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Abstract

Prompts for pre-trained language models001
(PLMs) have shown remarkable performance002
by bridging the gap between pre-training tasks003
and various downstream tasks. Among these004
methods, prompt tuning, which freezes PLMs005
and only tunes soft prompts, provides an effi-006
cient and effective solution for adapting large-007
scale PLMs to downstream tasks. However,008
prompt tuning is yet to be fully explored. In009
our pilot experiments, we find that prompt tun-010
ing performs comparably with conventional011
full-model tuning when downstream data are012
sufficient, whereas it is much worse under few-013
shot learning settings, which may hinder the014
application of prompt tuning. We attribute015
this low performance to the manner of initial-016
izing soft prompts. Therefore, in this work,017
we propose to pre-train prompts by adding018
soft prompts into the pre-training stage to ob-019
tain a better initialization. We name this Pre-020
trained Prompt Tuning framework “PPT”. To021
ensure the generalization of PPT, we formulate022
similar classification tasks into a unified task023
form and pre-train soft prompts for this uni-024
fied task. Extensive experiments show that tun-025
ing pre-trained prompts for downstream tasks026
can reach or even outperform full-model fine-027
tuning under both full-data and few-shot set-028
tings. Our approach is effective and efficient029
for using large-scale PLMs in practice.030

1 Introduction031

Fine-tuning pre-trained language models032

(PLMs) (Devlin et al., 2019; Radford et al., 2019;033

Raffel et al., 2020) has made great progress in re-034

cent years. By tuning the entire model parameters,035

the versatile knowledge acquired from large-scale036

unlabeled corpora can be adapted to handling037

various NLP tasks and outperform the approach of038

learning models from scratch (Han et al., 2021a).039

For simplicity, we name this full-model tuning as040

“FT”. As shown in Figure 1 (b) and (c), there are041

two mainstream FT approaches. The first one is042

task-oriented fine-tuning, where a task-specific 043

head is added on top of PLMs, and the entire model 044

is then fine-tuned by optimizing task-specific 045

objectives on corresponding training data. 046

The second one is prompt-oriented fine- 047

tuning (Schick and Schütze, 2021a), which is 048

inspired by the recent works utilizing language 049

prompts to probe the knowledge in PLMs (Petroni 050

et al., 2019; Brown et al., 2020). In prompt- 051

oriented fine-tuning, data samples are converted 052

to sequences containing prompt tokens, and down- 053

stream tasks are formalized as language modeling 054

problems. As shown in Figure 1 (c), by adding the 055

prompt “It was 〈X〉 .” to a sentence, we can deter- 056

mine its sentiment polarity with PLMs by predict- 057

ing “great” or “terrible” at the mask position. As 058

shown in Figure 1, compared to task-oriented fine- 059

tuning, prompt-oriented fine-tuning is more simi- 060

lar to the pre-training objectives (masked language 061

modeling), thereby helping to better use knowledge 062

in PLMs and often obtaining better performance. 063

Although the FT methods have shown promis- 064

ing results, with the rapid growth of model scale, 065

fine-tuning and storing the entire large model for 066

each downstream task becomes more and more ex- 067

pensive. To address this challenge, Lester et al. 068

(2021) propose prompt tuning (PT) to adapt large 069

PLMs to downstream tasks cheaply, as shown in 070

Figure 1 (d). Specifically, PT uses soft prompts 071

composed of continuous embeddings instead of 072

hard prompts (discrete language phrases). These 073

continuous prompt embeddings are generally ran- 074

domly initialized and learned end-to-end. To avoid 075

storing the entire model for each downstream task, 076

PT freezes all PLM parameters and merely tunes 077

soft prompts, without adding any intermediate lay- 078

ers and task-specific components. 079

PT has two promising advantages. First, soft 080

prompts can be learned end-to-end in comparison 081

to hard prompts. Second, PT is an efficient and 082

effective paradigm for the practical use of large- 083
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Model LayersHard Prompt Tokens Soft Prompt Tokens

(a) Masked Language Modeling (b) Task-oriented Fine-tuning (c) Prompt-oriented Fine-tuning (d) Prompt Tuning

Encoder
(Tuned)

I like eating apples . 

Task Head

Class:Positive

Encoder
(Tuned)

Decoder
(Tuned)

I like [X] .  Apples are delicious .

eating apples

I like eating apples .  It was <X> .

Encoder
(Tuned)

Decoder
(Tuned)

great

Verbalizer

Label:Positive

Encoder
(Fixed)

Decoder
(Fixed)

great

Verbalizer

Label:Positive

I like eating apples .  <X>

Figure 1: Paradigms of pre-training (masked language modeling), full-model tuning (task-oriented fine-tuning and
prompt-oriented fine-tuning), and prompt tuning. The verbalizer is a function to map task labels to concrete words.
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Figure 2: Comparison between PT and FT. The tuned
prompt is composed of 100 learnable embeddings
whose dimensions are the same as the token embed-
dings of PLMs (4096 dimensions). All these results
are based on 11B PLMs T5 and CPM-2. FT needs
to optimize all 11B parameters, while PT only trains
about 410K prompt parameters.

