
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at MathAI 2025

SEPARATE ADJUSTMENT OF LINEAR AND NONLINEAR
PARAMETERS IN NEURAL NETWORK TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

The paper examines the limitations of the backpropagation error (BPE) method in
neural network training, particularly its tendency to converge to suboptimal local
minima. Traditional backpropagation-based training often suffers from inefficien-
cies in high-dimensional and complex optimization landscapes, which limits its
effectiveness in deep learning applications. A modified neuron model is proposed,
featuring adjustable parameters for nonlinear transformations such as ReLU and
SoftPlus, which are adapted independently from connection weights. Unlike con-
ventional models, which rely solely on weight optimization, our approach intro-
duces independent parameter tuning for nonlinear transformations, allowing for
more efficient exploration of the loss landscape. Based on vector-matrix analysis,
the paper introduces an improved formal neuron model that reduces the likelihood
of convergence to local minima far from the globally optimal solution. In the
proposed model, the output activity is expressed as the sum of linear activation
and its nonlinear transformation. This approach significantly enhances training
speed and, in particular, approximation accuracy by introducing tunable parame-
ters into the nonlinear function and optimizing them separately from the adjust-
ment of input connection weights. The proposed model was evaluated on function
approximation tasks of varying complexity in two- and three-dimensional spaces.
The results demonstrate a 3–10 times reduction in training time and up to three
orders of magnitude improvement in accuracy, especially for SoftPlus activation.
These findings suggest that the proposed neuron model could be beneficial for
deep learning applications requiring high precision and efficient training, such as
medical imaging and autonomous systems. Additionally, the results emphasize the
potential of vector-matrix analysis in improving neural network training methods,
paving the way for further exploration of specialized optimization techniques.

1 INTRODUCTION

The proposed model of a ”separated” formal neuron is based on the idea that splitting the parame-
ters of nonlinear activation functions into individual and customizable components can significantly
improve the training process of neural networks and overcome issues related to stagnation and lo-
cal minima. In this context, various optimization methods and activation function tuning strategies,
such as ReLU and SoftPlus, are considered, aiming to enhance the learning performance of deep
networks.

1.1 SOFTPLUS AND RELU IN DEEP NEURAL NETWORKS

Several studies focus on improving deep neural networks’ efficiency by utilizing different activation
functions. Prince (2023) discusses the use of the SoftPlus activation function, which enhances the
performance of deep neural networks by mitigating the issue of vanishing gradients during back-
propagation. SoftPlus demonstrates advantages over ReLU due to its smoothness and non-zero
derivative properties, making it particularly beneficial in phoneme recognition tasks. Unlike ReLU,
which has abrupt transitions, SoftPlus provides smoother boundaries, improving gradient stability
and reducing the risk of shallow minima.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at MathAI 2025

1.2 ADAPTIVE LEARNING METHODS IN NEURAL NETWORKS

Neural networks leverage adaptive learning strategies to adjust parameters based on data structure
and complexity. The study Singh (2023) introduces a criterion for active learning, ensuring that neu-
ral networks generalize effectively while remaining robust to initialization settings. This approach is
particularly useful for models with individually tunable activation parameters, such as the proposed
separated neuron model.

1.3 CLASSIFICATION USING RADIAL BASIS FUNCTION NETWORKS

The work Marfo & Przybyła-Kasperek (2022) explores radial basis function (RBF) networks for
classification, where data is gathered from independent sources. Although not a direct analog of
the proposed model, this approach aligns with the concept of separate learning for different param-
eter sets. Comparative analysis with multi-layer perceptrons Przybyła-Kasperek & Marfo (2024)
indicates that RBF networks can reduce error rates and model complexity.

1.4 HANDLING IMBALANCED DATA STREAMS

The study Czarnowski (2022) presents the Weighted Ensemble with One-Class Classification and
Over-Sampling and Instance Selection (WECOI) method, which addresses the issue of imbalanced
data. This method leverages ensemble classifiers and instance selection techniques to balance class
distributions in streaming data. This approach may benefit separated neuron training by effectively
handling activation parameter differences across diverse data segments.

