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Abstract

Knowledge Distillation (KD) transfers knowl-
edge from a large teacher model to a smaller
student model by minimizing the divergence be-
tween their output distributions, typically using
forward Kullback-Leibler divergence (FKLD) or
reverse KLD (RKLD). It has become an effec-
tive training paradigm due to the broader super-
vision information provided by the teacher distri-
bution compared to one-hot labels. We identify
that the core challenge in KD lies in balancing
two mode-concentration effects: the Hardness-
Concentration effect, which refers to focusing
on modes with large errors, and the Confidence-
Concentration effect, which refers to focusing on
modes with high student confidence. Through an
analysis of how probabilities are reassigned dur-
ing gradient updates, we observe that these two
effects are entangled in FKLD and RKLD, but in
extreme forms. Specifically, both are too weak in
FKLD, causing the student to fail to concentrate
on the target class. In contrast, both are too strong
in RKLD, causing the student to overly empha-
size the target class while ignoring the broader
distributional information from the teacher. To
address this imbalance, we propose ABKD, a
generic framework with α-β-divergence. Our the-
oretical results show that ABKD offers a smooth
interpolation between FKLD and RKLD, achiev-
ing an effective trade-off between these effects.
Extensive experiments on 17 language/vision
datasets with 12 teacher-student settings confirm
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its efficacy. The code is available at https:
//github.com/ghwang-s/abkd.

1. Introduction
Knowledge Distillation (KD) (Hinton, 2015) is a widely-
adopted technique for transferring knowledge from large
models (teachers) to smaller models (students). In this setup,
the student model, with a predictive distribution qθ, learns
to mimic the predictive distribution p of the teacher model.
This imitation is typically achieved by minimizing a prede-
fined divergence D between the teacher distribution p and
the student distribution qθ: ℓKD ≜ D(p∥qθ). This way, KD
allows the student to leverage richer soft label information
from p compared to one-hot labels, often leading to better
performance than traditional supervised fine-tuning. This
has been shown in tasks like image classification (Dosovit-
skiy, 2020; Radford et al., 2021; Yang et al., 2023b; Wang
et al., 2022b) and text generation (Vaswani, 2017; Touvron
et al., 2023a).

A key step in KD is to choose a proper divergence D for dis-
tribution matching. One popular choice in previous works
(Cho & Hariharan, 2019; Mirzadeh et al., 2020; Zhou et al.,
2021; Zhao et al., 2022; Jin et al., 2023; Sun et al., 2024;
Zheng & Yang, 2024) is the forward Kullback-Leibler diver-
gence (FKLD). However, FKLD’s asymmetry often results
in a student distribution qθ that is overly smooth, spreading
across the entire support of p. To address this, recent studies
(Lee et al., 2023; Gu et al., 2024a; Kim et al., 2024; Gu et al.,
2024b) have explored the reverse KLD (RKLD), which al-
lows qθ to focus on a few prominent modes of p. Despite
the effectiveness, empirical results (Wen et al., 2023; Wu
et al., 2024; Ko et al., 2024) suggest that RKLD often yields
suboptimal performance across a range of tasks. What is
worse, there is no systematic approach to identify the essen-
tial issues hidden behind, which hinders the development of
a more generic and effective KD framework. To get out of
this dilemma, we first pose the following question:

What underlying factors contribute to the suboptimal
performance of FKLD and RKLD?

To answer this, we analyze how different divergence func-
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Figure 1. (a) Illustration of the unified search space for our proposed ABKD, where height (color) represents performance (↑). The FKLD

and RKLD are special cases of ABKD when selecting (α = 1, β = 0) and (α = 0, β = 1) , respectively. The α-divergence can

only search along the submanifold α+ β = 1 in the ABKD space. (b)-(c) illustrate how adjusting α and β affects hardness-concentration
and confidence-concentration. (d)-(g) illustrate how different divergences learn a student distribution from the given teacher distribution.
The α-β-divergence, compared to others, can more effectively learn soft label information while maintaining focus on the target class.

tions affect the allocation of probability mass in the student
distribution during training by tracking the log mass ratio
LogR. Notably, LogR is proportional to the gradient of the
loss function w.r.t the logits. This insight allows us to frame
the problem as understanding how divergence algorithms
influence the reduction of LogR. Through this lens, we
identify two key mode-concentration effects: Hardness-
Concentration and Confidence-Concentration. Hardness-
Concentration refers to focusing on modes in the loss where
there is a large error between p and qθ, while Confidence-
Concentration refers to focusing on modes in the loss where
qθ has high confidence.

On top of this, we find that the limitations of FKLD and
RKLD stem from the extreme ways they utilize these con-
centration effects: a) FKLD exhibits weak concentration
effects, treating mismatches equally from all classes, which
fails in guiding the student to concentrate on the target class
and causes incorrect predictions (Fig. 1d). b) RKLD ex-
hibits strong concentration effects, focusing on both hard
classes with large errors and classes where the student has
high confidence. This often leads to a trivial solution, where
the well-trained student focuses exclusively on the target
class and ignores broader knowledge from p (Fig. 1e). With
the limitations revealed, we continue to seek an answer to
the following question:

Can we find a generic, theoretically grounded method
to balance hardness-concentration and confidence-
concentration?

