1 Blow up phenomena

Before stating the key results we shortly comment on the mathematical setting and the employed
notation. We consider ANNs with one neuron on the input layer, one neuron on the output
layer, and one hidden layer made up of A € N neurons; compare the illustration in Figure 1. The
specification of such an ANN involves 2h real weight parameters and h+ 1 real bias parameters,
so that the overall number of ANN parameters amounts to 3h + 1. The real numbers « € R,
¢ € (@,00) define the domain of the target function v: [«,#] — R and thus the interval on
which the realization function associated to the ANN should approximate v.

Our first main result on blow up phenomena in the training of ANNs formulated in The-
orem 1.1 below focuses on ANNs with ReLU activation function R 3 z +— max{z,0} € R
and establishes the existence of a non-decreasing target function v: [@,#] — R such that for
every choice h € N\{1} of the number of hidden neurons there exists a positive threshold
value such that every GF trajectory ©: [0,00) — R3"*1 with a initial risk smaller than this
threshold value diverges to infinity in the sense that liminf; o ||©¢]| = co. Here we denote
for every non-decreasing v: [, 4] — R and every h € N by £%": R3+1 5 R the risk function
associated to the ANN measuring how well the realization function approximates the target
function. Theorem 1.1 is a slightly simplified version of a more general result in Theorem 2.48
in Subsection 2.6 below. Note that the lack of differentiability of the ReLU activation function
at zero entails a lack of differentiability of the risk function associated to the ANN, so that
we need to work with an appropriate generalized gradient of the risk function to be able to
specify the GF. While the general statement in Theorem 2.48 is based on a generalized gradient
defined in terms of continuously differentiable approximations of the ReLLU activation function,
we simplify the exposition in Theorem 1.1 below by employing the less involved concept of the
left gradient of the risk function, denoted for every non-decreasing v: [«,4] — R and every
h € N by Gvh: R3"+1 — R3"+1 In order to ensure that both concepts of generalized gradients
coincide, we additionally assume in Theorem 1.1 that « > 0. This additional assumption is not
needed in the general statement in Theorem 2.48 .

Theorem 1.1. Let ¢ € [0,00), & € (@,00) and for every non-decreasing v: [e,4] — R and
every h € N let L": R3"1 R satisfy for all § = (01,...,03n41) € R that

4
L'”’h(H) = / (v(x) — O3p11 — 2?21 Oon v [max{@hﬂ + 0;x, O}] )2 dzx (1.1)
and let GUP: R3MH1L 5 R3HL be the left gradient' of LY. Then? there exists a non-decreasing
v: [@,d] = R such that for all h € N\{1} there exists ¢ € (0,00) such that for all © €
C(]0,00), R3" 1) withVt € [0,00): ©; = @0—fg G (O4) ds and LYM(Og) < e+infyegsni LV(O)
it holds that liminf,_, ||©¢]| = oo.

Theorem 1.1 is a direct consequence of Theorem 2.48 in Subsection 2.6 below. Theorem 2.48,
in turn, follows from combining Proposition 2.45 in Subsection 2.6 below, which is a slight
modification of [20, Theorem 1.3], and Theorem 2.47 in Subsection 2.6 below, which is one
of the main results of this paper. Roughly speaking, Proposition 2.45 states that every GF
trajectory which does not diverge to infinity converges to a critical point of the risk function
and the risk values associated to the GF trajectory converge to the risk of the critical point.
Theorem 2.47, rather, asserts for the case of the indicator function 1((.+s).4: [@, %] — R being
the target function that there exists a lower bound ¢ € (0, 00) for the risk of critical points. In

For every h € N let egh), .. .,eg}?ﬂ € R3 1 gatisfy egh) = (1,0,...,0), ... ,eéﬁLI = (0,...,0,1). Observe
that for all non-decreasing v: [@,4] — R and all h € N, 8 € R¥*! it holds that G*"(8) = (lim. o (£"" (8 +
eel) — £2M(0))e7, . lime o (L7 (0 + eely), ) — LU7(0)e).

*Note that the function |-||: (UnenR™) — R satisfies for all n € N, = (z1,...,2,) € R”™ that |z|| =

(S0 faf®) 2.



this situation, Theorem 2.48 infers the divergence of every GF trajectory with an initial risk
smaller than e, which readily implies Theorem 1.1 in view of the fact that the different concepts
of generalized gradients used in these results are compatible and in view of the fact that the
infimum of the risk values associated to the considered target function f equals zero in the case
of at least two neurons in the hidden layer; compare, e.g., Proposition 3.2.

Our second main result on blow up phenomena in the training of ANNs formulated in
Theorem 1.2 below treats various types of activation functions and establishes for each type
the existence of a target function such that all GF and GD trajectories which fulfill certain
asymptotic optimality conditions w.r.t. the associated risk values diverge to infinity. Observe
that the family of functions Ay : R — R, k € Z, v € R, appearing in Theorem 1.2 is such
that depending on the choice of k € Z, v € R we have that A : R — R refers to the softsign
activation function in the case k < —5, the arctangent activation function in the case k = —5,
the inverse square root unit activation function with parameter £ € (0, 3) in the case k = —4, the
exponential linear unit activation function in the case k = —3, the hyperbolic tangent activation
function in the case k = —2, the logistic activation function in the case k = —1, the softplus
activation function in the case k = 0, the ReLLU activation function in the case k =1, v = 0,
the leaky ReLU activation function with parameter ~ in the case k = 1, v € (0,1), and the
rectified power unit activation function with exponent k in the case k > 1. Here we denote for
every Lebesgue square integrable target function v: [«,4] — R and every h e N, k € Z, v € R
the associated risk function and its left gradient by Evz R3+1 & R and g”z R3h+1 — R3AH
respectively. Similar to Theorem 1.1 above, the assertions in Theorem 1.2 are slightly simplified
versions of more general results employing a generalized gradient of the risk function defined
in terms of continuously differentiable approximations of the activation function in Section 3
below.

Theorem 1.2. Let ¢ € [0,00), £ € (@,00), £ € (0,3), for everyk € Z, vy € R let Ay : R = R,
satisfy for all x € R that

(14 |z) 71, k<=5
arctan(z) tk=-5
z(1 4 &)~/ tk=—4
o) = 21 (0,00) () + (exp(z) — 1)1 (—o00] () ck=-3
A1) =3 (exp(a) — exp(—a))(exp(e) + exp(—2)T < k = -2 2
(14 exp(—z))~! ck=-1
In(1 + exp(x)) k=0
\(max{x,O})k + min{vyz, 0} k>0,

and for every Lebesque square integrable v: [a@,6] — R and every h € N, k € Z, v € R let
EZ::: R3+1 5 R satisfy for all § = (61,...,03,41) € R3H1 that

14
Lyho) = / (0(x) = Osn1 — oy Oongi [Ar (O + 052)] ) d (1.3)

and let QZ’:: R3M+1 R+ pe the left gradient of EZ’:. Then
(i) there exists a polynomial v: [@,8] — R such that for all h € N\{1}, k € Z\N, © €
C([0, 00), R3h+1) with liminf, o £}76(0;) = inf9€R3h+1 5218(9) and Yt € [0,00): ©; =
Oy — fo Q s)ds it holds that liminf; ., ||©¢] =

(ii) there exists a polynomial v: [@,t] — R such that for all h € N\{1}, k € Z\N and all
©: No — R+ with limsup,, . £}.(On) = infgcpant1 L}5(0) it holds that lim inf,, . | On||
= OO;



(iii) for all k € Z\{1} there exists a Lipschitz continuous v: [@,&] — R such that for all
h € N\{1}, © € C([0, 00), R¥"*1) with liminfy 0 £]7(0¢) = infgepan Li(0) and Yt €
[0,00): O = Og — fot szg(@s) ds it holds that liminf;_, o ||O¢]] = oo,

(iv) for all k € Z\{1} there exists a Lipschitz continuous v: [@,8] — R such that for all
h € N\{1} and all ©: Ny — R3"*1 with lim sup,,_, ., EZ’Q(@,L) = infycpant1 52’8(9) it holds
that liminf,_,~ [|©,] = oo,

(v) there exists a non-decreasing v: [@,8] — R such that for all h € N\{1}, v € R\{1},
© € C([0,00), R3*1) with lim infy_,oe L7(04) = infyepanin L7(0) and V't € [0,00): ©; =
©p — fg Qi’g(@s) ds it holds that liminf; o [|©¢]| = oo, and

(vi) there exists a non-decreasing v: [@,8] — R such that for all h € N\{1}, v € R\{1}
and all ©: Ng — R3*1 with limsup,,_, ET:g(@n) = infycpanta Ei’g(@) it holds that
liminf, . [|©n] = co.

Item (i), item (iii), and item (v) in Theorem 1.2 are direct consequences of Corollary 3.29,
Corollary 3.30, and Corollary 3.31 in Subsection 3.8 below. Corollary 3.29, Corollary 3.30, and
Corollary 3.31, in turn, are based on non-existence results concerning global minima of the risk
function, compare Theorem 1.3 below, and an abstract divergence result for GF trajectories
in Lemma 3.28 in Subsection 3.8 below. Item (ii), item (iv), and item (vi) in Theorem 1.2
are direct consequences of Corollary 3.33, Corollary 3.35, and Corollary 3.37 in Subsection 3.9
below. Corollary 3.33, Corollary 3.35, and Corollary 3.37, in turn, are based on non-existence
results concerning global minima of the risk function, compare Theorem 1.3 below, and an
abstract divergence result for GD trajectories in Lemma 3.32 in Subsection 3.9 below. Related
results can be found in [30, Proposition 3.6].

1.2 Existence and non-existence of global minima

The analysis of blow up phenomena for GFs and GD optimization methods in the training
of ANNs is closely related to the question whether there exist global minimum points of the
risk function associated to the ANN. In fact, the divergence results in Theorem 1.2 above
heavily rely on the non-existence of global minimum points of the risk function for certain target
functions. In our third key result formulated in Theorem 1.3 below we consider the activation
functions introduced in Theorem 1.2 and establish the existence of several target functions
v: [@, 4] — R such that for every choice h € N\{1} of the number of hidden neurons and for
specific choices of k € Z, v € R the set of global minimum points ﬂzz = {0 € R¥+1: L'Z:(H) =

infycgantt ﬁzﬁ(ﬁ)} is empty. In particular, in the case of softsign, arctangent, inverse square
root unit, exponential linear unit, hyperbolic tangent, standard logistic, and softplus activation
we employ a polynomial target function, in the case of rectified power unit activation we employ
a Lipschitz continuous target function, and in the case of ReLLU and leaky ReL.U activation we
employ a non-decreasing target function.

Theorem 1.3. Let @ € R, 4 € (@,00), £ € (0,3), for every k € Z, v € R let A ,: R = R



satisfy for all x € R that

(2(1+ )7, k<5
arctan(x) k= _5
z(1+ Ex?)~ 12 k= —4
) 2L(0,00) (%) + (exp(z) = 1)L (—c0,0) () k=-3
ApH(z) (exp(z) — exp(—2))(exp(z) + exp(—z))~! k= —2 (1.4)
(1 + exp(—z))~"! k=1
In(1 + exp(z)) k=0
| (max{z,0})" + min{vz,0} k>0,

and for every measurable v: [@,d] — R and everyh € N, k € Z, v € R let EZ’:: R3M+1 5 [0, oc]
satisfy for all @ = (61, ...,03,41) € R3H1 that

14
‘CZZ:(H) = / (v(m) — Os3p41 — Z?:l Ooh+i [Akn/(ah-i-i + Hlx)] )2 dx (1.5)

@
and let .%Z:z C R3M 1 satisfy .%Z:z = {0 € R3+1; 5212(9) = inf ycpsn+1 EZ:z(ﬁ)} Then
(1) there exists a polynomial v: [, — R such that UheN\{l},keZ\N/%Zg =0,

(i) it holds for all k € Z\{1} that there exists a Lipschitz continuous v: [a,&] — R such that
Uner\ (13455 = 2,

(i1i) there exists a non-decreasing v: [@,8] — R such that UheN\{l},«/eR\{l}/%f:g =@, and

(iv) it holds for all Lipschitz continuous v: [e,8] — R and all h € N that ./%fg # 2.

Item (i) and item (ii) in Theorem 1.3 follow directly from combining Lemma 3.11 in Sub-
section 3.3, Lemma 3.21 in Subsection 3.4, Lemma 3.23 in Subsection 3.5, Lemma 3.25 in
Subsection 3.6, and Lemma 3.27 in Subsection 3.7 below. Item (iii) in Theorem 1.3 is a direct
consequence of Lemma 3.6 in Subsection 3.2 below. The strategy in the proofs of these results is
to identify the infimum of the image of the risk function and to consequently show that the set
of global minimum points is empty. Item (iv) in Theorem 1.3 has been proven in [20, Theorem
1.1]. Related results can be found in [30, Theorem 3.3].

1.3 Superiority of piecewise affine activation functions with respect to the
existence of minimum points

In practical applications of ANNs the choice of the activation functions is typically guided by
heuristic arguments and numerical experiments. Theorem 1.3 above suggest from an analytic
perspective a superiority of piecewise affine activation functions with respect to the existence
of minimum points of the risk function. Indeed, the non-existence results for global minima of
the risk function in item (i) and item (ii) in Theorem 1.3 are based on polynomial and Lip-
schitz continuous target functions and exclusively involve continuously differentiable activation
functions, whereas the existence result for global minima of the risk function in item (iv) in
Theorem 1.3 holds for all all Lipschitz continuous target functions and involves the piecewise
affine ReLLU activation function. This aspect is further highlighted in Theorem 1.4 below.



Theorem 1.4. Let h € N\{1}, ¢ € R, & € (@,0), £ € (0,3), for every k € Z let Ay, € C(R,R)
satisfy for all x € R that

z(1+ |z])~, 1k <=5
arctan(z) tk=-5
z(1+ Ex?)~ /2 ck=—-4
Ap() = 21 (0,00) () + (exp(z) — 1)1 (—o00] () . tk=-3 (1.6)

(exp(e) — exp(—2))(exp(z) +exp(—z) " < k= —2
(14 exp(—z))~! ck=-1
In(1 + exp(x)) k=0

(max{x,0})* ik >0,

let k € Z, and for every measurable v: [a,d8] — R let £U: R — [0,00] satisfy for all
0= ((91, ce 703h+1) e R¥*1 that

14
£”(0) = / (U(.%') — 63h+1 — Z?:l 02h+i [Ak(ethl + (921')] )2 dx. (17)

@

Then the following three statements are equivalent:

(i) It holds for every Lipschitz continuous v: [@, %] — R that there exists 6 € R3"! such that
EU(H) = infﬁeRBhJA Ev(ﬁ)

(i3) It holds that Ay ¢ C*(R,R).
(iii) It holds that k = 1.

Theorem 1.4 is a direct consequence of Theorem 1.3 and the elementary observation that
the ReLLU activation function is the only activation function appearing in Theorem 1.4 which is
not continuously differentiable.

1.4 Literature overview

Let us complement the presentation of the findings of our work by a short review of related
research literature. Despite the lack of a full-fledged convergence analysis for GFs and GD
optimization schemes in the training of ANNs in literature, there are several promising math-
ematical approaches. For the convergence of GFs and GD type methods in the case of convex
target functions we refer, e.g, to [18, 6, 29] and the references mentioned therein. More compli-
cations are encountered in the case of non-convex problems: in principle there could be many
local minima. For more details on abstract convergence results for GD and GF optimization
methods we refer, e.g., to [2, 16, 25, 27, 7, 11].

Another promising direction of research considers the overparametrized regime, where the
number of parameters of the model exceeds the number of training points; see, e.g., |

) ) )
, 14, 31, 26]. Under Lojasiewicz type assumptions convergence results for GD and GF type

optimization schemes can be found, e.g, in [15, 25, 12, 1, 5]. A further interesting method is
to consider only special target functions; see, e.g.,[22, 9] for a convergence analysis for GF and
GD processes in the case of constant target functions and [21] for a convergence analysis for GF

and GD processes in the training of ANNs with piecewise linear target functions.

For lower bounds and divergence results for GD and GF optimization methods we refer,
e.g., to [17, 10, 28]. Results related to the findings of the present article can be found in |
Section 3.

)



1.5 Structure of the article

The remainder of this article is structured as follows. In Section 2 we present the mathematical
framework used to prove Theorem 1.1, we establish several properties for critical points of the
risk function in order to find a strictly positive lower bound for the risk values of critical points,
and we demonstrate that the considered GF trajectories blow up. In Section 3 we introduce the
mathematical framework needed for the proof of Theorem 1.2 and Theorem 1.3, we establish
the non-existence of global minima employing various target functions, and we finally verify
the assiciated blow up phenomena, thus proving Theorem 1.3 and Theorem 1.2. In Section 4
we complement our findings be investigating the non-existence of global minima in the case
in which the risk is defined using a discrete measure, the activation function is the standard
logistic function, and there is one neuron in the hidden layer.

2 Blow up phenomena for gradient flows (GFs) in the training
of artificial neural networks (ANNs) with ReLU activation

In this section we investigate blow up phenomena for GFs in the training of shallow ANNs
with ReLLU activation function in the case where the target function is given by the indicator
function 1((u+s. 4 [@,6] — R. In particular, in Theorem 2.48 in Subsection 2.6 below we
demonstrate that every GF trajectory O: [0,00) — R3"*! with an initial risk smaller than a
certain threshold diverges to infinity in the sense that liminf; .o ||©¢]| = co. Theorem 1.1 in
the introduction is a direct consequence of Theorem 2.48.

The two main ingredients in our proof of Theorem 2.48 are Proposition 2.45 and Theo-
rem 2.47 in Subsection 2.6 below. Proposition 2.45 is a slight modification of [20, Theorem
1.3] and states that for every GF trajectory ©: [0,00) — R3"*1 with liminf; .o ||©;]] < oo
there exists 5 € (0,00) such that the GF trajectory converges with order 5 to a critical point
of the risk function and the risk values associated to the GF trajectory converge with order
1 to the risk of the critical point. Theorem 2.47 is one of the main results of this article and
establishes a positive lower bound ¢ € (0, 00) for the risk of critical points. In the proof of The-
orem 2.48 we combine Proposition 2.45, Theorem 2.47, and the well-known fact that the risk
values associated to a GF trajectory are non-increasing (see, e.g., [23, Lemma 3.1]) to conclude
that every GF trajectory with an initial risk smaller than e diverges to infinity. The positive
lower bound for the risk of critical points in Theorem 2.47 is based on an analogous result for
the specific case [, 4] = [0,1] in Lemma 2.46 in Subsection 2.6 in combination with an affine
coordinate transformation. Lemma 2.46, in turn, is proved by induction w.r.t. the number of
hidden neurons h € N and relies on a series of auxiliary results in Subsections 2.2-2.5 below.

In Subsection 2.5 we provide in Proposition 2.42 and Lemma 2.44 the base step and the in-
duction step for our proof of the positive lower bound for the risk of critical points in Lemma 2.46.
More precisely, in Lemma 2.44 we establish a positive lower bound for the risk of critical points
in the case in which all hidden neurons are active and no combination of parameters allows for
a representation of the same realization function using less neurons. Lemma 2.44 is built on a
detailed analysis of all possible parameter constellations of such critical points in Corollary 2.34,
Corollary 2.35, Proposition 2.36, Lemma 2.37, Lemma 2.38, Corollary 2.39, Lemma 2.40, and
Lemma 2.41 in Subsection 2.5. These results, in turn, employ properties of critical points of
the risk function derived in Subsection 2.4 below and several elementary and well-known esti-
mates and conclusions regarding specific integrals associated to the risk function provided in
Subsection 2.2 and Subsection 2.3 below.

In Subsection 2.1 below we specify in Setting 2.1 the mathematical framework regarding
the training of shallow ANNs with ReLLU activation used repeatedly throughout this section.
Note that here for every ANN parameter vector § € R3"*! and every index j € {1,2,...,h}
associated to a hidden neuron with weight parameter m? # 0 we have that the real number



q? € R represents a possible breakpoint of the piecewise affine realization function MR SR
associated to the ANN.

Finally, in Subsection 2.7 and Subsection 2.8 below we complement our findings in this
section by providing an explicit lower bound for the risk of critical points in the specific case of
h = 2 hidden neurons in Lemma 2.52 in Subsection 2.7 and by providing a general upper bound
for the norms of GF trajectories in Proposition 2.54 in Subsection 2.8.

2.1 Mathematical description of ANNs

Setting 2.1. For every h € N let 9}, € N satisfy 9, = 3h+1, for everyh € N, 0 = (61,...,6,,) €
R [et mg, wf, ... ,mzﬂ, 69,065..., bz, 0f. 05, ... ,Uz, ¢, qg, qf, ... ,qZH € (—o0, 00| satisfy for all

jE {1,2,...,h} that 1‘08 = _szrl = —1, qg = 1—qz+1 =0, m? :Hj, b? :6h+j7 U? :02h+j7

¢ = 6, , and

) {_bf/m;? cwf £0 (2.1)

q.:
J 00 :1‘05:07

for every h € N, 6 € R let MY C N, v € {0,1}, satisfy M = {k € {1,2,...,h}: 0 < qf < 1/2}
and MY = {k € {1,2,...,h}: 1/2 < ¢} < 1}, for every h € N, § € R, v € {0,1} let
mg71,m272 € R satisfy

(2.2)

(mﬁl,mﬁg) B (min(Mg),max(Mg)) : Mg + &
e (0,h+1) : MY = o,

let A, € C(R,R), r € NU{oo}, satisfy for all z € R that (U,en{Ar}) € CH(R,R), Ax(z) =
max{x,O}, SUPreN Supye[f\x\,\x\}|(Ar),(y)| < 00, and

15D, o0 (17 (2) — oo ()] + (A )/ (2) — L0y (2)]) =0, (23)
for every h € N, r e NU {cc}, 0 € R et M0 R 5 R satisfy for all z € R that
M0 @) = ¢+ iy ol [Ar (e + 67)] (24)
for every h € N, r € NU {oo} let LI': R® — R satisfy for all € R that

2

h _ ! h.,0 _
(o) = /0 (H9(2) = Lyjpo (@) da, (2.5)

for every h € N, 0 € R i € {1,2,...,h} let I? C R satisfy I! = {x € [0,1]: wlz + b? > 0},
for every h € N, 0 € R with mf | # 0 let o’ € R satisfy for all x € [O, qsz) ] that /Vofé’e(x) =
) 0,1

x4 ./VOIZD’G(O), for every h € N, 6 € R with m§, # 0 let B € R satisfy for all x € [qfng ,1]
) 1,2

that V250 (x) = B (x — 1) + #2P(1), and for every h € N let G" = (Gh, ... ,GL): R — R%
satisfy for all 0 € {9 € R%: ((VLM)(9))en is convergent} that G™(0) = lim,_. (VL) ().

2.2 Estimates of integrals

Proposition 2.2. Let o, € R. Then

! ) 13z 1 2 1
/ (@ + B = L(1/2,00)(7))" dw > / > "1 Lajs,oey(z) | do= 6" (2.6)
0 0

Proof of Proposition 2.2. Throughout this proof let ®: R? — R satisfy for all a,b € R that
1
B(a,b) = / (az + b — Ly 00)(z))2 o 2.7)
0

10



Observe that (2.7) ensures that for all a,b € R it holds that
1
®(a,b) = / (ax +b— l(l/g,m)(x))Q dz
0

1
= /0 [(ax + b)2 — 2(ax + b)]].(l/Q,OO) (m) + 11(1/2700) (m)] dx

L L ) (2.8)
:/ (a®z? + 2abz + b?) dx — 2/1 (az + b)dz + 3
0 =
= a—2+ab+b2 sa b+l
-3 4 2’
Therefore, we obtain for all a,b € R that
2
(Vo) (a,b) = <§+b—%,a+2b—1>. (2.9)
This implies that
{(a,b) € R?: (V®)(a,b) = 0}
={(a,b) eR?:[(a=1—-2b)A(8a+12b—-9 =10
{(ab) € B | )A( i 210)

={(a,b) e R*: [(a=1—2b) A (8(1 — 2b) + 12b — 9 = 0)]}
={(a,b) €R*: [(a=1—2b) A (b= —Y1)]} = {(3/2, ~1/1)}.
Combining this with the fact that

3 3 1 9 1 1 1
A A S T AT @11

and the fact that

hm”(a,b)”%oo <I>(a, b) = 00 (212)
establishes that for all a,b € R it holds that
1 2
3z 1 1
®(a,b) > &(3/2,—1/1) = /0 <? —1 11(1/2,00)(3:)> dox = 6 (2.13)
The proof of Proposition 2.2 is thus complete. U
Proposition 2.3. Let a,f € R, « € [0,1/2] satisfy ae + 5 =0. Then
3 3 2
4 9 1 (32x 4 1

Proof of Proposition 2.3. Throughout this proof let ®: R? x [0,1/2] — R satisfy for all a,b € R,
a € [0, 1/2] that

w

1

B(a,b,a) = / (A + b — Ly o0) (1)) (2.15)
a
and let L: R3 x [0,1/2] satisfy for all a,b, A € R, a € [0,1/2] that

L(a,b,\,a) = ®(a,b,a) — A(aa + b). (2.16)

11



Note that (2.15) ensures that

3

B(a,b,a) = / (a2 + b — Ly (1)) do
a

3
1
_ / [(az + b)2 — 2(az + b)L(1js.00)(2) + Liyjs0) (z)] dz
° , (2.17)
122 2 4 1
= (a®z” 4 2abx 4+ b*)dx — 2 (ax+b)dx+1
: :
a? /271 9 5(3 5a b 1
Slo ) rav(ig o) +p2(5-a) -5 -5+
This implies for all a,b, A € R, a € [0,1/2] that
) . C2a.2T 9 5\ 5
aL(a,b,)\,a)—a@(&,b,ﬂ)-)ﬁl—g(&— )+ <1—6—a>—1—6—)\a,
0 0 9 3 1
L ’b’ ; =—0 ,b, — A= <—— 2) 2b<—— >—— ,
55 (a,b, A\, a) 55 (a,b,a) — A al1c @ + 1Y T3 A 2.15)
) )
aL(a, b,\,a) = —aa — b, and
0 0
s _ %% C\a— —a2d®—9 _b2_\a
54 (a,b, A\, a) 9a (a,b,a) — \a a‘q aba — b” — \a
Hence, we obtain that
( a
%L(a,b,)\,a)zo (L _g?)+b(L-a?) -2 —Aa=0
spLabra)=0 _ Ja(f-0®)+2b(3-a)—5-A=0
L L(a,b,\,a) =0 —aa—b=0
%L(a, b, a) = —a%a? — 2aba — b? — la=0
2a (27 9 5 _
F(§ ) —aa(g—a)—F-a=
B a(%—aQ)—Zaa(%—a—%—)\:()
b = —aa
Aa=0
(g_g_i_ag?’_%_%_)\azo (2.19)
_ %8 4 ag? -3 _1_)=0
b = —aa
a =
_ (5 9 _ 9 3\ !
a= () (%-%+%)
5 9 _ 9 s\t 9 3 1_
- (EJ”\C‘)(@ 1g+%> (5 +a*—F)—3=2
b = —aa
Aa = 0.