The proposed separated formal neuron model shares similarities with various contemporary methods
and can leverage advances in modified activation functions, active learning, and data processing
techniques to improve its performance.

2 DESCRIPTION OF ACTIVITIES AND CONNECTION WEIGHTS USING
VECTORS AND MATRICES

All N (l−1) incoming connection weights to neuron i of layer l are described by the weight vector
wl

i = {wl
ji} (i = 0, 1, . . . , N l; j = 0, 1, . . . , N (l−1)). When different input signals x are fed

into the neural network, the activation propagates through the network and determines the values
of vector o(l−1)—the activity of the elements in the previous (for layer l) layer. The vector o(l−1)

defines the linear activation ali of neuron i in layer l according to the formula:

ali = wl
i · o(l−1) (1)

The magnitude of the (nonlinear) output activity is formed by applying a nonlinear transformation
to the scalar value ali, resulting in oli = φ(ali). For simplicity, we will primarily consider the basic
nonlinear transformations:

• ReLU: φ(ali) = max(0, ali)

• SoftPlus: φ(ali) = log(1 + ea
l
i)

Other nonlinear functions can be used, but for the objectives of this study, ReLU and SoftPlus are
the most suitable.

In vector form, the activation of network neurons is expressed as:

Al = W lo(l−1) (2)

Al = {ali = Wl
iO

(l−1)} (3)

ol = φ(Al) (4)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at MathAI 2025

Figure 1: (a) A formal neuron of layer l: weight vector Wl
i, linear activation ali, and non-linear

output activation oli; (b) Common types of functions φ(ali), with 5—ReLU and 6—SoftPlus.

3 GRADIENT COMPUTATION USING THE BPE METHOD

When using the BPE method, the quantity that propagates backward through the network is not the
”error” itself but the partial derivative of the loss function E with respect to the values of neural
network variables ali and oli, denoted as ∂E

∂al
i

and ∂E
∂oli

. Let us define δli =
∂E
∂al

i

. Based on this quantity

δli and the output activity o
(l−1)
j , the weight increments ∆wl

ji—the changes in the components of
the input weight vector W l

i = {wl
ji}—are computed. Since:

∂E

∂wl
ji

=
∂E

∂ali
· ∂ali
∂wl

ji

= δlio
(l−1)
j , since

∂ali
∂wl

ji

= o
(l−1)
j , (5)

we obtain:

∆wl
ji = −α

∂E

∂wl
ji

= −αδlio
(l−1)
j , 0 < α ≪ 1. (6)

In vector-matrix form, the change in the input weight matrix W l of layer l is expressed as the outer
product of vectors:

∆W l = −αδl(O(l−1))T , ∆W l = {∆wl
ji = −αδlio

(l−1)
j }. (7)

where δl = {δli} is a column vector and (O(l−1))T = {o(l−1)
j } is a row vector. All weight updates in

the input weight matrix W l follow the negative gradient of the loss function E and are proportional
to the ”errors” δli (see Podoprosvetov et al. (2024) for further details).

4 OPTIMIZATION OF TRANSFORMATIONS IN NEURONS

Neural network parameter optimization aims to construct an approximation that transforms input
signals into output signals with maximum accuracy. When solving complex recognition and gener-
ation tasks, the exact form of the optimal transformation function is typically unknown both before
and after training. The accuracy of the approximation can only be indirectly assessed based on how
well the training objectives are met.

To study this problem, it is preferable to examine simpler tasks where the reference transforma-
tion function is known and precisely formalized. One example is neural network approximation of
transformations defined explicitly by analytical functions. While such tasks lack practical applica-
tions (since exact functional descriptions are more efficient), they serve as useful abstract models
for studying adaptive processes. These models allow precise identification of approximation errors
and investigation of their causes and possible mitigation strategies.