In pursuit of this, we introduce the α-β-divergence, a gen-
eral extension of divergences that unifies FKLD and RKLD,
while also extending to previously unexplored divergences
like the Hellinger distance and β-divergence. Our theoret-
ical results demonstrate that the α-β-divergence provides

a flexible mechanism to smoothly interpolate between the
extremes of FKLD and RKLD by controlling the trade-off
between hardness-concentration (Fig. 1b) and confidence-
concentration (Fig. 1c) via the hyperparameters α and β.
This mechanism ensures a more proper allocation of prob-
ability mass (Fig. 1g). Motivated by these insights, we
propose ABKD, a generic distillation framework based on
α-β-divergence. Empirical results across a variety of tasks,
including instruction-following and image classification,
demonstrate ABKD’s generality and effectiveness. For in-
stance, by modifying only the loss function, ABKD achieves
performance improvements of 0.81 to 3.31 over FKLD and
RKLD on five instruction-response datasets when distilling
GPT-2 XL (1.5B) into GPT-2 (0.1B).

In summary, the contributions of this work are three-fold:

• Theoretically: We analyze the limitations of FKLD
and RKLD from novel perspectives of hardness-
concentration and confidence-concentration, and show
that the α-β-divergence offers a flexible approach to
balance these effects.

• Methodologically: We propose ABKD, a flexible
distillation framework that unifies FKLD and RKLD
and generalizes to several other divergences, offering
greater versatility and applicability.

• Empirically: Extensive experiments on 17 language
and vision datasets with 12 teacher-student configura-
tions (0.85M-0.46M to 1.5B-0.8B) validate the theoret-
ical insights. ABKD outperforms or matches state-of-
the-art methods without extra trainable parameters and
allows further gains by rectifying their loss functions.

Prior Arts. We discuss related work and defer a concen-
trated account to App. A.
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2. Preliminaries
KD involves using a fixed teacher model fT to improve the
performance of a parameterized student model fS . Given an
input x, the teacher fT and student fS produce probability
distributions p and qθ, respectively.

The goal of KD can be achieved by letting qθ mimic p for all
samples in dataset D. A direct way to do this is minimizing:

ℓKD ≜ D(p∥qθ), (1)

where D is a distribution measure. Optionally, practi-
tioners can substitute p with the one-hot vector y, where
y ≜ [0, . . . , 1, . . . , 0] with 1 at ground-truth label y and 0
elsewhere. In this case, the loss is ℓCE ≜ D(y∥qθ), where
D is typically the FKLD. The final training loss is:

ℓ = ℓCE + λℓKD, (2)

where λ is a hyperparameter. Since p provides richer infor-
mation (i.e., soft label) than the one-hot vector y, KD out-
performs traditional supervised fine-tuning on many down-
stream tasks, such as instruction-following and image clas-
sification. The settings for these tasks in KD are as follows.

Instruction-following. Let x and y represent the input and
output sequences, respectively. A token-level autoregressive
model produces an C-dimensional probability distribution
for the n-th token over the vocabulary V, conditioned on
x and y<n, where y<n ≜ (y1, y2, . . . , yn−1) denote the
generated output sequence up to the (n− 1)-th token, The
discrepancy between token-level distributions of p and qθ
is defined as D(p∥qθ) ≜ 1

Ly

∑Ly

n=1 D(p(· | y<n,x)∥qθ(· |
y<n,x)), where Ly denotes the sequence length.

Image classification. Let x ∈ RH×W be an image and
y ∈ RC its one-hot label, with H , W , and C representing
the image dimensions and number of classes. A vision
model produces a C-dimensional probability distribution
conditioned on x. The discrepancy between p and qθ is
defined as D(p∥qθ).

3. The limitaions of FKLD and RKLD
Prior arts primarily use FKLD DKL(p∥qθ) or RKLD
DKL(qθ∥p) to measure distribution discrepancy:

DKL(p∥qθ) =
∑
k

p(k) log
p(k)

qθ(k)
, (3)

DKL(qθ∥p) =
∑
k

qθ(k) log
qθ(k)

p(k)
. (4)

Despite promising success, recent studies empirically find
that these two divergences cause suboptimal performance
(Wen et al., 2023; Ko et al., 2024; Wu et al., 2024). Next,

we uncover the underlying factors that contribute to the lim-
itations of FKLD and RKLD by tracking how they allocate
probability mass in the student distribution during gradient
updates. These insights will guide us in Sec. 4 to identify a
more suitable divergence for KD.

3.1. Tracking Probability Allocation with Log Mass
Ratio

To find a proper probability matching scheme, KD algo-
rithms must keep allocating the probability mass of the
student distribution during training. The key in our theory is
to keep track of the probability mass change in each gradient
update step. To do this, we define a monitoring quantity
called log mass ratio inspired by Tajwar et al. (2024):

LogRA
t (y) ≜ log

(
qAt+1(y)

qt(y)

)
,

where qAt+1(y) is the probability mass for class y obtained
from algorithm A at step t+ 1; qt(y) is original probability
mass for class y at step t.