This implies in the case V = L(a, b, A\,a) = a = 0 that it holds that a=b =0, A = —1/2, and
a = 5/8 which is not in the domain of L. In the following we distinguish between the case A = 0,
the case a = 0, and the case a = 1/2. We first show (2.14) in the case

A=0. (2.20)

12



Observe that (2.19) and (2.20) ensure that

o (5N (2 9 o - 9 oo BaY 1_ (9 ., 3a

S \16/)\32 16 3 16 2 2 " \16 2 (2.21)
9 9a o 9 8a® 1 '
(32 16+3> g o0 e g s B Ba =3

Therefore, we obtain that a = 3/8. Combining this with (2.19) shows that
V L(32/9, —4/3,0,3/8) = 0. (2.22)
This, Lagrange multiplier theorem, and the fact that for all a € (0,1/2) it holds that
lim(a b)| =00 P(a, b, a) = 0 (2.23)
imply for all a,b € R, a € (0,1/2) with aa + b = 0 that
B(a, b, a) > B(32o, —4/s, 3/s) — % (2.24)
This establishes (2.14) in the case A = 0. In the next step we prove (2.14) in the case
a=0. (2.25)
Note that (2.17) and (2.25) assure for all a,b € R with aa + b = 0 that

9a2 ba

1.9 /10\?> 5 /10 1 11
B(ab.0) — B(a.0.0) — coa L9 10N o (10 1 Ab 2.26
(a,b,0) = ®(a,0,0) o1 16+4_64<9> 16<9>+4 144 (2.26)

This establishes (2.14) in the case a = 0. Finally we demonstrate (2.14) in the case

1
= —. 2.27
a=; (2.27)
Observe that (2.17) and (2.27) assure for all a,b € R with aa + b = 0 that

19a> 5a? a? 5a a 1

b 1/9) = _ajy 1fg) = —— 22 % Y, %~

(b 1f2) =@ =202 = T~ 55 16 16 "1t
, ) (2.28)

a a 1 S 6 6 1 1

TT02 16 4-192 16 416
This establishes (2.14) in the case a = 1/2. The proof of Proposition 2.3 is thus complete. [

Proposition 2.4. Let o, € R, & € [1/2,1] satisfy o + 3 =1. Then

s 2 /320 11 2 1
/1 (02 + B — L300y (2))2 dz > / (7 -5 1(1/2700)(:6)) dr = o (2.29)
1 1

4

Proof of Proposition 2.4. Throughout this proof let ®: R? x [1/2,1] — R satisfy for all a,b € R,
b € [1/2,1] that

b
®(a, b, b) = / (@2 + b — (13 00) ()2 (2.30)

4

and let L: R3 x [1/2,1] satisfy for all a,b, A € R, b € [1/2,1] that

L(a,b,\,b) = ®(a,b,b) — A(ab+b —1). (2.31)
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Note that (2.30) ensures for all a,b, A € R, b € [1/2,1] that

b

®(a,b,b) = (ax +b — 1(1/2700)(56))2 dz

b

4[1
= A [(ax + b)2 — 2(ax + b)]l(l/Q,Oo) (m) + 1(1/2,00) (m)] dx

b
1
(a2? + 2abz + b?)dz — 2/ (az +b)dz +b — (2.32)
1
2

Z (b3_6_14) b<[’2 16>+b2(b_1>_a<[’2_i>
—2b<b—%>+b—%.

This implies for all a,b, A € R, b € [1/2,1] that

0 _6 3 1 2 2, 1
8—L(a,b,>\,b)_8a<1>(a,b,b)—)\b— <b 64) b<b 16)—6 +7 = b,
) )
—L(a,b —®(a,b, A=a(b?——=)+2b(b—=)—26+1—
~=L(a, b\, b) = -®(a,b,b) - (b 16)+ <b 4> b+1- A )
i .
5L(a,b, \b)=—-ab—b+1, and
a—bL(a,b,)\, b) = a%cb(a b,b) — Aa = a?b? + 2abb 4+ b? — 2ab — 2b + 1 — )\a.
Hence, we obtain that
L L(a,b,\b) = Ap-L)+b(b?- L) -2+ 5 -Ab=0
%L(a,b,A,b):O _Ja(®®—q5) +2b(b—3) —20+1-2=0
S L(a,b,\,b) =0 —ab—b+1=0
2 L(a,b,\,b) =0 a?b? +2abb+b2—2ab—2b+1—-Xa=0
- L) +b(2-L) b2 +1-Ab=0
Ja(®®— %) +2b(b—3)—20+1-A=0
b=-ab+1
\)\a:0
(220 _ & apd b2+ 2 — L p2l-Ab=0
62———2 b2+26+2 -1 _26+1-A=0
DS (A * (2.34)
b=-ab+1
Aa=0
ab3 ab
b
_ —352—1—64‘&24‘5_)\—0
b=-ab+1
xa=0
3y—1
a=(—15+Ab) (— 55+ 15— %) .
B0 ) () (g ) =
b=-ab+1
\)\azo.
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This implies that in the case VL(a, b, A\,b) = A—1/2 =0 it holds that a =0, b =1, and b = 3/8
which is not in the domain of L. In the following we distinguish between the case A = 0, the
case b = 1/2, and the case b = 1. We first demonstrate (2.29) in the case

A=0. (2.35)

Observe that (2.34) and (2.35) ensure that for all a,b € R, b € [1/2,1] such that VL(a,b,\,b) =
0 it holds that

b, 1 3 1 b B3\7' 1
S (0 P (P Y (P I = 9.
0 (2 b 16)(16)(96+16 3> 3 (2:36)
Therefore, we obtain that for all a,b € R, b € [1/2,1] such that VL(a, b, A, b) = 0 it holds that
8 2
0 = (48b — 96b — 6) — 3 (-1 +6b—320%) = 5 (46 — 1)%(8b — 5). (2.37)

Combining this with (2.34) shows that for all a,b € R, b € [1/2,1] such that VL(a,b,A\,b) =0
it holds that b = 5/8, a = 32/9, and b = —11/9. This, Lagrange multiplier theorem, and the fact
that for all b € (1/2,1) it holds that

limy|(a,b) |00 P(a, b, b) = 00 (2.38)
imply for all a,b € R, b € (1/2,1) with ab+ b =1 that
B(a, b, b) > (320, —11/o,5/s) — % (2.39)
This establishes (2.29) in the case A = 0. In the next step we prove (2.29) in the case
b=1. (2.40)

Note that (2.32) and (2.40) assure for all a,b € R with ab+ b =1 that

21a®  15a(1 — 3(1—a)* 3 1
B(a,b,1) = d(a,l—al)= — + 3 a)+ (1—a) ~ 2 1-a)+1--
64 16 4 4 2 (2.41)
1(92 20 +16)>1 o 10 2 20 (19 ;16 11 '
= —(9a” — 20a — — ] - — =_—.
64 64 9 9 144
This establishes (2.29) in the case b = 1. Finally we show (2.29) in the case
1
= —. 2.42
b=+ (242)
Observe that (2.32) and (2.42) assure for all a,b € R with ab+ b =1 that
2 3a(l-3 1—2)2
Bla,b,1/2) = Bla1 oo, 1fe) = 2 POE) LD
) 64 4 (2.43)
a

16

a 1_62 6 1 1
- > — - S =
192 16 4192 16 4 16
This establishes (2.29) in the case b = 1/2. The proof of Proposition 2.4 is thus complete. O

Proposition 2.5. Let o, 8 € R. Then

: ) : ) 1
) (@ + B = L(12,00)(¥))" dx > (3x =1 = T(p00(z)” do = 39 (2.44)
1

1

15



Proof of Proposition 2.5. Throughout this proof let ®: R? — R satisfy for all a,b € R that

3

B(a,b) — /1 Az + b — 115,00 (2))? do. (2.45)

4

Note that (2.45) ensures that

4

®(a, b) :[ (az + b — L1y 00(2))? dz

_ / "(az + b)? — 2(az + b) Ly 00) (2) + L(1/5.00(2)] d
1 (2.46)

1 % 1
:/ (a2x2+2abx+b2)dx—2/ (ax+b)dx+Z
1 1

4 2

_26a2+ab+b2 5a b 1
192 2 2 16 2 4

Hence, we obtain for all a,b € R that

(V®)(a,b) = <—+——— —+b——> . (2.47)
This implies that

{(a,b) € R%: (V®)(a,b) = 0}

= {(a,b) € R?: [(a=1—2b) A (13a + 24b — 15 = 0)]} (2.48)
={(a,b) € R%: [(a=1—2b) A (13(1 — 2b) + 24b — 15 = 0)]} '
={(a;b) eR*: [(a=1-2b) A (b=—1)]} = {(3,~1)}.
Combining this with the fact that
39 3 1 15 1 1 39 30 1 1
D3, -1) = S p - Oy D 2.4
(3, 1) 32 2 + 2 16 2 * 4 32 32 4 32 (2:49)
and the fact that
hm||(a,b)||—>oo <I>(a, b) = (250)
establishes that for all a,b € R it holds that
3
Blab) >3, -1)= | (Be—1-1 2 do = 2 2.51
(a,b) > ®(3,-1) = i(SU— — L(1/a,00) (7)) T= o (2.51)
The proof of Proposition 2.5 is thus complete. O
Lemma 2.6. Let o,8,¢ € R, & € (@,00). Then
4 4 2 2 3
4 b —
/ (ax + B)* dx > / [am — M] dz = M. (2.52)
. . 2 12
Proof of Lemma 2.6. Observe that, e.g., [23, Lemma 5.1] establishes (2.52). The proof of Lemma 2.6
is thus complete. O
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2.3 Properties of integrands
Lemma 2.7. Let ¢ € R, & € (@,), a, B € R satisfy /2 ¢ (@, &) and

4 4
/ r(ax + 8 — Las ooy (z)) dz = / (@ + B = 1(12,00) (7)) dz = 0. (2.53)

Then a =0 and 8 = 1(_o 4)(1/2)-

Proof of Lemma 2.7. Note that the assumption that 1/2 ¢ («,#) and, e.g., [23, Lemma 6.6]
demonstrate that o = 0 and 8 = 1(_ ,)(1/2). The proof of Lemma 2.7 is thus complete. [

Lemma 2.8. Let @ € [0,1/2), ¢ € (1/2,1], a, B € R satisfy

‘ ‘
/ r(ax + B — Lasooy () dz = / (@ + B = 1(12,00) (7)) dz = 0. (2.54)
Then
3(2e —1)(24 — 1 26 —1)(8a? + (26 — 3) + 6(26 — 3))
a= ( {;(&/ z(ﬁ)?. ) and 8= —( I 4(;_ ﬁ)3) ( . (2.55)
Proof of Lemma 2.8. Observe that (2.54) implies that
z
0= [ 0w+ 8= Lpom (@) do = S8 = &%) 4 68— @)~ (= 1), (2:50)
Therefore, we obtain that
B=(b—12)(l—a)! - %(ﬁ +a). (2.57)

Furthermore, note that (2.54) assures that

4
0= / lax? + Bz — L1 o) (z)] dz = %(ﬁg — )+ g(ﬁQ —a?) — %(ﬂQ — 1/g). (2.58)

@

This and (2.57) demonstrate that

0= 56"~ a¥) + 5 (82— )~ (7~
a 1 a 1
:§m3—a%+§w—v@m+aJ—Z@#—é?m+a)—§m%J@) 25
= Sl = @)A(E + et + %) = 3(6+ 2’| + 5(6 = 12)[(6+ ) = (6+1/2)]
= Ll a) (62 a 1)
Hence, we obtain that ( i )
3(2e —1)(26 — 1
a= e — ) . (2.60)
This and (2.57) establish that
b= (6= )0 —a) ' = S0+ @)= (¢ - (6 - oy - e )
(26 -1)[2(e —6)*+3(2a —1)(6 + a))
- o —ap (2.61)
(26 -1)(8e?+ @(26 —3) + 6(26 — 3))
T 4(a — 6)3 '
The proof of Lemma 2.8 is thus complete. U
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Corollary 2.9. Let @ € [0,1/2), & € (1/2,1], o, f € R satisfy ae + 5 =0 and
4

14
[ ot +8) = 1@ da = [ (@2 +8) ~ Lppoga)do=0.  (262)

R @

Then
16 B 4(24 — 3)

= d = .

si—1) ™ P=5pio)
Proof of Corollary 2.9. Observe that Lemma 2.8 and the assumption that ae + 8 = 0 prove
that

(%

(2.63)

0 3¢(2¢ —1)(26 —1) (24 —1)(8a> + @ (26 — 3) + 4(26 — 3)) (2.64)
N 2(a — 6)3 4 — 6)3 ' ‘
Therefore, we obtain that
0=6c(2e¢ —1) — (8¢* + (26 — 3) + 4(26 — 3))
=4a® - a(26+3) — 6(26 — 3) = 4a® — 2ab — 3a — 26 + 34 (2.65)
=da(a — b)) +2alb —206° —3(a — 6) = (e — 6)(4a + 26 — 3).
This, the assumption that « € [0,1/2), and the assumption that & € (1/2,1] imply that « =
—4/2 4 3/4. Combining this with Lemma 2.8 demonstrates that

o 3(—6+3)(26—1) _ —3(26 —1)? _ -3 _ 16 and
2(—3L +3)3 Z(—26+1)3 -—2Z(26-1) 9(24-1)
= (26-1)B(=F+ 3>+ (=F+3)(26 - 3) +4(26 - 3)]
A=+ (2.66)
5(—26+3)2+ 1(26 +3)(26 — 3)  4(26 — 3)[2(26 — 3) + (26 + 3)]
B 20(—24 + 1)2 B 27(—24 + 1)2
426 -3)46—6+26+3]  A(26-3)[66 3]  4(26-3)
27(26 — 1)2 27(26 — 1)2 9(26 — 1)
The proof of Corollary 2.9 is thus complete. O

Corollary 2.10. Let ¢ € [0,1/2), & € (1/2,1], o, 5 € R satisfy af + =1 and
‘

4
[ ot +8) = 1@ ds = [ (@2 +8) ~ Lppoga)do=0. (267

R @

Then 16 10¢ +3
17
- _ _ d = 2.68
= e M P gaL o (2.68)
Proof of Corollary 2.10. Note that Lemma 2.8 and the assumption that a# + 8 = 1 prove that

- 36026 —1)(2¢ —1)  (26-1)(8a” 4+ (26 —3) + 6(24 — 3))

0=- 2(a — 4)° A(a —8)° (2.69)
Hence, we obtain that
0=—4(e — 6> +64(26 —1)(2a — 1) — (26 — 1)(8a” 4+ « (26 — 3) + £(26 — 3))
= —d(e — 8>+ (26 —1)(12¢b — 66 — 8a* — 206 + 3a — 26° + 36)
= —4a® 4+ 483 + 12226 — 1206 + (26 — 1)(102 8 — 36 — 8a” + 3a — 26%)
= —4a® — 40?0 + 8at® — 66% + 6@l — 10l + 36 + 8a® — 3a + 262 (2.70)

=—4a° — 4a*6 + 8al® — dal +8a” — 46° — 3a + 36

= a(—4a® —8al +8a + 46 — 3) + b(4a” + 8alb — 8a — 46 + 3)

= (@ — 8)(46 — 8al + 8a — 4a” — 3)

=(e—0)(46(1 -2a)+2a(l —2a¢)+6c —3) = (e —4)(1 —2¢)(2e¢ + 46 — 3).
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This, the assumption that « € [0,1/2), and the assumption that # € (1/2,1] imply that & =
—¢/2 4 3/4. Combining this with Lemma 2.8 demonstrates that

32e¢ —1)(— + 3) 32 — 1) 16 q
o = = — = — an
2(32 — 3)3 2 (2e —1)3 92 — 1)
_ (et Betal-a-$+ 5+ e —})
p=- A(32 _ 333
1 1502 3( i 9 ! 1522 _ 3 9 502 3 (2.71)
_ 3(R2e+ (- -5 8Re-—D(FH-—F-5) 85 -5 —3)
2 (2¢ —1)3 27(2¢ — 1)3 92 —1)3
20e?-4e-3 (2¢—-1)(10e+3)  10e +3
92e—12  92e—-12  92a —1)
The proof of Corollary 2.10 is thus complete. O
Lemma 2.11. Let N € N, zg, 21,...,2zN,00,Q0,...,an, (1, B2, ..., 08, ¢, 6 € R, f € C([e,d],

R) satisfy for all i € {1,2,...,N}, © € [xj_1,2;] that @ = 29 < 21 < -+ < &y = &,
f(x) = axz + B;, and

/ " @) de =0 (2.72)

i—1

Then it holds for alli € {1,2,..., N} that f(zo) = (=1) f(2;).
Proof of Lemma 2.11. Observe that (2.72) implies for all i € {1,2,..., N} that

152

This proves for all i € {1,2,..., N}, © € [#z;_1, ;] that f(z) = ayz — @i/2(2; + z,—1). There-
fore, we obtain for all i« € {1,2,...,N} that f(z;—1) = —f(2;). This establishes for all
i€{1,2,...,N} that f(xg) = (=1)'f(2;). The proof of Lemma 2.11 is thus complete. O

Lemma 2.12. Let ¢ € R, 6 € (@,x), ¢ € (6,0), a1, as € R\{0}, 51,52 € R satisfy
14 < 4 <
/ (v1z+ f1)dz = / (o + B2)dz = / z(apz + pr1) dx —i—/ z(agr + f2)dx =0 (2.74)
@ 14 @ 4
and a8+ 1 = aelb + By. Then 6 — a = ¢ — &, f1 = —a(etd)/2, and By = —a2(d+0)/2.

Proof of Lemma 2.12. Note that the assumption that

14 <
/ (x4 B1)dx = / (cvox + B2)dz =0 (2.75)
a 14
implies that
By = __a1(a2+ D and fa = —‘QQ(ﬁ; 2 (2.76)

Combining this with the assumption that o1& + 81 = as? + P2 demonstrates that

a1(6—a) a(e + &) ag(b+<¢) (b —c)

2 “ 2 a2 2 2 2.77)
Hence, we obtain that
a1 (8 — )
= —-". 2.
a9 4 — o ( 78)
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This, (2.76), and the assumption that

14 <
/ z(oqz + f1)de + / z(aex + f2)dz =0 (2.79)

@ 4

ensure that

4 <
b

. 2 2

I <
b b
= oz (ﬂ:——@_'_ )dx+/ QT (m— +0> dz (2.80)
@ 2 A 2
A <
b g — b
— am(m—&) dx + a/ aw(m— +0> dx.
@ 2 ﬁ—& A 2
Therefore, we obtain that
14 c
A b — A
0:/ x(x—ﬂ> dx — @/ :U<:U— +0> dx
4 2 G—ﬁ A 2
14 <
b b — b
:/ (m—a)(x—i> dz — @/ (x—ﬁ)(x— +0> dz
4 2 O—ﬁ A 2

b—a b o G (O g (2.81)
:/0 m(m—T>dx—0_ﬁ 0 x(x— . )dm
:(ﬁ—a)3/01x<x—%> dm—(ﬁ—a)(a—ﬁ)2/01m<x—%> dz.
Hence, we obtain that
0= [(f—a)—(c—6) /Olm (w— %) dr = {6~ o)~ (e~ 8] (2.82)

Therefore, we obtain that & — @ = ¢ — #. Combining this with (2.76) establishes that # — ¢ =
¢ — 4, ) = —ai(etb)/2 and [y = —a2(6+¢)/2. The proof of Lemma 2.12 is thus complete. [

Lemma 2.13. Let f: R? — R satisfy for all a,n € R, q € [0,1/2] that satisfy

02 a(l—od a
flama) = B UG L B m2(1-q) Hag—n) ta(-ag ) (1), (259)
Then

f(aa n, q) > f(16/9’ 0, 1/4) = 1/18' (284)

Proof of Lemma 2.15. Observe that for all q € [0,1/2] it holds that

liminf f(a,n,q) = oco. (2.85)

l[(an)[[—=o0

This implies that the minimum of f occurs in the case V f(a,n,q) = 0, in the case q = 0, or in
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the case q = 1/2. Furthermore, note that (2.83) assures for all a,n € R, q € [0, /2 that

M _3_ 2q(—aq+n)(1 —q) +q+ (—aq+n)(l — g*)

3 4
2a  2aq® 3
ta(-a)(1-a’) = - Tq — 5 +2aq’ — 2nq - 2aq’ + 2nq’

+a—-aq+n+aq’ —ng’ - aq +aq’
2a 2aq’

3
— _T—Z+2aq2—2nq+nq2+q—2aq+n7

0
%f(a, n, q) =

3
0 2n
pAC A Tq +2(~aq +n)(1 —q) —1+a(l - q*
2
:%—2aq+2n—|—2aq2—2nq—l—i—a—aq2 (2.86)
4
:—%—Qaq—i—Qn—kan—l—i—a, and

1’12

—qf(a7 n,q) = 5 a’q® — 2a(—aq+n)(1 —q) — (—aq + n)2 +a— a2(1 — q2)

2
—2a(—aq+n)q = % —a’q? + 2a’q — 2an — 2a’q?® + 2anq — a%q®
—n?+ 2anq +a — a?+ ::12q2 + 22;12q2 — 2anq
9 2
= —% — aQq2 + 2a2q — 2an + 2anq +a — a’.
This implies that for all a,n € R, q € [0,1/2] such that a%f(a, n,q) = 0 it holds that

4 2
0:—%—2aq+2n+aq2—1—|—a:2n (—?q—i—l) —2aq+aq’—1+a. (2.87)

Hence, we obtain that for all a,n € R, q € [0, 1/2] such that a%f(a, n,q) = 0 it holds that

1 2 -
n= 5(2aq—aq2+1—a) (_?q+1> . (2.88)

This and (2.86) assure that for all a,n € R, q € [0, /2] such that a%f(a, n,q) = %f(a, n,q) =0
it holds that

1 2 -
0= _E(Qaq_ aq’ +1—a)? <_?q + 1> —a’q® +2a’q +a—a’

2 -1 9 -1
—a(2aq — aq’ +1— a) <_?q + 1> + aq(2aq — ag’ +1-— a) (_?q + 1)
(2.89)

1 2 -
:—6(2:;1q—aq2+1—a)2 (—?q—i—l) + (—a’q® + 2a’q +a — a?)
2q -1

+ (2aq —aq? +1—a) <—?+1> (—a+ aq).