Neural network training involves adjusting the parameters of its constituent neurons. The back-
propagation algorithm (BPE), which implements the idea of gradient descent, is currently the main
optimization method. All input weights of neurons are adjusted, and although the bias parameter

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at MathAI 2025

(threshold, bias) has a different nature, it is conventionally described as a weight connected to a unit
activation element and trained using the same rules as other weights.

5 TUNING VECTOR-MATRIX PARAMETERS OF A NEURAL NETWORK

The optimization of connection vectors W l
i , which form the rows of the weight matrices W l, follows

the BPE method (Equation 2) and is analogous to linear regression construction.

Let yi represent the ideal linear regression of the reference nonlinear transformation being learned
by the neural network. Equations (1) (excluding the nonlinear part) define a hyperplane specified
by the vector W l

i . The slope of this hyperplane along the component o(l−1)
j determines the weight

wl
ji, and the intersection with the ali axis (when all o(l−1)

j = 0, except for j = 0) defines wl
0i.

According to the weight update rules (Equation 2), in batch training with Nb training samples, the
weight updates are given by:

∆wl
0i = −α

Nb∑
k=1

δlik, ∆wl
ji = −α

Nb∑
k=1

(δliko
(l−1)
j ), k = 1, . . . , Nb. (8)

This leads to a gradual reduction in parameter updates to zero.

Figure 2: Sequential reduction of the parameter increments wl
0i and wl

ji to zero (3)

The adjustment of all parameters wl
ji in parallel using cumulative updates (Equation 3) results in

a hyperplane approximating the training data as closely as possible, equivalent to constructing a
linear regression model. However, if all network neurons were adjusted this way without local non-
linearities, a single hidden-layer neuron would suffice for linear regression. Adding more neurons
would merely replace one hyperplane with a sum of several, increasing computational complexity
without improving the final result. Replacing linear transformations with nonlinear ones introduces
new properties, not all of which (as shown in Section 7) are desirable.

High-dimensional activation spaces of hidden layers exhibit many useful properties, one of the most
important being the presence of a large number of mutually perpendicular directions. These direc-
tions allow for the independent tuning of various network properties by nullifying the scalar products
of vectors. This topic was previously discussed in Ramachandran et al. (2017), and we continue to
develop it further. However, there are also other ways to partition the training process, which is the
focus of this work.

6 SIMPLE MODEL FOR TUNING SCALAR NONLINEAR PROPERTIES

According to Equations (1) and (2), the argument of the functions ali and ∆wl
ji is the output activity

vector O(l−1) of the previous layer l−1. In the high-dimensional state space of O(l−1) with dimen-
sion N (l−1), identifying and understanding the influence of O(l−1) on the forms of ali and ∆wl

ji is
complex. The problem can be simplified by decomposing the vector O(l−1) into two components:
one parallel and one perpendicular to the weight vector W l

i , as follows:

O(l−1) = O
(l−1)
∥ +O

(l−1)
⊥ . (9)

We are only interested in the component O(l−1)
∥ , which is the projection of O(l−1) onto W l

i :

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at MathAI 2025

O
(l−1)
∥ = W l

i

(W l
i ·O(l−1))

(W l
i ·W l

i )
. (10)

Since the activation function is given by:

ali = W l
i ·O(l−1) = W l

i · (O
(l−1)
∥ +O

(l−1)
⊥ ) = W l

i ·O
(l−1)
∥ , (11)

where the scalar product of perpendicular vectors W l
i and O

(l−1)
⊥ is zero. This reduction allows the

analysis of nonlinear properties tuning to be reduced to a function of a single variable ul
i, related to

ali as follows:

ali = pliu
l
i + qli, (12)

where pli is a coefficient determined by W l
i , and qli = wl

0i is the bias parameter. This one-
dimensional model, though simplified, provides insights into the optimization process.