To define probability mass qt, we follow the most popular
convention that the class probability is approximated by a
softmax function such that: qt(y) ∝ exp(f t

y), where f t
y is

the logit for the y-class channel at step t. Interestingly, one
can show that (see App. C.1) LogRA

t (y) is proportional to
the gradient of the logit f t

y as follows:

LogRA
t (y) = −η · ∇ft

y
ℓ+ NA

t (y), (5)

where η denotes the learning rate and NA
t (y) is a normaliz-

ing factor independent of y, which vanishes to zero when
all the class channel gradients ∇fyℓ vanish. Note that un-
der a mild assumption, we can show that (see App. C.2)
when ∇W ℓ, the overall gradient w.r.t. the model weights
W , goes to zero, ∇fyℓ also goes to zero. In this sense, to
reach a local minimum, the algorithm automatically reduces
the magnitude of∇fyℓ, and also the |LogRA

t (y)|.

Based on the discussion above, we next show how reduc-
ing |LogRA

t (y)| in different divergences affects hardness-
concentration and confidence-concentration.

3.2. FKLD and RKLD as Two Extreme Cases

First, we have the following upper bounds for the log mass
ratio for FKLD (Eq. 3) and RKLD (Eq. 4).

Proposition 3.1. The updates induced by FKLD and RKLD
for qt within one gradient descent step are given by:

FKLD:
∣∣LogRF

t (y)
∣∣ ≤ η· 1︸︷︷︸

(a)

·
∣∣p(y)− qt(y)

∣∣︸ ︷︷ ︸
(b)

+
∣∣NF

t (y)
∣∣,
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RKLD:∣∣LogRR
t (y)

∣∣ ≤ η · qt(y)︸ ︷︷ ︸
(a1)

( ∣∣ log p(y)− log qt(y)
∣∣︸ ︷︷ ︸

(b1)

+
∑
k

qt(k)︸ ︷︷ ︸
(a2)

∣∣ log p(k)− log qt(k)
∣∣︸ ︷︷ ︸

(b2)

)
+
∣∣NR

t (y)
∣∣,

where NF
t (y) and NR

t (y) denote constant normalization
factors independent of y and vanish to zero when p = qt.

The proof is in App. G.1. By minimizing the log mass ratio,
there are two types of effects hidden in the results. We first
analyze their independent roles.

1. The first type, represented by terms (b), (b1), and
(b2), has the general form of |s(p(k)) − s(qt(k))|,
which measures the matching loss between student and
teacher distribution. If considered independently, such
terms control the effect of hardness-concentration.
More precisely, a sharper term with a larger rate-of-
change corresponds to an aggressive student who aims
to focus on the hardest classes to reach a good match-
ing performance w.r.t. the teacher (Fig. 1b).

2. The second type, denoted by terms (a), (a1), (a2),
can be expressed as the student’s confidence weight-
ing function: qt(y)β (β ≥ 0). If considered indepen-
dently, such terms control the effect of confidence-
concentration. In other words, a sharper weighting
function corresponds to a confident student who only
cares about the matching performance in classes that
the student believes to be the ground truth (Fig. 1c).

What is the joint effect of the two? Prop. 3.1 provides
two extreme answers, FKLD and RKLD. FKLD in the re-
sults picks a very weak hardness-concentration effect with
s(x) = x and a very weak confidence-concentration effect
with β = 0. As a result, FKLD forces the student to treat
all matching penalties equally for all classes since there
is no weighting function ((a) = 1). This fails to concen-
trate on the target classes. By contrast, RKLD picks a very
strong hardness-concentration effect with s(x) = log(x)
(recall that 0 < x < 1, log is much sharper than linear
function) and a very strong confidence-concentration effect
with β = 1. Recall that a well-trained student distribu-
tion qt primarily concentrates probability on the target class
and assigns smaller probabilities to others. In this case, an
overly strong confidence-concentration effect suppresses the
hardness-concentration effect on non-target classes while
emphasizing this effect on the target class. This results in
a trivial solution: the student concentrates solely on the
target class and neglects the overall matching effect.

The following theorem makes the above intuition more rig-
orous. The results suggest an asymmetric mass allocation
for RKLD and an equally important allocation for FKLD.
Due to the space limit, the readers are referred to App. G.2
for a formal expression and the proof.

Theorem 3.2 (Informal). Given the student distribution
qθ and teacher distribution p, FKLD and RKLD differ as
follows within one gradient update:

1. FKLD allocates the mass across all classes equally.

2. RKLD preferentially increases the mass of underesti-
mated (p(x) > qθ(x)) classes with higher qθ(x).

3. RKLD preferentially reduces the mass of overestimated
(p(x) < qθ(x)) classes with smaller qθ(x).

As shown in Fig. 1(d), the equally weighted matching
scheme in FKLD drives students to sub-optimal modes,
which induces wrong predictions. For RKLD, the theorem
states that it only favors small mass classes when the teacher
score is over-estimated while only favors large mass classes
under the opposite scenario. As a total effect, the small
mass tends to get smaller; the large mass tends to get
larger. As an extreme result shown in Fig. 1(e), RKLD
eventually forces the student to focus on one class. This
makes the teacher’s supervision degenerate to a ont-hot la-
bel, which loses the distributional information hidden inside
the teacher’s prediction. This leads to the following conclu-
sion:

A proper divergence should achieve a moderate trade-
off between hardness-concentration and confidence-
concentration.

