Under review as a conference paper at MathAl 2025

SEPARATE ADJUSTMENT OF LINEAR AND NONLINEAR
PARAMETERS IN NEURAL NETWORK TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

The paper examines the limitations of the backpropagation error (BPE) method in
neural network training, particularly its tendency to converge to suboptimal local
minima. Traditional backpropagation-based training often suffers from inefficien-
cies in high-dimensional and complex optimization landscapes, which limits its
effectiveness in deep learning applications. A modified neuron model is proposed,
featuring adjustable parameters for nonlinear transformations such as ReLU and
SoftPlus, which are adapted independently from connection weights. Unlike con-
ventional models, which rely solely on weight optimization, our approach intro-
duces independent parameter tuning for nonlinear transformations, allowing for
more efficient exploration of the loss landscape. Based on vector-matrix analysis,
the paper introduces an improved formal neuron model that reduces the likelihood
of convergence to local minima far from the globally optimal solution. In the
proposed model, the output activity is expressed as the sum of linear activation
and its nonlinear transformation. This approach significantly enhances training
speed and, in particular, approximation accuracy by introducing tunable parame-
ters into the nonlinear function and optimizing them separately from the adjust-
ment of input connection weights. The proposed model was evaluated on function
approximation tasks of varying complexity in two- and three-dimensional spaces.
The results demonstrate a 3—10 times reduction in training time and up to three
orders of magnitude improvement in accuracy, especially for SoftPlus activation.
These findings suggest that the proposed neuron model could be beneficial for
deep learning applications requiring high precision and efficient training, such as
medical imaging and autonomous systems. Additionally, the results emphasize the
potential of vector-matrix analysis in improving neural network training methods,
paving the way for further exploration of specialized optimization techniques.

1 INTRODUCTION

The proposed model of a “separated” formal neuron is based on the idea that splitting the parame-
ters of nonlinear activation functions into individual and customizable components can significantly
improve the training process of neural networks and overcome issues related to stagnation and lo-
cal minima. In this context, various optimization methods and activation function tuning strategies,
such as ReLL.U and SoftPlus, are considered, aiming to enhance the learning performance of deep
networks.

1.1 SoFTPLUS AND RELU IN DEEP NEURAL NETWORKS

Several studies focus on improving deep neural networks’ efficiency by utilizing different activation
functions. |Prince| (2023)) discusses the use of the SoftPlus activation function, which enhances the
performance of deep neural networks by mitigating the issue of vanishing gradients during back-
propagation. SoftPlus demonstrates advantages over ReLLU due to its smoothness and non-zero
derivative properties, making it particularly beneficial in phoneme recognition tasks. Unlike ReLU,
which has abrupt transitions, SoftPlus provides smoother boundaries, improving gradient stability
and reducing the risk of shallow minima.

Under review as a conference paper at MathAl 2025

1.2 ADAPTIVE LEARNING METHODS IN NEURAL NETWORKS

Neural networks leverage adaptive learning strategies to adjust parameters based on data structure
and complexity. The study|Singh| (2023)) introduces a criterion for active learning, ensuring that neu-
ral networks generalize effectively while remaining robust to initialization settings. This approach is
particularly useful for models with individually tunable activation parameters, such as the proposed
separated neuron model.

1.3 CLASSIFICATION USING RADIAL BASIS FUNCTION NETWORKS

The work Marfo & Przybyta-Kasperek| (2022) explores radial basis function (RBF) networks for
classification, where data is gathered from independent sources. Although not a direct analog of
the proposed model, this approach aligns with the concept of separate learning for different param-
eter sets. Comparative analysis with multi-layer perceptrons [Przybyta-Kasperek & Marfo| (2024)
indicates that RBF networks can reduce error rates and model complexity.