Therefore, we obtain that for all a,n € R, q € [0,1/2] such that a%f(a, n,q) = a%f(a, n,q)=0
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it holds that

9 2
0:(2aq—aq2+1—a)<—2aq+aq2—1+a+6a<—?q+1>

2
+6(—a+aq) (——q+1>> :(2aq—aq2+1—a)<—2aq+aq2—1+a

3
8aq? 2
+ + 6a — 8aq + 4aq — 6a — 4aq” + 6aq (2.90)
2 aq’
= (2aq — aq +1—a)<—T—1+a>

S R R )

Observe that (2.88) assures that in the case @ = 1++v2/a for all a,n € R such that a%f(a, n,q) =
0 it holds that n = 0 and

0 2a  2aq® 3
%f(a,n,q):?—Tq—1+2aq2—2nq+nq2+q—2aq+n
2a  2a(l+Vva/a)? 3
:;‘_w_1+2a(1+¢5/a)2+1+¢5/a—2a(1+¢a/a) (2.91)
3/a+4 _ 3
>
12/a ~ 12

In the following we distinguish between the case q = 1 —va/a, the case q = (3 —3/a)"/?, the case
q = 0, and the case q = /2. We first prove (2.84) in the case

Ay (2.92)

Note that (2.86), (2.88), and (2.92) imply that for all a,n € R such that Vf(a,n,q) = 0 it
holds that n = 0 and

9, 2a 2aq® 3
0=af(mnﬂl)=ga—%—Z+2aq2—2nq+nq2+q—2aq+n
2a  2a(l —+Vva/a)® 3
= § - w — 2 2a(l = Va/a)? +1 = Vaja— 2a(1 — Vaja) (293)
_3/a—4
o 12y/a ]

Hence, we obtain that for all a,n € R such that Vf(a,n,q) = 0 it holds that a = 16/9. This
and the fact that n = 0 ensure that

f<16/9,0, . %) = F(19/5,0,1/4) = . (2.94)
This implies (2.84) in the case q = 1 — ? We show (2.84) in the case
a=(3—3/a)". (2.95)
Observe that (2.88) and (2.95) show that for all a,n € R such that a%f(a, n,q) = 0 it holds
that L 3va(-2a+ V3aZ — 3a + 2) (2.96)
2y/3a—3—3y/a
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This and (2.86) ensure that for all a,n € R such that V f(a,n,q) = 0 it holds that

a:% nz%, and q:%. (2.97)
Therefore, we obtain that
PO, 3o, 5) = - (2.98)
This demonstrates (2.84) in the case q = (3 — 3/a)"/?. We now prove (2.84) in the case
q=0. (2.99)

Note that (2.88) and (2.99) ensure that for all a,n € R such that 2 f(a,n,0) = 0 it holds that
1
n= 5(1 —a). (2.100)

Combining this and (2.86) shows that for all a,n € R such that a%f(a, n,0) = %f(a, n,0)=0
it holds that

0 2a 3 2 3 1 a 1
- S N P 2.101
0=gallaml =g -gin="g-gr3l-a=5-7 (2.101)
This and (2.85) imply that for all a,n € R it holds that
1
Flam,0) > f(3/2,~1/1,0) = (2.102)
This assures (2.84) in the case ¢ = 0. We demonstrate (2.84) in the case
1
= —. 2.103
q=3 (2.103)
Observe that (2.88) and (2.103) ensure that for all a,n € R such that (%f(a, n,1/2) = 0 it holds
that .
1 a 2 B Ja 3
_ 1y ? 1_) _Z41) =242 2.104
n 2(a 1t a<6+> 6T 1 (2.104)

Combining this and (2.86) shows that for all a,n € R such that (%f(a, n,1/2) = %f(a, n,1/2) =
0 it holds that

0 2 3 1
Oz—f(a,n,1/2):—a—i——+g—n+3+——a+n
_a n 1 _a 3a 3 1 7a 1 '
12 4 4 12 64 16 4 192 16
This and (2.85) imply that for all a,n € R it holds that
1
fla,n,1/2) > f(12/7,3/7,1/2) = 7R (2.106)
This ensures (2.84) in the case q = 0. The proof of Lemma 2.13 is thus complete. U
Lemma 2.14. Let f: R3 — R satisfy for all a,n € R, q € [1/2,1] that satisfy
a’q? 1 1
flan,q) = ==+ (-aq+n)’q-a(q’ - 7 | +a(-aq+n)a’ + 2 (1 - q)(n - 1)?
3 4 3
) (2.107)
+ (1 +2aq — 2n) (q— 5) .
Then
flanq) > F(16/5,1,32) = 1/1s (2.108)
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Proof of Lemma 2.14. Note that for all q € [1/2,1] it holds that

liminf f(a,n,q) = oco. (2.109)

l[(an)[[—=o0

This implies that the minimum of f occurs in the case Vf(a,n,q) = 0, in the case q = 1/2, or
in the case q = 1. Furthermore, observe that (2.107) assures for all a,n € R, q € [0, /2 that

0 2aq® 1
—f(a,n,q) = —— —2(—aq+n)q’ - (¢’ — = | + (—aq+n)q* — aq’
Oa 3 4
1 2aq® 1
+2q<q—§>=—3q +2aq’ - 2nq” — ¢* + ; — aq’ + nq’
—aq’ +2¢° —q
2aq® 9 5 1
== -nd’+d’+;-q
9 flanq) =2(—aq+n)g+ag+o(1—q)m—1)—2(q— =
ool (@mna) =2(-aq+njg+aq’+2(1-q a-;
2n 2 2n 2
— —2aq’ +2nq+aq’ + o — = — a4 T _9q 41
A on 1o Y7 (2.110)
:_aq2+ﬂ+_n+___q and

3 3 3 3’

0
8—qf(a, n,q) = a’q® — 2aq(—aq + n) + (~aq +n)* - 2aq — a’q’ + 2aq(—aq + n)

1 ) 1
—g(n—l) +2a q4-3 +1+2aq—2n
2 2

= a’q® + 2a’q® — 2aqn + a’q? + n% — 2aqn — 2aq — a’q® — 2a’q

n2 1 2n

—|—2aqn—?—§+?+2aq—a+1+2aq—2n
9 9 2n? 2 4n
=a‘q —2anq+T+2aq+§—?—a

This implies that for all a,n € R, q € [1/2, 1] such that a%f(a, n,q) = 0 it holds that

4q 2n 5 1 4q
2 =""(2q+1)— + = — . 2.111
3 3(q ) —aq 373 ( )

4n 2n 1
0:—aq2+Tq+?+§

Hence, we obtain that for all a,n € R, q € [1/2,1] such that a%f(a, n,q) = 0 it holds that

3 o 1 4q -1
= - ——4+—1](2 1)~ 2.112
n=g (a0 - 5+ ) Ca) (2112

This and (2.110) assure that for all a,n € R, q € [0, /2] such that (%f(a, n,q) = %f(a, n,q) =
0 it holds that

1 4 3 1 4q)\?
0 = a’q> — 3aq (aoﬁ — o+ —q> (2q+1) 7'+ <aq2 " —q> (2q +1)77

3 3 2 3 3
2 1 4
+2aq+§—2<aq2—§+§q>(2q+1)1—a
) - (2.113)
=a’q’+2aq—a+ 3 + <—3a2q3 +aq — daq” — 2aq” + 9~ ?q> (2q9+1)7"
3( 45, 1 16q2 2aq®> 8aq® 8q 9
3 : _ ——= ) (@2q+1)%
+2<aq 55 s T3 — 5 )a+D)
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Therefore, we obtain that for all a,n € R, q € [1/2,1] such that ainf(a, n,q) = (%f(a, nq) =0
it holds that

2 2 8
O:<a2q2+2aq—a—|—§>(2q+1)2+<_3a2q3+aq_4aq2_2aq2+§_;)
3( 44 1 169> 2aq®> 8aq® 8q
2 1 — — — i
(q+)+2<aq+9+ 9 3 773 9
2 4
= <a2q2+2aq—a+ 5)(4q2+1+4q)—6a2q4+2aq2—12aq3+?q
16q° 2.3 2 2,2 8q 3a’q*® 1 8¢’ 2
- ~3 — 4aq® -2 == TR .
3 UrdtadTdad mfaqi g s Ay gty Ad
4 8q” 2
+ 4aq® — s 4a’q* 4 8aq® — 4aq® + = +a’q® 4+ 2aq — a+ - +4a’q’®
3 ) 3 , 3 (2.114)
8 9 5 8 8
+8aq® — daq + = — -1 _5aq® —8aq’ + = — = — 3a’q’ + aq — ~*
3 2 6 3 3
2,4
a 3
= — 2q —aq2+a2q2—aq—a+§+a2q3
2 2
a a 3
=29 (—aq2+2aq+2a—3)+—q —aq—a+ -
2 2 2
L o 2
:a(aq —1)(—aq® +2aq + 2a — 3)
1 3 3
:—(aq2—1)<q—1—\/3——><q—1+\/3——>.
2 a a

In the following we distinguish between the case q = va/a, the case q = 1 — (3 —3/a)/2, the case
q = 1/2, and the case q = 1. We first prove (2.108) in the case

q= Y2 (2.115)
a
Note that (2.110), (2.112), and (2.115) imply that for all a,n € R such that V f(a,n,q) =0 it
holds that )
3/a2 1  4y&)\ [(2/a -
=—|—=—-—z+—— — 41 =1 2.116
"7 <a2 3 * 3a > < a ) ( )
and
9 2aq’ 1 2a(vaja)® 1
0=—f(a,n7q)=—q—nq2+q2+——q=(7ﬂa)+——¢5a
Oa 3 4 3 4 (2.117)
~ 3y/a—4 '
o 12y/a ]

Hence, we obtain that for all a,n € R such that V f(a,n,q) = 0 it holds that a = 16/9. This
and the fact that n = 1 ensure that

4/3 1
16/9. 1. L=~ ) = (16 3/4) = —. 2.11

(190,110 ) = £0%0.0.31) = o (2.118)

This implies (2.108) in the case q = % We show (2.108) in the case
q=1-(3—3%a)" (2.119)
Observe that (2.112) and (2.119) show that for all a,n € R such that a%f(a, n,q) = 0 it holds

that

6a® — 3av/3a> — 3a — 3a — 2v/3a2 — 3a

n= (2.120)
3a —2v3a? — 3a
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This and (2.110) ensure that for all a,n € R such that V f(a,n,q) = 0 it holds that

9 3V3 1
a=_, _1—£, and q=1— —. (2.121)
8 8 V3
Therefore, we obtain that
F(Os,1 — 33/, 1 — 1//3) = 654 (2.122)

This demonstrates (2.108) in the case q = (3 — 3/a)"/2. We now prove (2.108) in the case
q=1/ (2.123)

Note that (2.112) and (2.123) ensure that for all a,n € R such that a%f(a, n,0) = 0 it holds
that

3fa 1 2 1 3da 1
=S -y g+ t=242 2.124
n 2<4 3+3>(+) 6T 1 ( )

Combining this and (2.110) shows that for all a,n € R such that (r)—nf(a7 n,1/2) = %f(a, n,1/2) =
0 it holds that
0 2a n 1 1 1 a 3a 1 Ta 1
= Sy 2 2 -2 2.12
0= gaf@m i) ==+ 1+ 1 0" "5 16 192 16 (2.125)

This and (2.109) imply that for all a,n € R it holds that

Flam ) > £y 4y = L (2.126)
This assures (2.108) in the case q = /2. We demonstrate (2.108) in the case
q=1 (2.127)

Observe that (2.112) and (2.127) ensure that for all a,n € R such that a%f(a, n,1) =0 it holds

that
3 1

1 4 -1 a
-2 — 3+ 2)(2+1 = — 4+ - 2.12
n 2<a 3+3>(+) 515 (2.128)

Combining this and (2.110) shows that for all a,n € R such that a%f(a, n,1) = %f(a, n,1)=0
it holds that

0 2a 1 a 1 a 1
0=2 ) =22 p4l4-o—1=2_2_-,-_3a__ 2.129
gal @M1 = mnt 1y 3 2 27176 1 (2.129)
This and (2.109) imply that for all a,n € R it holds that
flan,1) > f(32,5/3,1) = 7. (2.130)
This ensures (2.108) in the case g = 0. The proof of Lemma 2.14 is thus complete. O

Lemma 2.15. Let H € N, ¢ € (0,00) and let (qon)nen € [0,1/2], (din)nen € [V/2,1],
(mO,n)neNa (ml,n)neN c [LH]; (an)neN, (bn)nGN CR Satisfy fOT alln € N that

max{|a,|, |b,|} > ¢ (2.131)

and

0 = limy, 00 <q1,n - _> mO,nan + (H —mj, + 1)bn)2

= lim;, 00 ( ) (mg pa, + (H —my, + 1)bn)2 (2.132)

- hmn—)oo bn 2 1 —q1 n)

:hmn—>oo( n)Z(qu) .
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Then there exists a strictly increasing n: N — N such that

limkﬁoo ql,n(k) =1 and llmkﬁoo qO,n(k) = 0. (2133)

Proof of Lemma 2.15. Note that (2.131) demonstrates that there exists C' € [¢, 00| which sat-
isfies C' = max{limsup,,_, ., |a,|,limsup,,_, [bn|}. In the following we distinguish between the
case limsup,,_, |a,| = C and the case limsup,,_, . |b,| = C. We first prove (2.133) in the case

lim sup,,_, . |an| = C. (2.134)

Observe that (2.134) shows that there exists a strictly increasing n: N — N such that limy, o |a,)| =
C'. Combining this with (2.132) implies that

0= limkﬁm(an(k))2(qo7n(k))3 = llmkﬁoo 02(q0,n(k))3- (2135)

Hence, we obtain that limy oo qopn(k) = 0. This and (2.132) assure that

0 = 1m0 (M0 n(kyBn(k) + (H = My nr) + 1)bpry)?

. (2.136)
= limy 00 M p(k)@n k) + (H — my ) + )by
Therefore, we obtain that
1 o0 [Bry (k)| = iMoo M0 k) (H = 10y pry + 1) | (2.137)
> limy o0 [(H + 1) tay| = (H+1)7'C. '
Combining this with (2.132) demonstrates that
0 = Timg 00 (b)) * (1 = Arn(e))” = limg oo (1 = A1 (i)™ (2.138)

This and (2.135) show that limy e q1 nk) = 1 and limy_;o0 qo n@x) = 0. This implies (2.133) in
the case limsup,,_,. |a,| = C. In the next step we prove (2.133) in the case

lim sup,, , [bn| = C. (2.139)

Note that (2.139) shows that there exists a strictly increasing n: N — N such that limy,_,cc [by, )| =
C'. Combining this with (2.132) implies that

0= hmk—)oo(bn(k))2(1 - ql,n(k))3 = limg00 C2(1 - ql,n(k))g' (2140)

Hence, we obtain that limy_,oc gy 5(k) = 1. This and (2.132) assure that

0 = limy—s 00 (M (k) p (k) + (H — My ) + Dby pe))?

. (2.141)
= limy 00 M p(k)@5 k) + (H — my ) + )by
Therefore, we obtain that
Wm0 (85| = limpso0 | (M 4y 06) ™ (H — My ) + 1)byyr) | (2.142)
> limygyo0 |[(H 4+ 1) by | = (H+1)7'C. '
Combining this with (2.132) demonstrates that
0 = im0 (Qn (k) (Aon(i))” = lmi—s00(Go,n(k))*- (2.143)

This and (2.140) show that limg o0 Q1 p(k) = 1 and limy o0 qg n(x) = 0. This implies (2.133) in
the case limsup,,_, . [by| = C. The proof of Lemma 2.15 is thus complete. O
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2.4 Properties of critical points of the risk function

Proposition 2.16. Assume Setting 2.1 and let h € N. Then it holds for all § € R, i €
{1,2,...,h} that

61(6) = 20! [ o5 (@) = Loy (2)

7

G10) = 2o [ (FE0(@) = Loy (a)

L (2.144)
h 0 0 h,0
g2h+i(9) =2 0 [Aoo(mz‘l“ + bz)] (N () — ]l(l/g,oo)(l“)) dz,
h ! h,0
and Gy, 0) = 2/0 (M2 (x) — L(1/2,00) (x))dz.
Proof of Proposition 2.16. Observe that (2.3)—(2.5) imply (2.144) (cf., e.g., [22, Proposition 2.3]).
The proof of Proposition 2.16 is thus complete. U

Corollary 2.17. Assume Setting 2.1, let h € N, § € (G")~1({0}) satisfy for all x € [0, qfn@ ]
0,1

that V2% (z) = 0, M¢ # @, and szl v{ # 0. Then it holds for all z € |0, qfn@ | that V2 () =
0,2
0.

Proof of Corollary 2.17. Assume without loss of generality that q? <...< qz. Note that the
assumption that 6 € (G")~1({0}), the assumption that szl v{ # 0, and Proposition 2.16 imply
that for all j € M§ it holds that

0

qfne 45
[ @) <A@ de = [ @) <A@ de =0 (2145
0 451
Combining this with Lemma 2.11 demonstrates that for all j € M it holds that 0 = ./VOZ’O(O) =
Afofé’e(qg). This and piecewise linearity of N0 assure that for all z € [0, qfne | it holds that
0,2

N0 (z) = 0. The proof of Corollary 2.17 is thus complete. O

Corollary 2.18. Assume Setting 2.1, let h € N, 6 € (GM)~1({0}) satisfy for all x € [qfng ,1]
1,2

that ./Volé’g(x) =1, M{ # 2, and szl v{ # 0. Then it holds for all x € [qibe ,1] that /Voié’e(x) =
1,1
1.

Proof of Corollary 2.18. Assume without loss of generality that q? <...< qz. Observe that
the assumption that 6 € (G")~1({0}), the assumption that szl v{ # 0, and Proposition 2.16
imply that for all j € MY it holds that

1 1o qfﬂ ho
[, @@ = @) de = [ @) - L@ de =0 (2140
qmg a5
1,2

Combining this with Lemma 2.11 demonstrates that for all j € M{ it holds that 1 = ./VO]Z,’O(l)
Afo]é’g(qg). This and the fact that 5% is piecewise affine linear assure that for all z € [qsz) ,1]
1,1

O

it holds that Afofé’e(x) = 1. The proof of Corollary 2.18 is thus complete.

Lemma 2.19. Assume Setting 2.1, let h € N, 0 € (G")~1({0}) satisfy for all j € {0,1,...,h}
that q? < q?_H and szl v # 0, and let i € {0,1,... h} satisfy 0 < mfmf+1 and q?H < 1/2.
Then it holds for all x € |0, qfn@ | that /250 (z) = 0.

0,2
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Proof of Lemma 2.19. Note that the assumption that 6 € (G")~1({0}), the fact that szl v
#0 < mfmf+1, and Proposition 2.16 imply that

6
i

a? a?
/ " z(N0 (z) — Liijs,o0)(2)) dz = /9 +1(./VO]Z;’6(1') — L(s,00) () dz = 0. (2.147)
q ¢

This, Lemma 2.7, and the assumption that qf_H < 1/2 assure that for all = € [q?, qf_H] it holds
that
N0y = 0. (2.148)

Furthermore, observe that the assumption that # € (G")~'({0}), the assumption that szl o) #
0, and Proposition 2.16 imply that for all j € Mg it holds that

6

/q :j (W (@) = 11500 (@) d = 0. (2.149)

-1
Combining this with (2.148) and Lemma 2.11 demonstrates that for all j € M¢ it holds that

N0 (0) = /Vo]é’g(qg) = 0. This and the fact that 427 is piecewise affine linear ensure that for
all z € [0, qfne ] it holds that #2%?(z) = 0. The proof of Lemma 2.19 is thus complete. O
0,2

Lemma 2.20. Assume Setting 2.1, let h € N, 0 € (G")~1({0}) satisfy for all j € {0,1,...,h}
that q;’- < q?H and szl o) # 0, and let i € {0,1,...,h} satisfy 0 < wiw? | and /2 < q.
Then it holds for all z € [q° , ,1] that #/2%(z) = 1.

mia

Proof of Lemma 2.20. Note that the assumption that § € (G")~1({0}), the fact that szl vf
#0 < m?me, and Proposition 2.16 imply that

q?—u q?_H
[, ah@) ~ L @) do = [ A8 @) < L@ dr 0. (2150)
q; qY

This, Lemma 2.7, and the assumption that 1/2 < q/ assure that for all z € [/, q7,,] it holds
that
N0 () = 1. (2.151)

Furthermore, observe that the assumption that # € (G")~!({0}), the assumption that szl v) #
0, and Proposition 2.16 imply that for all j € Mle it holds that

1 h.0
/ (W7 () = Liyya,00) () dz = 0. (2.152)
q

0
J

Combining this with (2.151) and Lemma 2.11 demonstrates that for all j € M{ it holds that
N (1) = ‘/Vo]é’g(qﬁ) — 1. This and the fact that #2? is piecewise affine lincar ensure that for

all z € [qfn? K 1] it holds that J25%(x) = 1. The proof of Lemma 2.20 is thus complete. O

Lemma 2.21. Assume Setting 2.1 and let h € N, § € R satisfy Mg # @ # MY, szl Ui #0,
for all x € [0, qZﬁ | that #2%(x) =0, and for all z € [qfn(9 1] that /25 (2) = 1. Then
0,2 1,1

Gh(9) # 0. (2.153)
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Proof of Lemma 2.21. Note that continuity of e implies for all z € [q° , ,q%, Jthatq’, <
) Moo ™M1 mg 2
d
qm%1 an 9
q,.0
T m
- _029 : (2.154)
m§,1 mg,2

W2 () =

0 0 o
qm§,1 qmg,2 9

This shows that there exists ¢ € {1,2,...,h} which satisfies that
0 0 6 (0 6
Ii : (qmg,2’ qm%l) - (qmg,2’ qm%l). (2'155)

We prove (2.153) by contradiction. Assume that

G"(#) =o. (2.156)
Observe that (2.155), (2.156), and Proposition 2.16 imply that
“ “
/ b 29 () — Ly () dr = / b (W) — Loy (2))de = 0. (2.157)
q° 0 q° 0
0,2 m0,2

Combining this and the fact that /Vo]é’g(qfng ) = 0 with Corollary 2.9 demonstrates that for all

0,2

VS [qfng,z’ qgﬁ’l] it holds that

0
i) = —Lor e, 7 (2.158)
> 9(2q0 o —1) 9(2q0 0 1). .
mii mii

This establishes that /Volé’g(qfng ) = 4/3 which is a contradiction. The proof of Lemma 2.21 is
1,1
thus complete. O

Lemma 2.22. Assume Setting 2.1 and let h € N, 6 € (G")71({0}) satisfy szl o) #0 and

1
/O 2O (@) — Loy () diz = 0. (2.159)

Then
L (8) > 1/36. (2.160)

Proof of Lemma 2.22. Assume without loss of generality that q? <...< qz. In the following
we distinguish between the case M = @ = MY, the case M§ # @, and the case M{ = & # MY?.
We first prove (2.160) in the case
MY =2 =M. (2.161)
Note that (2.161) implies that there exist a,b € R wich satisfy for all z € [0,1] that #2%(z) =
ax + b. This and Proposition 2.2 establish that
1
h
) > —. 2.162

This establishes (2.160) in the case M = @ = M?. Next we prove (2.160) in the case

MY+ @. (2.163)

Observe that the assumption that 6 € (G")~'({0}), the assumption that szl o} #0, (2.159),
(2.163), and Proposition 2.16 demonstrate that

4

g h,0 e h,0
7 @) = L) dr = [T @) < D@ 0. (2164
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Combining this with Lemma 2.7 and Corollary 2.17 proves that for all € [0,q% , ] it holds
mo,2

that 4% (x) = 0. This and Lemma 2.21 imply that M{ = @. Hence, we obtain that there exists
a € R which satisfy for all x € [qfng , 1] that /Vofé’e(x) =a(z — ngg ). This and Proposition 2.3
0,2 0,2

establish that 1
ch (o) > —. 2.165

This demonstrates (2.160) in the case M # @. Next we prove (2.160) in the case
MY =o+ M. (2.166)

Note that the assumption that 6 € (G")~1({0}), the assumption that szl v{ # 0, (2.159),
(2.166), and Proposition 2.16 show that

1 1
/qe (@) = L@ = [ o) ~ L@ do =0, (2167

[
1,2 1,2

Combining this with Lemma 2.7 and Corollary 2.17 proves that for all x € [nge , 1] it holds that
1,1
/VOIZ,’G(x) = 1. Therefore, we obtain that there exists a € R which satisfies for all x € |0, qfng ]
1,1

that A% (2) = a(z — qfne ) + 1. This and Proposition 2.4 establish that
1,1

(2.168)

This demonstrates (2.160) in the case M{ = @ # M. The proof of Lemma 2.22 is thus
complete. O

Lemma 2.23. Assume Setting 2.1, let h € N, § € (G")~1({0}) satisfy for all j € {0,1,..., h},
ie{1,2,... ,mgg} that q? < q?H, w/? | <0#£0Y, M{ # @, and o € R\{0}. Then

(i) for all j € {1,2,... ,m872} it holds that q? = jqf,
(ii) for all j € {0,1,...,mf,} it holds that

aeq(f J arh,0/ 0
5 = (=17 457 (a5), (2.169)

(iii) for all j € {1,2,... ,m872}, T € [q?_l,qg] it holds that

W) = (1)l 4 (-1 (- 5 )i (2,170
and
(iv) it holds that
a0 m?
/0 SO (2) = L0y (7)) dz = %(ae)z(q?)?’. (2.171)

Proof of Lemma 2.23. Observe that the assumption that M # @ ensures that qf < 1/2. This,
the assumption that § € (G")~1({0}), the fact that wimf < 0 # vf, and Proposition 2.16 assure
that

q0 q‘9 0
0= [T @) - Lypy(a)) do = [ (@) do = G + A0 (2172
0 0
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This demonstrates that for all 2 € [0, q{] it holds that

0.0

HO(2) = afy — O‘qu (2.173)

Hence, we obtain that

anG
Mo (0) = == = = A (a) (2.174)
and
q({ h,0 2 1 0\2/ 0

| @) = 1)) o = (") (2175)

Note that (2.173), (2.174), and (2.175) establish items (i), (i), (iii), and (iv) in the case m§ , = 1.
Assume now that
mi o > 1. (2.176)

Observe that the assumption that § € (G")~1({0}), the assumption that for alli € {1,2, ..., mgg}
it holds that mfmf_l <0# Uf, (2.176), and Proposition 2.16 imply that for alli € {1,2,... ,m872}
it holds that

a
/ (WL (@) = Lajp,00)(2)) dz = 0. (2.177)
-1
This, Lemma 2.11, and (2.174) show that for all ¢ € {0,1,... ,mg,Q} it holds that
a’qf i grh0 (0
- = (—=1)" 5" (a;)- (2.178)
This establishes that for all i € {1,2,... ,mg,Q}, z € [q?_1,q?] it holds that
(—1)+alqle o alq gl
./VO]Z,’G(.%') — o 1 + (_1) F 10—CI?71 + —2 1 . (2.179)
9 — -1 9 — i1

Furthermore, note that the assumption that & € (G")71({0}), the assumption that for all
ie{1,2,... ,mgp} it holds that wf? | < 0 # v?, (2.176), and Proposition 2.16 imply that for
allie{1,2,... ,m&2 — 1} it holds that

1 h,0
/{9 (N () = Lajs,00) (7)) do = 0. (2.180)
Gi—1

Combining this and (2.177) with Lemma 2.12 demonstrates that for all i € {1,2, ... ,m&2 —1}it
holds that ¢/ —q?_, = qf+1—qf. This and the fact that qf = 0 show that for alli € {1,2,... 7m8,2}
it holds that

qaf =iqf. (2.181)
Combining this with (2.179) assures that for all i € {1,2,... ’m8,2}7 z € [q¢_;,q%] it holds that
. , 1
N0 () = (=1) TPz + (-1) (z - §>a9q§. (2.182)
This ensures that
Tl s i 2 o [ ho 2
’ (‘/Voo7 (1‘) - 1(1/2,00) (1‘)) dz = mo2 (‘/Voo7 (.%') - 1(1/2700)('%')) dx
0 0 (2.183)
TP,
= 02 (40 gt
This, (2.178), (2.181), and (2.183) prove items (i), (ii), (iii), and (iv) in the case mg,Q > 1. The
proof of Lemma 2.23 is thus complete. O
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Lemma 2.24. Assume Setting 2.1, let h € N, § € (G")~1({0}) satisfy for all j € {0,1,..., h},
i€ {m(il,m%l +1,...,h} that q? < q?H, wir? | <0# 0!, M{ # @, and 8% € R\{0}. Then

(i) for all j € {mil,m?,l +1,...,h} it holds that q? =1—(h+1-35)(1-4q),
(ii) for all j € {mf ;,m{ , +1,... h+1} it holds that
0

- (1= ah) = ()" I (A (eF) - 1), (2.184)

(iii) for all j € {mil,m?,l +1,...,h}, z € [q?,qgﬂ] it holds that

./Voléve(x) = (—1)h7jﬁ9x +1+ (—1)h+1fjﬁ9 (1 — <h + % — j) (1-— qﬁ)) , (2.185)
and

(iv) it holds that

1
[, ) = 10y @) e = 5 1= PO @180)

0
m11

Proof of Lemma 2.24. Observe that the assumption that Mlg # @& ensures that qz > 1/2. This,
the assumption that 6 € (G")~!({0}), the assumption that wiw? , < 0 # vf, and Proposi-
tion 2.16 assure that

1 1
0= [ (WL (2) = Lppoe)(@)) da = [ (#30(2) = 1) dz
/qfi e /qi (2.187)

6
=2 @)+ () — 1 80 e,

This demonstrates that for all z € [an 1] it holds that

0

N0 () = B0z +1 — %(1 +45)- (2.188)

Therefore, we obtain that

,80

S - af) = HE0) — 1 = ) + 1 (2159)

and .