scale PLMs, which is comparable to FT when084

downstream data are sufficient (Figure 2(a)). How-085

ever, as shown in Figure 2(b), we find that PT086

performs much worse than FT under few-shot set-087

tings, which may hinder the application of PT in088

various low-resource scenarios.089

Hence, in this paper, we explore how to use090

PLMs for few-shot learning in an efficient and ef-091

fective manner through PT. Specifically, we con-092

duct pilot experiments to empirically analyze the093

effectiveness of PT on large-scale PLMs in Sec-094

tion 2, which is ignored by most existing works.095

Our discoveries are as follows: (1) the vervalizer096

choice has a large impact on the performance; (2)097

simply initializing soft prompts with concrete word098

embeddings fails to improve the performance, yet 099

(3) combining soft and hard prompts is helpful; 100

and (4) all these methods cannot handle few-shot 101

prompt tuning problems well. The above observa- 102

tions reveal that prompt searching for PLMs is not 103

trivial, and carefully initialized soft prompt tokens 104

is crucial. 105

To help the model find suitable prompts, we pre- 106

train these tokens with self-supervised tasks on 107

large-scale unlabeled corpora. To ensure the gener- 108

alization of pre-trained prompts, we group typical 109

classification tasks into three formats: sentence- 110

pair classification, multiple-choice classification, 111

and single-text classification, each format corre- 112

sponding to one self-supervised pre-training task. 113

In addition, we find multiple-choice classification 114

more general among these formats and we can 115

unify all classification tasks to this format. We 116

name this Pre-trained Prompt Tuning framework 117

“PPT”. We evaluate PPT on several datasets based 118

on three 11B PLMs: T5-XXL (Raffel et al., 2020), 119

mT5-XXL (Xue et al., 2021) and CPM-2 (Zhang 120

et al., 2021b) in few-shot scenarios. Experiments 121

show that PPT can not only improve PT by a large 122

margin, reaching or even outperforming FT meth- 123

ods, but also reduce the variance of few-shot learn- 124

ing. Besides the effectiveness, PPT also retains the 125

parameter efficiency of PT, which is valuable for 126

future applications on large-scale PLMs. 127

2 Pilot Experiments 128

In this section, we present pilot experiments of PT 129

for few-shot learning. We analyze three strategies 130

including hybrid prompt tuning, verbalizer selec- 131

tion, and real word initialization. We follow Lester 132

et al. (2021) to test PT with T5-XXL (11B parame- 133

ters) and use 100 tunable soft prompt tokens1. 134

1Using 100 soft prompt tokens achieves the best perfor-
mance in Lester et al. (2021).
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Hard Prompt Verbalizer Accuracy

None good/bad 70.515.5
Man #1: P s. It was 〈X〉. good/bad 87.66.6
Man #2: P Just 〈X〉 ! s good/bad 86.08.1
Man #3: P s. All in all, it was 〈X〉. good/bad 83.48.3

Gen #1: P .s. a 〈X〉. good/bad 81.613.8
Gen #2: P s. A 〈X〉 one. good/bad 81.22.2

Man #1: P s. It was 〈X〉. great/terrible 86.97.9
Man #1: P s. It was 〈X〉. dog/cat 60.07.6
Man #1: P s. It was 〈X〉. bad/good 76.311.7

Full-Model Tuning good/bad 91.40.8

Table 1: The impact of hard prompts and verbalizers
on PT for few-shot learning (32 samples) on SST-2.
P represents soft prompts. s denotes the input sen-
tence. “Man” means manually designed hard prompts
and “Gen” means auto-generated hard prompts. The
choice of hard prompts and verbalizers has a significant
influence on model performance.

Following Schick and Schütze (2021b), we ran-135

domly select 32 samples to construct the training136

set Dtrain from the original training data. To tune137

the hyper-parameters, we compose a validation set138

Ddev from the original training data and ensure139

|Dtrain| = |Ddev| to simulate the few-shot learning140

setting (Perez et al., 2021). We follow Zhang et al.141

(2021a) and Gao et al. (2021) to use the original142

validation set as the test set Dtest, which means143

|Dtest| � |Dtrain| = |Ddev|.144

Hybrid Prompt Tuning In hybrid prompt tun-145

ing, both soft and hard prompts are used (Liu146

et al., 2021; Han et al., 2021b). However, pre-147

vious works train soft prompts jointly with the148

entire model. In PT where only prompt tokens149

are tunable, the effectiveness of hybrid prompts is150

under-explored. In Table 1, we show the results of151

combining soft prompts P with three manually de-152

signed hard prompts and two auto-generated hard153

prompts (Gao et al., 2021) on a sentiment classifi-154

cation task (Socher et al., 2013). We can see that155

hard prompts improve PT, but still under-perform156

FT. Furthermore, different hard prompts affect the157

performance remarkably, therefore much human158

labor for prompt design and selection is needed.159

Verbalizer Selection Verbalizer maps task-160

specific labels to concrete tokens. For instance,161

in Figure 1 (c) and (d), the verbalizer maps the la-162

bel “Positive” to “great”. From Table 1 we can see163

that the choices of verbalizers influence the perfor-164

mance remarkably. In general, common words that165

explain the meaning of corresponding labels work166

SST-2 BoolQ

Random Init. 70.515.5 61.05.3
Label Init. 58.92.7 63.00.4
Vocab Sampling 57.04.0 58.44.9
Top-1000 Sampling 57.94.2 57.73.9
Task-Related Sampling 58.53.8 58.24.0

Full-Model Tuning 91.40.8 80.82.4

Table 2: Few-shot learning performance with different
strategies for choosing concrete words for prompt ini-
tialization in PT. “Label Init”: use the embeddings of
the label words. “Vocab Sampling”: randomly sam-
ple words from the vocabulary. “Top-1000 Sampling”:
randomly sample words from the most frequent 1000
words in the pre-training corpus. “Task-Related”: ran-
domly sample words from the downstream data. We
use the classification accuracy (%) for evaluation.

well. This also guides our verbalizer selection for 167

PPT in Section 3. 168

Real Word Initialization In real word initializa- 169

tion, we use the embeddings of concrete words to 170

initialize the soft prompt and test four initialization 171

strategies. The effectiveness of this approach has 172

been verified on small PLMs (fewer than 3B pa- 173

rameters) in previous works (Lester et al., 2021). 174

However, from the experiments on SST-2 (Socher 175

et al., 2013) and BoolQ (Clark et al., 2019) (Table 176

2), we find that for the 11B model, real word ini- 177

tialization has little or even negative impact on the 178

performance in few-shot scenarios. This suggests 179

that observations on small models can not be di- 180

rectly adapted to large models and finding a good 181

initialization for soft prompts is yet to be explored. 182

To summarize, although the above enhancement 183

strategies cannot help PT achieve comparable re- 184

sults with FT under few-shot settings, they are still 185

the key factors that influence the PT performance. 186

In the following sections, we describe our PPT 187

framework and show in experiments that PPT not 188

only provides a good prompt initialization, but also 189

takes advantage of the good verbalizer, and is com- 190

plementary to hybrid prompts. 191

3 Pre-trained Prompt Tuning (PPT) 192

In this section, we describe the whole framework 193

of PPT, including how to pre-train prompts and 194

use these pre-trained prompts for specific tasks. 195

3.1 Overview 196

Following the approach of T5 (Raffel et al., 2020) 197

and PT (Lester et al., 2021), we solve all down- 198
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stream tasks in a text-to-text format. As shown199