1.4 HANDLING IMBALANCED DATA STREAMS

The study |Czarnowskil (2022)) presents the Weighted Ensemble with One-Class Classification and
Over-Sampling and Instance Selection (WECOI) method, which addresses the issue of imbalanced
data. This method leverages ensemble classifiers and instance selection techniques to balance class
distributions in streaming data. This approach may benefit separated neuron training by effectively
handling activation parameter differences across diverse data segments.

The proposed separated formal neuron model shares similarities with various contemporary methods
and can leverage advances in modified activation functions, active learning, and data processing
techniques to improve its performance.

2 DESCRIPTION OF ACTIVITIES AND CONNECTION WEIGHTS USING
VECTORS AND MATRICES

All NU=1 incoming connection weights to neuron i of layer [are described by the weight vector
wh = {wh;} (i =0,1,...,N%j = 0,1,...,NU=1). When different input signals z are fed
into the neural network, the activation propagates through the network and determines the values
of vector 0ol/~1)—the activity of the elements in the previous (for layer [) layer. The vector o(‘~1)
defines the linear activation a! of neuron 7 in layer [according to the formula:

aﬁ = 'wf cott=1 (D

The magnitude of the (nonlinear) output activity is formed by applying a nonlinear transformation
to the scalar value al, resulting in o} = ¢(al). For simplicity, we will primarily consider the basic

%

nonlinear transformations:
. ReLU: gﬁ(ai) = maX(O, ai)
¢ SoftPlus: (p(aé) = log(1 + eai)

Other nonlinear functions can be used, but for the objectives of this study, ReLU and SoftPlus are
the most suitable.

In vector form, the activation of network neurons is expressed as:

Al — Wlo(l—l) (2)
A' = {aj = W01} 3)
o' = p(Ah) “4)

Under review as a conference paper at MathAl 2025

3) oilas) 5) oia)

0 a, 0
4) (@) /_7& og(ay)
a; 0

Figure 1: (a) A formal neuron of layer [: weight vector Wﬁ, linear activation aé, and non-linear
output activation oﬁ; (b) Common types of functions ¢(a'), with 5—ReLU and 6—SoftPlus.

3 GRADIENT COMPUTATION USING THE BPE METHOD

When using the BPE method, the quantity that propagates backward through the network is not the
“error” itself but the partial derivative of the loss function E with respect to the values of neural
network variables a! and o!, denoted as 2& and 2Z. Let us define 6! = 2£ . Based on this quantity
? v da; do;, 4 da;

(

J
the input weight vector W/} = {wéi}—are computed. Since:

6! and the output activity o l_l), the weight increments Awé-i—the changes in the components of

OF OF 8ai 1 (I-1) . 0aﬁ (1-1)
7810;»2» =9 —awéi =d;,0; ', since o, =o0; ', 5)
we obtain:
E _
Awé-i = —04867 = —a&éogl 1), 0<a<xl (6)

Je

In vector-matrix form, the change in the input weight matrix W' of layer [is expressed as the outer
product of vectors:

AW! = —ad (0T, AW! = {Auw!, = —adlo! "V} (7

where 6! = {6!} is a column vector and (O(~1)T = {05171)} is arow vector. All weight updates in

the input weight matrix 1/ follow the negative gradient of the loss function E and are proportional
to the errors” 65 (see [Podoprosvetov et al.| (2024)) for further details).

4 OPTIMIZATION OF TRANSFORMATIONS IN NEURONS

Neural network parameter optimization aims to construct an approximation that transforms input
signals into output signals with maximum accuracy. When solving complex recognition and gener-
ation tasks, the exact form of the optimal transformation function is typically unknown both before
and after training. The accuracy of the approximation can only be indirectly assessed based on how
well the training objectives are met.

To study this problem, it is preferable to examine simpler tasks where the reference transforma-
tion function is known and precisely formalized. One example is neural network approximation of
transformations defined explicitly by analytical functions. While such tasks lack practical applica-
tions (since exact functional descriptions are more efficient), they serve as useful abstract models
for studying adaptive processes. These models allow precise identification of approximation errors
and investigation of their causes and possible mitigation strategies.