3.3. Weighted Sum of FKLD and RKLD

In pursuit of this, a naive solution is to take a weighted
sum of FKLD and RKLD, which we call the weighted sum
divergence (WSD):

DWSD(p∥q) ≜ αDKL(p||q) + βDKL(q||p), (6)

where α and β are hyperparameters. A more principled
approach is to adapt the weighting coefficients dynamically
during training based on the discrepancy (e.g., entropy)
between p and q, as done in previous works (Amara et al.,
2022; Wu et al., 2024).

Unfortunately, such a composite metric overemphasizes
modes with small probabilities in p and q. To see this, when
either q(k) ≈ 0, p(k) > 0 or p(k) ≈ 0, q(k) > 0, we have
DWSD(p∥q) → ∞. Hence, the algorithm must focus on
extreme cases to minimize the objective function, leading
to improper probability allocation. Moreover, similar to
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the analysis in Ko et al. (2024), one can easily show that
the gradient norm in this case also grows excessively, lead-
ing to significant and potentially noisy parameter updates.
Such behaviors can destabilize the optimization process and
hinder convergence.

Another attractive approach is to use the Jensen-Shannon
divergence (Binici et al., 2022; Agarwal et al., 2024)
DJSD(p∥q) ≜ 1

2DKL
(
p
∥∥m) + 1

2DKL
(
q
∥∥m) ,where m =

1
2 (p+ q). However, a major drawback of JSD is that it suf-
fers from gradient vanishing (Arjovsky et al., 2017) when
the distributions p and qθ are far apart (a common scenario
in early training stages), which hinders model convergence.

Above all, balancing hardness and confidence concentra-
tion is non-trivial if one only resorts to FKLD and RKLD.
In the next section, we will introduce a generic notion of
divergence to address this issue.

4. ABKD: The Proposed Method
4.1. ABKD

One way to pursue a harmonic utilization of hardness- and
confidence-concentration is to find a subtle point between
FKLD and RKLD. The following α-β-divergence exactly
serves this purpose (Cichocki et al., 2011).

Definition 4.1 (α-β-divergvence). Consider α and β ∈ R,
satisfying α, β, α + β ̸= 0. the α-β-divergence of two
distributions is given by:

D(α,β)
AB (p ∥ q) ≜ − 1

αβ

∑
k

[
p(k)αq(k)β − α

α+ β
p(k)α+β

− β

α+ β
q(k)α+β

]
,

where p = [p(k)]Ck=1 and q = [q(k)]Ck=1 are two discrete
distributions over C classes.

As will soon be seen in Sec.4.2, both hardness-concentration
and confidence-concentration effects in α-β-divergence
could be regarded as an interpolation between the corre-
sponding effect of FKLD and RKLD. Such ability allows
the α-β-divergence to ensure a more proper allocation of
probability mass.

Inspired by this, we propose ABKD, which is formally
defined as minimizing the following objective:

ℓ = ℓCE + λD(α,β)
AB (p ∥ qθ), (7)

Beyond this issue, α-β-divergence is also a generic notion
of a family distribution divergences, which includes FKLD,
RKLD, and other typical divergences as special cases. For
example, when (α = 1, β = 0), one obtains FKLD; when

Table 1. Some divergence functions and their corresponding
choices of α and β. The α-β-divergence can be extended by
continuity (by applying l’Hôpital formula) to cover all the values
of α, β ∈ R, as shown in App. B.

Distribution Measure Reference Range

Kullback–Leibler (KL) divergence Kullback & Leibler (1951) α = 1, β = 0
Reverse KL divergence Kullback & Leibler (1951) α = 0, β = 1
α-divergence Chernoff (1952) α+ β = 1
β-divergence Basu et al. (1998) α = 1
Hellinger distance Hellinger (1909) α = β = 0.5
Squared euclidean distance Heath (1956) α = β = 1

(α = 0, β = 1), one obtains RKLD. Please see Tab. 1 for
other special cases. In this way, ABKD nature provides a
generic framework for divergence-based distillation algo-
rithms.

4.2. Trading off Hardness-Concentration and
Confidence-Concentration via α-β-divergence

ABKD offers a unified space to trade off the hardness-
concentration and confidence-concentration effects.

To explain this, we go back to the log mass ratio, the follow-
ing proposition explains how the hyperparameters α and β

influence the reduction of |LogR(α,β)
t (y)|.

Proposition 4.2. The updates induced by α-β-divergence
for qt within one gradient descent step are given by:

∣∣LogR(α,β)
t (y)

∣∣ ≤ η qt(y)
β︸ ︷︷ ︸

(a)

∣∣∣∣p(y)α − qt(y)
α

α

∣∣∣∣︸ ︷︷ ︸
(b)

+ηqt(y)
∑
k

qt(k)
β︸ ︷︷ ︸

(a1)

∣∣∣∣p(k)α − qt(k)
α

α

∣∣∣∣︸ ︷︷ ︸
(b1)

+
∣∣N(α,β)

t (y)
∣∣,

where Nα,β
t (y) denotes constant normalization factor inde-

pendent of y and vanishes to zero when p = qt.