in Figure 1 (c), to reduce the objective gap be-200

tween pre-training and downstream tasks, prompt-201

oriented fine-tuning converts downstream tasks into202

cloze-style objectives. Taking classification for ex-203

ample, given an input sentence x ∈ V∗ and its204

label y ∈ Y , a pattern mapping f : V∗ 7→ V∗205

is first applied to convert x into a new sequence206

f(x), where V is the vocabulary of PLMs. f(x)207

not only adds some prompt tokens as hints, but also208

preserves the mask token 〈X〉 to let PLMs predict209

tokens at the masked positions. Then, a verbalizer210

v : Y 7→ V∗ is used to map y to some label tokens211

v(y). With f(·) and v(·), a classification task can212

be represented by a pattern-verbalizer pair (f, v):213

argmax
θ

∑
x

log p
(
y|x;θ

)
= argmax

θ

∑
x

log p
(
〈X〉 = v(y)|f(x);θ

)
,

(1)214

where θ indicates all tunable parameters, especially215

the parameters of PLMs. For convenience, we use216

“PVP” to denote this pattern-verbalizer pair (Schick217

and Schütze, 2021a).218

In PT (Lester et al., 2021), a set of soft prompts219

P are concatenated to the beginning of the se-220

quence and the model input becomes [P ; f(x)],221

where [·; ·] is the concatenation operation. By tun-222

ing P , Eq. (1) is replaced by223

argmax
P

∑
x

log p
(
〈X〉 = v(y) | [P ; f(x)];P

)
. (2)224

Owing to the power of large-scale PLMs, Eq. (2)225

is verified to be comparable to these FT methods226

under full-data settings. However, we find it hard227

to learn effective soft prompts, which may result228

in low performance in various few-shot scenarios.229

The parameter initialization usually has a large im-230

pact on the difficulty of the model training and op-231

timization, and our pilot experiments have shown232

that existing initialization strategies have little or233

even negative impact on the PT performance of234

large-scale PLMs. We refer more details of these235

pilot experiments to Section 4.236

Recently, pre-training has been proven to be an237

effective method to find a good model initializa-238

tion. Inspired by this, we propose to pre-train soft239

prompts. We notice that some groups of down-240

stream tasks are related to certain self-supervised241

tasks built on unlabeled pre-training corpora. For242

instance, some tasks in the form of sentence-pair243

classification, such as natural language inference244

…Iron Man sacrificed himself. The Avengers finally wins…<X>

Can you drive in Canada? Drivers in Canada register the vehicle.

I say I became very uneasy. She was very uneasy last night.

I visited Iraqi, including Fallujah. Fallujah is a Iraqi city.

<X>

<X>

<X>

Prompt Tuning (Labeled Data) : Yes / No Question Answering

Pre-Training (Unlabeled Data) : Next Sentence Prediction

Prompt Tuning (Labeled Data) : Natural Language Inference

Prompt Tuning (Labeled Data) : Sentence Similarity

Figure 3: An example of PPT used in sentence pair
tasks. P denotes soft prompt. 〈X〉 means the mask of
typical encoder-decoder model like T5 and CPM-2.

and sentence similarity, are similar to the next sen- 245

tence prediction (NSP) (Devlin et al., 2019) task 246

used in the pre-training stage. As shown in Fig- 247

ure 3, these tasks all take two sentences as input 248

and compare their semantic meanings. Therefore, 249

soft prompts pre-trained by NSP can be a good 250

initialization for these sentence-pair tasks. 251

Formally, suppose we can divide down- 252

stream tasks into m groups {T1, T2, ..., Tm}, 253

where Ti is the set containing ni downstream 254

tasks: {PVP1
i ,PVP2

i , ...,PVPni
i }, where PVPk

i = 255

(fk
i , v

k
i ). For each group, we design a correspond- 256

ing pre-training task PVPpre
i = (f

pre
i , v

pre
i ). Af- 257

ter pre-training soft prompts on these tasks with 258

all model parameters fixed, we get m pre-trained 259

prompts {P1,P2, ...,Pm}. Then, for each task 260

PVPk
i in Ti, we continue to optimize Eq. (2) by 261

using Pi as the soft prompts initialization. 262

3.2 Designing Pattern-Verbalizer Pairs for 263

Pre-training 264

In this section, we take three typical classification 265

tasks as examples to describe the design of pattern- 266

verbalizer pairs PVPpre
i for prompt pre-training. 267

3.2.1 Sentence-Pair Classification 268

Sentence-pair classification tasks such as natural 269

language inference and sentence similarity take 270

two sentences x = (s1, s2) as the input. To de- 271

sign a PVP for these tasks, we extend the next 272

sentence prediction in Devlin et al. (2019) to a 3- 273

class classification with labels Y = {0, 1, 2} as the 274

pre-training task. These labels in Y can respec- 275

tively indicate that the semantic relation between 276

two sentences is coherent (with label 2), similar 277

(1) and irrelevant (0). To construct signal from un- 278

labeled documents, we set the two sentences next 279

to each other as label 2, those from the same doc- 280
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ument but not true next sentence as 1, and those281

from different document as 0. We consider the la-282

bel set |Y| ≤ 3 because this covers most sentence283

pair tasks. PVPpre
i = (f

pre
i , v

pre
i ) is given as284

f pre
i (x) = “s1 〈X〉 .s2”,

vpre
i (Y) = [no,maybe, yes].

(3)285

Designing PVPk
i = (fk

i , v
k
i ) according to PVPpre

i286

is simple. s1 and s2 can be replaced by the input287

sentence pair. If a task outputs two labels, then288

we take vki (Y) = [no, yes]. If a task outputs three289

labels, we set vki = v
pre
i . If a task requires to290

measure the similarity between two sentences, the291

probability over {no, yes} can serve for this task.292

3.2.2 Multiple-Choice Classification293

Many tasks can be formulated as multiple-choice294

classification, which takes a query and several an-295

swer candidates as the input. We design a next296

sentence selection task to pre-train the prompt.297

Given a sentence as the query sq, the model is298

trained to select the adjacent sentence from six299

candidates, denoted as s1 ∼ s6 and thus the la-300

bel set is Y = {1, 2, 3, 4, 5, 6}. These candidates301

consist of the right answer, one sentence from the302

same document but is not adjacent to the query,303

and four sentences from other documents. For304

x = (sq, s1, s2, · · · , s6), (fpre
i , v

pre
i ) is given as305

306
f pre
i (x) = “sq? A.s1 · · · F.s6.Answer is 〈X〉 .”,

vpre
i (Y) = [A,B,C,D,E, F].