Neural network training involves adjusting the parameters of its constituent neurons. The back-
propagation algorithm (BPE), which implements the idea of gradient descent, is currently the main
optimization method. All input weights of neurons are adjusted, and although the bias parameter

Under review as a conference paper at MathAl 2025

(threshold, bias) has a different nature, it is conventionally described as a weight connected to a unit
activation element and trained using the same rules as other weights.

5 TUNING VECTOR-MATRIX PARAMETERS OF A NEURAL NETWORK

The optimization of connection vectors W/, which form the rows of the weight matrices W, follows
the BPE method (Equation 2) and is analogous to linear regression construction.

Let y; represent the ideal linear regression of the reference nonlinear transformation being learned
by the neural network. Equations (1) (excluding the nonlinear part) define a hyperplane specified

by the vector Wil. The slope of this hyperplane along the component 0§-171) determines the weight

wh;, and the intersection with the a! axis (when all o™ = 0, except for j = 0) defines w);.

According to the weight update rules (Equation 2), in batch training with N, training samples, the
weight updates are given by:

Ny, Ny,
Aw,; = 70425%, Awé—i = -« Z(éﬁkoy_l)), k=1,...,N,. 8)
k=1 k=1

This leads to a gradual reduction in parameter updates to zero.

a);

0i i
| H
Awg;> 0

Awh=0 |

dwh=0 i

1 H i i
Aw< 0 mjf_—1 : Awf-‘< 0 éoj!-l i — AWL: 0 50;—1
min(oj ") max(o:"') min(o;™") | max(ojr“) min(of™") ‘ max(o;-r“)

Figure 2: Sequential reduction of the parameter increments w); and wél to zero (3)

The adjustment of all parameters w'; in parallel using cumulative updates (Equation 3) results in
a hyperplane approximating the training data as closely as possible, equivalent to constructing a
linear regression model. However, if all network neurons were adjusted this way without local non-
linearities, a single hidden-layer neuron would suffice for linear regression. Adding more neurons
would merely replace one hyperplane with a sum of several, increasing computational complexity
without improving the final result. Replacing linear transformations with nonlinear ones introduces
new properties, not all of which (as shown in Section 7) are desirable.

High-dimensional activation spaces of hidden layers exhibit many useful properties, one of the most
important being the presence of a large number of mutually perpendicular directions. These direc-
tions allow for the independent tuning of various network properties by nullifying the scalar products
of vectors. This topic was previously discussed in Ramachandran et al.| (2017)), and we continue to
develop it further. However, there are also other ways to partition the training process, which is the
focus of this work.

6 SIMPLE MODEL FOR TUNING SCALAR NONLINEAR PROPERTIES

According to Equations (1) and (2), the argument of the functions a! and Awé»i is the output activity

vector O~1) of the previous layer [— 1. In the high-dimensional state space of O~1) with dimen-
sion N~V identifying and understanding the influence of O~1) on the forms of al and Awé-i is

complex. The problem can be simplified by decomposing the vector O~ into two components:
one parallel and one perpendicular to the weight vector W/, as follows:

oY =of"V+ ol)

We are only interested in the component O‘(Ilfl), which is the projection of O~ onto W:

4

Under review as a conference paper at MathAl 2025

O(lfl) W (Wil . O(l—l)) (10)
i Cwlw))
Since the activation function is given by:
d=wl-0=0 =w. (0" +0o!"")=w]. o, (1D

where the scalar product of perpendicular vectors W} and Oﬂ_l) is zero. This reduction allows the
analysis of nonlinear properties tuning to be reduced to a function of a single variable u!, related to
al as follows:

ab = piul + ¢, (12)

where pl is a coefficient determined by W/, and ¢! = w), is the bias parameter. This one-
dimensional model, though simplified, provides insights into the optimization process.