1

[ @) Loy ) do = 5 (5021 = e (2:190)

dn

Note that (2.188), (2.189), and (2.190) establish items (i), (ii), (iii), and (iv) in the case m%l = h.
Assume now
m{, < h. (2.191)

Observe that the assumption that § € (G")~!({0}), the assumption that for all i € {mgl, m?l +
1,...,h} it holds that mfmf+1 < 0 # vY, (2.191), and Proposition 2.16 imply that for all
i€ {mil,m?,l +1,...,h} it holds that

L h,0
/(9 (N () = L (15,00)(2)) Az = 0. (2.192)
q,
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This, Lemma 2.11, and (2.189) show that for all ¢ € {m?’l,mil +1,...,h+ 1} it holds that

B0 =) = HEO(1) — 1 = (1 ) — 1), (2.193)

This establishes that for all i € {m{ ,m{, +1,...,h}, z € [¢¢,q?, ] it holds that

(=D (1 — qp) (B0 —ap) 4 B
WO (z) = T H )T A S ). (2194)
dit1 — 4 dit1 — %

Furthermore, note that the assumption that § € (G")71({0}), the assumption that for all
1€ {m?,l,mil +1,...,h} it holds that m?me < 0 +# vY, (2.191), and Proposition 2.16 imply
that for all ¢ € {m‘il,m%l +1,...,h— 1} it holds that

2 h,0
/{9 (W' (%) = Laja,o0)(2)) d = 0. (2.195)
q;

Combining this and (2.192) with Lemma 2.12 demonstrates that for all i € {m(il + 1,m€71 +
2,...,h} it holds that qf — q?_l = qf_H — qf. This and the fact that qz_H = 1 show that for all
ie{mf,m{, +1,... h} it holds that
@ =1-(h+1-49)(1—q9). (2.196)
Combining this with (2.194) assures that for all i € {mil, m%l +1,...,h}, z € [q?, 97, ] it holds
that
4 , 1
N0 () = (—)" 80 + 1 + ()P Y (1 — <h +35- z) (1- qZ)) . (2.197)

This ensures that

1 1
[, @) = L@ de = b+ 1= ) [ () = Ly (@) da
qu’l n (2.198)

1
= o5+ 1=m{ )(8°)*(1 — q)*.

This, (2.193), (2.196), and (2.197) prove items (i), (ii), (iii), and (iv) in the case mil < h. The
proof of Lemma 2.24 is thus complete. U

Lemma 2.25. Assume Setting 2.1, let h € N, 6 € (G")~1({0}) satisfy for all j € {0,1,... h},
ie{1,2,... 7m8,2}7 z€[q? 1,97 that q? < qf.“, /n? | <0+ HZ=1 Uz, M # @, and

WQ%@=<=WHQ%+«4VQ—§)Jﬂ- (2.199)

Then it holds for all j € {1,2,... ,mgg}\{mgp} that

0.0 _ 0
;0 = —2a’. (2.200)

Proof of Lemma 2.25. Observe that the assumption that for all ¢ € {1,2,... ,mg,Q} it holds that
n?t? | < 0 and the fact that w§ = —1 implies that for all j € {1,2,...,m872}\{m872} with
{n e N: j=2n—1} # & it holds that

IY=(q91] and w?>0. (2.201)
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This and (2.199) show that for all j € {1,2,... ,mgg}\{mg’z} with{n eN: j=2n—-1} # g it
holds that
0.0 __ 0
;0 = —2a’. (2.202)

Furthermore, note that the assumption that for all ¢ € {1,2,... ,mgg} it holds that mfmﬁ’,l <0
and the fact that ) = —1 ensures that for all j € {1,2,...,m8,2}\{m8,2} with {n € N: j =
2n} # @ it holds that
I=100.q) and w!<o. (2.203)
This and (2.199) show that for all j € {1,2,...,m872}\{mg72} with {n € N: j = 2n} # @ it
holds that
wiof = —2a7. (2.204)

Combining this and (2.202) demonstrates that for all j € {1,2,... ,m&z}\{mgg} it holds that

wfo? = —207. (2.205)

The proof of Lemma 2.25 is thus complete. U

Lemma 2.26. Assume Setting 2.1, let h € N, 0 € (Qh)* ({0}) satisfy for all j € {0,1,...,h},
S {m?,lam?,l + 1’ h} S [qz7qz+1] that q] < q]+1f m mz+1 <0 7£ HZ:l Uz; Mle 7£ 9, and

N0 () = (=) 8% 4+ 1 4 (—1)hHi-igh (1 - <h +5- z) (1- q2)> : (2.206)
Then it holds for all j € {m‘il,m(il +1,... ,h}\{m%l} that

9 9 0
wivf = —25. (2.207)

Proof of Lemma 2.26. Observe that the assumption that for all ¢ € {m?,l,mil +1,...,h} it
holds that m?mgﬂ < 0 and the fact that meJrl = 1 implies that for all j € {mil,mil +
. ,h}\{m%l} with {n € N: j = h —2n + 1} # @ it holds that

=(qf,1] and w?>0. (2.208)

This and (2.206) show that for all j € {m?,l,mil +1,..., h}\{mil} with {n e N: j = h—2n+
1} # @ it holds that
wiof = —26°. (2.209)

Furthermore, note that the assumption that for all i € {m?’l,mil +1,...,h} it holds that
wfw? | < 0 and the fact that wf | = —1 ensures that for all j € {m‘il, m%l +1,... ,h}\{m(il}
with {n € N: j = h — 2n + 2} # @ it holds that

0 __ 0 0
I7 =10,q;) and o; < 0. (2.210)

This and (2.206) establish that for all j € {m?’l,mil + 1,...,h}\{m?71} with {n € N: j =
h —2n + 2} # @ it holds that
fof = —28°. (2.211)

Combining this and (2.209) demonstrates that for all j € {m‘il, m(il +1,... ,h}\{m%l} it holds
that
0.0 0
vl = —24°. (2.212)

The proof of Lemma 2.26 is thus complete. U
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Lemma 2.27. Assume Setting 2.1, let h € N ﬂ (1,00), 6 € (GM)~1({0}) satisfy for all j €
{0,1,...,h}, z € [O’qm82] that qj < qj+1, NE0(2) =0, MY # @ # MY, and 0 # Hk:lnk'

Then
1

£2(6) 2 384(1 + h)?

(2.213)

Proof of Lemma 2.27. Observe that the assumption that Mg # @ # MY, the assumption that
for all z € [0, qfne ] it holds that ./Vo}é’e(a:) = 0, Corollary 2.17, Lemma 2.20, and Lemma 2.21
0,2

assure that for all j € {m(il,m%l +1,...,h} it holds that m]mfﬂ < 0 and 3% # 0. This and

Lemma 2.24 demonstrate that
(i) for all j € {m{,mf{, +1,...,h} it holds that q =1 — (h +1—j)(1 —qJ),
(i) for all j € {mil,m?,l +1,...,h+ 1} it holds that

,80

- 1= ah) = (=" (AL (aF) — 1), (2.214)

(iii) for all j € {mil,m?,l +1,...,h}, z € [q?, q?H] it holds that

N0 (@) = (1) g% + 1 4 (—1)P =7 0 (1 - <h + % - j) (1- q%)) ,  (2.215)

and

(iv) it holds that

1
[, R = 10y @) e = 1 m )@ d) @216)

0
m11

Note that (2.214) assures that in the case ngg =q’ "¢ =1/2t holds that
0,2

1

1= Rl ) = 1] = [0l )~ 1] = [1/26°(1 — )| (2.217)

Furthermore, observe that in the case qfn&2 = qfnil = 1/2it holds that (h+1—m?,1)(1—qz) = 1/3.
Combining this and (2.217) with (2.216) implies that in the case q° 0, = q° 0, = 1/2 it holds
that 1

ch () = 5 (2.218)
This establishes (2.213) in the case nggg = qfn?’l = 1/2. Assume now that nggﬂ < 1 <

qzle . In the following we distinguish between the case mfng <0< mfng and the case

1,2 0,2 1,1
max{mfnnggﬁ R —mgﬁ 1} > 0. We first prove (2.213) in the case

0 0 0
max{mmggmmil, —mm%l} > 0. (2219)

Note that (2.219), the assumption that 6 € (G")~1({0}), and Proposition 2.16 assure that

nf h,0 g h,0
/ (W)~ sy () = / (W) - Ly (@) dr =0, (2:220)
q9° o q9°
0,2 mg,2
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Combining this with Corollary 2.9 demonstrates that for all z € [qﬁle ,lene ] it holds that

4(2q

N0 () = ! . (2.221)

1) "G, — 1)

6
m
6
mia

9(29% ,

ml 1
Hence, we obtain that /VO]Z,’G(qfne ) = 4/3 and qme =3/4— angl) 1/2. Combining this with (2.214)
1,1 0,2 )
and (2.216) shows that [5°/2(1 — qf)| = |#°(a® ) ) — 1| = 1/3 and

1,1

m{ 162 m
Eh 0) = / 1,1 11 1 N 1
oo( ) qe <9(2q9 y - 1) + 9(2q9 . - 1) (1/2, )(x) €T
mg,z mia m{
h+1-mf, 0\2 03 1 .00 1 ) (2.222)
19 (/8 ) (1 — qh) = %(quil — 1) + ﬁ(1 _ qul)
1997 ,

mgy 17 19 17 1
54 108 ~ 108 108 54
This implies (2.213) in the case max{n? , w?,  —w’, } > 0. Next we demonstrate (2.213)
Mo2 ™11 mia

in the case

wl, <0<n’, . (2.223)

0,2 1,1
Observe that (2.223) and the fact that for all j € {mil, mil—}—l, , h} it holds that m9 i1 <0
prove that there exists £* € N which satisfies that h = le + 2k* — 1. Comblnlng this
with the fact that for all x € |0, q ¢ ] it holds that JZ5%(z) = 0 and the fact that for all

VAS {le,le +1,...,h} it holds that ro; m9 41 < 0 establishes that
k* 0
{ke{1,2,...,h}: I{U (qmgQ’ qm‘i,l) # @} =Ug_{miq +2k -1} (2.224)

Note that Lemma 2.26 ensures that for all j € Ug;l{m‘il + 2k — 1} it holds that m;’.ng’. =
—2%. Combining this with (2.224) and the fact that ./Voié’e(qzle ) = 0 assures that for all
0,2

€ [}, Qg ] i holds that

N2y = 2k B0z + 2k*ﬁ9ngg - (2.225)
This and (2.214) demonstrate that
00 00 56
— 2k, 2k, =1+ (1 - f). (2.226)
Therefore, we obtain that
1 1
8| = T — > . (2.227)
13(1—qj) +2k (qm§,1 - qm872)’ 1+ 2k
Combining this, Proposition 2.3, (2.216), and (2.225) shows that
qf"‘fl 0 040 2 0 3
, * * .
i) > qfne B+ 2 g, ~ Lope (@) e 2, 25
T o mo (g 2 2k* (502 03 . 0 3
1 . 40 3
N 36 : qu . >3
—)E_ 1 1 1 L0 <3
6 (126264 = 38a(1+h)7 = Umo ST



This, (2.218), and (2.222) assure that

£ (9) > 1

> TR (2.229)

This shows (2.213) in the case w? ,
m

<0< mfng . The proof of Lemma 2.27 is thus complete.
0,2 1,1

O

Lemma 2.28. Assume Setting 2.1, let h € NN (1,00), 0 € (G")71({0}) satisfy for all j €
{0,1,....h}, w € [q°, ,1] that ¥ < qf,y, W& () = 1, M # @ # MY, and 0 # T]}_; vf.
1,2

Then
1

h
>
Lool6) 2 384(1 + h)?

(2.230)

Proof of Lemma 2.28. Observe that the assumption that 6 € (G")~1({0}), the assumption that
MY # @ # MY, the assumption that for all z € [qfn(9 , 1] it holds that /% (z) = 1, Corollary 2.18,
1,1

Lemma 2.19, and Lemma 2.21 assure that for all j € {1,2,... ,mgg} it holds that m?m?,l <0
and af # 0. This and Lemma 2.23 demonstrate that

(i) for all j € {1,2,... ,mgg} it holds that q;’- = jqf,
(ii) for all j € {0,1,... 7m8,2} it holds that

aeq(f J arh,0/ 0
5 = (=17 457 (a5), (2.231)

(iii) for all j € {1,2,... 7m8,2}’ x € [q?_l, q?] it holds that

N (@) = (-1 alz + (-1) (j - %) %41, (2.232)
and
(iv) it holds that ,
/qug’l (W2 (@) = Lps,o0) (@) da = %82’2(069)2@?)3- (2.233)
Note that (2.231) assures that in the case qfng = qfn§ = 1/2 it holds that
1= |20 )N =200 )] = o'di] (2.234)
mi mg,2 2

Furthermore, observe that in the case ngg = ngg = 1/2 it holds that m§ ,q¢ = 1/2. Combining
0,2 1,1 ’
this and (2.234) with (2.233) implies that in the case qsz) = qsz) = 1/2 it holds that
0,2 1,1

ch () = é. (2.235)

This demonstrates (2.230) in the case q° , = q?, = 1/2. Assume now that ¢, < 1/2 <
mg o miy mg,2

qfn@ . In the following we distinguish between the case mgbg <0< mibg and the case

1,2 0,2 1,1
max{w’, w’, w’, 1 >0 We first demonstrate (2.230) in the case
Moo My mg 2

0 6 0
max{mmggmm?’l s mmg’Q} > 0. (2236)
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Note that (2.236), the assumption that 6 € (G")~1({0}), and Proposition 2.16 assure that

U0 h,0 U0 h,0

/9 M (WG (@) = Lys,e0) (@) da = /9 MM (@) = Laya,e0) () do = 0. (2.237)
LS ) qa ¢
m0,2 m0,2

Combining this with Corollary 2.10 demonstrates that for all x € [qZﬁ ,qfn@ | it holds that

0,2 1,1
162 10¢° , +3
N0 () = — + 02 . (2.238)
92¢°, —1) 9(29%, -1
( Cl,n&2 ) ( Cl,n&2 )
Hence, we obtain that #2%(q?, ) = —1/3 and q°, = 3/a — 1/2q° , . Combining this with
mg 2 mia mg 2
(2.231) and (2.233) shows that |1/207q| = |#2%(a? o )| =1/3 and
6
7, 162 10q; o +3 2
20 = [ (- o+ st~ e (®)) e
angg 9(2qmg’2 -1) 9(2qmg’2 -1)
0
Mo2 g0, 93 _ L . g 1 9 (2.239)
1 (@)= g =2 ) 57
0
2, 1 11 1

> —
27 18 — 27+18 54

This implies (2.230) in the case max{w’, w?, 1w’ , 1 > 0. Next we demonstrate (2.230) in
Mmoo M1, mq 2
the case
0 0
mm&2 <0< mm?’l. (2.240)
Observe that (2.240) and the fact that for all ¢ € {0,1,... ,mg’Q — 1} it holds that w/w?, ; < 0
prove that there exists k* € N which satisfies that m&2 = 2k*. Combining this with the fact that

for all z € [q° , ,1] it holds that #2:%(z) = 1 and the fact that for all j € {0,1,... ,mb o — 1}
ml’l )
it holds that m?mg 41 < 0 establishes that

{ke{1,2,....h}: I n (qugQ,qfn?I) 4@} = Ur_ {2k —1}. (2.241)

Note that Lemma 2.26 ensures that for all j € U¥_ {2k — 1} it holds that m?n? = —2a%. Com-
bining this with (2.241) and the fact that 25 (q? , ) = 1 assures that for all z € [q°, ,q%, |
m{ Moz M1y
it holds that
NP (z) = —2k* o’z + 2k*a’d’ , + 1. (2.242)
1,1

This and (2.231) demonstrate that

Coale?, +oktale, +1— -2 2.243
aqmg2+ aqm§1+ - 2 ( )
Therefore, we obtain that
1 1
|a9| = p p > T o (2.244)
2w (e, — )

39



Combining this, Proposition 2.4, (2.233), and (2.242) shows that

qG

mf
S (—2k el + 2kl 1 - Ly a)(@)Pdz i qf, <1
£ )= 4", "
(WP (@) — 1 N2 de = 2K (09)2(q0)3 g > 1
ffm i (1/2,00)(2)) 2 (@7)(a1) Tm, =1 (2.45)
1 .’ 1
S 36 ’ qmg,2 = 4
“VE 1 1S 1 g0 > 1
6 (1+2k*)2 64 = 384(1+h)2 qm&2 =4

This, (2.235), and (2.239) assure that

1

0 2 g e

(2.246)

This shows (2.230) in the case mfng <0< miﬁ . The proof of Lemma 2.28 is thus complete. [
1,1

0,2

Corollary 2.29. Assume Setting 2.1 and let h € NN (1,00), 6 € (G")~1({0}) satisfy for all

i € {0,...,h} that wiwl < 0 # o8, TIr_100 #0 < qf < <...<q) <1, and

1, =4q°, =1/2. Then LM (6) > 1/12.
m1,1

mg o

Proof of Corollary 2.29. Observe that Lemma 2.23, Lemma 2.24, and the assumption that
)
@0y = al, =12 assure that [14+1/2(~1)" 17 81— qf) | = I ()| = [ (a0 )] =

el /| and

1
/0 (W) — Lsjs (@))% dir = —(0?)2(qD)2 + o (B9)2(1 — 22, (2.247)

Hence, we obtain that

1 1 !
L) =5 (15D =) )+ (870 - )

6 2 24

— 57— a1 gf) o+ (224
12 6 6
1 1 1 1

> —(—1)2+ Z(— =

- 12( S 6( )+ 6 12

This demonstrates that £ (6) > 1/12. The proof of Corollary 2.29 is thus complete. O

Lemma 2.30. Assume Setting 2.1 and let h € NN(1,00), 6 € R satisfy for alli € {0,1,...,h}
\{mf,} that wiw? | <0, [T}_0) #0<qf <gf<...<qf) <1 a8 #£0<mf,<mf, <
h+1, and 0 < mfn@ w? , . Then

0,2 ™11

G"(#) # 0. (2.249)
Proof of Lemma 2.30. We prove (2.249) by contradiction. Assume that

G"#) =o. (2.250)
Note that (2.250), Lemma 2.23, and Lemma 2.24 ensure that

(i) for all j €{1,2... ,mg,Q} it holds that

q) = jai, (2.251)
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(ii) for all j € {mil,m?’l +1,...,h} it holds that
a5 =1~ (h+1—5)(1—ap), (2.252)

and

(iii) for all j € {0,1,... 7h}\{m8,2}7 x € [q;’-,q;’-ﬂ] it holds that

WO ()
(=1 %z + (=1)77(j + 1/2)a’qf rr<q),  (2.253)
T 0PI L (<P — (Y2 - (1)) x> .

mia

This, Lemma 2.25, and Lemma 2.26 assure that for all j € {1,2,... ,h}\{maz,m(il} it holds

that
—2a?  :j<md
A A (2.254)
=2p% :j>mi,.

In the following we distinguish between the case max{mw? , ,1? , } < 0 and the case min{w?
mg,2 m?,l mg,Q,

‘“"Zﬁ } > 0. We first establish the contradiction in the case
1,1
0 0
. 2.2
max{mmgﬂ,mm%} <0 (2.255)

Observe that (2.255) and the assumption that for all i € {0,1,...,h}\{mf,} it holds that
mfm?H < 0 prove that there exist k1, ko € N which satisfy that mg,Q = 2k, h—mi1 =2(ky—1),
and

ke {l2, . hy 0l sabe ) # @)= (UETT U+ 2R\l 1} (2.256)

This, (2.254), and the fact that for all = € [¢°, ,q°, +1] it holds that #2%(z) = B2 +1 —
mi1 ™M1
B7 (1= (h+1/2—mf{ )(1—q})) show that

B = —m8,2049 —(h— m?,l)ﬁe- (2.257)

Combining this, the fact that max{mw’, ,w’, } <0< ¢, <q%, <1, (2251), (2.252),
mg o my g mg o my g
(2.253), the assumption that § € G~1({0}), and Proposition 2.16 assures that

4

q
0= / T O ) — 1 ey ()
q

m0’2—1

U h,f Tg 1 h,0
= / , (@) = Do) (@)) do + / , (@) — e (@) de o (2:258)
9.0 _4 q
0,2
a’ B° a’ mo s
e R (A (e e L

This implies that

—q9) <0 (2.259)
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which is a contradiction. In the next step we establish the contradiction in the case

min{mgl%,mfn? 3> (2.260)

Note that (2.260) and the assumption that for all 7 € {0, 1, .. h}\{mo 5} it holds that w/w?, | <
0 prove that there exist ki, ko € N which satisfy that mg,Q =2k —1, h— le =2ko — 1, and

{ke{l,2,....n}: IEn(a), _1,q g )#9}—(Uk2 DL+ 261\ {mf) 5} (2.261)

This, (2.254), and the fact that for all z € [q b q 0 ] it holds that 25’ (z) = oz — (m872 —
1/2)a?q show that
of = —(mf, — 1) — (h—mf, +1)5°. (2.262)
Combining this, the fact that —min{w?, w’, } <0<q¢’, <q?, <1, (2.251), (2.252),
mg 2 mia mo,2 mia
(2.253), the assumption that § € G1({0}), and Proposition 2.16 assures that

qG
0= / T G )~ 1y ()
q

-1

3
o
M

qfﬂﬁz h,0 qfﬂ‘{ﬁl h,0

:/9 2 (N (x)—l(l/z,oo)(x))der/e P (2) = Loy (@) da (2.263)
9 o a o
mp,27 ™11

0 6 0 6
o’ g B a 073 0,2 0\3
—_ — — 1 — = — _— 1 — .
This implies that

—q)) <0 (2.264)

which is a contradiction. The proof of Lemma 2.30 is thus complete. U

Lemma 2.31. Assume Settmg 2.1, let h € NN (1,00) and let (0p)nen C R satisfy for all
nGNthat0<m02<m11<h+1 and

1 1
(mima + (h—my + 1)) (%, — o, )+ saPgfn =1—=p"(1—ql").  (2.265)
’ LN mg o 2 2
Then there exists ¢ € (0,00) such that for all n € N it holds that
max{|a’"|, |87 |} > c. (2.266)

Proof of Lemma 2.31. We prove (2.266) by contradiction. We thus assume that for every n € N

it holds that 1
max{la|, |87} < —. (2.267)

Observe that (2.267) implies that lim,, .o a?* = lim,, o, 4% = 0. Combining this with (2.265)
demonstrates that

. 1
0= hmn%oo(mo 2056” + (h— m A+ 1)180n)(qf::9n - qZZQn )+ 5(10” qﬁn
1,1 0,2

(2.268)
= lim,, o 1 — 55“’"(1 - qz") —1.