(4)307

Most multiple-choice tasks can use {fpre
i , v

pre
i } di-308

rectly as their PVPs. For tasks like reading com-309

prehension, the input may contain a passage and a310

question. We concatenate them to form the query.311

3.2.3 Single-Sentence Classification312

For single-sentence classification, we create pseudo313

labels for prompt pre-training. Taking sentiment314

classification as an example, we use another small315

model to annotate sentiment labels for the sen-316

tences from the pre-training corpus and filter out317

those with low classification probability. In prac-318

tice, we use a RoBERTaBASE (Liu et al., 2019)319

model fine-tuned on a 5-class sentiment classifi-320

cation dataset other than the few-shot datasets we321

evaluate on. Then with a sentence s from the cor-322

pus, we have the input x = (s) and the label set323

Y = {1, 2, 3, 4, 5}. (fpre
i , v

pre
i ) is given as324

f pre
i (x) = “s. 〈X〉 .”,

vpre
i (Y) = [terrible, bad,maybe, good, great].

(5)325

For sentiment classification tasks with 5 labels, we 326

can use PVPk
i = PVPpre

i . For those with fewer than 327

5 labels, we choose a subset from v
pre
i (Y) as labels. 328

Although the above method improves the model 329

performance, we have to point out that it is still lim- 330

ited to generalize to other single-text classifications 331

in different domains and with different numbers 332

of labels. Therefore, the method described in the 333

following section is proposed to solve this problem. 334

3.3 Unifying Task Formats 335

The above-mentioned PVPs for pre-training can be 336

unified to a single format: multiple-choice classifi- 337

cation. Specifically, for sentence-pair classification, 338

the query is the concatenation of the two sentences 339

and there are three options: no, maybe, and yes. 340

For single-sentence classification, the query is the 341

input sentence and the options are the concrete la- 342

bels. Note that in this way, the pre-trained PVPs 343

can be used in single text classification tasks from 344

arbitrary domains and with much more labels. 345

Constructing a unified PVP is similar to the idea 346

of MultiQA (Talmor and Berant, 2019) and Uni- 347

fiedQA (Khashabi et al., 2020). Recently, Zhong 348

et al. (2021a) use some hard prompts to unify sev- 349

eral tasks as a meta question answering task. They 350

tune the entire model with this meta task on a col- 351

lection of QA datasets and then transfer to other 352

classification tasks under low-resource settings. 353

However, our PPT focuses on tuning soft prompts 354

with the main body of PLMs fixed and our pre- 355

training is conducted on fully unsupervised data, 356

rather than the collection of supervised datasets. 357

Since different tasks may have different can- 358

didate numbers and lengths, we construct pre- 359

training samples with option numbers varying from 360

2 to 16 2 and option lengths from 50 to 20. We use 361

the PVP in Section 3.2.2 for pre-training, and then 362

apply pre-trained soft prompts to cover the above 363

mentioned three classification tasks. 364

4 Experiments 365

4.1 Setup 366

We conduct experiments on both Chinese and En- 367

glish tasks (see Table 3). As described in Section 368

2, for tasks with fewer than 5 labels, we construct 369

Dtrain and Ddev with 32 samples from the original 370

training data and ensure the number of labels is 371

balanced. For tasks with more than 5 labels like 372

2We set 16 labels in this paper as they can cover most
benchmarks, but more labels are applicable for other tasks.
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English Chinese

Dataset Format nclass Dataset Format nclass

SST-2 SSC 2 ChnSent SC 2
SST-5 SSC 5 Amazon SC 5
YahooAns SSC 10 TNews SC 14
RACE-m MCC 4 CCPM MC 4
RACE-h MCC 4 C3 MC 4
BoolQ SPC 3 LCQMC SPC 3
RTE SPC 3 CMNLI SPC 3
CB SPC 3 OCNLI SPC 3

Table 3: The datasets we evaluate. The “Format” col-
umn means the task category. SSC stands for single-
sentence classification, MCC for multiple-choice clas-
sification, and SPC for sentence-pair classification.
nclass means the label number of each dataset.