7 CAUSES OF LOCAL MINIMA IN OPTIMIZATION

The simplified one-dimensional model facilitates the analysis of neuron parameter tuning using
the BPE method. Consider a simple case of approximating a ReLU-type function (shown in blue in
Figure 3) by tuning the weight vector W} of a neuron implementing a ReLU transformation. Ideally,
weight adjustments should lead to near-zero approximation error. However, when using BPE, this is
not always achieved (the red response in Figure 3).

a) Vi b) Vi) Yi
" [!
Aw> 0 p(af) awb=0 ?(@ awh= 0 o(af)
Awfi< 0 Awj< 0 Awj=0
! Woi
ul oi ul uj
min(uf) /’ max () min (uf) (/ max(uf) min(uf) .7 max(ul)
w -
fe) ¥, f) Yi
¢(al) o(ai)
Awh;< 0
Awh=0<0
uf uj uj
min(u}) ~_ max(u) min(ul) -, wh, max(u!) min(ul) max(ub)

Figure 3: Gradient descent always reduces the batch sum of &}, (3), but does not always yield a good
approximation of the target transformation.

If the growth direction of the linear activation matches that of the target function y; (Figure 3a), the
shift parameter wéi is adjusted first (Figure 3b), quickly zeroing out > (55 - Then, the other weights
w'; are tuned more slowly (Figure 3¢), until the sum of 5 kog-l*l)
approximation.

is minimized, leading to an optimal

If the growth direction of the linear activation is opposite to that of y; (Figure 3d), gradient descent
still operates, but instead of adjusting signs, it minimizes Y 8, by gradually deactivating the neuron
(Figure 3f). Where ¢/(al) = 0, the values of &}, are also zero. This results in neuron dropout.
Studies |Atanov et al.|(2019) indicate that this can affect over 90% of neurons.

To address this, ReLU is replaced with functions such as LeakyReLU or Swish Ramachandran
et al.| (2017), which do not have large zero-gradient regions. This allows “deactivated” neurons to
resume operation, but the reconfiguration process is slow due to near-total (though not absolute,
as in ReLU) deactivation. This causes non-monotonic distance reduction between initial and final
parameter configurations, with growth phases. Our research aims to eliminate such failures and
provide theoretical justification for our proposed transformation model. Our findings have so far

Under review as a conference paper at MathAl 2025

been validated only on exploratory tasks but suggest that our transformation structure could improve
benchmark accuracy beyond the 0.9% gain achieved by Swish|Ramachandran et al.|(2017).

Another important aspect of our research is resource allocation across neural layers within the input
state subspaces O('~1). Ignoring this issue leads to over-allocation in “successful” transformation
regions while under-allocating for “difficult” areas. Distributing resources proportionally to trans-
formation complexity, along with eliminating training failures, will accelerate network tuning and
achieve deeper approximation minima. As with any scientific problem, progress relies on distin-
guishing optimization objectives and selecting targeted methods to achieve them.

8 DECOMPOSITION OF NEURAL NETWORK OPTIMIZATION TASKS INTO
SPECIALIZED ALGORITHMS

Although the BPE method allows for tuning not only vector parameters but also other neural network
parameters, the analysis above shows that it is highly likely to lead the optimization process to local
minima. A possible way to overcome these shortcomings of BPE is to decompose the optimization
process into separate subtasks and solve them using dedicated specialized algorithms.

Analysis identifies several subtasks in the optimization process:

Adjusting the bias values w),; of linear activation for all neurons in the regression task;
Selecting optimal directions and magnitudes for weight vectors Wf in the regression task;
Distributing the directions of Wj vectors in the state space of o=,

Adjusting the biases of nonlinear functions ¢(al);

Tuning the slope of the ReLU function;

Adjusting the curvature of the SoftPlus function;

Compensating for the effect of changes in weight matrices AW in previous layers;

Normalizing the activations propagating through the network (/_17);

e AR o e

Normalizing the backpropagated error (57);

,_
e

Orthogonalizing the activity vectors of layers (ffl).