The proof is in App. G.5. In (a) and (a1), α-β-
divergence employs a power form qt(k)

β for confidence-
concentration effect. It is easy to see when β → 1, it
degenerates to the effect of RKLD, and when β → 0 to
the effect of FKLD. A larger β provides a stronger ef-
fect of confidence-concentration, focusing the matching
performance on its most confident classes (Fig. 1c). Mean-
while, terms (b) and (b1) uses |p(y)

α−qt(y)
α

α | for hardness-
concentration effect. It is easy to see when α→ 1, it degen-
erates to the effect of FKLD, and when α→ 0 to the effect
of RKLD. A smaller α amplifies the hardness-concentration
effect and tends to be more aggressive in achieving better
matching by penalizing errors on hard classes (Fig. 1b).

In this sense, by tuning α and β, we can flexibly balance
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Table 2. ROUGE-L scores (↑) on five task-agostic instruction-following datasets. Note that this is an unfair comparison because we only
train on the fixed dataset while other KD methods employ augmentation. The fairer results using our method with different augmentation
strategies can be found in Fig. 3(b) and Tab. 7. All results are based on our re-implementation. We report the average and standard
deviation of ROUGE-L scores across five random seeds. Better results are shown in bold, and darker colors indicate superior performance.

Method Dolly Eval Self-Instruct Vicuna Eval Super-Natural Unnatural

GPT-2 XL (Teacher) 26.94 (0.23) 13.31 (0.63) 16.23 (0.62) 24.28 (0.43) 29.05 (0.14)

GPT-2 XL (1.5B) → GPT-2 (0.1B)

SFT 23.14 (0.23) 10.22 (0.44) 15.15 (0.31) 17.41 (0.18) 19.76 (0.09)
KD (Hinton, 2015) 23.80 (0.37) 10.01 (0.75) 15.25 (0.65) 17.69 (0.26) 18.99 (0.05)
SeqKD (Kim & Rush, 2016) 24.28 (0.22) 11.24 (0.30) 14.94 (0.58) 20.66 (0.28) 23.59 (0.13)
MiniLLM (Gu et al., 2024a) 24.62 (0.33) 12.49 (0.56) 17.30 (0.41) 23.76 (0.38) 24.30 (0.14)
GKD (Agarwal et al., 2024) 24.49 (0.16) 11.41 (0.14) 16.01 (0.37) 18.25 (0.24) 21.41 (0.11)
DISTILLM (Ko et al., 2024) 25.32 (0.14) 11.65 (0.28) 16.76 (0.66) 23.52 (0.47) 25.79 (0.08)
Ours (ABKD) 25.65 (0.24) 13.47 (0.42) 16.06 (0.25) 26.47 (0.31) 29.32 (0.08)

GPT-2 XL (1.5B) → GPT-2 Medium (0.3B)

SFT 25.30 (0.31) 12.56 (0.62) 16.36 (0.22) 23.32 (0.13) 23.42 (0.07)
KD (Hinton, 2015) 24.71 (0.17) 10.33 (0.54) 16.23 (0.50) 23.74 (0.32) 23.97 (0.12)
SeqKD (Kim & Rush, 2016) 25.93 (0.44) 12.98 (0.24) 16.68 (0.30) 21.95 (0.19) 25.23 (0.08)
MiniLLM (Gu et al., 2024a) 25.34 (0.25) 13.36 (0.62) 17.25 (0.46) 25.68 (0.41) 26.63 (0.12)
GKD (Agarwal et al., 2024) 24.75 (0.27) 12.76 (0.85) 16.54 (0.39) 24.94 (0.14) 26.42 (0.15)
DISTILLM (Ko et al., 2024) 26.21 (0.29) 13.53 (0.13) 16.96 (0.66) 25.78 (0.19) 28.51 (0.26)
Ours (ABKD) 26.08 (0.36) 13.86 (0.40) 16.63 (0.26) 27.25 (0.38) 29.69 (0.21)

GPT-2 XL (1.5B) → GPT-2 Large (0.8B)

SFT 25.42 (0.32) 12.91 (0.46) 16.31 (0.51) 23.76 (0.28) 25.72 (0.07)
KD (Hinton, 2015) 26.02 (0.43) 12.34 (0.52) 16.26 (0.44) 25.11 (0.37) 26.44 (0.12)
SeqKD (Kim & Rush, 2016) 26.29 (0.47) 13.53 (0.34) 16.39 (0.36) 25.81 (0.40) 27.51 (0.10)
MiniLLM (Gu et al., 2024a) 26.12 (0.25) 13.79 (0.31) 17.35 (0.51) 26.12 (0.37) 28.53 (0.17)
GKD (Agarwal et al., 2024) 26.06 (0.34) 13.21 (0.45) 16.64 (0.45) 26.13 (0.41) 27.13 (0.21)
DISTILLM (Ko et al., 2024) 26.56 (0.36) 13.97 (0.36) 16.61 (0.45) 26.73 (0.36) 29.24 (0.23)
Ours (ABKD) 26.51 (0.22) 14.38 (0.43) 16.63 (0.42) 28.05 (0.21) 29.92 (0.14)

the influence of the two effects and avoid extreme cases
(Fig. 1g). For a finer-grained theoretical analysis and hyper-
parameter tuning guidelines, please see App. D, Thm. D.1.