TNews and YahooAnswer, it is hard to compose373

a dataset with label-balanced samples. Therefore,374

we randomly select 8 samples for each label.375

For English datasets, we conduct PT based on376

T5-XXL with 11B parameters because previous377

works (Lester et al., 2021; Zhang et al., 2021b)378

have shown that, T5-XXL is comparable with FT379

under the full-data setting. We also evaluate FT380

on various sizes of T5 to verify that larger models381

perform better and thus improving PT based on T5-382

XXL is meaningful. For Chinese datasets, we do383

PT based on a 11B model CPM-2. Since CPM-2384

does not provide other size models, we compare it385

with mT5 (Xue et al., 2021) of various sizes.386

Consistently, we use 100 soft tokens for PT. As a387

result, the tunable parameters is only 100×4096 =388

4.1× 105 = 410K. Compared with the 11B (1.1×389

1010) parameters of FT, PT only needs to store390

3000 times smaller parameters for each task.391

4.2 Main Results392

The main results of English and Chinese datasets393

are shown in Table 4. In the block FT, we present394

the FT results of the T5 model from the size small395

to XXL. In the block PT, we show the results396

of PPT and other baselines. The first baseline is397

Vanilla PT, where the soft prompts are randomly398

initialized from a normal distribution. The second399

is the hybrid strategy in Section 2. We also con-400

sider LM Adaption used in Lester et al. (2021) in401

which the T5 model is further pre-trained for 10K402

steps with language modeling to reduce the gap be-403

tween the pre-training and PT. We test two variants404

of PPT: Hybrid PPT, in which carefully designed405

hard prompts are combined with pre-trained soft406

prompt, and Unified PPT, in which all tasks are407

unified in the multiple-choice classification format. 408

Effectiveness From the Table 4 we have four ob- 409

servations. First, larger models achieve better over- 410

all performance, which means increasing the model 411

size still help under the few-shot setting. Therefore, 412

we study PT on the large-scale pre-trained model. 413

Note that for Chinese experiments, CPM-2 and 414

mT5-XXL share the same parameter scale. Since 415

CPM-2 outperforms mT5-XXL across all tasks, we 416

use CPM-2 as the base model. 417

Second, PPT outperforms Vanilla PT and LM 418

Adaption on most datasets significantly. Although 419

PPT is worse than Hybrid PT on BoolQ, combining 420

PPT and hard prompts (Hybrid PPT) outperforms 421

all baselines. This means pre-training soft prompts 422

and using hybrid prompts are complementary. Sim- 423

ilar phenomenons are observed on other datasets 424

like RACE-m, LCQMC, and C3, where adding 425

hard prompts to PPT continues to improve results. 426

Third, PPT outperforms FT on all Chinese 427

datasets and most English datasets. This indicates 428

that there still remains a gap between masked lan- 429

guage modeling and downstream tasks. Prompt 430

pre-training bridges this gap to some extend. Based 431

on this observation, an intuitive extension of our 432

method is to further pre-train the entire model with 433

PVPpre
i and fine-tune the model to the correspond- 434

ing downstream tasks. However, since we focus on 435

PT in this paper, we leave this as future work. 436

Fourth, PPT results in lower variances on most 437

of the datasets. Few-shot learning is notorious 438

for its instability, which becomes very obvious in 439

Vanilla PT. For some datasets like SST-2, the vari- 440

ance reaches 15.5 which means the model does not 441

perform better than random guesses under some 442

random seeds. Combining with hard prompt or 443

further pre-training with language modeling can 444

alleviate this problem to some extent. But on some 445

datasets like CCPM, Hybrid PT increases the vari- 446

ance and LM Adaption does not guarantee the aver- 447

age performance. With the help of pre-training, the 448

variance remains at a low level across all datasets. 449

Unified PPT Unifying all formats to multiple- 450

choice classification format is another variant of 451

PPT. In Table 4, we can see that Unified PPT 452

reaches comparable performance as PPT and Hy- 453

brid PPT, still outperforming other PT baselines. 454

However, the datasets we have considered so far 455

have no more than 5 labels. For tasks with more 456

labels, especially single-text classification where 457
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English Tasks

Model Method SST-2 SST-5 RACE-m RACE-h BoolQ RTE CB
Acc. Acc. Acc. Acc. Acc. Acc. F1

FT
(11B)

T5-Small - 72.83.1 31.10.4 26.40.6 26.30.5 59.20.6 54.01.7 70.14.6
T5-Base - 74.62.7 28.81.8 27.20.5 26.70.2 61.92.1 56.12.3 70.42.6
T5-Large - 89.12.2 42.41.2 48.21.6 43.21.7 74.60.9 64.43.4 82.32.2
T5-XL - 89.63.2 38.45.1 55.02.8 50.92.6 77.22.1 62.36.8 81.99.0
T5-XXL - 91.40.8 40.62.0 62.93.9 54.83.0 80.82.4 64.12.0 86.55.3

PT
(410K) T5-XXL

Vanilla PT 70.515.5 32.38.3 34.78.2 31.63.5 61.05.3 53.53.5 50.74.1
Hybrid PT 87.66.6 40.92.7 53.58.2 44.26.4 79.81.5 56.82.6 66.57.2

LM Adaption 77.67.5 36.23.6 27.30.2 26.50.4 62.00.3 55.31.0 61.21.7

PPT 93.50.3 50.20.7 60.01.2 53.00.4 66.435.7 58.91.6 71.26.2
Hybrid PPT 93.80.1 50.10.5 62.50.9 52.20.7 82.01.0 59.83.2 73.27.0
Unified PPT 94.40.3 46.01.3 58.00.9 49.91.3 76.02.7 65.82.1 82.25.4

Chinese Tasks

Model Method ChnSent Amazon CCPM C3 LCQMC CMNLI OCNLI
Acc. Acc. Acc. Acc. Acc. Acc. Acc.

FT
(11B)

mT5-Small - 76.12.6 29.91.9 31.91.2 29.60.5 52.42.5 36.50.2 34.91.3
mT5-Base - 78.20.6 36.40.9 40.46.8 29.40.6 50.91.0 36.30.5 35.40.6
mT5-Large - 79.10.6 31.01.4 46.04.0 29.90.8 52.10.6 35.81.2 35.21.1
mT5-XL - 82.72.6 35.51.7 68.35.1 29.71.2 52.92.4 36.81.6 35.60.5
mT5-XXL - 83.61.5 42.10.8 79.71.1 37.23.3 53.11.0 39.00.4 37.41.2
CPM-2 - 86.11.8 42.52.0 81.81.6 38.43.7 58.81.8 40.71.0 38.51.5

PT
(410K) CPM-2

Vanilla PT 62.13.1 30.34.8 31.09.7 28.20.4 51.53.4 35.40.5 37.00.5
Hybrid PT 79.24.0 39.13.8 46.615.0 29.20.5 54.62.3 37.10.6 37.81.4

LM Adaption 74.35.2 35.22.4 33.712.8 30.21.5 51.42.9 35.10.3 38.01.1

PPT 90.10.8 48.60.6 85.40.6 43.82.2 59.10.6 43.00.5 40.10.4
Hybrid PPT 89.50.3 48.82.0 83.90.5 46.00.5 67.30.9 41.30.8 38.70.6
Unified PPT 90.70.2 44.61.1 83.40.9 50.20.6 55.00.4 40.60.4 41.51.5

Table 4: Classification results. The experiments are conducted with 32 training samples and 32 validation samples
on each dataset. FT means full-model tuning, where the entire model (with about 11B parameters) should be tuned
on each dataset. PT means prompt tuning, where only 410K parameters are trained. We report the mean and the
standard deviation over 5 random seeds. The score marked as bold means the best performance among all the
methods. The score marked with an underline means the best one among prompt tuning (PT) methods.