The first two points in this list are effectively handled by the BPE method. To improve the efficiency
of the remaining subtasks, several specialized algorithms will be described below. For instance, the
third algorithm in the list is proposed to be implemented based on the self-organizing map (SOM)
algorithm [Marfo & Przybyta-Kasperek| (2022)), while points 4-6 involve the use of specialized al-
gorithms based on the accumulation of statistical expectations of various nonlinear transformations.
Algorithms for points 7-9 were previously discussed in|Czarnowski (2022).

9 MODEL OF A "DECOMPOSED” FORMAL NEURON

In this context, the problem of ”decomposed’ approximation is considered as an independent adjust-
ment of biases for nonlinear functions ¢(al), tuning of “angles” for ReLU and SoftPlus functions,
and setting the curvature parameters of the SoftPlus function for all neurons in a layer. We consider
the operation of a single neuron, which differs from others only in the values of its parameters.

Decomposing the training process into different learning algorithms is not aimed at improving the
generality of the BPE method but at addressing the issues outlined in point 7, which cause slow
training and convergence to shallow minima. Importantly, in the proposed configuration, the deriva-
tive of the nonlinearity with respect to its argument not only almost never approaches zero but also
practically never tends towards it.

Distinctive features of the proposed transformation include:
+ Individual nonlinearity parameters for each neuron: shift ¢! and slope c!, which linearly de-

fine the argument v! of the nonlinear transformation (, and parameter d%, which determines
(for a given cl) the magnitude of derivatives ¢ (v!);

Under review as a conference paper at MathAl 2025

* Symmetry of the function ¢(v!) relative to zero argument, achieved by adding linear terms
to 2max(v!,0) or 2In(1 + €%*).

l

The nonlinear transformation ol (a') is defined by the following equations:

o = ai + ¢(v}); (13)

vi = ci(al +q)); (14)

o(v!) = d'(2max(v},0) —v!) (ReLU analog) (15)
o(vl) = di(2In(1 + %) — 2In2 —v}) (SoftPlus analog) (16)

The internal transformation parameter v! is linearly related to the external parameter u! mentioned
earlier, but they are not equal. The interaction scheme of variables according to (5) is shown in
Figure 4.

Figure 4: Structure of the "decomposed” formal neuron.

To tune the ReLU analog, it is sufficient to use only one of the two parameters ¢} and d! (e.g., setting
ck = 1), since changing either results in the same change in angle 6! (see Figure 5a). However, both
parameters are presented in equations (5) because, for the ReLU analog, it is easier to understand
that changing the angle between asymptotes requires modifying the product cldl. Conversely, if
both parameters are changed while keeping their product constant, the angle remains unchanged

(including for the SoftPlus analog).

a) b) ()l. =al. + (p(yl)
. o(2vl) =20(v}) 4 : ‘ ‘;’(”D '

, o(vi) .

di; > dj; — elli < HIZi

L
91

min(uﬁ)

Figure 5: Properties of nonlinear transformations, ReLU and SoftPlus analogs (5).

As the product cidﬁ decreases to zero, the nonlinearity go(vﬁ) degenerates into a straight line. Further

reduction (into negative values) results in a sign change for both curvature and angle .. Since the
functions max (v}, 0) and In(1 + e”ﬁ) are always non-negative and symmetric about zero argument,

changing the argument’s sign does not affect their values. This means that to reverse the direction of
angle 0! (upward or downward), it suffices to change the sign of d’ while keeping ! strictly positive

(enforcing ¢t > 0 programmatically).

10 ADJUSTMENT OF NONLINEARITY OFFSET AND ANGLE BETWEEN
ASYMPTOTES

As follows from equations (5) and the graphs in Fig. 5, the adjustment of these parameters is carried
out by adaptively changing the individual values of the coefficients ¢!, c., and d! for each neuron. It

Under review as a conference paper at MathAl 2025

is crucial that the adjustment of these parameters always leads to a reduction in total error, similar to
gradient descent in BPE, but with less tendency to settle in local minima. To achieve this, we utilize
BPE-based ideas separately for the local parts of the nonlinear transformation, specifically to the left
and right of the zero argument (scalar) of the nonlinear transformations (5).