Comparing with the Weighted Sum. As discussed earlier
in Sec. 3.3, WSD often focuses excessively on the extreme
values of p/q, leading to unstable optimization. Fortunately,
one can show that the α-β-divergence can finely adjust the
focus on different likelihood ratios p/q, thus enjoying a
more stable gradient. For further analysis, see App. E.

Comparing with the α-divergence. One might also recall
the α-divergence to achieve the trade-off, which is defined as
Dα(p∥q) ≜ 1

α(α−1)

[∑
k p(k)

αq(k)1−α − 1
]
. It includes

DKL(p∥qθ) as α→ 1, and DKL(qθ∥p) as α→ 0. Note that
when β = 1−α, it becomes a special case of our framework.
According to Prop. 4.2, to decrease α, one has to increase β
to ensure that they add up to 1. Such unnecessary restriction
hinders its ability to achieve better performance, as shown
in Fig. 1(a) and (f). For further analysis, please see App. F.

5. Experiments
In the following, we investigate to what extent our theoret-
ical results translate into practice on natural language and
vision tasks. Due to space limitations, please see App. I for
more details on datasets, competitors, and implementation.

5.1. Natural Language Processing Tasks

Datasets. We evaluate our methods on five task-agnostic
instruction-following benchmarks. Evaluation metric is
based on ROUGE-L (Lin, 2004). Details about the datasets
and evaluation metric can be found in App. I.1.1.

Competitors. We consider the following state-of-the-art
(SOTA) baselines: 1) supervised fine-tuning (SFT) with only
student model on fixed datasets; 2) KD with FKLD on fixed
datasets; 3) SeqKD with SFT to teacher-generated output;
4) MiniLLM with RKLD using a policy gradient approach
on student-generated outputs (SGOs); 5) GKD with JSD on
a mixture of SGOs and fixed datasets; 6) DISTILLM with
S(R)KL on a mixture of SGOs and fixed datasets. Please
refer to App. I.1.2 for details about competitors and SGOs.
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Table 3. Evaluation of the effect of different loss functions. WSD: weighted sum of FKLD and
RKLD. HD: Hellinger distance. SED: Squared euclidean distance.

Loss Function Dolly Eval Self-Instruct Vicuna Eval Super-Natural Unnatural

FKLD 23.80 (0.37) 10.01 (0.75) 15.25 (0.65) 17.69 (0.26) 18.99 (0.05)
RKLD 24.77 (0.37) 12.02 (0.48) 15.06 (0.28) 23.27 (0.29) 26.01 (0.11)
WSD 23.33 (0.52) 10.52 (0.47) 14.83 (0.61) 19.67 (0.13) 21.21 (0.21)

HD 25.15 (0.36) 12.39 (0.77) 15.43 (0.20) 24.14 (0.23) 26.83 (0.15)
SED 21.04 (0.51) 10.00 (0.56) 13.73 (0.17) 19.34 (0.19) 22.62 (0.19)
α-divergence 25.15 (0.41) 12.92 (0.22) 15.60 (0.27) 24.83 (0.21) 27.81 (0.10)
β-divergence 24.12 (0.38) 11.18 (0.27) 14.95 (0.33) 20.98 (0.23) 23.15 (0.14)
α-β-divergence 25.65 (0.24) 13.47 (0.42) 16.06 (0.25) 26.47 (0.31) 29.32 (0.08)

Figure 2. Performance across different
loss functions on the validation set.

(a) Training Speed (b) Effects of SGOs

Figure 3. Comparison of training speeds and the effects of using
SGOs. Please see Sec. I.1.2 for details of different SGOs strategies.

Results. From Tab. 2, we have the following observations:
1) Distillation methods often outperform SFT, showcasing
their potential. However, they can sometimes yield worse re-
sults (e.g., KD on Unnatural when distilling GPT-2 XL into
GPT-2), highlighting the importance of selecting a proper
distillation objective. 2) By simply modifying the distil-
lation objective, our framework outperforms vanilla KD
and SFT across various datasets when distilling GPT-2 XL
(1.5B) to smaller-scale families of GPT-2 (0.1B∼0.8B); 3)
Prior arts (Ko et al., 2024; Agarwal et al., 2024) show that
training with SGOs can lead to significant improvements.
However, even when compared to SGOs-based methods
(e.g., GKD, DISTILLM) under this inherently unfair setting,
our approach consistently achieves superior or comparable
results, especially on Super-Natural and Unnatural datasets.

Efficiency Comparison. Fig. 3(a) shows that our frame-
work matches the training speed of vanilla KD, as it only
modifies the distillation objective without introducing ad-
ditional cost. This addresses concerns regarding the scala-
bility of our method. In contrast, other distillation methods
require 1.6 to 7 times longer training time due to the
continuous need to sample student’s outputs during training.