This is a contradiction. The proof of Lemma 2.31 is thus complete. U
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Lemma 2.32. Assume Setting 2.1 and let h € NN (1,00). Then there ezists € € (0,00) such
that for all § € (G")~1({0}) with Vi € {0,1,...,A}\{m§,}: wlr? | <0, TT}_ ) #0<qf <

05 <...<q) <1, a8 #0<mf,<mf, <h+1, andw’, <0<w’, itholds that
’ ’ 0,2 1,1

L£h () >e. (2.269)
Proof of Lemma 2.32. Throughout this proof let R C R% satisfy

R={0e(G")'{0}): [Vie{0,1,....h\{mf,}: winf < OngLgQ <0< mfngl,

(2.270)
[Tl #0<ql<qf<..<qf<1,a?8%£0<mf,<mi, <h+1}
Note that Lemma 2.23 and Lemma 2.24 ensure for all § € R that
(i) for all j €{0,1,... ,mgg} it holds that
9.6 ‘
- R = (1A ), (2:271)
(ii) for all j € {m(il,m%l +1,...,h+ 1} it holds that
ﬁel Oy = (=) H1=3 (k040 -1 2.272
5 A=) =(=1) (o (a5) — 1), (2.272)
(iii) it holds that
/ (HRO(2) = 1y 0y (2))?
[071]\[q6 0 ,q? 0 ]
md 5" mf | (2.273)
Ml gva ovs , 1 0 \(p0\2 913
= T2 (@) b+ 1= md )82~ ),
and
(iv) for all j € {0,1,...,h}\{mf o}, = € [af, 4, ] it holds that
N ()
(1) %z + (=1)77(j + 1/2)a’qf TS, (2.274)
(DM B+ 14+ ()T (1= (2= - ) cwzad,

This, Lemma 2.25, and Lemma 2.26 assure that for all € R, j € {1,2,... ,h}\{mg,Q,m?,l} it

holds that
—2a¢ i< m?
e A (2.275)
=207 :j>mi,.
Observe that the fact that for all 8 € R it holds that mfn@ <0< mzﬁ and the fact that for

0,2 1,1

all 0 € R, i€ {0,1,... ,h}\{m&z} it holds that wfw? ; < 0 prove that there exist k1,ks € N
such that for all € R it holds that m&2 = 2ky, h — m%l = 2ky — 1, and
{ke{1,2,... h}: I,fﬂ(qzlgz,qfnil) # @} = (UP 2k +1H U (U ml | +1+2k}). (2.276)

This, (2.271), and (2.275) assure that for all € R, © € [ngg ,qfng ] it holds that

0,2 1,1

=

Oégq
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Combining this, (2.272), and the fact that for all # € R the function 2% is continuous proves
for all § € R that
0 90 0 N ] Oéech B’ 0
— (mpaa” + (h—mi; +1)p )(Clmti1 - qmgz) -5 = =1+ — (1 —qp)- (2.278)

Furthermore, note that (2.277) and Lemma 2.6 imply for all § € R that
2 h,6 2 L 5 Ny 0 012
/9 (No" (@) = Lpao0)(@))"dz 2 75 5 = Ung, | (M0’ + (A —myy +1)F7)7 (2.279)
q :

and
0
q’"?l(./Vhﬁ(x)—]l @)2de > —(q’, —* 3( 020" + (h—mi +1)8%)%  (2.280)
L %) (1/2700) i 12 qm1 L 9 mO,QOZ ml,l . .
3

This and (2.273) establish for all § € R that

1 1\* /1 3
ct0) 2 35 ((dhg, —5) + (5o, ) )mbaa + (= m s+ Y

) ) (2.281)
L a\2(1 _ 0 V3t 6\2(.0 3
P20~ g ) (@l )
We prove (2.269) by contradlctlon Assume that for every n € N there exists 6,, € (G")~ ({0})
with 0 < qf" < q3" < ... <qy <1, a%p% £0<my <miy <h+1, monn <0< w',
0 2 l 1
and Vi€ {0,1,... ,h}\{m(ﬁ}i m?”miil < 0 which satisfies that
1
£h(6,) < ~. (2.282)
Observe that (2.281) and (2.282) assure that
3 3
Ii i On 1 1 _ qbn On - On o On 0r\2
1My 00 q On + q On (mo 204 + (h ml 1 + 1)5 )
12 - 2 2 ma ’ (2.283)
. .
O \2 0n 3 0n\2( 00 \3
—(B9)2(1 — ¢ —(a"" " = 0.
Therefore, we obtain that
: 0 N 0 02
limy oo [ 47, — = | (mgha'™ + (h—myy +1)7")° =0,
ml,l 2 ) )
1 S o g 0
3 n n n 2 —_—
limy, o0 ( qmgn) (mgya’™ + (h — mi{y +1)87)* =0, (2.284)

limy, 00 (8%)2(1 — ¢, )% =0, and
mia
limy o0 (@”)? (477, )* = 0.
0,2

Note that (2.278) and Lemma 2.31 demonstrate that there exists ¢ € (0,00) such that for all
n € N it holds that max{|a"|,|3%"|} > c¢. Combining this and (2.284) with Lemma 2.15 assure
that there exists a strictly increasing n: N — N such that

limy o0 q "@(kzk) =1 and limg_ 00 q "@(kzk) =0. (2.285)
1 1 0 2

This shows that there exists k* € N such that for all £k € NN [k*, 00) it holds that qene(k) > 3/4
mii

and q " ”(k) < 1/4. Combining this and Proposition 2.5 implies that limy_,., £” 0o (On@ry) = 1/32
2

which is a contradiction. The proof of Lemma 2.32 is thus complete. U
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Lemma 2.33. Assume Setting 2.1 and let h € NN (1, 00). Then there exists € € (0,00) such
that for all 0 € (G")~1({0}) with Vi € {0,..., h}\{m§,}: wiw? | <0, [T{_; 0] #0 < qf <

qg<...<qz<1,a9ﬁ9#0<m82<m?1<h+1 (mdmgI <0<w’, it holds that
’ ’ 1,1 0,2

L£h () > e. (2.286)
Proof of Lemma 2.33. Throughout this proof let R C R% satisfy
R={0€(G")'({o}): [Vie{0,1,....h}\{mf,}: wiwf < 0],mfn§1 <0< mzng,

(2.287)
[l #0<al<gf<..<dq)<La’B£0<mf,<mi, <h+1}.
Observe that Lemma 2.23 and Lemma 2.24 ensure for all § € R that
(i) for all j €{0,1,... 7m8,2} it holds that
a’q’ ‘
SOl ), (2.258)
(ii) for all j € {mil,m?’l +1,...,h+ 1} it holds that
& 1 D=3 (g% -1 2.289
2(—%) (—1) (o7 (a7) — 1), (2.289)
(iii) it holds that
/ (WL (@) = Layn,00)(2))? da
[071]\[q9 0 7q9 0 ]
m (2.290)
m 6)2(40)3 1 0 0\3
= 02 (a0 + (1 - md (820 — ),
and
(iv) for all j € {0,1,...,h}\{mf o}, = € [af, 4, ,] it holds that
N ()
(1Y a’z + (=177 (j + 12)a’q] re<al,  (2.291)

6

— My o
0
m

(DM B+ 14 (<) (1= (1= - ) cw =
This, Lemma 2.25, and Lemma 2.26 assure that for all 6 € R, j € {1,2,... ,h}\{maz,m‘il} it
holds that
-9 0 - [%
il = ¢ = (2.202)
—2687 j> m? 1-
Furthermore, note that the fact that for all § € R it holds that m9 <0< m9 and the

11 02

fact that for all € R, i € {0,1,... ,h}\{mO’Q} it holds that wfwf ; < 0 prove that there exist
k1,ko € N such that for all 8 € R it holds that mg 9o =2k —1, h— m%l = 2koy — 2

{ke{l,....n}: I} N (qee aqee J# o= (U 2k + 1}) U (U2 md | + 2k}),
{kef{l,....h}: I N (q ,pq 3 ) # o} = ((Ukl Mok + 1})\{m0 2}
U (Uk2 1{m1 1 +2k})), and (2.293)
) (U {2k +1})

U (UkQ l{ml L+ 26D\ {mf 1))

{k € {]‘?"'7h}: Igm(qil?,laqfn?1+1 7&@} =
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This, (2.292), the fact that for all § € R, x € [q 1,C| 0 ] it holds that #25%(z) = oz —
(mgp —1/2)a’qf, and the fact that for all @ € R, x 6 [qm? l,qu 1+1] it holds that #2(z) =
Blr+1-p%(1—(h+12— m?’l)(l —qY)) demonstrate for all 6 € R that

o’ = —((mfy — 1)’ + (h—mf )8%) + 0%, 1‘“00 0

1

and 5= ~((my ~ Do + (h—mf )8%) + o0y ! (2264

7”02

Combining this, (2.288), and (2.293) ensures that for all § € R, z € [qZﬁ ’qgﬁ ] it holds that

0,2 1,1

N () = (- ((m02 —1)a’ + (h - m1 DB 400, w,

mo 2 M2

0 0 o’ cI1
+0 (e )@ e )+ (2.295)
0 0 0 0 0 o/’q‘f
= (mp2a” + (h—mj, +1)8")(z — qma?) t—

This, (2.289), and the fact that for all € R it holds that the function N2 s continuous prove
for all 6 € R that

(m a0’ + (h=mi 1+ 1)8") (@l —ab )+ —1-20—q)). (2.296)

Moreover, observe that (2.295) and Lemma 2.6 imply for all # € R that
2 h,6 2 Lt 5 Ny 0 012
[ @) = 1@ do = 15 (5 ) s+ (h—m, + DR (2297)
q :

and

a0 1 1\?
ﬁ A (@) = Tyjao) (@) Ao > (qfnn - 5) (m§20f + (h—mf, +1)8%)%  (2.298)
2

This and (2.290) establish for all # € R that

1 1\* /1 3
cho(9) > i ((qf;g T 5) + <§ - len82> )(mg,zae + (h — m?,l +1)8%)?

\ 1 (2.299)
1o, 0 3, 102,060 3
We prove (2.286) by contradiction. Assume that for every n e N there exists 6, € (GM)~ ({0})
with 0 < qf" < 3" < ... <qp <1, a%p% £0<my <miy <h+1, monn <0< "@n,
1

1

and Vi € {0,1,... ,h}\{mgflz}: mf”mfil < 0 which satisfies that

1
Lh (6, < ~. (2.300)
Note that (2.299) and (2.300) assure that
: 1 0 1\’ (1 ’ 0 0 \2
limy, 00— 9%, — 5| T q on (mo ha!' + (h — m L+ 187
B2V ma 2 o2 (2.301)
1 1
_(56") (1- q’, on )* + _(aen)Q(qenen )*=0.
12 my 12 M2
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Hence, we obtain that
3
limy,—so0 (qfn - —> (mopa® + (h—miy +1)5%)% =0,
1,1

. 1 ’
lim,, o0 <§ - q9"9n> (mgzoﬂ” + (h— mf"l +1)8%)2 =0,
My o ’

limy, o0 (8%7)2(1 — qi’:en )3 =0, and

(2.302)

lim, o0 (a?)? (g%, )* = 0.

Observe that (2.296) and Lemma 2.31 demonstrate that there exists ¢ € (0, 00) such that for all
n € N it holds that max{|a?"|,|3%|} > c¢. Combining this and (2.302) with Lemma 2.15 assure
that there exists a strictly increasing n: N — N such that

limy, 00 q "G(kzk) =1 and limy o0 q "G(kzk) =0. (2.303)
l 1 0 2

This shows that there exists k* € N such that for all £k € NN [k*, 00) it holds that q ") > 3/

and q "(®) < 1/4. Combining this and Proposition 2.5 assures that limj_,., £" (Hn(k)) > 1/32

which i 1s a contradiction. The proof of Lemma 2.33 is thus complete. U

2.5 Estimates for the risk of critical points

Corollary 2.34. Assume Setting 2.1 and let h € N, j € {1,2,...,h}, 6 € (G")7L({0}) satisfy
(0,1) C I¢ and []}_, v{ # 0. Then L% (8) > 1/s6.

Proof of Corollary 2.34. Note that the assumption that € (G")~1({0}), the assumption that
szl Uz # 0, the assumption that (0,1) C IJQ, and Proposition 2.16 demonstrate that

1
/0 (N0 (z) — Liijs,00)(2)) dz = 0. (2.304)

Combining this with Lemma 2.22 assures that £ (8) > 1/36. The proof of Corollary 2.34 is
thus complete. O

ch}, 0 € (") ({0})

Corollary 2.35. Assume Setting 2.1 and let h € Nﬂ(l oo) i,j€{1,2,..
%(0) > Yso.

satisfy i # 7, qZ@:q?e( 1), and nf m9<07é]_[k 100, Thenﬁh

Proof of Corollary 2.35. Observe that the assumption that 8 € (G")~!({0}), the assumption
that mgmf <0+# szl 02, and Proposition 2.16 assure that

a 1
/0 (W0 (z) — Liijs,0)(z)) dz = /9 a(N () — Li1/s,00) () dz = 0. (2.305)

q,

This implies that
1
/ (WL (x) = L 0)(@)) dz = 0. (2.306)
0

Combing this with Lemma 2.22 demonstrates that £ (6) > 1/36. The proof of Corollary 2.35
is thus complete. O

Proposition 2.36. Assume Setting 2.1 and let h € NN (1,00), 4,5 € {1,2,...,h}, 0 €
(G")~L({0}) satisfy i # j, ¢¢ = q? € (0,1), and HZ:1 0} #£0 < m?m?. Then there exist
9 € (GM)7H{0Y), k€ {1,2,...,h} such that I = @ and No5’|j0.1) = N2 |jo.1)-
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Proof of Proposition 2.36. Note that the assumption that q? = q? and the assumption that
0< m?m? demonstrate that

o

wf|  rf]”

(2.307)

Assume without loss of generality that ¢ = 1 and j = 2. This and (2.307) ensure for all z € [0, 1]
that

0 0
o b
v [As (02 + b))] + 03 [Aso (0l + b%)] = vf|w0f|A <—‘mé,x - —,m; )
1 1

6 %

ro§ b

+ v)|wh|As | —2-2 + —2- (2.308)
|0 [0

0 0
7 b7
= (n§|m§|+n§|m§|)Am<| 7 +—|m |>
1

Let ¥ € R% satisfy for all m € {1 2,...,h}\{1,2} that v} = vf|wf| + vf|wf|, WY = wi/jw?,
b7 = 9/jw?|, 0Y = Y = by =0, ¢/ = c9 nﬁ =Y 1w’ =’ and bY, = b? . This and (2.308)
imply for all € [0,1] that IY = @, G"(9¥) = 0, and

N () = w19 (). (2.309)
The proof of Proposition 2.36 is thus complete. O

Lemma 2.37. Assume Setting 2.1 and leth € N, § € (G")~1({0}) satisfy for alli € {1,2,...,h}
that q¢_, < q? <1/2 and szl 0} #0. Then

L () > 1/36. (2.310)

Proof of Lemma 2.37. In the following we distinguish between the case o = 0 and the case
af #£0. We first show (2.310) in the case

o’ = 0. (2.311)

Observe that (2.311), the assumption that 6 € (G")~1({0}), and Corollary 2.17 establish that
for all x € [0, qZﬁ ] it holds that #2:%(x) = 0. Therefore, we obtain that there exists a’ € R
0,2
such that for all x € [q 0 1] it holds that #2%(z) = af(x — qfng ). Combining this with
0,2

Proposition 2.3 ensures that
1

= 36
This establishes (2.310) in the case o’ = 0. In the next step we demonstrate (2.310) in the case

cho9) > (2.312)
o’ £ 0. (2.313)

Note that (2.313) and Lemma 2.19 prove that for all i € {1,2,... ,m872} it holds that wfwf | <
0. Combining this with Lemma 2.23 demonstrates that

(i) for all j € {1,2,... ,mgg} it holds that q;’- = jdf,
(i) for all j € {0,1,...,mf,} it holds that
0.0
a’q ;
- L _ (_1)J,/V0@9(q§), (2.314)
and
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(iii) it holds that
6 0

qme
[ @) = 1t b = 2 @) (2.315)

Furthermore, observe that the assumption that for all i € {1,2,...,h} it holds that q¢ < 1/2
implies that there exists a’ € R such that for all z € [qzle ,1] it holds that N0 () = a’(x —
0,2

0, )+ 4%, ). This, (2.314), and (2.315) establish that
mg 2 mg, o

0,2
0.2
[%
Ay (a?)? 1 3a’ 2.316
=g (g )+ T g )0 g - =
+(=aah A (g )= dne )+ (e = A (de )
+a’(—a’d, + L0, )1 - (leng )?)

Combining this and Lemma 2.13 ensures that £ (6) > 1/1s This shows (2.310) in the case
a? # 0. The proof of Lemma 2.37 is thus complete. O

Lemma 2.38. Assume Setting 2.1 and leth € N, § € (G")~1({0}) satisfy for alli € {1,2,...,h}
that 1/2 < q? < q?; and HZ:I 0} #0. Then

Lh(8) > 1/36. (2.317)

Proof of Lemma 2.38. In the following we distinguish between the case 5 = 0 and the case
B? # 0. We first demonstrate (2.317) in the case

B’ =o. (2.318)

Note that (2.318), the assumption that 6 € (G")~({0}), and Corollary 2.18 establish that for all
x € [qfne ,1] it holds that #25%(2) = 1. Hence, we obtain that there exists a’ € R such that for
1,1

all z € [0, nge ] it holds that 42 (z) = af (z — qfne )+ 1. Combining this with Proposition 2.4
1,1 1,1

ensures that 1

£h0) > —. 2.319
This establishes (2.317) in the case 3% = 0. In the next step we demonstrate (2.317) in the case
B 0. (2.320)

Observe that (2.320) and Lemma 2.20 prove that for all i € {m(il, mf,l +1,...,h} it holds that
mfm?H < 0. Combining this with Lemma 2.24 demonstrates that

(i) for all j € {m{,m{  +1,...,h} it holds that q =1 — (h +1—j)(1 —qJ),
(ii) for all j € {m(il,m%l +1,...,h+ 1} it holds that

%9(1 —qp) = (=DM (L (aF) — 1), (2.321)

(iii) and for all j € {m‘il,m(il +1,...,h},x € [q?, q?_H] it holds that
1
1
/9 (WL (2) = Laja,00) (2))* da = 1= m{1)(8%)(1 — a5)°. (2.322)
q

0
™11
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Furthermore, note that the assumption that for all i € {1,2, ..., h} it holds that /2 < g¢ implies
that there exists a’ € R such that for all € [0, qfng ] it holds that 42 (z) = af (z — qfng )+
1,1 1,1

N (P o ) This, (2.321), and (2.322) establish that

0

qmg
£ = [ e =g )+ Oy ) = L @) o

,1

1. 0 B0/ 0 2
+ 3(1 qmil)(‘/’/oo (qmi’,l) 1)
_ (a9)2(q9 P4 (—al®, + 0, N2, —af (g, )2 21 (2.323)
3 m§,1 m§,1 o0 m?,l m?,l mf | 4
1
+ ae(_aeqfn? ot /Vog’e(ngg 1))(5&3 1)2 + 5(1 - qfng 1)(./V£’€(qfn? 1) —1)?
1
9.0 RO/ .0 o 1
+ (1 + 2a qm?’l — 2./1/00 (qm?’l)) <qm?’1 2> .

Combining this and Lemma 2.14 ensures that £ (8) > 1/1s. This shows (2.317) in the case
(% # 0. The proof of Lemma 2.38 is thus complete. O

Corollary 2.39. Assume Setting 2.1 and let h € NN (1,00). Then there exists € € (0,00) such
that for all 6 € (G")~1({0}) with Vi € {0,1,...,h}\{m872}: wir?, | <0 # o, szl o) #
0<ql<q)<...<q) <1, and MY # @ # MY it holds that L' (0) > ¢.

Proof of Corollary 2.39. Observe that Corollary 2.29 implies that for all # € (G")~1({0}) with
Vei € {0,91,...,h}:.m§mf+1 <0# a0 vl #0 < qf <gf) <...<gql <1, and
qm&2 = qm%1 = 1/2 it holds that
£h(6) > - (2.324)
12
Furthermore, note that Lemma 2.30 assures that for all § € R% with Vi € {0,1,...,h}\
{mf o} il <0, [Tl #0<gf <gf<...<q) <1, a8 #£0<mfy<mi, <h+1,

and 0 < mibg mfn@ it holds that

0,2 1,1

G"(6) #o. (2.325)

Moreover, observe that Lemma 2.32 and Lemma 2.33 demonstrate that there exists ¢ € (0, 00)
such that for all § € (G")~1({0}) with Vi € {0,1,...,h}\{m§,}: wiw? | <0, [[{_; vl #0 <
0 <af <...<q) <1, £0<mfy, <m{, <h+1, and w’, w’, < 0it holds

0,2 1,1

that £ (f) > §. Combining this with (2.324) and (2.325) shows that for all 0 e (GMH~1{o})
with Vi € {0,1,..., h}\{mfo}: wiwf | < 0# a8 [T} 0l #0<qf <gf <...<q) <1,
and M # @ # M{ it holds that £ (6) > min{l/12,6}. The proof of Corollary 2.39 is thus
complete. O

Lemma 2.40. Assume Setting 2.1, let h € NN (1,00), 6 € (G")71({0}), i € {0,1,... ., h}\{m§ o}
satisfy szl Uz #0<qi<gf<...< qz <1, —mfme <0, and Mg # @ # MY{. Then

1

h
> .
Looll) 2 384(1 + h)?

(2.326)

Proof of Lemma 2.40. Note that the fact that ¢ € {0,1,... ,h}\{mgz} demonstrates that 1/2 ¢
(a?,9%,1). In the following we distinguish between the case q/,; < 1/2 and the case q/ > 1/2.
We first prove (2.326) in the case

1
4741 < 5 (2.327)
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Observe that (2.327) and Lemma 2.19 ensure that for all z € [0,¢% , ] it holds that 425’ (z) = 0.
mg,2
This and Lemma 2.27 imply that

1

h
> .
Loolt) 2 384(1 + h)?

(2.328)
This establishes (2.326) in the case g7, ; < /2. In the next step we demonstrate (2.326) in the
case

q) > <. (2.329)

DN | =

Note that (2.329) and Lemma 2.20 show that for all z € [q°, ,1] it holds that 2% (x) = 1.
m

1,1
This and Lemma 2.28 establish that

1

£k (6)

> - 2.
= 384(1 + h)? (2:330)

This establishes (2.326) in the case q¢ > 1/2. The proof of Lemma 2.40 is thus complete. O

Lemma 2.41. Assume Setting 2.1, let h € NN (1,00), 6 € (G")71({0}) satisfy szl v} #£0 <
q€<qg <... <qz< 1, a?B8% =0, andMg%@aéMf. Then

1

h
>
Lool6) 2 384(1 + h)?

(2.331)
Proof of Lemma 2.41. Observe that Corollary 2.17, Corollary 2.18, Lemma 2.21, and the as-
sumption that 6 € (G")~1({0}) prove that max{|a’|,|3%|} # 0. In the following we distinguish
between the case af = 0 # 4% and the case o # 0 = B%. We first demonstrate (2.331) in the

case
ol =044 (2.332)
Note that (2.332), the assumption that 6 € (G")~1({0}), and Corollary 2.17 ensure that for all
x €0, ngg ] it holds that #Z%%(2) = 0. This and Lemma 2.27 imply that
0,2

1

h@)>—o
£ool6) 2 384(1 + h)?

(2.333)

This establishes (2.331) in the case o’ = 0 # 8%, In the next step we prove (2.331) in the case
ol £0=7% (2.334)

Observe that (2.334), the assumption that 6 € (G")~'({0}), and Corollary 2.18 show that for
all z € [q°, ,1] it holds that JZ5%(x) = 1. This and Lemma 2.28 establish that
mia

ch(9) > m. (2.335)
This demonstrates (2.331) in the case o # 0 = 8%. The proof of Lemma 2.41 is thus complete.
O

Proposition 2.42. Assume Setting 2.1 and let 0 € (G1)~1({0}). Then
Ll (6) > 1/36. (2.336)
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Proof of Proposition 2.42. Note that in the case b? = 0 there exists b € R such that for all
x € R it holds that ./Vog’e(m) = b. This and Proposition 2.2 establish that in the case v{ = 0 it

holds that )

=16
Assume now that v{ # 0. In the following we distinguish between the case qf € (0,1) and the
case qf ¢ (0,1). We first show (2.336) in the case

L (9) > (2.337)

qf € (0,1). (2.338)
Observe that (2.338), Lemma 2.37, and Lemma 2.38 prove that

1

= =(0) 2 36

(2.339)

This establishes (2.336) in the case qf € (0,1). In the next step we demonstrate (2.336) in the
case

q7 ¢ (0,1). (2.340)
Note that (2.340) ensures that there exist a,b € R such that for all x € R it holds that
Ns5%(x) = ax + b. This and Proposition 2.2 demonstrate that

L (0) > (2.341)

1
16
This establishes (2.336) in the case qf ¢ (0,1). The proof of Proposition 2.42 is thus complete.
O

Lemma 2.43. Assume Setting 2.1 and let h € NN (1,00), 6 € (G")71({0}) satisfy {9 €
(G110} A 00 = Moo} = @. Then it holds that
[Ti0f #0. (2.342)

Proof of Lemma 2.43. We prove (2.342) by contradiction. Assume that szl v) = 0 and as-
sume without loss of generality that Uz = 0. Throughout this proof let 1 € R%-1 satisfy for all
i€{1,2,...,h— 1} that

v; = 0;, Unh—14i = Onyi, Yon—2+i = Oonyi, and  Y3p_2 = O3p41. (2.343)
Observe that (2.343) assures that
A0, = AL 0,1 (2.344)

Furthermore, note that that (2.343) and Proposition 2.16 show that for alli € {1,2,...,3(h—1)}
it holds that G (¢) = GI0) and Qah 1( ) = Gl (6). This, (2.344), and the assumption that

€ (GM~1({0}) imply that ¥ € {v € (G""1H~1({0}): -/Vo}ée| 0,1 = N U|[O71}} which is a
contradiction. The proof of Lemma 2.43 is thus complete. U

Lemma 2.44. Assume Setting 2.1 and let h € NN (1,00). Then there ezists € € (0,00) such
that for all 0 € (G")~1({0}) with {9 € (G"1)1({0}): WL |01y = #2 u} = @ it holds
that LM (0) > e.

Proof of Lemma 2.44. Throughout this proof for every 6 € R let R C R®-1 satisfy R? =
{9 € (" 1H~L({0}): /Vhe\ 01 = Hoo hl, 19][0 1]} Observe that Lemma 2.43 ensures that for all

0 € (G")~1({0}) with R’ = @ it holds that Hk 0% # 0. Furthermore, note that Corollary 2.34
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demonstrates that for all # € (G")~1({0}) with szl v # 0 and {k € {1,2,...,h}: (0,1) C
I} # @ it holds that

1
ch (0 2.345
L0) > o (2.345)
Moreover, observe that Corollary 2.35 and Proposition 2.36 assure that for all § € (G")~1({0})

)
with [Ti_; 0 #0, R’ = @, and {k € {1,2,...,h}: [3j € {1,2,...,h}\{k}: q] = qf € (0,1)]} #
@ it holds that 1

36°
In addition, note that Lemma 2.37 and Lemma 2.38 prove that for all § € (G")~1({0}) with
vl #0<ql <qf<...<q) <1and {MJ, M} D {@} it holds that

ch) > (2.346)

1

L =(0) 2 36"

(2.347)
Furthermore, observe that Corollary 2.39 shows that there exists § € (0,00) such that for
all @ € (G")71({0}) with [TF_,0) #0 < qf <qf <...<ql <1, M{ # @ # M, and
Vke{01,... 7h}\{m8,2}3 wiwf | < 0+# a’B? we have that

L£h () > . (2.348)

Moreover, note that Lemma 2.40 establishes that for all § € (G")~ ({0}) with I, 0} £0 <
qf <af <...<aqp <1, M{ #@# M/, and {k € {0,1,...,h}\{mg,}: wiw], , > 0} # & it

holds that 1

= 384(1 + h)?’