The adjustment of scalar parameters is performed in parallel with the vector parameters of each
neuron, ensuring that the equalities (3) are approximately maintained. This means that, overall, for
each neuron, the sum:

Z ol ~ (17)

but if divided into two sums, to the left and right of the point u} such that v}(ul) = 0, they can
deviate significantly from zero:

Ny Ny
Z((;Zl_k)left o~ — Z(él)rlght (18)
k=1 k=1
a0 lft oL ht
2 (o) = =2 (el " 19)
k=1

To improve approximation accuracy, it is necessary for each of the semi-sums in (6) to also approach
zero. However, neither BPE nor equality (6) ensure this. Applying a BPE-like approach separately
to each semi-sum reduces the approximation error. Since equations (5) differ from (1) and achieving
the desired result requires modifying the parameters ¢! and d! (and for SoftPlus, also ct), the sums
from (6) should not be linked to increments of vector components Wﬁ as in (3), but rather to these
parameters directly.

Since the equality of sums in (6) is approximate (and assumes that BPE has already sufficiently
tuned W so that their increments in (3) are negligibly small—an assumption that may not hold,
especially in early training), it is preferable to take into account their signs and magnitudes. The
coefficients for the linear components ol = al + ¢(v!l) for the left and right parts behave differently
under small changes in ¢! (Fig. 6a). When lmear coefficients have the same sign, output activity
changes in opposite directions; when they have different signs, the magnitude of changes differs.
This affects the sums in (6), violating their approximate equality, but this discrepancy is compensated
by adjusting W' using BPE.

']
0 o

=al+ (p[v')

Figure 6: Adjustment of parameters ¢!, d..

The linear coefﬁcwnts (rh)eft and (r!)tieh are formed according to (5) as algebraic sums of the
coefficients p! = ||[W!|| and d':

(Tﬁ)left _ pé o diy (l)nght pz + dl (20)
Increasing the offset parameter ¢! by a small amount Ag! shifts the point v!(ul) = 0 to the left

and changes each &, in the sum Zk: (64,)eht by (rlyrietAgl. The total change in the sum is
(nbyfieht(phyright Agl where (n!)meM is the number of terms in the sum. Similarly, for (6,), we get:

Ny
(n})"e™ (r}) "M Agi = —y1 Y (01,)"E, @D
k=1

Under review as a conference paper at MathAl 2025

which gives:
N ‘
Agl = D (G3)"
2 (nl)right<rl)right ’

i A

(22)

A similar expression can be derived for (Ag})" ", but the shifts may not be equal and can even be in
opposite directions. To ensure higher approximation accuracy, a weighted average value of Ag! is

chosen:
N, ; N, ;
Dk (05) 1|+ (Agh)me™ (30, (57,)

[(0| + | o (ot e

(Aghyeft

Ag, = (23)

Similarly, a weighted value for Ad! is calculated, which determines the change in angle !. The
complexity in defining Ad! arises from the dependence of sum variations on the “arm lengths” of
the sides. To determine the mean “arm length,” all values (a! — ¢!) to the right of v! = 0 and
(¢! — al) to the left are summed. If using a more complex nonlinearity than ReLU, these sums must
be multiplied by cl. The total length sum, multiplied by Ad!, gives:

—7 Do (S0 e
N A :
kil(aﬁli _ qf)rlght

A weighted total Ad! is computed similarly to (9). The effects of applying formulas (7)~(10) are

illustrated in Fig. 6b and 6¢. Figure 6b shows an arbitrary example of shifting the “separated” ReLU

function to the target position through shifts (due to changes in ¢! and w};) and rotations (due to
changes in d! and W}) of its components. Figure 6¢ applies the training of the “separated” ReLU
function to the case previously considered in Figure 3d-f. Unlike the standard ReLU function, the

“separated” version does not encounter adaptation issues.