Effects of SGOs. We examine the robustness of our frame-
work by evaluating its performance with various SGOs ap-
proaches. As shown in Fig. 3(b), our framework consis-
tently delivers high performance across different settings,
highlighting its adaptability and effectiveness. Further ex-

Figure 4. Comparison with SOTA methods on base-to-new setting.
HM denotes the harmonic mean of base and new accuracy. Results
are averaged across 11 datasets, with per-dataset details in Tab. 14.
Results of baseline CLIP are evaluated on the pre-trained model.
Teacher: ViT-L/14 CLIP; Student: ViT-B/16 CLIP.

perimental results and analyses are provided in App. J.1.1.

Effects of Loss Functions. Tab.3 compares the perfor-
mance between various loss functions. The results show
that α-β-divergence consistently outperforms the others,
while using only α- or β-divergence degrades performance
due to limited expressivity. In particular, α-β-divergence
achieves improvements of 0.81 to 3.31 over FKLD and
RKLD across five datasets, whereas WSD, which combines
weighted FKLD and RKLD, fails to deliver comparable re-
sults. Furthermore, Fig.2 demonstrates the superior perfor-
mance of α-β-divergence during the entire training phase.

In summary, these empirical results align with the theoretical
insights in Sec. 3 and show that even modest adjustments to
the loss function can yield significant improvements.

5.2. Vision Tasks

Datasets. We conduct experiments on 12 popular im-
age recognition datasets. Dataset details are referred to
App. I.2.1. The evaluation metric used is accuracy. Apart
from the standard training-evaluation paradigm, we further
consider a novel base-to-new setting (Zhou et al., 2022; Hua
et al., 2025) to more thoroughly analyze the student model’s

7
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(a) WRN-40-2 → WRN-16-2 (b) WRN-40-2 → WRN-40-1 (c) resnet56 → resnet20 (d) resnet110 → resnet 20

(e) resnet110 → resnet32 (f) resnet32x4 → resnet8x4 (g) vgg13 → vgg8 (h) resnet110 → resnet44

Figure 5. Accuracy on CIFAR-100 for student models trained with different distillation methods. ABDKD, ABTTM, ABLSD, and ABKD
are our implementations by rectifying the backbone’s loss function. For details on backbones, please refer to Sec. I.2.2.

(a) alpha on CIFAR-100 (b) alpha on Dolly (c) beta on CIFAR-100 (d) beta on Dolly

Figure 6. Sensitivity analysis of hyperparameters α and β. (a)-(b) For low-dimensional output distribution in CIFAR-100, a smaller α
leads to excessive penalization for error with limited gains. However, for higher-dimensional distribution in Dolly (e.g., 50,527 for GPT-2),
a well-tuned smaller α is critical. (c)-(d) A larger β sharpens output distributions by emphasizing classes with high student confidence.

generalization across classes. In this setup, training is per-
formed on base classes, and accuracy is evaluated on both
base and new classes. Please see App. I.2.3 for more details.

Competitors. We consider the following SOTA distillation
methods: 1) KD, 2) DKD, 3) LSD, and 4) TTM. For the
base-to-new setting, we also compare with SOTA SFT meth-
ods: 5) CoCoOp, 6) MaPLe, and 7) PromptSRC. Please
refer to App. I.2.2 for method details.

Results. Fig. 4 and Fig. 5 show results from 9 teacher-
student architectures on 12 datasets. Based on these, we
conclude: 1) Without modifying the distillation objective,
methods that more effectively utilize teacher distribution
knowledge (e.g., DKD, TTM, and LSD) can outperform
vanilla KD; 2) However, their scores fall short in some cases,
such as LSD in base-to-new setting; 3) Orthogonal to them,
our framework selects more suitable distillation objectives
for specific teacher-student pairs, showing competitive or
superior results, particularly in base-to-new setting.

Apply to Other Distillation Techniques. Fig. 5 also shows
that our framework can act as a simple plug-and-play tool to
rectify the loss functions used by existing methods, yielding
further improvements (e.g., ABDKD vs DKD).

5.3. Sensitivity Analysis

We next analyze the effects of hardness-concentration and
confidence-concentration, which helps validate the theoreti-
cal insights shown in Prop. 4.2 and Thm. D.1.

Effect of α on hardness-concentration. Figs. 6(a) and (b)
show performance during training for different α. In CIFAR-
100, with its relatively low-dimensional output distribution,
a smaller α (stronger hardness-concentration) aggressively
penalizes errors but offers limited gains. However, in Dolly,
with a higher-dimensional output (e.g., GPT-2’s vocabulary
size of 50,257), a well-tuned smaller α is crucial to avoid
local optima, especially in early training stages.

8
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Effect of β on confidence-concentration. Figs. 6(c) and
(d) show how β affects Shannon entropy of the output dis-
tribution and Self-BLEU score (Zhu et al., 2018) of output
sequences (100 indicates deterministic outputs and 0 denotes
maximum diversity). The smaller β (weaker confidence-
concentration) places more emphasis on classes with low
student confidence, encouraging the student to focus more
on learning the soft label information from the teacher distri-
bution. This leads to a smoother output distribution (higher
entropy) and more diverse generated sequences (lower Self-
BLEU). Thus, selecting an appropriate β ensures a balance
between focusing on the target class and learning more soft
label information.