In addition, observe that Lemma 2.41 proves that for all § € (G")~1({0}) with HZ:1 o) £0<
qf<qf<... <qz <1,a’8 =0, and Mg#@;éMf it holds that

£h(9) > (2.349)

1

£o(6) 2 384(1 + h)2”

(2.350)

Next note that for every | 0 € (Gh)1 ({O}) with R? = & there exists ¥ € (G")~1({0}) which
satisfies that " = /7, R? = @, and q¥ < q < ... < q. Combining this, (2.345), (2.346),
(2.347), (2.348), (2.349), and (2. 350) establishes that for all § € (GM)~1({0}) with RY = & it

holds that .

ch () > min{m,é}. (2.351)

The proof of Lemma 2.44 is thus complete. O

2.6 Blow up phenomena for GF's in the training of ANNs

Proposition 2.45. Letd,h,0,n €N, @ € R, £ € (@, 00) satisfyd = dh+2h+1, let f: [a,b]? —
R be a function, for every i € {1,2,...,n}, k € {0,1} let af € R™*? let BF € R", and let
PF:R? — R be a polynomial, let p: [@, 8] — [0,00) satisfy for all k € {0,1}, = € [@,£]? that

kf()+ (1= kp(@) = 30 [PF(@) Ljocop (af @ + B7)], (2.352)

let A, € C(R,R), r € NU {oo}, satisfy for all x € R that (U,en{Ar}) € C'(R,R), Ax(z) =
max{x,0}, sup,en SUPye[_|a )| (Ar) ()| < 00, and

lim sup, o0 (|Ar (2) = Ase(2)] + (A7) (2) = L(0,00)(@)]) = 0, (2.353)
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let £,: R® -5 R, r € NU {oo}, satisfy for allr € NU {oo}, 6 = (04,...,6,) € R® that

L= (e

— 0o — S Oty ri [Ar (Onati + Z;l:l O6i—1)d+;T;)] )ZP(SU) d(z1,...,2q), (2.354)

let G: R® — R? satisfy for all @ € {9 € R®: ((VL,)(9))ren is convergent} that G(0) = lim,
(VL, )(0), cmd let © € C([0,00),R%) satisfy liminfy .o [O]| < oo and Yt € [0,00): ©; =
©p — fo s)ds. Then there exist ¥ € G~1({0}), €, 8 € (0,00) which satisfy for all t € [0,0)
that

10 =9 <€A +t)"  and  |Loo(0y) — Loo(W)] < €1 +1)7L (2.355)

Proof of Proposition 2.45. The assertion is verified analogously to the proof of [20, Theorem 1.3]
(compare, e.g., [15, Theorem 1.2]). The proof of Proposition 2.45 is thus complete. O

Lemma 2.46. Assume Setting 2.1. Then it holds for all h € N that there exists € € (0,00)
such that for all 6 € (G")~1({0}) it holds that

L£h () > e. (2.356)

Proof of Lemma 2.46. We prove (2.356) by induction. Note that Proposition 2.42 assures that
for all 6 € (G')~1({0}) it holds that

cl () > (2.357)

= 36
For the induction step let h € NN (1, 00) and assume that there exists € € (0, 00) which satisfies
for all ¥ € (G"1)~1({0}) that

Lh19) > e (2.358)
Observe that (2.358) shows that for all § € (G")~1({0}) with {J € (G"~1)~1({0}): /th\ 01] =
/Vo]é_l’ﬂl[o,l]} # @ there exists ¥ € (G"71)71({0}) such that

L£h0) = £l w) > e (2.359)

Note that Lemma 2.44 demonstrates that there exists 5 € (0,00) which satisfies for all 6 €
(G") 71 ({0}) with {9 € (G""1) 1 ({0}): Hoc” o,y = Hoe Vo, 1y} = @ that

c’;o(e) > 4. (2.360)

Observe that (2.359) and (2.360) ensure that for all # € (G")~1({0}) it holds that £ () >
min{e, §}. Induction thus establishes (2.356). The proof of Lemma 2.46 is thus complete. O

Theorem 2.47. Let ¢ € R, & € (@,), h,0 € N satisfy 9 = 3h + 1, let A, € C(R,R),
r € NU {oo}, satisfy for all z € R that (U,en{Ar}) € CHR,R), Ag(z) = max{z,0},
SUDP,eN SUPye| (o], |2))| (Ar) ()] < 00, and

lim sup,_, o (|Ar(2) = Aso(2)] + [(Ar)'(z) — L(0,00) ()]) =0, (2.361)
for every r € NU {oc}, 8 = (01,...,0,) € R? let #P: R — R satisfy for all x € R that
N (@) = 6o + Y21y o [Ar (B + 0i)] (2.362)
for every r € NU {oo} let £,: R® — R satisfy for all € R® that
4
£0) = [ (esmpon a) = #2(@) da, (2:363)

and let G: R® — R® satisfy for all 0 € {9 € R°: ((VL,)(9))ren is convergent} that G(0) =
lim, 00 (VL,)(0). Then there exists € € (0,00) such that for all 6 € G=*({0}) it holds that
Loo(0) > €.
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Proof of Theorem 2.47. Throughout this proof for every # € R? let v/ € R? satisfy for all
i € {1,2,...,h} that vf = 6;(¢6 — ), fo_i = Ophyi + O, vth = Oopy4, and vg = @, and
for every § € R®, i € {1,2,...,h}, ¢ € R, & € (¢,0) let If’; C R satisfy If’; = {x €
[¢,d]: 0;x + 04; > 0}. Note that for all # € R® it holds that 7 7

¢ 2
Lcl) = [ (Ueropane)(@) = ¥2(a)) s

@

1

= (6= ) [ (s 0) = A2 = @y + )"y (2.364)
1

(=) [ (L) = 22 )"

Furthermore, observe that [23, Proposition 2.2] establishes that for all § € G=1({0}), i €
{1,2,...,h} it holds that

0= gl(a) = 292h+2‘ /9 . x(./VO(i,(x) - ]l((¢+ﬁ)/27oo)(x)) dx

,
Ii,ﬁ

= 2Ugh+i(ﬁ - @)/

6
vY%,0
Iil

(8= @)y + @) (NE (y) = L1ya00)(¥)) dy,

0 = Ghti(0) = 20954, /197@(:/’/0%@) — L((atafo,00) () da

i6

= 2Ugh+i(ﬁ - @)/

6
vY,0
Iil

(W (y) = L1/00) (1)) s
. (2.365)

0= Gopi(0) = 2/ (Ao (05 + Oh1i) | (W2 () = Litat)/n,00) () d

@

0

1
— 26— ) /0 (oo (@0 + 08 )] (2 () = Litjnoy ()

4
and 0= Go(0) =2 [ (#2(0) ~ Lcrnyaoe) (@) ds

@

1 0
—2(6- ) /0 (W2 () = Lojpey (4)) .

Combining this and (2.364) with Lemma 2.46 demonstrates that there exists ¢ € (0, 00) such
that for all § € G~1({0}) it holds that

6

1
Loo0) = (6 - @) /0 (Laoo) (@) — 42 (@) dy > (£ — )e. (2.366)

The proof of Theorem 2.47 is thus complete. U

Theorem 2.48. Let ¢ € R, ¢ € (@,), h,0 € N satisfy 0 = 3h + 1, let A, € C(R,R),
r € NU {oo}, satisfy for all € R that (U,en{Ar}) € CHR,R), Ag(z) = max{z,0},
SUDP,eN SUPye| (o], |2))| (Ar) ()] < 00, and

10Uy (1 (2) — Ao ()] + |(Ar)'(2) — L0,y (@)]) =0, (2.367)
for every r € NU {o0}, 8 = (01,...,0,) € R? let /7: R — R satisfy for all x € R that

NP (@) = 0y + 300 Ooni [Ar (O + 0iz)], (2.368)
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for every r € NU {oo} let £,: R® — R satisfy for all € R® that

4
£40) = [ (esmpon a) = #2(@) da, (2:369)
and let G: R® — R® satisfy for all 0 € {9 € R°: ((VL,)(9))ren is convergent} that G(0) =
lim, 00 (VL) (0). Then there exists € € (0,00) such that for all © € C([0,00),R®) with YVt €
[0,00): O = Op — fé G(O5)ds and L(O¢) < € it holds that liminf, ,||0:]| = oo.

Proof of Theorem 2.48. Note that Theorem 2.47 ensures that there exists e € (0,00) which
satisfies for all § € G~1({0}) that
Loo(0) > €. (2.370)

Furthermore, observe that, e.g., [23, Lemma 3.1] implies that for all © € C([0,00),R?) with
Vit e [0,00): O = Qg — fg G(O5)ds it holds that [0,00) 5 t — L(©:) € R is non-increasing.
Combining this with (2.370) and Proposition 2.45 assures that for all © € C([0,00),R?) with
Vit €[0,00): ©; = Qg — [ G(O;)ds and Loo(Og) < ¢ it holds that liminf, ,o[y|] = co. The
proof of Theorem 2.48 is thus complete. O

2.7 Blow up phenomena for GFs in the training of ANNs with two hidden
neurons

Lemma 2.49. Assume Setting 2.1 and let § € R7 satisfy wiwf > 0 # vfvf, 0 < qf < ¢§ < 1,
and /2 € (49,95). Then
G%(0) # 0. (2.371)

Proof of Lemma 2.49. We prove (2.371) by contradiction. Assume that G2(6) = 0. In the
following we distinguish between the case min{r{, 0§} > 0 and the case max{tw{,wd} < 0. We
first establish the contradiction in the case

min{r{, wf} > 0. (2.372)

Observe that (2.372), the fact that G2(f) = 0, and Proposition 2.16 imply that for all i € {1, 2}
it holds that

i1 2,0 i1 2,0
[ w20 - @) de = [0 - Lpp @) do =0, (2373)
q; q;

This, Lemma 2.7, and Corollary 2.10 demonstrate that for all € [qf,1] it holds that ¢§ =
3/4 — 1/2q and

W20(w) =

1 cxeqf,1
) (2.374)
1

162 109943
— X E
5@a0-1) T 9a0-1) la

Combining this with the fact that I? = (g, 1], the fact that I = (¢9, 1], and continuity of 4%’
shows that for all € [0,q) it holds that

1
N2 (z) = -3 (2.375)
This and Proposition 2.16 imply that
1 af i q 0
0= / (H20(z) = L1 jp00) (2)) daz = / (W20 () dr = / . CECD
0 0 0

This is a contradiction. In the next step we establish the contradiction in the case

max{wf, wl} < 0. (2.377)
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Note that (2.377), the fact that G2(#) = 0, and Proposition 2.16 imply that for all i € {0,1} it
holds that

q?.H q?—q—l
[ a2 @)~ 1@ de = [0 - Lp@)dr =0, (@2378)
q; q;

This, Lemma 2.7, and Corollary 2.9 demonstrate that for all z € [0,q$] it holds that qf =
3/4 — 1/2q% and

0 ra € [0,qf]

4(295-3)

P2y =3 il
9(2q8$—1) T 92901 T € (a1, 93]

(2.379)

Combining this with the fact that I = [0,q¢), the fact that I§ = [0,q}), and the fact that NZ
is continuous shows that for all « € (g4, 1] it holds that

4
#2@) =

3 (2.380)

This and Proposition 2.16 imply that

1 1

! 1 1
0= /0 (W20 (@) = L o0 (2)) da = /q Sdv=2(1- a9).  (2.381)

%
2

(2@ - 1o = [,

a2

This is a contradiction. The proof of Lemma 2.49 is thus complete. U

Lemma 2.50. Assume Setting 2.1 and let 0 € R” satisfy wf < 0 < w§, vfv§ £0 < qf < qf < 1,
and 1/2 € (q9,45). Then
G%(0) #0. (2.382)

Proof of Lemma 2.50. We prove (2.382) by contradiction. Assume that G2(6) = 0. This, the
assumption that mf <0< mg, and Proposition 2.16 imply that for all ¢ € {0,2} it holds that

q?.H q?—q—l
[ a2~ 1@ e = [0 - Lpp@)dr =0, (2389)
q; q;

This and Lemma 2.7 demonstrate that for all z € [0,1]\(q{,q%) it holds that

0 :zel0,q°

N3 (z) = v el eql] (2.384)

Combining this with the fact that I? = [0, q?), the fact that I{ = (g4, 1], and the fact that 4.2’

is continuous shows that for all = € (qf,q3) it holds that NZ%(x) = 0. This is a contradiction.

The proof of Lemma 2.50 is thus complete. O

Lemma 2.51. Assume Setting 2.1 and let 6 € (G*)71({0}) satisfy w§ < 0 < wf, vfv§ £ 0 <
0 < q) <1, and 12 € (¢9,95). Then

1
L2,(0) > —. 2.385

Proof of Lemma 2.51. Observe that Lemma 2.23, Lemma 2.24, and the fact that .4 is contin-
uous imply that

0.0
olx — —a;l s x €0, q?]
0 .0
H2'(@) = q (@ + %) (& —a)) + 5w e (q, qf] (2.386)
0
Br+1 -2 (1+qf) cx € (g8, 1]
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and

=1-=-(1-4). (2.387)

Furthermore, note that the assumption that w$ < 0 < w9 and Proposition 2.16 show that for
all 7 € {0,1} it holds that

2 2,0 2 2,0
[ w20 - b @) de = [0 - Lpp @) do =0, (@2359)
q q

6
i

Combining this and (2.386) ensures that

af 1
0— / Lo (W20(2) — Lo (@) do — / LN (@) — Lo ooy (1)) da
0 A (2.389)
a’ 0\3 i 1 0\3
—E(Ch) _E( —q3)”.

This establishes that a?3° > 0. Combining this and (2.387) proves that min{a?, 3%} > 0. This
and (2.386) imply that for all z € [0, 1] it holds that #/2%(z) < (a? + 3%)a. Therefore, we obtain
that

1< #2%1) <a® +5° (2.390)

This shows that max{a?, 3} > 1/2. In the following we distinguish between the case af > 1/2
and the case 4% > 1/2. We first prove (2.385) in the case

ol > 2. (2.391)

N |

Observe that Lemma 2.6, (2.386), (2.390), and (2.391) demonstrate that

2 a 2,0 (202 d 2 2,0 (22 d
coow)z/o (20(2))% +/q§woo<>>d

> ()2 (q) + — (a? + B2 0y s Lopr L (Log) a2
—ﬁ(a)(%)+ﬁ(0¢ +67 | 5 —a _—(q1)+ﬁ P

1 /1N 1 /1 1\* 1
> () +=(z-2) ==
=48\ 3 2\2 3 864

This proves (2.385) in the case o > 1/2. Next we establish (2.385) in the case

8> % (2.393)
Note that Lemma 2.6, (2.386), (2.390), and (2.393) assure that
a8 1
£2.00) / A2 ) 1 2w <1
> (a4 6 (af - 3)3 (8- ) (2304)
12 ) 12

Sl 13+1(1 9)3>1 2 13+1 . 2\* 1
“1\"73) TRV TR =1 (373) T 3) T 864

This demonstrates (2.385) in the case 3% > 1/2. The proof of Lemma 2.51 is thus complete. [
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Lemma 2.52. Assume Setting 2.1. Then it holds for all 0 € (G*)~1({0}) that

1
= 864"

Proof of Lemma 2.52. Observe that for all § € (G2)~'({0}) with {k € {1,2}: I! = @} # @
there exists ¥ € (G!)~1({0}) such that for all z € [0,1] it holds that #2%(z) = M5’ ().
Combining this and Proposition 2.42 shows that for all § € (G2)~1({0}) with {k € {1,2}: I =
o} # @ there exists ¥ € (G1)71({0}) such that

L2 () > (2.395)

1
=36
Furthermore, note that for all 6 € (G2)~1({0}) with v{v = 0 there exists ¥ € (G')~1({0}) such
that for all z € [0,1] it holds that 4= (z) = /Voloﬁ(x). Combining this and Proposition 2.42
establishes that for all 6 € (G2)~1({0}) with vfv§ = 0 there exists ¢ € (G1)~({0}) such that

1
=36
Furthermore, observe that Corollary 2.34 ensures that for all § € (G?)~'({0}) with {k € {1,2}:
(0,1) C 17} # @ it holds that

L£20)=cl () > (2.396)

L3(0) = LL,(0) > (2.397)

L£2.(6) > (2.398)

=36
Next, note that Corollary 2.35 and Proposition 2.36 assure that for all § € (G?)~!({0}) with
008 #£ 0, qf = g% € (0,1) it holds that
1
=36
In addition, observe that Lemma 2.37 and Lemma 2.38 demonstrate that for all § € (G)~1({0})
with 0908 # 0 < qf < q) < 1 and 12 ¢ (q7,q9) it holds that
1
=36
Moreover, note that Lemma 2.49, Lemma 2.50, and Lemma 2.51 prove that for all § € (G2)~1({0})
with 0008 # 0 < q < q) < 1 and /2 € (47, q9) it holds that
1
= 864

Combining this, (2.396), (2.397), (2.398), (2.399), and (2.400) implies that for all § € (G2)~1({0})
it holds that

L£2.(6) > (2.399)

L3.(0) =

(2.400)

L2 (0) > (2.401)

1
2(0)>—. 2.402
The proof of Lemma 2.52 is thus complete. U
Lemma 2.53. Let A, € C(R,R), » € NU {oo}, satisfy for all v € R that ({J,cn{Ar}) C

CHR,R), Ax(z) = max{z, 0}, sup,cy SUPye|— (o], |z(]| (Ar) (¥)] < 00, and
1 5,y (|0 () — Ao ()] + [(ArY () — L0000 (2)]) =0, (2.403)
let £,: R" = R, r € NU {oo}, satisfy for allr € NU {0}, 0 = (01,...,07) € R7 that

1
ﬁr(é?) = /0 (1(1/2700)(.%') - 67 — Z?:l (944_2‘ [Ar(02+i + (92.%')] )2

and let G: RT — R satisfy for all 6 € {9 € R7: (VL )( ))ren is convergent} that G(0) =
hmrﬁoo(VE )(8). Then it holds for all ©® € C(]0, oo) R7) with ¥t € [0,00): ©; = Oy —
fo s)ds and Lo (0g) < /864 that liminf;_,||O¢|| =

dz, (2.404)
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Proof of Lemma 2.53. Observe that Lemma 2.52 demonstrates that for all § € G=1({0}) it holds
that

1
Loo(0) > —. 2.405
Furthermore, note that, e.g., [23, Lemma 3.1] implies that [0,00) > t — L(©;) € R is

non-increasing. Combining this with (2.405) and Proposition 2.45 assures that for all © €
C([0,00),R7) with V¢ € [0,00): ©; = Og — [, G(O5)ds and Loo(Og) < 1/s64 it holds that
liminfy_,||O¢|| = 0o. The proof of Lemma 2.53 is thus complete. O

2.8 Upper bounds for GF's

Proposition 2.54. Let 0 € N, © € C([0,00),R?), let L: R® — [0,00) and G: R® — R® be
measurable, and assume for all t € [0,00) that L(Oy) = L(Og) — ngg(@s)H2 ds and ©, =
©p — f(f G(Os)ds. Then it holds for all t € [0,00) that

10cll < 180l + £21£(©0) — L(©4)[* < |80l + [tL(©0)]*. (2.406)

Proof of Proposition 2.54. Observe that the assumption that for all ¢ € [0,00) it holds that
O =06y — f(f G(©s) ds, the triangle inequality, and the Cauchy-Schwarz inequality ensure for
all t € [0,00) that

t t 1/2
16 < 100l + /0 16(0.) ] ds < [|©o]| + V2 [ /0 ”g(@s)”st} ' (2407)

Hence, we obtain that for all ¢ € [0, 00) it holds that
104l < €0l + *[L(©0) = L(O:)|* < [|60]| + [t£(O0)] . (2.408)

The proof of Proposition 2.54 is thus complete. U

3 Non-existence of global minima of the risk and divergence of
GFs and gradient descent (GD) for widely used activation
functions

In this section we establish, in the case of at least two neurons on the hidden layer, the non-
existence of global minima employing various activation and target functions. Next we show
the blow up of GF's under a specific asymptotic optimality assumption regarding the risk values.
The key idea is to prove that there exists a sequence of ANN parameters such that the risk
converges to zero and to consequently demonstrate that the set of global minima is empty.
After proving this, Corollary 3.29, Corollary 3.30, and Corollary 3.31 in Subsection 3.8 assure
the divergence of GFs under the assumption that the risk of GFs converges to the infimum of
the risk while Corollary 3.33, Corollary 3.35, and Corollary 3.37 in Subsection 3.8 prove the
corresponding result in the discrete-time case. Related results can be found in [30, Proposition
3.6]. Corollary 3.29, Corollary 3.30, and Corollary 3.31 are based on Lemma 3.28, demonstrated
using compactness and continuity properties, and the well-known deterministic Ito-type formula
for continuously differentiable functions, see, e.g., [9, Lemma 3.1]. Corollary 3.33, Corollary 3.35,
and Corollary 3.37 follow from Lemma 3.32.

Choosing the square function as target function we establish the non-existence of global
minima in the case of softplus activation in Lemma 3.11 in Subsection 3.3, in the case of
standard logistic, hyperbolic tangent, arctangent, and inverse square root unit activation in
Lemma 3.21 in Subsection 3.4, in the case of exponential linear unit activation in Lemma 3.25
in Subsection 3.6, and in the case of softsign activation in Lemma 3.27 in Subsection 3.7. The
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proofs of Lemma 3.11 and Lemma 3.21 employ properties of real analytic functions and are
inspired by [30, Theorem 3.3]. The proofs of Lemma 3.25 and Lemma 3.27 instead use a
comparison between target and realization function derivatives.

Employing an indicator function as target function we demonstrate the non-existence of
global minima in the case of ReLU and leaky ReLU activation function in Lemma 3.6 in Sub-
section 3.2. Its proof uses Proposition 3.2, Proposition 3.3, Lipschitz continuity results in
Lemma 3.4, and elementary properties of realization functions in Lemma 3.5.

In the case of rectified power unit activation we instead establish in Lemma 3.23 in Sub-
section 3.5 the non-existence of global minima using as target function the rectified power unit
itself with a smaller exponent. Ingredients employed in the proof are Proposition 3.22 and a
continuity study inspired by [30, Theorem 3.3].

Also notably, we show the non-existence of global minima for every number of hidden neurons
in Lemma 3.9 in Subsection 3.3 employing the ReLLU function as target function and the softplus
activation function and in Lemma 3.20 in Subsection 3.4 using the identity function as target
function and standard logistic, arctangent, and inverse square root unit activation. The proofs
of Lemma 3.9 and Lemma 3.20 are inspired by [30, Theorem 3.3].

3.1 Mathematical description of ANNs

Setting 3.1. Let ¢ € R, ¢ € (@,), £ € (0,00), h,0 € N satisfy 0 = 3h + 1, let v =
((of,...,5))pero: R® = R, b = ((b{,...,b]))pero: R® = R", 0 = ((v],...,07))gero: R® —
R", and ¢ = (!)gepo: R® — R satisfy for all § = (01,...,0,) € R®, j € {1,2,...,h} that
m? =0, b;’- = Onyj, U;’- = Oopyj, and ¢ = 0, for every k € Z, v € R let Ay : R — R satisfy
for all x € R that

(2(1 + |z|)! k< —5
arctan(z) tk=-5
z(1 4 &)~ tk=—4
2 = 21 (0,00) () + (exp(z) — 1)1 (—o00] () ck=-3
A1) =3 (exp(a) — exp(—a))(exp(e) + exp(—2)T < k = -2 (3
(14 exp(—z))~! ck=-1
In(1 + exp(x)) k=0
\(max{x,O})k + min{vyz, 0} k>0

and let Ay € C(R,R), r € NU {oo}, satisfy for all z € R that (U,en{A%,}) C C1(R,R),
AR (z) = Ay (2), SUPen SUDye[_ || || (A% ;) (¥)] < 00, and

: T %) T : A (z+h)—AP (2)
tim sup, o (A, (2) — A, )| + | (AR, (&) — iy, g D) — g (39)
for every 0 e R°, r e NU{cc}, k€ Z, vy € R let ‘/V,f’;: R — R satisfy for all x € R that
h
MT (@) = + > ol (A} (wlz +67)], (3.3)
i=1

let f: R — R be measurable, for every r € NU {0}, k € Z, v € R let Ezﬁz R® — R satisfy for
all € R? that .
r o,r 2
£ (0) = [ (F@) = @)’ da. (3.4)

@

and for every k € Z, v € R let Gy : R® — R satisfy for all § € {9 € R°: (VL) (@))ren
is convergent} that Gy (0) = lim, o (VLE )(6).
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3.2 ANNs with ReLU and leaky ReLU activation

Proposition 3.2. Assume Setting 3.1, assume h > 1, assume for all x € R that f(z) =
L((e+)/2,00) (), let y € (—00,0], and let (6p)nen € R? satisfy for alln € N that o] = i = (n+
3)(26—2¢)7 1, b0 = —(14n) 4 —a(n+3)(26—22) "1, by = —(5+n)4~ ' —a(n+3)(26—-22)7 1,

n __ n __ — n h n n n|
o =~ = (1= )", and | + Sy (1ol + [67°] + o] = 0. Then

lim sup,,_, oo £75(60r) = 0. (3.5)

Proof of Proposition 3.2. Note that (3.3) ensures that for all n € N, x € [, 4] it holds that

1
W) = max{— +n  a(n+3) n+3 0}

1 2-a) 26-a)"

(3.6)
54n «a(n+3) L +3 0
— maxq — — T .
4 26 —a) 206-a)’
This implies that for all n € N it holds that
4
L7500 = | (Lcsnaner(@) = 5™ (@) da
@
/@2% ( 1+n a(n+3) n+3 )2
_ — — + | dz
at E5RLm) 4 26 —a) 26— «)
f—)(5+n 3.7
+/@+(fz(73f;§) 5+n @(n—l—?))+ n-+3 2d 3.7
— — x T
ate 4 200 —a) 26-a)
4t 1\ 2 a+SHEE 1N 2 PR
< =] dx+ =] dox=——.
ot 50 2 ett 2 2(n+3)
Therefore, we obtain that
lim sup,,_, o, £75(0r) = 0. (3.8)
The proof of Proposition 3.2 is thus complete. U

Proposition 3.3. Assume Setting 3.1, assume h > 1, assume for all x € R that f(z) =
L((e+)2,00) (), let v € (0,00)\{1}, and let (0n)nen C R? satisfy for all n € N that woi" = i =
(n+3)26-2a), 60" = —(1+n)4 ' —a(n+3)26—2a) L, b5 = —(5+n)d' —a(n+
— n n — n — — h n n n|
?}EQﬁ—2@) Lol = gt = (=) = —y(1 =), and 7 |wf |+ |65 |+ [0 | = 0.
en

lim sup,,_, o, £75(0r) = 0. (3.9
Proof of Proposition 3.3. Observe that (3.3) ensures that for all n € N, € R it holds that
f—a)(1
0 cx € e, e+ (f-a)(lin) 2(0;%5”)]
On, +3 . b—a)(1+ b—a)(5+
Mo () = { —n 5“((,;?1@; + e twe(a+ E 2(0%3)7137@ 4 2&)i3>")] (3.10)
. b—a)(5+
1 T e (d + W, ﬁ]
This implies that for all € R it holds that
3 0717
lim sup,, o0 [ 75 %(2) = L((atays,00) ()] = 0. (3.11)

Furthermore, note that (3.10) assures that for all n € N, x € [, 4] it holds that |./V1(ff{(:c) -
f(z)] < 1. Combining this with (3.11) and Lebesgue’s dominated convergence theorem demon-
strates that

lim sup,,_, o, £75,(0r) = 0. (3.12)

The proof of Proposition 3.3 is thus complete. O
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Lemma 3.4. Let ¢ € R, 6 € (e,), let f: [a,d] — R satisfy for all v € [@, 8] that f(x) =
L((e+a))2,00)(7), and let L € R, g € C([e, 8], R) satisfy for all x,y € [, 8] that |g(x) — g(y)| <
L|z —y|. Then
4 ) 1
) —g(z)) " dz > . 3.13
[ @) =gt e > g (313)
Proof of Lemma 3.4. Throughout this proof let ¢ € R satisfy
c=max {L,(t—a)}. (3.14)
Observe that (3.14) assures that for all x,y € [«, 4] it holds that
l9(x) = g(y)| < clz —yl. (3.15)
In the following we distinguish between the case g((¢+4)/2) > 1/2 and the case g((«+4)/2) < 1/2.
We first prove (3.13) in the case
o+ 1
_— —. 3.16
s(“5) > 3 (3.16)
Note that (3.15) and (3.16) imply that for all x € [(e+4)/2 — 1/2¢, («+4)/2] it holds that
1 @+ @+ @+
< o2 27 (22 ) < , ,
0_2 c< 5 x><g< 5 ) c< 5 x>_g(m) (3.17)
This proves that
o+ u_—l»ﬂ 1
2
dz > 1 — I de = —. 3.18
/"T*‘f . x)|dx / cle+8))+cxde % (3.18)
Combining this and the Cauchy-Schwarz 1nequahty demonstrates that
wtb
2 2 2
J @ sz [ 2 1@ - gwP e
e > (3.19)
2
>2 = —.
> 20 ( [ ot dw> e
2 2c
This establishes (3.13) in the case g((e+%)/2) > 1/2. In the next step we prove (3.13) in the case
o+ 1
— ) < = 3.20
s(“5) <3 (3.20)
Observe that (3.15) and (3.20) imply that for all x € [(e+4)/2, (e+4)/2 4 1/2¢] it holds that
A 4 4 1
g(x)ﬁc(x—%>+g<%>§c<x—%>—l—§§l. (3.21)
This proves that
R d e 1 1 1 I/ d 1 3.22
> —=(1- - = .
[ T awiarz [T j0 e k) =g 62
Combining this and the Cauchy-Schwarz inequality demonstrates that
a+b 1
)2 R 2
5@ - swrarz [T 1w - g

2

(3.23)

1

o [ d o
oc( [ - glas) = o

2

This establishes (3.13) in the case g ((¢+4)/2) < 1/2 The proof of Lemma 3.4 is thus complete. O
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Lemma 3.5. Assume Setting 3.1 and let § € R?, v € R\{1}. Then
0, 0, _
SUD yelo a), ey (915 (@) = AL W)l = w171 < (1 + )lIe]*. (3.24)

Proof of Lemma 3.5. Note that the fact that (/Vle,,’yoo is continuous and the fact that ‘/Vl(?,’yoo is
piecewise affine linear imply for all z,y € [«, &] that

(@) = 40 )] < max{1, 7} (S8 wlof]) oyl < 1+ hDI6IPe — gl (3.25)
This demonstrates that
0, 8, _
SUD, yefa. ], oy (915 (@) = A" W)l — 1) < (L + D19 (3.26)
The proof of Lemma 3.5 is thus complete. U

Lemma 3.6. Assume Setting 3.1, assume h > 1, assume for allxz € R that f(x) = L(w+s)/2,00) (),
and let v € R\{1}. Then

{9 € R: L3 (V) = infpepo L,(0)} = @. (3.27)

Proof of Lemma 3.6. Observe that Proposition 3.2 and Proposition 3.3 imply that infycgo Li’f’y(ﬁ) =
0. Furthermore, note that Lemma 3.4 and Lemma 3.5 ensure for all # € R® that

1
> .
= B2max{(L+ N0 Vio—a)}

L3 (6) (3.28)

This implies that {0 € R®: £ (¥) = 0} = @. The proof of Lemma 3.6 is thus complete. O

3.3 ANNs with softplus activation

Lemma 3.7. Assume Setting 3.1 and let v € (0,00), 6 € R* satisfy ¢ =0, b = —r(a +4£)271,
wf =7, and v = 1/r. Then it holds for all x € R that 0 < ./Vo(?(’]oo(zc) —max{z — (e+4)/2,0} < 1/r.