7 CAUSES OF LOCAL MINIMA IN OPTIMIZATION

The simplified one-dimensional model facilitates the analysis of neuron parameter tuning using
the BPE method. Consider a simple case of approximating a ReLU-type function (shown in blue in
Figure 3) by tuning the weight vector W l

i of a neuron implementing a ReLU transformation. Ideally,
weight adjustments should lead to near-zero approximation error. However, when using BPE, this is
not always achieved (the red response in Figure 3).

Figure 3: Gradient descent always reduces the batch sum of δlik (3), but does not always yield a good
approximation of the target transformation.

If the growth direction of the linear activation matches that of the target function yi (Figure 3a), the
shift parameter wl

0i is adjusted first (Figure 3b), quickly zeroing out
∑

δlik. Then, the other weights
wl

ji are tuned more slowly (Figure 3c), until the sum of δliko
(l−1)
j is minimized, leading to an optimal

approximation.

If the growth direction of the linear activation is opposite to that of yi (Figure 3d), gradient descent
still operates, but instead of adjusting signs, it minimizes

∑
δlik by gradually deactivating the neuron

(Figure 3f). Where ϕ′(ali) = 0, the values of δlik are also zero. This results in neuron dropout.
Studies Atanov et al. (2019) indicate that this can affect over 90% of neurons.

To address this, ReLU is replaced with functions such as LeakyReLU or Swish Ramachandran
et al. (2017), which do not have large zero-gradient regions. This allows ”deactivated” neurons to
resume operation, but the reconfiguration process is slow due to near-total (though not absolute,
as in ReLU) deactivation. This causes non-monotonic distance reduction between initial and final
parameter configurations, with growth phases. Our research aims to eliminate such failures and
provide theoretical justification for our proposed transformation model. Our findings have so far

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at MathAI 2025

been validated only on exploratory tasks but suggest that our transformation structure could improve
benchmark accuracy beyond the 0.9% gain achieved by Swish Ramachandran et al. (2017).

Another important aspect of our research is resource allocation across neural layers within the input
state subspaces O(l−1). Ignoring this issue leads to over-allocation in ”successful” transformation
regions while under-allocating for ”difficult” areas. Distributing resources proportionally to trans-
formation complexity, along with eliminating training failures, will accelerate network tuning and
achieve deeper approximation minima. As with any scientific problem, progress relies on distin-
guishing optimization objectives and selecting targeted methods to achieve them.

8 DECOMPOSITION OF NEURAL NETWORK OPTIMIZATION TASKS INTO
SPECIALIZED ALGORITHMS

Although the BPE method allows for tuning not only vector parameters but also other neural network
parameters, the analysis above shows that it is highly likely to lead the optimization process to local
minima. A possible way to overcome these shortcomings of BPE is to decompose the optimization
process into separate subtasks and solve them using dedicated specialized algorithms.

Analysis identifies several subtasks in the optimization process:

1. Adjusting the bias values wl
0i of linear activation for all neurons in the regression task;

2. Selecting optimal directions and magnitudes for weight vectors W⃗ l
i in the regression task;

3. Distributing the directions of W⃗ l
i vectors in the state space of O⃗(l−1);

4. Adjusting the biases of nonlinear functions φ(ali);
5. Tuning the slope of the ReLU function;
6. Adjusting the curvature of the SoftPlus function;
7. Compensating for the effect of changes in weight matrices ∆W l in previous layers;

8. Normalizing the activations propagating through the network (A⃗l);

9. Normalizing the backpropagated error (δ⃗l);

10. Orthogonalizing the activity vectors of layers (A⃗l).

The first two points in this list are effectively handled by the BPE method. To improve the efficiency
of the remaining subtasks, several specialized algorithms will be described below. For instance, the
third algorithm in the list is proposed to be implemented based on the self-organizing map (SOM)
algorithm Marfo & Przybyła-Kasperek (2022), while points 4-6 involve the use of specialized al-
gorithms based on the accumulation of statistical expectations of various nonlinear transformations.
Algorithms for points 7-9 were previously discussed in Czarnowski (2022).