TNews YahooAns

nclass 14 10
FT 43.20.6 64.11.9
PT 41.26.2 62.04.2
PT (MC) 11.82.1 60.83.9
Unified PPT 50.60.7 70.51.9

Table 5: The experiments on single-text classification
tasks with more than 5 labels. Different from previous
experiments, we randomly select 8 samples for each
label. PT (MC) means doing PT in a multiple-choice
format without prompt pre-training.

pseudo label pre-training is not appropriate for458

cross-domain adaption, Unified PPT is a good alter-459

native. In Table 5, we test Unified PPT on datasets460

with more than 5 labels. For PT and FT, we use461

a verbalizer to map the labels to the intuitively se-462

lected words. PT (MC) means we solve the task463

in a multiple-choice classification format without464

prompt pre-training. We do not use PPT for single- 465

sentence classification discussed in Section 3.2.3 466

because it is hard to find other suitable datasets to 467

train the pseudo label annotator. However, we can 468

see that Unified PPT still achieves the best perfor- 469

mance, even exceeding FT by a large margin. 470

4.3 Sample Efficiency 471

We discuss how the performance of FT, PT, and 472

PPT varies when the number of training samples 473

increases. In Figure 4, we show the trend of these 474

methods on the RACE-m and CB datasets. For 475

32 to 128 samples, PPT is consistently better than 476

PT, and the performances of the three methods 477

gradually converge when the number grows to 256. 478

5 Related Works 479

PLMs and Task-oriented Fine-tuning Re- 480

cently, various powerful PLMs have been proposed, 481
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Figure 4: Comparison between FT, Vanilla PT, and PPT
when different numbers of training samples are avail-
able. For the small number of samples, PPT is consis-
tently better than Vanilla PT. When the number grows,
the performance of these methods becomes closer.

such as GPT (Radford et al., 2018), BERT (De-482

vlin et al., 2019), RoBERTa (Liu et al., 2019) and483

T5 (Raffel et al., 2020). To adapt these PLMs to484

downstream NLP tasks, task-oriented fine-tuning485

has been proposed, where researchers use PLMs as486

the backbone and add some task-specific heads to487

optimize task-specific objectives. Then, all param-488

eters of both PLMs and additional heads are tuned489

using task-specific data. Results have shown that490

task-oriented fine-tuning can outperform models491

trained from scratch on a series of NLP tasks.492

Prompt-oriented Fine-tuning Most existing493

PLMs are pre-trained with language modeling ob-494

jectives, yet the objectives of downstream tasks are495

quite different. To overcome the gap between pre-496

training and downstream tasks, prompt-oriented497

fine-tuning is introduced. In prompt-oriented fine-498

tuning, downstream tasks are also formalized as499

language modeling problems by inserting language500

prompts, and the results of language modeling can501

correspond to the solutions of downstream tasks.502

Knowledge probing (Petroni et al., 2019; Trinh503

and Le, 2018; Davison et al., 2019) is the seminal504

work that stimulates the development of prompts.505

In knowledge probing, language triggers are widely506

used to induce PLMs to generate relational facts.507

These pioneering works demonstrate that language508

prompts can effectively stimulate the knowledge509

from PLMs. Encouraged by this, manually design-510

ing hard prompts consisting of discrete words is511

first used in prompt-oriented fine-tuning Schick and512

Schütze (2021a,b). Considering manually design-513

ing prompts is both time-consuming and difficult to514

find the best choice, later works (Gao et al., 2021;515

Jiang et al., 2020; Shin et al., 2020) proposed to516

generate prompts automatically. However, these517

works still restrict auto-generated prompts to dis- 518

crete spaces which are usually sub-optimal. 519

To overcome the shortcomings of discrete spaces, 520

Li and Liang (2021); Liu et al. (2021); Han et al. 521

(2021b); Hambardzumyan et al. (2021); Zhong 522

et al. (2021b) explore to combine hard prompts and 523

soft prompts. Different from hard prompts using 524

concrete and discrete tokens, soft prompts are com- 525

posed of several continuous learnable embeddings, 526

and these embeddings are randomly initialized. To 527

step forward, some works (Li and Liang, 2021; 528

Qin and Eisner, 2021; Lester et al., 2021) propose 529

to only tune soft prompts and fix the entire PLM 530

parameters. When models are large enough, this 531

method can be comparable to full-model tuning. 532

Few-shot Learning with PLMs Since long-tail 533

distribution is common in real-world applications, 534

few-shot learning is quite meaningful for the stable 535

and effective use of PLMs, thereby attracts much 536

attention recently. Apart from GPT-3 (Brown et al., 537

2020) and PET(Schick and Schütze, 2021a) which 538

demonstrates the superiority of PLMs in few-shot 539

scenarios, some later works Perez et al. (2021); 540

Bragg et al. (2021) also discuss reasonable few- 541

shot settings by restricting the size of validation 542

set and proposing a unified framework to evaluate 543

few-shot performance. There is also work (IV et al., 544

2021) pointing out the low performance of PT for 545

few-shot learning. But they mostly focus on PLMs 546

with fewer than 400M parameters. In this paper, we 547

study few-shot learning on large-scale 11B PLMs. 548

6 Conclusion 549

In this paper, we present PPT, a framework that 550

improves prompt tuning for few-shot learning. We 551

propose to firstly unify downstream tasks to sev- 552

eral formats. Then, we design self-supervised 553

pre-training tasks for each format and pre-train 554

prompts on these tasks. Finally, we do prompt 555

tuning on downstream tasks based on the initial- 556

ization of the corresponding pre-trained prompts. 557

Extensive experiments show that our method signif- 558

icantly outperforms other prompt tuning baselines, 559

performing comparable or even better than full- 560

model tuning. There are two important directions 561

for future work: (1) Designing unified task for- 562

mats and the corresponding pre-training objectives 563

for other kinds of tasks such as language genera- 564

tion and relation extraction. (2) Beyond the soft 565

prompt, whether unified task pre-training helps the 566

pre-trained language models itself. 567
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Appendices001