Proof of Lemma 3.7. Observe that (3.3) ensures that for all z € R it holds that

1
(/Vo%oo(x) = In <1 + exp <7“:c & ;_ ﬁ)) . (3.29)

Furthermore, note that for all x € [0,00) it holds that

x <In(l+exp(x)) <z+ 1. (3.30)

Combining this and (3.29) establishes for all x € [(+4)/2, 00) that

g 1
0 < M) —o+ I < (3.31)
Moreover, observe that for all z € (—o0,0] it holds that
0 <In(1+exp(rz)) <exp(rz) < 1. (3.32)

Combining this and (3.29) implies for all x € (—oo, (e+4)/2] that 0 < ./V(f’ooo(x) < 1/r. This and

(3.31) show that for all € R it holds that 0 < ./V(f’ooo(m) —max{z — (e+4)/2,0} < 1/r. The proof
of Lemma 3.7 is thus complete. O
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Proposition 3.8. Assume Setting 3.1, assume h > 1, assume for all x € R that f(x) = 22, and

let (0n)nen C R satisfy for alln € N that wir = —wi» = 1/n, 6 = b5 = 0, vf» = vl = 4n?,
h On On On

¢ = —8n?1n(2), and > iz oy + b3 + 07| = 0. Then

lim sup,, o L570(0n) = 0. (3.33)

Proof of Proposition 3.8. Note that (3.3) ensures that for all x € R, n € N it holds that
N (z) = 4n®In <1 + exp (£>> + 4n%1n (1 + exp <—£>> — 8n%1n(2). (3.34)
’ n n
This and the fact that there exists ¢ € (0,00) such that for all x € [—1,1] it holds that

|In(1 + exp(z)) — In(2) — z/2 — =°/s| < c|z3| assure that there exist ¢, M € (0, 00) such that for
all z € [@, 4], n > M it holds that

0717
™) — %] < | 2 (3.35)
This and Lebesgue’s dominated convergence theorem demonstrate that
/ 2
lim sup,, o, £670(0n) :/ lim sup,, o (2% — ./VOG’S’OO(.%')) dz =0. (3.36)
£
The proof of Proposition 3.8 is thus complete. U

Lemma 3.9. Assume Setting 3.1 and assume for all x € R that f(z) = max{x — (e+4)/2,0}.
Then
{9 e R*: L55(9) = infepo LGH(0)} = 2. (3.37)

Proof of Lemma 3.9. Observe that Lemma 3.7 proves that for every r € (0,00) there exists
9, € R® which satisfies for all z € R that |/Vd?6’°°(:n) — max{z — (e+4)/2,0}| < 1/r. This implies
that for every r € (0,00) there exists 9, € R such that £§5(v,) < (¢=)/r2. Hence, we obtain
that infyege £55(0) = 0. Furthermore, note that for all § € R? it holds that /l/(]e,(’)oo € C®(R,R).
We prove (3.37) by contradiction. Assume that there exists ¢ € R® which satisfies that

5 (9) = 0. (3.38)

Observe that (3.38) ensures that for all x € [«, 4] it holds that ./Vo?o’oo(x) = max{z — (e+4)/2,0}.

This demonstrates that /1/07?()00 € C([e,8],R)\C!([e,],R) which is a contradiction. The proof
of Lemma 3.9 is thus complete. ]

Lemma 3.10. Assume Setting 3.1, assume h > 1, and assume for all x € R that f(x) = z.
Then
{9 € R®: L§H(9) = infgera LH(0)} # @. (3.39)

Proof of Lemma 3.10. Let ¥ € R? satisfy for all i € {1,2,...,h}\{1,2} that w? = —w) = v} =
—oY =1 and by = b = wY = v? = bY = ¢/ = 0. This proves that for all z € R it holds that

1 + exp(z)

%v?éoo(x) = In(1 + exp(x)) — In(1 + exp(—2z)) = In <1 T oxp(—z)

> = In(exp(x)) = z. (3.40)

Therefore, we obtain that £55(9) = 0. This and the fact that for all § € R® it holds
that £55(0) > 0 demonstrates that ¢ € {v € R®: LG(v) = infyepo L55(0)}. The proof
of Lemma 3.10 is thus complete. O
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Lemma 3.11. Assume Setting 3.1, assume h > 1, and assume for all z € R that f(z) = 22

Then
{9 € R: L§H(9) = infyera LH(0)} = @. (3.41)

Proof of Lemma 3.11. Note that f is real analytic. Furthermore, observe that for all § €
R? it holds that ‘/VOG,(’)OO is real analytic. Moreover, note that Proposition 3.8 ensures that
infgepo L§5(0) = 0. We prove (3.41) by contradiction. Assume that there exists ¢ € R°
such that

00(¥) = 0. (3.42)

Observe that (3.42) establishes that for all z € [, #] it holds that f(x) = ./VOI?(’]OO (). Combining
this with the fact that f and ./1/01790’OO are real analytic implies for all x € R that

1,00
f(z) = M09 (x). (3.43)
Note that for all z € R it holds that
h 9. 9 9 9 h
0o v} exp(w}z + b})
NI ()] = kk k k7| < oV ro?|. 3.44
5 @) =3 2 ey | < O il (34

This, the fact that f’ is unbounded, and (3.43) show the contradiction. The proof of Lemma 3.11
is thus complete. O

3.4 ANNs with standard logistic, hyperbolic tangent, arctangent, and in-
verse square root unit activation

Proposition 3.12. Assume Setting 3.1, assume for all x € R that f(x) = z, and let (0,,)nen C
R® satisfy for all n € N that wi" = 1/n, b9 =0, v = 4n, > = —n, and Z?:z ]m?”! + ]b?"\ +
\U?”] = 0. Then

lim sup,,_, o, £ 5(0n) = 0. (3.45)

Proof of Proposition 3.12. Observe that (3.3) ensures that for all z € R, n € N it holds that
0,00 x
N1 (@) =a-10 <E) 4n — 2n. (3.46)

This and the fact that there exists ¢ € (0,00) such that for all z € [—1,1] it holds that
la_10(x) — 1/2 — /4 4 2°/ag| < c|x*| demonstrate that for all x € R it holds that
lim sup,, |./V6T,’§°(x) —z|=0. (3.47)

Furthermore, note that the mean-value theorem demonstrates that for all x € R there exists
T € [min{0, z}, max{0,z}] which satisfies that a_10(x) —1/2 = za’ ((Z). This and the fact
that a’_LO is continuous imply that there exists L € R such that for all x € [@,4], n € N it
holds that

(W5 () — 2| = [4n(a—r0(2/n) — 1/2) — @] = |a][4a’_y o(Z) — 1|

B (3.48)
< max{|al, |#]}4a", o() — 1| < L.
Combining this, (3.47), and Lebesgue’s dominated convergence theorem proves that
g 2
limsup,, o £ o(0n) = / lim sup,,_,~ (./Vf’f,’go(:v) —z) dz=0. (3.49)
@
The proof of Proposition 3.12 is thus complete. U
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Proposition 3.13. Assume Setting 3.1, assume h > 1, assume for all x € R that f(x) = 22,

and let (Bp)nen C R? satisfy for all n € N that wi" = —wl = —1/n, b = bir = —1, vf» =
o = n2(1+e)¥(e(e— 1)L, ¢ = —2n2(1+e)2(e(e— 1)L, and 'y ol |+ [60" |+ o’ | = 0.
Then

lim sup,, ﬁiol,o(‘gn) =0. (3.50)

Proof of Proposition 3.13. Observe that (3.3) ensures that for all z € R, n € N it holds that

1+e)3 1 1 (1+e)?
Wy — 2! . — ] —2n? : 3.51
~1p (z)=n ele—1)\1+e nt! * 1+ent! " e(e—1) (3:51)

This and the fact that there exists ¢ € (0,00) such that for all € [—1, 1] it holds that

1 1 — 1)z?
‘ ex _ele=Da|_ 1) (3.52)

I+emtl  T4+e (1+e)2 2(1+e)p3

assure that there exist ¢, M € (0,00) such that for all € [«,#], n > M it holds that

1

e (@) —a® < e —‘ (3.53)

This and Lebesgue’s dominated convergence theorem demonstrate that

g 2
lim sup,, o £ o(0n) = / limsup,,_, o (2 — ./V_eilgo(x)) dz =0. (3.54)
£

The proof of Proposition 3.13 is thus complete. O
Proposition 3.14. Assume Setting 3.1, assume h > 1, assume for all x € R that f(x) = 22,
and let (0y)nen C R? satisfy for alln € N that wi" = —mg” = 1/n, [J(f" = bg" =—1,0" = Ug" =

- - h n n n J—
n?(14¢e2)3(8e%(e? — 1)) 71, ¢ = n?(1+€*)*(4e®) 7!, and Y"_g [l | + [67"] + [00"| = 0. Then
limsup,, o, £ (6n) = 0. (3.55)

Proof of Proposition 3.14. Note that (3.3) ensures that for all z € R, n € N it holds that

0, OO( ) n2(1 + 62)3 e%fl _ 67%4’1 67%71 _ 6%H n2(1 + 62)2 (3 56)
¥ r) = z T T T . .
—20 8e2(e2 — 1) \en e ntl e nlypent! 4e2
This and the fact that there exists ¢ € (0,00) such that for all € [—1, 1] it holds that
el — gmrHl 1= e? B 4e’x B 4e?(e? — 1)a? < oz (3.57)
ea}—l +e—m+1 1 +€2 (1 +€2)2 (1 +€2)3
assure that there exist ¢, M € (0,00) such that for all € [«,#], n > M it holds that
Gnyoo 2 1
|50 (x) — 2] < c|= (3.58)
This and Lebesgue’s dominated convergence theorem demonstrate that
! 2
limsup,, o £7% o (0n) = / limsup,,_, o (2° — ./Vfg,’go(x)) dz = 0. (3.59)
-1
The proof of Proposition 3.14 is thus complete. U
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Proposition 3.15. Assume Setting 3.1, assume for all x € R that f(x) = z, and let (0,)nen C
R® satisfy for alln € N that wi" = 1/n, 09 = n, and ]b?”\—i—\cenl—i-z;lﬁ !m?”\ﬂb?”\ﬂn?”] =0.
Then

lim sup,,_, oo £ ¢(0n) = 0. (3.60)

Proof of Proposition 3.15. Observe that (3.3) ensures that for all z € R, n € N it holds that

6,00 x
N () = . 3.61
i = e (3:61)
This shows that for all x € R it holds that
lim sup,,_, \./VG"’ (x) — x| =0. (3.62)

Furthermore, note that (3.61) implies that for all z € R, n € N it holds that
0360 ()] < . (3.63)

This, (3.62), and Lebesgue’s dominated convergence theorem demonstrate that

4
lim sup,, oo £ (0n) = / lim sup,, . (z — /V_ei’go(x))z dz =0. (3.64)
@
The proof of Proposition 3.15 is thus complete. O

Proposition 3.16. Assume Setting 3.1, assume h > 1 and £ < 3, assume for all x € R that
f(x) = 22, and let (0p)nen C R? satisfy for all n € N that wi" = —wir = 1/n, vf" = ofr =
On On n 3 — h On On
—(§+4)2n (486)71, by = by = 1/2, ¥ = (£4+4)2n?(486/1 + &)1, and 327 [0 [+[b5" |+
\U?”] = 0. Then
lim sup,, o, £ ¢(6r) = 0. (3.65)
Proof of Proposition 3.16. Observe that (3.3) ensures that for all z € R, n € N it holds that

_x 1

(6 +4)3n? B3
n n . (3.66)
B \Yrre 42 ¢1+s<z by ¢1+€

This and the fact that there exists ¢ € (0,00) such that for all € [—1, 1] it holds that

N6 () = =

T+ 1 8z 24¢a?

— _|_ =
€+4)?

' - = §C|x3| (3.67)
Vg1 E+97 (E+4):

assure that there exist ¢, M € (0,00) such that for all € [«,#], n > M it holds that

1
050 (@) —a?| < e —‘. (3.68)
: n
This and Lebesgue’s dominated convergence theorem demonstrate that
’ 0 2
lim sup,, o £ o(0n) = / limsup,,_, o (2% — ./V_Z:So(x)) dz =0. (3.69)
@
The proof of Proposition 3.16 is thus complete. O

Proposition 3.17. Assume Setting 3.1, assume for all x € R that f(x) = z, and let (0,)nen C
R? satisfy for alln € N that w’ = 1/n, vi" = n, and ]b?”\—i—\cenl—i-z;lﬁ !m?”\ﬂb?”\ﬂn?”] =0.
Then

lim sup,,_, oo £75 ¢(0n) = 0. (3.70)
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Proof of Proposition 3.17. Note that (3.3) ensures that for all z € R, n € N it holds that
O, ,00 x
N 5o (z) = narctan <E) (3.71)
This shows that for all € R it holds that
lim sup,,_, |A/fg”go(x) —z| =0. (3.72)
Furthermore, observe that (3.71) implies that for all x € R, n € N it holds that
9”7
V250 ()] < =, (3.73)

This, (3.72), and Lebesgue’s dominated convergence theorem demonstrate that

4
lim sup,,_, oo £ (0n) = / lim sup,, o (2 — /Vfg:go(x))Q dz =0. (3.74)
@
The proof of Proposition 3.17 is thus complete. O

Proposition 3.18. Assume Setting 3.1, assume h > 1, assume for all x € R that f(z) = x*,
and let (0p)nen € R® satisfy for all n € N that wi" = —mg” = 1/n, U(i" = Ug" = —2n?,
On On n h On On On| _

bf" =65 =1, ¢ = n’n, and > jog it [+ (65" + 0| = 0. Then

lim sup,,_, oo £75 ¢(0n) = 0. (3.75)
Proof of Proposition 3.18. Note that (3.3) ensures that for all z € R, n € N it holds that
/V_egjgo(x) = —2n? arctan (% + 1) — 2n? arctan < - % + 1) + 0. (3.76)
This and the fact that there exists ¢ € (0,00) such that for all x € [—1,1] it holds that

2
arctan(z + 1) — % - % + % < || (3.77)

assure that there exist ¢, M € (0,00) such that for all € [@,#], n > M it holds that

1
50 (@) =2 < |- (3.78)
’ n
This and Lebesgue’s dominated convergence theorem demonstrate that
14 0 9
limsup,, o £75 0(0n) = / limsup,,_, o (2% — ./Vfg,’go(x)) dz = 0. (3.79)
£
The proof of Proposition 3.18 is thus complete. O

Lemma 3.19. Assume Setting 3.1 and let § € R®. Then there exists ¢ € R such that for all
ke{-1,-2,-4,-5}, = € R it holds that

A ()] < e. (3.80)

Proof of Lemma 3.19. Observe that (3.1) ensures that for all j € {—1,—-2,—4, -5}, x € R it
holds that

% :k=-5
2l < L k= —4
= . ==
jajolx)] < V& (3.81)
: exp(x)-+exp(—a) o
(@) tow(—a) <1 k=2
1 tk=-1
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Hence, we obtain that for all j € {—1,—2,—4, -5}, € R it holds that

h x T
|+ 2o §|U?|§§H9H2 tk=-5
0 h 1.0 1 2
5y < |17 St Tl < el o)
7]+ > (07| < [0 tk=-2
h
<] + oy [0f] < [|6]? tk=-1.
This implies that for all j € {—1,—-2,—4, -5}, x € R it holds that
T 1
75 (@)] < max{ 5 [16], —=16]1°}. (3.83)
.770 2 \/g
The proof of Lemma 3.19 is thus complete. 0

Lemma 3.20. Assume Setting 3.1, let k € {—1,—4,—5}, and assume for all x € R that
f(x) =z. Then
{9 e R?: LZ5(0) = infpero L75(0)} = @. (3.84)

Proof of Lemma 3.20. Note that f is real analytic. Furthermore, observe that for all # € R° it
holds that /Vkeboo is real analytic. Moreover, note that Proposition 3.12, Proposition 3.16, and
Proposition 3.17 ensure that for all j € {—1, —4, —5} it holds that infycge L35(0) = 0. We prove
(3.84) by contradiction. Assume that there exists 9 € R® which satisfies that

(@) = 0. (3.85)

Observe that (3.85) establishes that for all x € [, #] it holds that f(z) = ./Vkﬁéoo (). Combining
this with the fact that f and ./V;(’]Oo are real analytic implies for all x € R that

f(@) = H5 (@). (3.86)

Note that Lemma 3.19 assures that there exists ¢ € R such that for all j € {—1,—4,-5}, z € R
it holds that

197
@) < e (387)
Combining this, the fact that f is unbounded, and (3.86) shows the contradiction. The proof
of Lemma 3.20 is thus complete. ]

Lemma 3.21. Assume Setting 3.1, let k € {—1,—2,—4, -5}, assume h > 1, assume & < 3,
and assume for all x € R that f(z) = x>. Then

{9 e R”: L7H(0) = infgere LT5(0)} = 2. (3.88)

Proof of Lemma 3.21. Observe that f is real analytic. Furthermore, note that for all § € R®
it holds that ./Vk(f’(]OO is real analytic. Moreover, observe that Proposition 3.13, Proposition 3.14,
Proposition 3.18, and Proposition 3.16 ensure that for all j € {—1,—2,—4, -5} it holds that
infgego £35(0) = 0. We prove (3.88) by contradiction. Assume that there exists © € R® such
that

ko(¥) = 0. (3.89)

Note that (3.89) establishes that for all z € [, 4] it holds that f(x) = /Vkﬂ(’)oo(x). Combining
this with the fact that f and ./Vkﬁéoo are real analytic implies for all x € R that

fl@) = H5 (@) (3.90)
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In addition, observe that Lemma 3.19 assures that there exists ¢ € R such that for all j €
{-1,-2,—4,-5}, z € R it holds that

6% (@) < c. (3.91)
This shows that for all j € {—1,-2,—4, -5}, = € R it holds that supweR\./Vj?doo(x)\ < 00.
Combining this with (3.90) assures that
197
00 = supeg |27] = sup,eg | f ()| = sup,er [0 (2)] < oo. (3.92)
This contradiction establishes (3.88). The proof of Lemma 3.21 is thus complete. O

3.5 ANNSs with rectified power unit activation

Proposition 3.22. Assume Setting 3.1, assume h > 1, let k € N\{1} satisfy for all x € R that
f(x) = (max{z —(e+8)/2,0})*~1 and let (8,)nen C R® satisfy for alln € N that wi" = wi" =1,
6" = U —(at0)2, by = —(ata)fa, 08 = —vY" = n/k, and ||+ 2" ol | + |60 + 00| = 0.
Then
lim sup,,_, o L5 0(0n) = 0. (3.93)
Proof of Proposition 3.22. Note that (3.3) ensures that for all z € R, n € N it holds that
./ngg’oo(:c) = %(max{:c + Un — (a+6)/2,0})F — %(max{:c — (a+8)/2,0})F

k—i —
=S @-=)T @ e [t )
— —1 -
(w-9)" + 35 () (@497 "G rwe [ 00),

This implies that for all € R it holds that

lim sup,,_,~ |/Vk€8’°°(x) — (max{z — (e+8)/2,0})F71| = 0. (3.95)
Furthermore, observe that (3.94) proves that for all z € R, n € N it holds that
: e (~on b+ 230
s> (@) < { & cwe [+ gt 4fr) (3.96)

3 k—1 1 k k g k—i . 3
(#-25%)" +1 e (5) (r—55) we[5ho0).
This, (3.95), and Lebesgue’s dominated convergence theorem demonstrate that
14

lim sup,, o Lo(0n) = / lim sup,,_,  ((max{z — (e+4)/2, 0}k — ‘/ng’g’oo(g;))Q dz = 0. (3.97)
The proof of Proposition 3.22 is thus complete. U

Lemma 3.23. Assume Setting 3.1, assume h > 1, and let k € N\{1} satisfy for all x € R that
f(z) = (max{z — («+8)/2,0})k~1. Then

{9 e R”: L7H(0) = infgere L35(0)} = 2. (3.98)
Proof of Lemma 3.23. Note that the fact that k¥ € N\{1} ensures that for all § € R® it holds
that ./VkebOO € C*Y([e,4],R). Furthermore, observe that Proposition 3.22 establishes that

infyego £5%(0) = 0. We prove (3.98) by contradiction. Assume that there exists ¥ € R® such
that

mo(?) =0. (3.99)
Note that (3.99) implies that for all = € [, #] it holds that
M52 (x) = (max{z — (e+6)/2, 0})F L. (3.100)

This establishes that A/kﬂéoo € C* ([, d],R)\C*([«,4],R) which is a contradiction. The
proof of Lemma 3.23 is thus complete. O
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3.6 ANNSs with exponential linear unit activation

Proposition 3.24. Assume Setting 3.1, assume h > 1, assume for all x € R that f(x) = 22,

and let (0p)nen C R satisfy for all n € N that w]" = —m§" = —1/n, b?” = bg" = —2|4|,
U(f” = Ug" = n2e2l4l I = —2n2(1 — 29, and 2?23 \m?”\ + \b?”] + \U?”] =0. Then
hmsupn—)oo £303,0(9n) = 0. (3101)

Proof of Proposition 3.24. Observe that (3.3) ensures that for all z € [, #], n € N it holds that

./Vfgy’go(x) = 2lp2(e =% — 1 4 7200 — 1) —2n2(1 — 27N

. (3.102)
=n2(en +en —2).
This and the fact that there exists ¢ € (0,00) such that for all x € [—1,1] it holds that
72
ex—l—x—7 < |z (3.103)
assure that there exist ¢, M € (0,00) such that for all x € [, #], n > M it holds that
0,00 2 1
|50 (2) — 2| < c|— (3.104)
’ n
This and Lebesgue’s dominated convergence theorem demonstrate that
’ 0 2
lim sup,, o £ o(0n) = / limsup,,_, o (2% — ./V_ggo(x)) dz =0. (3.105)
@
The proof of Proposition 3.24 is thus complete. U

Lemma 3.25. Assume Setting 3.1, assume h > 1, and assume for all z € R that f(x) = 2.

Then

Proof of Lemma 3.25. Note that Proposition 3.24 implies that inf,cpo ESO&O(H) = 0. We prove
(3.106) by contradiction. We thus assume that there exists ¥ € R? which satisfies that

Observe that (3.107) implies that for all z € [«, 4] it holds that
NS (@) = 2. (3.108)

Therefore, we obtain /V_ﬂgfg € C*([w,4],R). This demonstrates that for all i € {1,2,... h} it
holds that {z € (@,4): wlz +bY < 0} € {(@,4),@}. For every i € {1,2,...,h} let Q° C R
satisfy Q' = {x € (@,4): wlz +bY < 0} and let S C N satisfy S = {i € {1,2,...,h}: Q' =
(@, 4)}. In the following we distinguish between the case |\S| = 0 and the case |S| > 0. We first
establish the contradiction in the case

1S| = 0. (3.109)

Note that (3.109) ensures that there exist «, 5 € R such that for all z € [«,#] it holds that
/lfigéog(x) = ax + [ which is a contradiction. In the next step we establish the contradiction in
the case

|S| > 0. (3.110)
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For every i € S let y; € R satisfy y; = v? exp (m?(fo+ﬁ/2) + b’;), let k£ € N satisfy |S| = k, and
assume without loss of generality that S = {1,2,...,k}. Observe that (3.108) proves that for
all n € NN (2,00), = € [@, 4] it holds that

0= (W2%5) M (@) = Xicgvf (W) exp(wfz +bY)  and 2= ()P (x).  (3.111)

This implies that

(3.112)
and (mqf)k+2y1 4+ ...+ (mz)k“yk =0.