9 MODEL OF A ”DECOMPOSED” FORMAL NEURON

In this context, the problem of ”decomposed” approximation is considered as an independent adjust-
ment of biases for nonlinear functions φ(ali), tuning of ”angles” for ReLU and SoftPlus functions,
and setting the curvature parameters of the SoftPlus function for all neurons in a layer. We consider
the operation of a single neuron, which differs from others only in the values of its parameters.

Decomposing the training process into different learning algorithms is not aimed at improving the
generality of the BPE method but at addressing the issues outlined in point 7, which cause slow
training and convergence to shallow minima. Importantly, in the proposed configuration, the deriva-
tive of the nonlinearity with respect to its argument not only almost never approaches zero but also
practically never tends towards it.

Distinctive features of the proposed transformation include:

• Individual nonlinearity parameters for each neuron: shift qli and slope cli, which linearly de-
fine the argument vli of the nonlinear transformation φ, and parameter dli, which determines
(for a given cli) the magnitude of derivatives φ(vli);

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at MathAI 2025

• Symmetry of the function φ(vli) relative to zero argument, achieved by adding linear terms
to 2max(vli, 0) or 2 ln(1 + ev

l
i).

The nonlinear transformation oli(a
l
i) is defined by the following equations:

oli = ali + φ(vli); (13)

vli = cli(a
l
i + qli); (14)

φ(vli) = dli(2max(vli, 0)− vli) (ReLU analog) (15)

φ(vli) = dli(2 ln(1 + ev
l
i)− 2 ln 2− vli) (SoftPlus analog) (16)

The internal transformation parameter vli is linearly related to the external parameter ul
i mentioned

earlier, but they are not equal. The interaction scheme of variables according to (5) is shown in
Figure 4.

Figure 4: Structure of the ”decomposed” formal neuron.

To tune the ReLU analog, it is sufficient to use only one of the two parameters cli and dli (e.g., setting
cli = 1), since changing either results in the same change in angle θli (see Figure 5a). However, both
parameters are presented in equations (5) because, for the ReLU analog, it is easier to understand
that changing the angle between asymptotes requires modifying the product clid

l
i. Conversely, if

both parameters are changed while keeping their product constant, the angle remains unchanged
(including for the SoftPlus analog).

Figure 5: Properties of nonlinear transformations, ReLU and SoftPlus analogs (5).

As the product clid
l
i decreases to zero, the nonlinearity φ(vli) degenerates into a straight line. Further

reduction (into negative values) results in a sign change for both curvature and angle θli. Since the
functions max(vli, 0) and ln(1 + ev

l
i) are always non-negative and symmetric about zero argument,

changing the argument’s sign does not affect their values. This means that to reverse the direction of
angle θli (upward or downward), it suffices to change the sign of dli while keeping cli strictly positive
(enforcing cli > 0 programmatically).

10 ADJUSTMENT OF NONLINEARITY OFFSET AND ANGLE BETWEEN
ASYMPTOTES

As follows from equations (5) and the graphs in Fig. 5, the adjustment of these parameters is carried
out by adaptively changing the individual values of the coefficients qli, c

l
i, and dli for each neuron. It

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at MathAI 2025

is crucial that the adjustment of these parameters always leads to a reduction in total error, similar to
gradient descent in BPE, but with less tendency to settle in local minima. To achieve this, we utilize
BPE-based ideas separately for the local parts of the nonlinear transformation, specifically to the left
and right of the zero argument (scalar) of the nonlinear transformations (5).