A Dataset Information002

Since some of the test sets of the datasets we used003

is not publicly available, we follow Zhang et al.004

(2021) and Gao et al. (2021) to use original vali-005

dation sets for testing. For English experiments,006

we use a dataset from GLUE (Wang et al., 2019b)007

(SST-2 (Socher et al., 2013)), datasets from Su-008

perGLUE (Wang et al., 2019a), (BoolQ (Clark009

et al., 2019), CB (De Marneffe et al., 2019), and010

RTE (Dagan et al., 2006)), two extra single-text011

classification datasets (SST-5 (Socher et al., 2013)012

and YahooAnswers (Zhang et al., 2015)), and013

two standard question answering datasets (RACE-014

middle and RACE-high) (Lai et al., 2017) for015

multiple-choice classification. For Chinese ex-016

periments, we use four datasets from CLUE (Xu017

et al., 2020) (CMNLI1 , OCNLI (Hu et al., 2020),018

TNews1, C3 (Sun et al., 2020)), two sentiment anal-019

ysis datasets (ChnSent2 and Amazon Reviews2),020

and one extra natural language inference dataset021

LCQMC (Liu et al., 2018).022

B PVPs for Chinese Tasks023

We describe the PVPpre
i for Chinese datasets in this024

section. Just like English scenarios, all these PVPs025

are simple and intuitive.026

Sentence-Pair Classification Given the input027

x = (s1, s2), the label list Y = [0, 1, 2], we have:028

f pre
i (x) = “s1 〈X〉。s2”,

vpre
i (Y) = [矛盾,中立,相似].

(1)029

Multiple-Choice Classification Given a input x030

consisting of a query and six candidates: x =031

(sq, s1, s2, · · · , s6), we convert x to a language032

sequence by defining the PVPpre
i as follows:033

f pre
i (x) = “sq？一、s1 · · ·六、s6.答案是 〈X〉。”,

vpre
i (Y) = [一,二,三,四,五,六].

(2)034

Single-Sentence Classification Similar to the035

English scenario, we take sentiment classification036

as an example. Given the input x = (s), we have:037

f pre
i (x) = “s。 〈X〉。”,

vpre
i (Y) = [差,不好,一般,好,赞].

(3)038

Based on the PVPpre
i , the design of PVPk

i is039

similar to that of English tasks.040

1https://www.cluebenchmarks.com/
2https://github.com/SophonPlus/

ChineseNlpCorpus

English

SPC P Question: s1 ? 〈X〉. s2

MCC P We ask sq ? A.s1 · · · F.s6.The answer is 〈X〉.
SSC P s. It was 〈X〉.

Chinese

SPC P 问题：s1？〈X〉。s2

MCC P 问题：sq？一、s1 · · ·六、s6.答案是：〈X〉。
SSC P s。这很〈X〉。

Table 1: The hard prompts for Hybrid PT and Hy-
brid PPT. SSC stands for single-sentence classifica-
tion, MCC stands for multiple-choice classification,
and SPC stands for sentence-pair classification.

C Training Details 041

Considering the instability of the few-shot learning, 042

we run each experiment 5 times on the random 043

seed [10, 20, 30, 40, 50] and report the averaged 044

performance as well as the standard deviation. Due 045

to the resource limit, for 11B models, we adopt 046

model parallelism (Shoeybi et al., 2019) and store 047

a model with 4 GPU devices. We also use mixed- 048

precision training (Micikevicius et al., 2018) and 049

ZeRO (Rajbhandari et al., 2020) stage-1 provided 050

in DeepSpeed (Rasley et al., 2020) to reduce GPU 051

memory usage. For models in other sizes, we all 052

use full-precision training. We describe the details 053

of the training hyper-parameters in the following 054

sections. 055

C.1 Full-Model Tuning 056

For Full-Model Tuning (FT), we tune the entire 057

parameters of the model without concatenating soft 058

prompts. For all models, we fix the batch size as 059

16. In this way, we train the largest 11B model 060

with 16 NVIDIA V100 32G GPUs. We find that 061

different sized models prefer significantly different 062

learning rates. Therefore, we search for the learn- 063

ing rates in varied intervals and show each model 064

size and its corresponding searching interval in Ta- 065

ble 2. We train the model for 50 epochs and do 066

evaluation every 6 optimization steps. We choose 067

the model performing the best on the validation set 068

and evaluate it on the test set. 069

C.2 Prompt Tuning 070

For Prompt Tuning (PT), we add a set of soft 071

prompts before the input text. When adapting the 072

model to downstream tasks, we only tune the soft 073

prompts with the entire model fixed. Similar to 074

FT, we fix the batch size as 16 and train the model 075

for 50 epochs, while evaluating the model every 6 076

1

https://www.cluebenchmarks.com/
https://github.com/SophonPlus/ChineseNlpCorpus
https://github.com/SophonPlus/ChineseNlpCorpus


Model Size Searching Interval

Small 2e-4, 5e-4, 1e-3
Base 2e-4, 5e-4, 1e-3
Large 5e-5, 1e-4, 2e-4
XL 3e-5, 5e-5, 1e-4

XXL 3e-6, 5e-6, 1e-5

Table 2: The searching intervals of learning rates for
the models with different sizes. Generally, small mod-
els prefer large learning rates.

steps. Since the tunable parameters are much less077

in PT, 8 NVIDIA V100 32G GPUs are enough for078

the training. We find PT requires a much larger079

learning rate than FT. Therefore, we search for the080

learning rate in [5e-3, 1e-2, 2e-2, 5e-2] and choose081

the model with the best performance on the valida-082

tion set. This observation also implies that PT is083

much harder to train than FT, which is consistent084

with the experiment results in the main paper.085

D Hard Prompts086

In this section, we describe the hard prompts we use087

in Hybrid PT and Hybrid PPT. For simplicity, we088

choose the best hard prompts for each task format089

(e.g. sentence-pair classification, multiple-choice090

classification, and single-sentence classification)091

based on PT in pilot experiments and directly use092

them in Hybrid PPT. The prompts corresponding093

to each task format are shown in Table 1.094

References095

Christopher Clark, Kenton Lee, Ming-Wei Chang,096
Tom Kwiatkowski, Michael Collins, and Kristina097
Toutanova. 2019. BoolQ: Exploring the surprising098
difficulty of natural yes/no questions. In Proceed-099
ings of NAACL-HLT.100

Ido Dagan, Oren Glickman, and Bernardo Magnini.101
2006. The pascal recognising textual entailment102
challenge. In Proceedings of Machine Learning103
Challenges: Evaluating Predictive Uncertainty.104