Hence, we obtain there exists n = (11, ...,nx) € R¥ such that for all j € S it holds that

& .

Sy ()2 = (w?)2, (3.113)
This and (3.112) show that 0 = (10y)?y; +...+ (w?)?yx = 2 which is a contradiction. The proof
of Lemma 3.25 is thus complete. O

3.7 ANNs with softsign activation

Proposition 3.26. Assume Setting 3.1, assume h > 1, assume for all x € R that f(x) = 22, let
¢ € R satisfy ¢ = max{|a|,|4|}, and let (8,)nen C R® satisfy for alln € N that wi» = —wi =
Vn, 07" = 05" = ~(e+D%n?f2, bi" = 05" = ¢, I = o(e+1)?n?, and 3] |wi"[+(6]" [+ (0] | = 0.
Then

lim sup,,_, o, £2%0(0n) = 0. (3.114)

Proof of Proposition 3.26. Note that (3.3) ensures that for all z € R, n € N it holds that

1 3,,2 T4 —Z 4
./Vfg:SO(;g):_(ch )n( L4 Z4¢ >+0<0+1)2n2‘ (3.115)

+
2 I+]284¢ 1+|-24¢
This and the fact that there exists ¢ € (0,00) such that for all x € [—1, 1] it holds that

2
< || (3.116)

x+ ¢ R x n x
l4z4+¢ ¢+1 (e+1)2 (e+1)3

assure that there exist ¢, M € (0,00) such that for all € [@,#], n > M it holds that

1

|0 (r) —a?| < e —' . (3.117)
) mn

This and Lebesgue’s dominated convergence theorem demonstrate that

14
lim sup,, o £2%0(0n) = / limsup,,_, o (2 — ./1/7987’30(36))2 dz =0. (3.118)
£
The proof of Proposition 3.26 is thus complete. U

Lemma 3.27. Assume Setting 3.1, assume h > 1, and assume for all z € R that f(x) = 2.

Then
{9 e RY: L% (V) = infgero L20(0)} = @. (3.119)
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Proof of Lemma 3.27. Observe that Proposition 3.26 implies that infycgo 5306,0(9) = 0. We
prove (3.119) by contradiction. Assume that there exists ¥ € R? which satisfies

Note that (3.120) implies that for all z € [, #] it holds that
NI (@) = 2. (3.121)

Therefore we obtain that ./V_%?S € C*([e, 4], R). This demonstrates that for all i € {1,2,...,h}
it holds that {z € («,#): w?z + bY = 0} = @. This implies that for all i € {1,2,...,h} there
exists k; € {—1,1} which satisfies for all = € [«, &] that

9, oV z+b?
Nigo(x) = iy U?#- (3.122)

mfx-l—b?)

Combining this with (3.121) proves that for all n € NN (2,00), € [, 4] it holds that

oo (n n!w? —k; Pyn—1 ,00
0= (W55 @) = T o) ey and 2= (5@ @), (3.123)

Let S C N satisfy S = {i € {1,2,...,h}: 0¥ # 0} and for every i € S let & € R satisfy

—kim’f

S (V2L b))

(3.124)

Observe that (3.121) assures that S # &. Let k € N satisfy |S| = k and assume without loss of
generality that S = {1,2,...,k}. Combining this with (3.123) shows that

9
()P 55+ )k =2,
w wy
9 9
4 99 4 Vg
—+ 4+ —£ =0,
(77 ) 119 (nk) mg (3.125)
k+3ﬁ k+3 %% _
and (m) g T + (k) 9 0
1 g

Therefore, we obtain that there exists ¢ = (¢1,...,¢x) € R¥ such that for all j € S it holds

that A
zitl i) = (n;)*. (3.126)
19
This and (3.125) show that 0 = (1) 19 AT ()? —’29 2 which is a contradiction. The proof
"oy,
of Lemma 3.27 is thus complete. O

3.8 Divergence of GF's

Lemma 3.28. Letd € N, © € C([0,00),R?), £ € C(R° R) satisfy {9 € R%: L(V) = infgcgro L()}
= @ and liminf, o, £(O;) = mfg%Ra L(0), let G: R® — R® be measurable, and assume for all
t €[0,00) that L(0¢) = L(O0) — [,1G(©4)||* ds. Then

liminf; o [|©¢]] = 0. (3.127)
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Proof of Lemma 3.28. Note that the assumption that for all ¢ € [0,00) it holds that £(©;) =
L(©g) — fg”g(@s)\Pds assures that [0,00) 3 ¢t — L(0;) € R is non-increasing. This demon-
strates that

lim sup,_, o £(0¢) = liminf; o £(O;) = infycgro L£(6). (3.128)

We prove (3.127) by contradiction. We thus assume that lim inf; , ||©¢]] < co. Therefore, by
compactness, there exist ¥ € R? and 7, € [0,00), n € N, which satisfy lim inf,,_,~, 7, = co and

hmsupn—)oo HeTn - 19” = 0. (3129)

Hence, continuity of £ shows that lim sup,,_,. |£(©+,) — L(?¥)| = 0. Combining this with (3.128)
proves that

This implies that ¥ € {6 € R°: £(0) = inf,cpo £L(v)} which is a contradiction. The proof
of Lemma 3.28 is thus complete. ]

Corollary 3.29. Assume Setting 3.1, assume h > 1, assume & < 3, let k € Z\N, assume for all
r € R that f(z) = 22, and let © € C([0,0),R®) satisfy liminf, L30(0:) = infoere L35(0)
and V't € [0,00): O = Og — fg Gr0(Os)ds. Then liminf; o ||©:]] = oo.

Proof of Corollary 3.29. Observe that, e.g., [9, Lemma 3.1] implies that for all ¢t € [0,00) it
holds that

t
E?o(@t)zﬁﬁo((%)—/o 1Gk.0(05) | ds. (3.131)

Furthermore, note that Lemma 3.11, Lemma 3.21, Lemma 3.25, and Lemma 3.27 assure that
for all j € Z\N it holds that {¢ € R®: L3{(¢) = infyepo £55(0)} = @. Combining this and
(3.131) with Lemma 3.28 proves that liminf; ., [|©]| = co. The proof of Corollary 3.29 is thus
complete. O

Corollary 3.30. Assume Setting 3.1, assume h > 1, let k € N\{1} satisfy for all x € R
that f(x) = (max{r — («+8)/2,0})*~1 and let © € C(]0,00), R?) satisfy liminf, o L75(01) =
infpero £35(0) and V¥t € [0,00): ©; = O — [i Gro(©5)ds. Then liminf,o [|Oy]| = co.

Proof of Corollary 3.30. Observe that, e.g., [9, Lemma 3.1] assures that for all ¢ € [0,00) it
holds that

t
0(01) = £53(80) = [ 1610(@.)] ds. (3132
Furthermore, note that Lemma 3.23 shows that {¢ € R®: L3%(V) = infgere L3(0)} = 2.

Combining this and (3.132) with Lemma 3.28 demonstrates that liminf; , ||©] = oo. The
proof of Corollary 3.30 is thus complete. O

Corollary 3.31. Assume Setting 3.1, assume h > 1, assume for all x € [@,d] that f(z) =
1 ((a+m)2,00)(7), lety € R\{1}, and let © € C([0, 00),R?) satisfy liminf; ,oo LT (01) = infyepo L3 (6)
and ¥Vt € [0,00): O = Og — fg G1,(0s)ds. Then liminf; . ||©;]] = occ.

Proof of Corollary 3.31. Observe that the assumption that for all ¢ € [0, 00) it holds that ©, =
©p — f(f G1,4(0s)ds assures that for all ¢ € [0,00) it holds that

¢
(00 = £ 00) = [ 161, (0)] as (3.133)
(cf., e.g., Cheridito et al. [9, Lemma 3.5]). Furthermore, note that Lemma 3.6 shows that

{9 e R: L72,(¥) = infpero fol{(ﬂ)} = . Combining this and (3.133) with Lemma 3.28 demon-
strates that liminf; o ||©¢]| = co. The proof of Corollary 3.31 is thus complete. O
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3.9 Divergence of GD

Lemma 3.32. Let 0 € N, £ € C(R% R) satisfy {9 € R®: L(Y) = infycpo L(0)} = @ and let
O = (Op)nen, : No — R? satisfy limsup,,_,, £(0,) = infyepo L(0). Then

liminf, o [|©n] = oo. (3.134)

Proof of Lemma 3.32. We prove (3.134) by contradiction. We assume that liminf,,_, [|©y] <
oo. Therefore, by compactness, there exist ¥ € R® and a strictly increasing n: N — N which
satisfies that

lim supy, o0 [|On k) — V| = 0. (3.135)

Hence, continuity of £ shows that limsupy_, . [£(Oyk)) — L(¥)] = 0. Combining this with the
assumption that limsup,,_,. £(0,,) = infycre L(#) proves that

L(Y) = infpero L(6). (3.136)
This implies that ¥ € {6 € R°: £(0) = inf,cpo £L(v)} which is a contradiction. The proof
of Lemma 3.32 is thus complete. ]

Corollary 3.33. Assume Setting 3.1, assume h > 1, assume § < 3, let k € Z\N, assume for
all * € R that f(z) = 22, and let ©: Ny — R® satisfy limsup,,_, . L0(On) = infpero LF(0).
Then liminf,_,~ |0y = co.

Proof of Corollary 3.33. Observe that Lemma 3.11, Lemma 3.21, Lemma 3.25, and Lemma 3.27
assure that for all j € Z\N it holds that {0 € R: L3(0) = infyero £55(0)} = @. Combining
this with Lemma 3.32 proves that liminf,, . [|©,| = co. The proof of Corollary 3.33 is thus
complete. O

Corollary 3.34. Assume Setting 3.1, assume h > 1, assume § < 3, let k € Z\N, assume for
all x € R that f(x) = 22, and let ©: Ny — R? satisfy liminf,, .o L30(0r) = infpero L75,(0).
Then limsup,,_, . [|©n] = oo.

Proof of Corollary 3.34. Note that the assumption that liminf, . £35(0,) = infgego L735(6)
assures that there exists n: N — N which satisfies that

limj o0 £5% (O (j)) = infgems L35 (6). (3.137)

This and Corollary 3.33 imply that liminf; . ||©,; || = oc. Hence, we obtain that lim sup,_,
|©,]| = co. The proof of Corollary 3.34 is thus complete. O

Corollary 3.35. Assume Setting 3.1, assume h > 1, let k € N\{1} satisfy for all z € R
that f(x) = (max{zx — (e+8)/2,01)*=1 and let ©: Ng — R satisfy limsup,,_, L30(On) =
infgero £75(0). Then liminf, o [|On | = occ.

Proof of Corollary 3.35. Observe that Lemma 3.23 demonstrates that {9 € R%: L (9) =
infpepo £35,(0)} = @. Combining this with Lemma 3.32 shows that liminf, . [[©,] = oc.
The proof of Corollary 3.35 is thus complete. O

Corollary 3.36. Assume Setting 3.1, assume h > 1, let k € N\{1} satisfy for all x € R
that f(z) = (max{x — (e+8)/2,0})*=1 and let ©: Ng — R® satisfy liminf, .o L35(0,) =
infpere L£75(0). Then limsup,, o [|On| = oco.

Proof of Corollary 3.36. Note that the assumption that liminf, . £3%(0,) = infycgo L735(0)
assures that there exists n: N — N which satisfies that

limj*)OO E?O(Qn(j)) == infGeRa Ezfo(ﬂ) (3138)
This and Corollary 3.35 imply that liminf; ., [|©,;|| = oc. Therefore, we obtain that
limsup;_, ., [|©;|| = oo. The proof of Corollary 3.36 is thus complete. O
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Corollary 3.37. Assume Setting 3.1, assume h > 1, assume for all x € [@,d] that f(z) =
L((a+m)o,00) (7)), let v € R\{1}, and let ©: Ng — R? satisfy limsup,,_,, L3 (0,) = infyeps L3 ().
Then liminf,_,~ |0y, = co.

Proof of Corollary 3.37. Observe that Lemma 3.6 assures that {0 € R?: L3, (9) = infpepro E‘ff’v(H)}
= @. This and Lemma 3.32 proves that liminf, . [|©,] = co. The proof of Corollary 3.37 is
thus complete. O

Corollary 3.38. Assume Setting 3.1, assume h > 1, assume for all x € [@,d] that f(z) =
L((a+m)o,00) (%), let v € R\{1}, and let ©: No — R? satisfy liminf,, oo L7, (0n) = infgepo L3, (6).
Then limsup,, . [|©n] = oo.

Proof of Corollary 5.38. Note that the assumption that liminf,, . £97(05) = infscro £5%,(0)
assures that there exists n: N — N which satisfies that

limj_mo ﬁf’,\/(@n(])) = inf@eRa ﬁf’,\/((g) (3139)

This and Corollary 3.37 imply that liminf; . ||©,;|| = oc. Hence, we obtain that lim sup;_,
|©;]| = co. The proof of Corollary 3.38 is thus complete. O

4 Blow up phenomena for data driven supervised learning prob-
lems

In this section we analyze the existence of global minima in the case where the risk is defined
using a discrete measure, the activation function is the standard logistic function, and the
hidden layer is made up of one neuron. In Lemma 4.7 in Subsection 4.4 and Lemma 4.8 in
Subsection 4.4, assuming to have three non-strictly increasing or decreasing and non-constant
data points ¢1, 2,73 € R, we prove the non-existence of global minima of the risk function.
The proofs of Lemma 4.7 and Lemma 4.8 are based on Proposition 4.5 and on Proposition 4.6.
In Proposition 4.5 we find an upper bound for the infimum of the risk assuming that the data
points do not coincide, max{|y1 — w2/, |3 — z2|} > 0, and are not non-strictly increasing or
decreasing, 0 < (y1 — »2)(y¥3 — y2). In Proposition 4.6 we provide a lower bound for the risk in
the case where the realization function is constant. The proof of Proposition 4.6 employs the
elementary result for the first derivative of the realization function in Proposition 4.4.

In Lemma 4.2 in Subsection 4.2 and Lemma 4.3 in Subsection 4.3 we establish the existence
of global minima of the risk function in the case of two data points and in the case of three data
points.

4.1 Mathematical description of ANNs

Setting 4.1. Lett, b,v,c € C(R*, R) satisfy for all @ = (01,...,04) € R* that w? = 61, b% = 65,
v? =05, and ¢ =40,, let A: R — R satisfy for all z € R that

1
Alz) = ————— 4.1
(z) 1+ exp(—z)’ (4.1)
for every 6 € R* let #%: R — R satisfy for all z € R that
N (z) = + v [A(w’z + b%)], (4.2)

let M €N, z = (z1,...,z0m) € RM, ¢ = (y1,...,ym) € RM, L € O(RY,R) satisfy for all
0 € R* that

2
L£O) = 57 Ly (#O(2i) — i), (4.3)
and let sgn: R — R satisfy for all x € R that
1 x>0
sgn(xr) = - 4.4
gn(w) {—1 x < 0. (44)
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4.2 Existence of global minima for two data points

Lemma 4.2. Assume Setting 4.1, assume M = 2, and assume z1 < x3. Then there exists

6 € R* such that £L(0) = 0.
Proof of Lemma 4.2. Throughout this proof let ¥ € R?* satisfy

wd =1 Uﬁ:(m—yl)( 1 B 1 >—1
’ 1+exp(—z2) Ll+exp(—21)/
; ; o (4.5)
b" =0, and =y .
L exp(—z1)
This implies that
) 9
0 b
N(z)) =y — + =
@) =0 = T * T+ exp(—a)
o o7 (4.6)
and N (23) = ¢y1 — + —
(@2) = 1 1+exp(—z1) 1+ exp(—22)
Therefore, we obtain that £(1) = 0. The proof of Lemma 4.2 is thus complete. O

4.3 Existence of global minima for three data points

Lemma 4.3. Assume Setting 4.1 and assume M =3, x1 < @9 < @3, and min{y1,y3} < y2 <
max{y1,ys3}. Then there exists 0 € R* such that L(6) = 0.

Proof of Lemma /4.3. Throughout this proof let f: R? — R satisfy for all (x1,72) € R? that
(exp(—xlxl) — exp(—xgxl)) (1 + exp(—@ox1 — xg))

[z, 22) = . 4.7
( ) (eXP(_Qflxl) - eXP(—xﬂl)) (1 + exp(—2z371 — 332)) .7
Observe that (4.7) assures that

liminf,, o0 f(x1, —2321) = 00 and limsup,, , o |f(2z1,0) — 1] =0. (4.8)

Combining this with intermediate value theorem implies that for all y € (1,00) there exist
r1, 29 € R such that f(z1,22) = y. Note that (z3 —z1)(z2 —%1)~' > 1. Throughout this proof
let ¥ € R* satisfy

W
9 0 —1(Y3 Y1 ) v
w60 = (BT oy, ,
( )=f Y2 — Y1 41 1+ exp(—no?z; — b?)

4.9
9 (1 + exp(—10Yzy — b)) (1 + exp(—w?2z; — bY) (4.9)
and b = (yg — y1)< )
exp(—w?z; — b?) — exp(—tw?zo — b7)
This shows that
v’ v’
WY -y — =y,
) = el —69) T T+ (-l —69) 4
1+ exp(—w’zy — bY)
NV = g1 — (y2 —
(@2) =91 = (o2 gll)exp(—mﬂazl —bY) — exp(—w?z9 — b?)
14+ exp(—mﬂazg — bﬁ)
— = d
e e e e R A
1+ exp(—w’zy — bY)
N 23) = y1 — (g2 — -
(@3) = 21 = (o2 g{1)exp(—mﬁml — b7) — exp(—w?zy — b?) Flez—w)
(1 + exp(—1Yzy — bY))(1 + exp(—?2z; — bY)
(exp(—t?2z1 — bY) — exp(—t?2z9 — b?))(1 + exp(—0?z3 — b))
Y3 — Y1
=1+ (g2 —y1)=——— =ys.
Y2~ Y1
Hence, we obtain that £(9)) = 0. The proof of Lemma 4.3 is thus complete. O
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4.4 Non-existence of global minima for three data points

Proposition 4.4. Assume Setting 4.1. Then it holds for all z € R, 6 € R* with wf0% # 0 that
sgn (o) (%) () > 0. (4.11)
Proof of Proposition 4.4. Observe that (4.2) ensures that for all z € R, # € R* it holds that

exp(—tfz — b%)

(W0 (z) = (0%0%) I E —ol (4.12)

This implies that for all z € R, # € R* with w’v? # 0 it holds that
sgn(r?v?) (¥ () > 0. (4.13)
The proof of Proposition 4.4 is thus complete. O

Proposition 4.5. Assume Setting /.1, assume M = 3, z1 < x9 < @3, and —max{|y1 —

Yol lys—yoly <0 < (g1—y2)(ys—y2), let I = {i € {1,3}: |yi—ya| = max{|g1—yo2l, ly3—y2l}},
let j,k € N satisfy j = minI, k € {1,3\{j}, and let (0,)neny C R* satisfy for all n € N that
i = (2 — j)n, b9 = (j — 2)nz;, " = 2y; — (w2tur)/2), and % = yo + yi — 2y;. Then

limsup |3£(6,,) — 2(%)2( ~0. (4.14)

n—o0

Proof of Proposition 4.5. Note that (4.2) ensures thst for all x € R, n € N it holds that

O () — y2+yk_2§/j
) el - D — )

_|_
42y — %. (4.15)

This implies that for all n € N it holds that

BL(0n) = (V7" (25) = 4j)* + (N (@) — y2)? + (V" (k) — yx)?

—0 < Y2+ yr — 2y +2y_3212+yk>2
T ep(n(j ~2(@s —zy) 2 (4.16)
Y2+ yr — 2y Y2+ 3yk\?
- +2y; - —F) .
1+ exp(n(j — 2)(zk — 2;)) 2
Therefore, we obtain that
_ 2
lim sup |3£(6,,) —2(M> (
n—o0 2
3ys + 2 + 3yr\2 - 2
(- BB (- By
_ (%= yz)Z <y2 - yk)Q _ 2(;/2 - ykﬂ _
‘( 2 + 2 2 0-
The proof of Proposition 4.5 is thus complete. O

Proposition 4.6. Assume Setting 4.1, assume M = 3, 21 < 29 < 23, and max{|y1—y2|, |y3—
Y|} >0, let k € N satisfy |yr—y2| = min{|y1 —y2|, ly3—u2|}, and let 9 € R?* satisfy w’v? = 0.
Then

3L(0) > 2(3’2 3 y’“>2. (4.18)
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Proof of Proposition 4.6. Observe that the assumption that w”v” = 0 assures that there exists
r € R which satisfies for all z € R that #¥(x) = r. This implies that

3£(79) = (7“ - y1)2 + (7“ — y2)2 + (7“ — y3)2. (4.19)

Assume without loss of generality that & = 1. This and the assumption that max{|y1 —y2|, |3 —
y2|} > 0 assure that |ys — 72| > 0. Hence, we obtain that in the case r = g3 it holds that

1
BLOV) = (3 — w1)* + (w3 — 22)* > (ws —1)* + (1 —42)* > (w2 — 1)’ (4.20)
and in the case r # y3 it holds that
1
BLMW) = (r—g1)?+(r—g2)* + (r—u3)’* > (r—g1)> + (r—y2)* > 5(22 —y1)®. (4.21)

Combining this and (4.20) shows that

3L(0) > 2(%)% (4.22)

The proof of Proposition 4.6 is thus complete. O

Lemma 4.7. Assume Setting 4.1 and assume M = 3, x1 < z2 < 23, max{|y1 — y2|, |lys —
y2|} >0, and min{y1, g3} > y2. Then

{9 € R*: L(¥) = infyeps L(0)} = @. (4.23)

Proof of Lemma 4.7. We prove (4.23) by contradiction. We thus assume that there exists ¢ €
R* such that £(0) = infgepa £(6) and let a1, as, a3 € R satisfy for all n € {1,2,3} that /7 (2,) =
an. Note that Proposition 4.5 implies that

2 /yo — mi 2
L) = infyens £(0) < < (£ mlg{yl’y?’} ) (4.24)
This and Proposition 4.6 show that ro?v? # 0. Combining this with Proposition 4.4 demon-
strates that for all € R it holds that (#7)'(x) # 0. In the following we distinguish between
the case min,ey, 45 (4 7) (z) > 0 and the case max e[z, .4 (4 7) (z) < 0. We first establish

the contradiction in the case
ming ey, 4 (#7) (z) > 0. (4.25)

Observe that (4.25) assures that a; < a2 < ag. Combining this and the assumption that
min{y1,y3} > y2 proves that

a1 —y1)? + (a1 —g2)*  tar >
(a1 —y1)* + (a2 — y2)* > (a1 y1)2 (a1 y2)2 L= (4.26)
(z1 —y2)* + (a2 — y2) rap < Y2
This implies that
— 2 — 1 2
3L(Y) > (a1 — 31)* + (a2 — y2)* > 2(%) > 2(” m”;{yl’y?’}) . (4.27)

Combining this with (4.24) shows that £(J) > infycra £(#) which is a contradiction. In the
next step we establish the contradiction in the case

MAX e[ 24 (A7) (2) < 0. (4.28)
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Note that (4.28) assures that a; > as > a3. Combining this and the assumption that min{y1, 73} >
Y2 proves that

(a3 — y2)* + (a3 —y3)> a3 >y
(a2 — g2)? + (a3 — y3)* > 7 L (4.29)
(a2 —y2)* + (g2 —¢3)° a3 <yo>.
This implies that

— 2 — mi 2
3£(79) > (a2 - g{2)2 + (a3 o yg)Z > 2(22 5 23) > 2(22 mlr;{ylayfﬂ}) ] (430)
Combining this with (4.24) shows that £()) > infycra £(0) which is a contradiction. The proof
of Lemma 4.7 is thus complete. O

Lemma 4.8. Assume Setting 4.1 and assume M = 3, 21 < xo < 23, max{|y1 — y2|,|ys —
2|} >0, max{y1, ¥} < y2. Then

{9 e RY: L(Y) = infycps L(0)} = @. (4.31)

Proof of Lemma 4.8. We prove (4.31) by contradiction. Assume that there exists 9 € R* such
that £(19) = infycpa £(0) and let ay,as, a3 € R satisfy for all n € {1,2,3} that 4V (z,) = a,.
Observe that Proposition 4.5 implies that

£00) = infgess £0) < 3 (L2 1aby? (1.32)

This and Proposition 4.6 show that ro?v? # 0. Combining this with Proposition 4.4 demon-
strates that for all z € R it holds that (#7)(x) # 0. In the following we distinguish between
the case min, ey, o) (#”) (z) > 0 and the case max,e(,, ,.(#7) (x) < 0. We first establish
the contradiction in the case

ming, ey, . (#7) (z) > 0. (4.33)
Note that (4.33) assures that a; < as < as. Combining this and the assumption that max{y1, 73} <
Y9 proves that

(a2 —y2)*+ (w3 —42)? :a3>yo
(a2 — g2)* + (a3 — y3)* > Y IDRCE (4.34)
(a3 —y2)” + (a3 —y3)°  : a3 < yo.
This implies that

Y2 — y3>2 S 2(;/2 - maX{yhy?,})Z
2 - 2 ’

Combining this with (4.32) shows that £(J) > infycra £(#) which is a contradiction. In the
next step we establish the contradiction in the case

3L(9) > (as — y2)® + (a3 — 3)% > 2( (4.35)

MaXye(z,,25] (./Vﬁ)'(:c) < 0. (4.36)

Observe that (4.36) assures that a; > az > a3. Combining this and the assumption that
max{y1,y3} < yo proves that

(a1 —z1)* + (a1 —y2)® a1 <y
(a1 = 21)” + (ag — g2)* > Y RS (4.37)
(g2 —y1)" + (a2 —y2)* a1 > yo.
This implies that

_ 2 — 2
BLW) = (a1 — 1) + (a2 — 2) > 2( L E) 2 2( 2 ma’;{yl’y?’}) L (438)
Combining this with (4.32) shows that £()) > infycra £(0) which is a contradiction. The proof
of Lemma 4.8 is thus complete. O
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