The adjustment of scalar parameters is performed in parallel with the vector parameters of each
neuron, ensuring that the equalities (3) are approximately maintained. This means that, overall, for
each neuron, the sum:

Nb∑
k=1

δlik ≈ 0, (17)

but if divided into two sums, to the left and right of the point ul
i such that vli(u

l
i) = 0, they can

deviate significantly from zero:

Nb∑
k=1

(δlik)
left ≈ −

Nb∑
k=1

(δlik)
right, (18)

Nb∑
k=1

(
δliko

l−1
j

)left ≈ −
Nb∑
k=1

(
δliko

l−1
j

)right
. (19)

To improve approximation accuracy, it is necessary for each of the semi-sums in (6) to also approach
zero. However, neither BPE nor equality (6) ensure this. Applying a BPE-like approach separately
to each semi-sum reduces the approximation error. Since equations (5) differ from (1) and achieving
the desired result requires modifying the parameters qli and dli (and for SoftPlus, also cli), the sums
from (6) should not be linked to increments of vector components Wl

i as in (3), but rather to these
parameters directly.

Since the equality of sums in (6) is approximate (and assumes that BPE has already sufficiently
tuned Wl

i so that their increments in (3) are negligibly small—an assumption that may not hold,
especially in early training), it is preferable to take into account their signs and magnitudes. The
coefficients for the linear components oli = ali + ϕ(vli) for the left and right parts behave differently
under small changes in qli (Fig. 6a). When linear coefficients have the same sign, output activity
changes in opposite directions; when they have different signs, the magnitude of changes differs.
This affects the sums in (6), violating their approximate equality, but this discrepancy is compensated
by adjusting Wl

i using BPE.

Figure 6: Adjustment of parameters qli, d
l
i.

The linear coefficients (rli)
left and (rli)

right are formed according to (5) as algebraic sums of the
coefficients pli = ∥Wl

i∥ and dli:

(rli)
left = pli − dli, (rli)

right = pli + dli. (20)

Increasing the offset parameter qli by a small amount ∆qli shifts the point vli(u
l
i) = 0 to the left

and changes each δlik in the sum
∑Nb

k=1(δ
l
ik)

right by (rli)
right∆qli. The total change in the sum is

(nl
i)

right(rli)
right∆qli, where (nl

i)
right is the number of terms in the sum. Similarly, for (δlik)

left, we get:

(nl
i)

right(rli)
right∆qli = −γ1

Nb∑
k=1

(δlik)
right, (21)

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at MathAI 2025

which gives:

∆qli =
−γ1

∑Nb

k=1(δ
l
ik)

right

(nl
i)

right(rli)
right

. (22)

A similar expression can be derived for (∆qli)
left, but the shifts may not be equal and can even be in

opposite directions. To ensure higher approximation accuracy, a weighted average value of ∆qli is
chosen:

∆qli =
(∆qli)

left
∣∣∣∑Nb

k=1(δ
l
ik)

left
∣∣∣+ (∆qli)

right
∣∣∣∑Nb

k=1(δ
l
ik)

right
∣∣∣∣∣∣∑Nb

k=1(δ
l
ik)

left
∣∣∣+ ∣∣∣∑Nb

k=1(δ
l
ik)

right
∣∣∣ . (23)

Similarly, a weighted value for ∆dli is calculated, which determines the change in angle θli. The
complexity in defining ∆dli arises from the dependence of sum variations on the ”arm lengths” of
the sides. To determine the mean ”arm length,” all values (ali − qli) to the right of vli = 0 and
(qli − ali) to the left are summed. If using a more complex nonlinearity than ReLU, these sums must
be multiplied by cli. The total length sum, multiplied by ∆dli, gives:

∆dli =
−γ

∑Nb

k=1(δ
l
iko

l−1
j )right∑Nb

k=1(a
l
i − qli)

right
. (24)

A weighted total ∆dli is computed similarly to (9). The effects of applying formulas (7)–(10) are
illustrated in Fig. 6b and 6c. Figure 6b shows an arbitrary example of shifting the ”separated” ReLU
function to the target position through shifts (due to changes in qli and wl

0i) and rotations (due to
changes in dli and W⃗ l

i ) of its components. Figure 6c applies the training of the ”separated” ReLU
function to the case previously considered in Figure 3d-f. Unlike the standard ReLU function, the
”separated” version does not encounter adaptation issues.