Marie-Catherine De Marneffe, Mandy Simons, and Ju-105
dith Tonhauser. 2019. The commitmentbank: Inves-106
tigating projection in naturally occurring discourse.107
In Proceedings of Sinn und Bedeutung.108

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.109
Making pre-trained language models better few-shot110
learners. In Proceedings of ACL.111

Hai Hu, Kyle Richardson, Liang Xu, Lu Li, Sandra112
Kübler, and Lawrence Moss. 2020. OCNLI: Orig-113
inal Chinese Natural Language Inference. In Find-114
ings of EMNLP.115

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, 116
and Eduard Hovy. 2017. RACE: Large-scale ReAd- 117
ing comprehension dataset from examinations. In 118
Proceedings of EMNLP. 119

Xin Liu, Qingcai Chen, Chong Deng, Huajun Zeng, 120
Jing Chen, Dongfang Li, and Buzhou Tang. 2018. 121
LCQMC:a large-scale Chinese question matching 122
corpus. In Proceedings of COLING. 123

Paulius Micikevicius, Sharan Narang, Jonah Alben, 124
Gregory Diamos, Erich Elsen, David Garcia, Boris 125
Ginsburg, Michael Houston, Oleksii Kuchaiev, 126
Ganesh Venkatesh, and Hao Wu. 2018. Mixed pre- 127
cision training. In Proceedings of ICLR. 128

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, 129
and Yuxiong He. 2020. ZeRO: Memory optimiza- 130
tions toward training trillion parameter models. In 131
Proceedings of SC20. 132

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, 133
and Yuxiong He. 2020. DeepSpeed: System opti- 134
mizations enable training deep learning models with 135
over 100 billion parameters. In Proceedings of 136
KDD. 137

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, 138
Patrick LeGresley, Jared Casper, and Bryan Catan- 139
zaro. 2019. Megatron-LM: Training multi-billion 140
parameter language models using model parallelism. 141
arXiv preprint arXiv:1909.08053. 142

Richard Socher, Alex Perelygin, Jean Wu, Jason 143
Chuang, Christopher D. Manning, Andrew Ng, and 144
Christopher Potts. 2013. Recursive deep models 145
for semantic compositionality over a sentiment tree- 146
bank. In Proceedings of EMNLP. 147

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. 2020. 148
Investigating prior knowledge for challenging chi- 149
nese machine reading comprehension. In TACL. 150

Alex Wang, Yada Pruksachatkun, Nikita Nangia, 151
Amanpreet Singh, Julian Michael, Felix Hill, Omer 152
Levy, and Samuel Bowman. 2019a. SuperGLUE: A 153
stickier benchmark for general-purpose language un- 154
derstanding systems. In Proceedings of NeurIPS. 155

Alex Wang, Amanpreet Singh, Julian Michael, Felix 156
Hill, Omer Levy, and Samuel R. Bowman. 2019b. 157
GLUE: A multi-task benchmark and analysis plat- 158
form for natural language understanding. In Pro- 159
ceedings of ICLR. 160

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie 161
Cao, et al. 2020. CLUE: A Chinese language un- 162
derstanding evaluation benchmark. In Proceedings 163
of COLING. 164

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q. 165
Weinberger, and Yoav Artzi. 2021. Revisiting few- 166
sample bert fine-tuning. In Proceedings of ICLR. 167

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. 168
Character-level convolutional networks for text clas- 169
sification. In Proceedings of NeurIPS. 170

2

https://aclanthology.org/N19-1300
https://aclanthology.org/N19-1300
https://aclanthology.org/N19-1300
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/11736790_9
https://ojs.ub.uni-konstanz.de/sub/index.php/sub/article/view/601/456
https://ojs.ub.uni-konstanz.de/sub/index.php/sub/article/view/601/456
https://ojs.ub.uni-konstanz.de/sub/index.php/sub/article/view/601/456
https://aclanthology.org/2021.acl-long.295.pdf
https://aclanthology.org/2021.acl-long.295.pdf
https://aclanthology.org/2021.acl-long.295.pdf
https://aclanthology.org/2020.findings-emnlp.314
https://aclanthology.org/2020.findings-emnlp.314
https://aclanthology.org/2020.findings-emnlp.314
https://aclanthology.org/D17-1082
https://aclanthology.org/D17-1082
https://aclanthology.org/D17-1082
https://aclanthology.org/C18-1166
https://aclanthology.org/C18-1166
https://aclanthology.org/C18-1166
https://openreview.net/pdf?id=r1gs9JgRZ
https://openreview.net/pdf?id=r1gs9JgRZ
https://openreview.net/pdf?id=r1gs9JgRZ
https://arxiv.org/pdf/1910.02054.pdf
https://arxiv.org/pdf/1910.02054.pdf
https://arxiv.org/pdf/1910.02054.pdf
https://dl.acm.org/doi/10.1145/3394486.3406703
https://dl.acm.org/doi/10.1145/3394486.3406703
https://dl.acm.org/doi/10.1145/3394486.3406703
https://dl.acm.org/doi/10.1145/3394486.3406703
https://dl.acm.org/doi/10.1145/3394486.3406703
https://arxiv.org/pdf/1909.08053.pdf
https://arxiv.org/pdf/1909.08053.pdf
https://arxiv.org/pdf/1909.08053.pdf
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/2020.tacl-1.10.pdf
https://aclanthology.org/2020.tacl-1.10.pdf
https://aclanthology.org/2020.tacl-1.10.pdf
https://papers.nips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://papers.nips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://papers.nips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://papers.nips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://papers.nips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://openreview.net/pdf?id=rJ4km2R5t7
https://openreview.net/pdf?id=rJ4km2R5t7
https://openreview.net/pdf?id=rJ4km2R5t7
https://aclanthology.org/2020.coling-main.419
https://aclanthology.org/2020.coling-main.419
https://aclanthology.org/2020.coling-main.419
https://openreview.net/forum?id=cO1IH43yUF
https://openreview.net/forum?id=cO1IH43yUF
https://openreview.net/forum?id=cO1IH43yUF
https://papers.nips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://papers.nips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://papers.nips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

	PPT_paper
	PPT__Pre_trained_Prompt_Tuning_for_Few_shot_Learning (3)