Adl = (24)

11 CURVATURE ADJUSTMENT OF THE SOFTPLUS FUNCTION

When approximating smooth functions, an important source of deviation from the reference function
is the presence of derivative discontinuities in the ReLU function. Even a simple replacement of
ReLU with Swish |Zheng et al.|(2015) improves approximation across a wide range of tasks. The
“separated” SoftPlus function also has no derivative discontinuities and, moreover, allows tuning of
the ”curvature” parameter to match the properties of the approximated function. This adjustment
is performed individually (but, like all other neural network algorithms, in a mass manner) and
serves as an additional fine-tuning feature on top of all the previously described advantages of the
“separated” ReL.U.

12 COMPENSATION FOR WEIGHT MATRIX ADJUSTMENTS IN EARLIER
LAYER

All the aforementioned modifications, aimed at separating the optimization methods of neural net-
work transformations, influence the direction of parameter updates, which can significantly deviate
from the direction of the negative gradient of the loss function E with respect to the parameters.
While such deviations may be beneficial in hidden layers, in the output layer, it is preferable not
to deviate from the optimal approximation direction. This can be ensured by not only avoiding ad-
ditional algorithms when tuning the final weight matrix but also compensating for the influence of
changes in matrices AW! in previous layers. The algorithm for computing compensatory additions

to the vectors d' is described in Podoprosvetov et al.| (2024).

13 PARAMETER NORMALIZATION

Stable operation and training of a neural network can be achieved by ensuring smooth propagation
of activity A' and “error” 5 through the network, avoiding sharp spikes or dampening. The ability

Under review as a conference paper at MathAl 2025

to compensate for the influence of additional algorithms on the training of subsequent layers allows
normalizing activities A’ by introducing an algorithm for modifying weight matrices W', while

normalizing &' is embedded in the BPE method. The use of compensation ensures that the additional
learning algorithms (including all those described above) do not distort the gradient descent direction
in the last hidden layer, where only the BPE method is applied.

14 ORTHOGONALIZATION OF ACTIVITY VECTORS IN NEURAL NETWORK
LAYERS

Another important idea in ”separating” the optimization of neural network transformations is the
approach outlined in[Podoprosvetov et al.|(2024), which utilizes a key property of high-dimensional
vector spaces—the presence of a vast number of mutually orthogonal directions. This approach
not only normalizes the magnitude of vectors A, but also adjusts the matrices W' to maximize the

distribution of A’ across its subspace of states. This significantly reduces the dependency between
learning parameters for different input signals, leading to increased learning speed and accuracy.

15 RESULTS

When applied together with the normalization, orthogonalization, and load distribution methods
described in previous reports, the optimization algorithms for nonlinear transformation parameters
presented here enable a reduction in training time (depending on the type of transformation) by a
factor of 3 to 10 and improve approximation accuracy by 1.5 to 2 orders of magnitude for ReLU
and up to 3 orders of magnitude for SoftPlus. These results were obtained through the modeling of
neural network approximation tasks for analytically defined vector functions. Improving the accu-
racy of approximating smooth functions is critical for many applications, such as robotics, where
precise motion description and prediction are essential. Moreover, even in recognition tasks and
similar applications, where exact representation of transformations may not seem strictly necessary,
increasing approximation accuracy can enhance the optimization of transformations.

16 CONCLUSIONS

The success of solving complex “intelligent” tasks using powerful systems based on LLM training
and other modern approaches should not create the impression that all neural network parameter
tuning algorithms are fully understood and that no new developments can emerge in this field. On
the contrary, vector-matrix analysis of various aspects of neural network transformations presents a
vast area for research and promising developments, as more efficient algorithms scale better to large
and complex tasks.