11 CURVATURE ADJUSTMENT OF THE SOFTPLUS FUNCTION

When approximating smooth functions, an important source of deviation from the reference function
is the presence of derivative discontinuities in the ReLU function. Even a simple replacement of
ReLU with Swish Zheng et al. (2015) improves approximation across a wide range of tasks. The
”separated” SoftPlus function also has no derivative discontinuities and, moreover, allows tuning of
the ”curvature” parameter to match the properties of the approximated function. This adjustment
is performed individually (but, like all other neural network algorithms, in a mass manner) and
serves as an additional fine-tuning feature on top of all the previously described advantages of the
”separated” ReLU.

12 COMPENSATION FOR WEIGHT MATRIX ADJUSTMENTS IN EARLIER
LAYER

All the aforementioned modifications, aimed at separating the optimization methods of neural net-
work transformations, influence the direction of parameter updates, which can significantly deviate
from the direction of the negative gradient of the loss function E with respect to the parameters.
While such deviations may be beneficial in hidden layers, in the output layer, it is preferable not
to deviate from the optimal approximation direction. This can be ensured by not only avoiding ad-
ditional algorithms when tuning the final weight matrix but also compensating for the influence of
changes in matrices ∆W l in previous layers. The algorithm for computing compensatory additions
to the vectors δ⃗l is described in Podoprosvetov et al. (2024).

13 PARAMETER NORMALIZATION

Stable operation and training of a neural network can be achieved by ensuring smooth propagation
of activity A⃗l and ”error” δ⃗l through the network, avoiding sharp spikes or dampening. The ability

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at MathAI 2025

to compensate for the influence of additional algorithms on the training of subsequent layers allows
normalizing activities A⃗l by introducing an algorithm for modifying weight matrices W l, while
normalizing δ⃗l is embedded in the BPE method. The use of compensation ensures that the additional
learning algorithms (including all those described above) do not distort the gradient descent direction
in the last hidden layer, where only the BPE method is applied.

14 ORTHOGONALIZATION OF ACTIVITY VECTORS IN NEURAL NETWORK
LAYERS

Another important idea in ”separating” the optimization of neural network transformations is the
approach outlined in Podoprosvetov et al. (2024), which utilizes a key property of high-dimensional
vector spaces—the presence of a vast number of mutually orthogonal directions. This approach
not only normalizes the magnitude of vectors A⃗l, but also adjusts the matrices W l to maximize the
distribution of A⃗l across its subspace of states. This significantly reduces the dependency between
learning parameters for different input signals, leading to increased learning speed and accuracy.

15 RESULTS

When applied together with the normalization, orthogonalization, and load distribution methods
described in previous reports, the optimization algorithms for nonlinear transformation parameters
presented here enable a reduction in training time (depending on the type of transformation) by a
factor of 3 to 10 and improve approximation accuracy by 1.5 to 2 orders of magnitude for ReLU
and up to 3 orders of magnitude for SoftPlus. These results were obtained through the modeling of
neural network approximation tasks for analytically defined vector functions. Improving the accu-
racy of approximating smooth functions is critical for many applications, such as robotics, where
precise motion description and prediction are essential. Moreover, even in recognition tasks and
similar applications, where exact representation of transformations may not seem strictly necessary,
increasing approximation accuracy can enhance the optimization of transformations.

16 CONCLUSIONS

The success of solving complex ”intelligent” tasks using powerful systems based on LLM training
and other modern approaches should not create the impression that all neural network parameter
tuning algorithms are fully understood and that no new developments can emerge in this field. On
the contrary, vector-matrix analysis of various aspects of neural network transformations presents a
vast area for research and promising developments, as more efficient algorithms scale better to large
and complex tasks.