This work focused on the potential of separating optimization tasks in neural network parameter tun-
ing processes. Even in a relatively simple piecewise-linear neural network approximation based on
the ReLU function, it is possible to separate the training of vector-linear and scalar-nonlinear trans-
formations. Moreover, since most nonlinear functions used in neural networks have linear asymp-
totes, the obtained results can be extended to them, primarily to SoftPlus, as a smooth analog of
ReLU. Furthermore, the use of smooth, derivative-continuous functions enables finer-tuned approx-
imation adjustments by aligning the curvature of the reference and neural transformation functions.
However, fine-tuning methods are effective only if coarser optimization algorithms do not encounter
adaptation problems.

Beyond improving individual aspects of neural network algorithms, this work is valuable as an ex-
ample of using vector-matrix analysis to study the properties of neural network data processing.
Vector-matrix analysis provides a deeper understanding of the transformations performed and sug-
gests ways to accelerate and improve the accuracy of neural network approximation processes.

REFERENCES

A Atanov, A Ashukha, D Molchanov, K Neklyudov, and D Vetrov. Uncertainty estimation via
stochastic batch normalization. In Advances in Neural Networks—ISNN 2019: 16th International

10

Under review as a conference paper at MathAl 2025

Symposium on Neural Networks, ISNN 2019, Moscow, Russia, July 10-12, 2019, Proceedings,
Part I 16, pp. 261-269. Springer, 2019.

Ireneusz Czarnowski. Weighted ensemble with one-class classification and over-sampling and in-
stance selection (wecoi): An approach for learning from imbalanced data streams. Journal of
Computational Science, 61:101614, 2022.

Kwabena Frimpong Marfo and Malgorzata Przybyta-Kasperek. Radial basis function network for
aggregating predictions of k-nearest neighbors local models generated based on independent data
sets. Procedia Computer Science, 207:3234-3243, 2022.

Alexey Podoprosvetov, Vladimir Smolin, and Sergey Sokolov. Vector analysis of deep neural net-
work training process. In International Conference on Deep Learning Theory and Applications,
pp. 219-237. Springer, 2024.

Simon JD Prince. Understanding deep learning. MIT press, 2023.

Malgorzata Przybyta-Kasperek and Kwabena Frimpong Marfo. A multi-layer perceptron neural
network for varied conditional attributes in tabular dispersed data. PloS one, 19(12):e0311041,
2024.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions. CoRR,
abs/1710.05941, 2017. URL http://arxiv.org/abs/1710.05941!.

Jasraj Singh. Training-free neural active learning with initialization robustness guarantees. 2023.
URL https://hdl.handle.net/10356/166498. Final Year Project (FYP), School of
Physical and Mathematical Sciences, Nanyang Technological University, Singapore.

Hao Zheng, Zhanlei Yang, Wenju Liu, Jizhong Liang, and Yanpeng Li. Improving deep neural
networks using softplus units. In 2015 International joint conference on neural networks (IJCNN),
pp. 1-4. IEEE, 2015.

11

http://arxiv.org/abs/1710.05941
https://hdl.handle.net/10356/166498

	Introduction
	SoftPlus and ReLU in Deep Neural Networks
	Adaptive Learning Methods in Neural Networks
	Classification Using Radial Basis Function Networks
	Handling Imbalanced Data Streams

	Description of Activities and Connection Weights Using Vectors and Matrices
	Gradient Computation Using the BPE Method
	Optimization of Transformations in Neurons
	Tuning Vector-Matrix Parameters of a Neural Network
	Simple Model for Tuning Scalar Nonlinear Properties
	Causes of Local Minima in Optimization
	Decomposition of Neural Network Optimization Tasks into Specialized Algorithms
	Model of a "Decomposed" Formal Neuron
	Adjustment of Nonlinearity Offset and Angle Between Asymptotes
	Curvature Adjustment of the SoftPlus Function
	Compensation for Weight Matrix Adjustments in Earlier Layer
	Parameter Normalization
	Orthogonalization of Activity Vectors in Neural Network Layers
	Results
	Conclusions