This work focused on the potential of separating optimization tasks in neural network parameter tun-
ing processes. Even in a relatively simple piecewise-linear neural network approximation based on
the ReLU function, it is possible to separate the training of vector-linear and scalar-nonlinear trans-
formations. Moreover, since most nonlinear functions used in neural networks have linear asymp-
totes, the obtained results can be extended to them, primarily to SoftPlus, as a smooth analog of
ReLU. Furthermore, the use of smooth, derivative-continuous functions enables finer-tuned approx-
imation adjustments by aligning the curvature of the reference and neural transformation functions.
However, fine-tuning methods are effective only if coarser optimization algorithms do not encounter
adaptation problems.

Beyond improving individual aspects of neural network algorithms, this work is valuable as an ex-
ample of using vector-matrix analysis to study the properties of neural network data processing.
Vector-matrix analysis provides a deeper understanding of the transformations performed and sug-
gests ways to accelerate and improve the accuracy of neural network approximation processes.

REFERENCES

A Atanov, A Ashukha, D Molchanov, K Neklyudov, and D Vetrov. Uncertainty estimation via
stochastic batch normalization. In Advances in Neural Networks–ISNN 2019: 16th International

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at MathAI 2025

Symposium on Neural Networks, ISNN 2019, Moscow, Russia, July 10–12, 2019, Proceedings,
Part I 16, pp. 261–269. Springer, 2019.

Ireneusz Czarnowski. Weighted ensemble with one-class classification and over-sampling and in-
stance selection (wecoi): An approach for learning from imbalanced data streams. Journal of
Computational Science, 61:101614, 2022.

Kwabena Frimpong Marfo and Małgorzata Przybyła-Kasperek. Radial basis function network for
aggregating predictions of k-nearest neighbors local models generated based on independent data
sets. Procedia Computer Science, 207:3234–3243, 2022.

Alexey Podoprosvetov, Vladimir Smolin, and Sergey Sokolov. Vector analysis of deep neural net-
work training process. In International Conference on Deep Learning Theory and Applications,
pp. 219–237. Springer, 2024.

Simon JD Prince. Understanding deep learning. MIT press, 2023.

Małgorzata Przybyła-Kasperek and Kwabena Frimpong Marfo. A multi-layer perceptron neural
network for varied conditional attributes in tabular dispersed data. PloS one, 19(12):e0311041,
2024.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. CoRR,
abs/1710.05941, 2017. URL http://arxiv.org/abs/1710.05941.

Jasraj Singh. Training-free neural active learning with initialization robustness guarantees. 2023.
URL https://hdl.handle.net/10356/166498. Final Year Project (FYP), School of
Physical and Mathematical Sciences, Nanyang Technological University, Singapore.

Hao Zheng, Zhanlei Yang, Wenju Liu, Jizhong Liang, and Yanpeng Li. Improving deep neural
networks using softplus units. In 2015 International joint conference on neural networks (IJCNN),
pp. 1–4. IEEE, 2015.

11

http://arxiv.org/abs/1710.05941
https://hdl.handle.net/10356/166498

	Introduction
	SoftPlus and ReLU in Deep Neural Networks
	Adaptive Learning Methods in Neural Networks
	Classification Using Radial Basis Function Networks
	Handling Imbalanced Data Streams

	Description of Activities and Connection Weights Using Vectors and Matrices
	Gradient Computation Using the BPE Method
	Optimization of Transformations in Neurons
	Tuning Vector-Matrix Parameters of a Neural Network
	Simple Model for Tuning Scalar Nonlinear Properties
	Causes of Local Minima in Optimization
	Decomposition of Neural Network Optimization Tasks into Specialized Algorithms
	Model of a "Decomposed" Formal Neuron
	Adjustment of Nonlinearity Offset and Angle Between Asymptotes
	Curvature Adjustment of the SoftPlus Function
	Compensation for Weight Matrix Adjustments in Earlier Layer
	Parameter Normalization
	Orthogonalization of Activity Vectors in Neural Network Layers
	Results
	Conclusions