6. Conclusion
In this paper, we argue that the key to KD lies in trading
off two mode-concentration effects: hardness-concentration
and confidence-concentration. The widely used FKLD and
RKLD fail to achieve this balance, instead representing
two extreme cases that lead to improper probability alloca-
tion. To address this issue, we introduce ABKD, a generic
distillation framework based on α-β-divergence. ABKD
generalizes FKLD and RKLD to a broader family of diver-
gences, offering greater flexibility. Our theoretical results
show that ABKD can flexibly interpolate between the above
two extremes, enabling an effective trade-off. Extensive
experiments further demonstrate its effectiveness.
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Impact Statement
The work presented in this paper aims to advance the field
of knowledge distillation (KD), a promising direction to
enable knowledge transfer between different models. This
potential has been demonstrated in some recent frontier
works, such as DeepSeek-R1 (Guo et al., 2025) and Qwen-
3 (Yang et al., 2025). Although these methods primarily
adopt SeqKD-based distillation techniques (Kim & Rush,

2016) and therefore do not involve distribution matching
through KL divergence, the results in Tab. 2 demonstrate
that logit-based methods possess even greater potential. We
believe that the applications of KD techniques will continue
to expand.

In this work, we provide a theoretical analysis of the fun-
damentally different behaviors—mode-covering and mode-
seeking—exhibited by forward and reverse KL divergences
in KD, grounded in two novel mode-concentration effects.
These new theoretical insights further shed light on the
development of more principled and effective distillation
objectives. Interestingly, our theoretical framework also
aligns with findings from related studies, such as the phe-
nomenon of likelihood displacement (Razin et al., 2024;
Ren & Sutherland, 2024) observed in Direct Preference Op-
timization (DPO). This phenomenon stems from the equiv-
alence of DPO w.r.t. the reverse optimization of KL diver-
gence (Rafailov et al., 2023; Tajwar et al., 2024).
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A. Prior Arts
Knowledge distillation (Hinton, 2015) is a promising technology for transferring knowledge between different models. The
typical setup assumes the presence of a larger teacher model with more parameters and a smaller student model with fewer
parameters. To achieve this knowledge transfer, a common approach is to let the student distribution qθ mimic the teacher
distribution p by minimizing a distributional measure D(p∥qθ). This approach is referred to as logit-based distillation (the
focus of this work). Another promising approach is to leverage the rich information in the intermediate layers of the model,
such as the attention matrix (Zagoruyko & Komodakis, 2016; Sun et al., 2020; Jiao et al., 2019; Wang et al., 2020b;a), the
embedding features and their relationships (Romero et al., 2014; Liang et al., 2023b; Sun et al., 2019; Liang et al., 2023a;
Lv et al., 2024; Tian et al., 2019), etc. These methods are known as feature-based distillation. Due to the success of KD,
it often outperforms supervised fine-tuning and has led to improved performance in various downstream tasks, including
image classification (Kim et al., 2024; Yang et al., 2021; 2023a; 2024), instruction generation (Gu et al., 2024b; Zhou et al.,
2025b;a), neural architecture search (Wang et al., 2021), and object detection (Li et al., 2024; Lv et al., 2024).

Logit-based methods aim to minimize the distance between student and teacher distributions, which have achieved
profound success in the past few years. To do this, one can choose different distillation objectives, such as Maximum
Mean Discrepancy (Huang & Wang, 2017), Total Variation Distance (Wen et al., 2023), Wasserstein Distance (Lv et al.,
2024), or Pearson correlation coefficient (Huang et al., 2022). Most prior methods (Hinton, 2015) use primarily forward
Kullback-Leibler divergence (FKLD) to let the student distribution to mimic the teacher distribution. On this basis, a variety
of methods have been proposed to help the student learn better from the teacher distribution, such as using asymmetric
temperature scaling (Li et al., 2022), decomposing the teacher distribution into separate learning of target class and non-target
class knowledge (Zhao et al., 2022), removing temperature scaling on the student side (Zheng & Yang, 2024), normalizing
logits (Sun et al., 2024), reusing the teacher’s classifier (Chen et al., 2022), utilizing inter-class relationships (Lv et al., 2024;
Jin et al., 2023), and so on. Despite achieving profound success, recent research points out that due to its asymmetry, FKLD
tends to cover the entire support of the teacher’s distribution, leading to an overly smoothed student distribution. To address
this issue, many works resort to using reverse Kullback-Leibler divergence (RKLD) (Lee et al., 2023; Gu et al., 2024a; Kim
et al., 2024; Gu et al., 2024b), which forces the student distribution to focus on a few modes in the teacher’s distribution.
At the same time, some works explore more general distribution measures (Wen et al., 2023; Agarwal et al., 2024; Wang
et al., 2021) and composite metrics (Wu et al., 2024; Amara et al., 2022; Binici et al., 2022). Recently, some studies (Ko
et al., 2024; Wu et al., 2024; Wen et al., 2023) have found that the superiority of FKLD and RKLD depends on the task and
dataset. However, systematic studies providing theoretical insights into the suboptimal performance of FKLD and RKLD
are either scarce or predominantly qualitative. This limits further exploration in this field.

Contributions: In this paper, we propose a generic distillation framework based on α-β-divergence. Unlike previous generic
methods, our approach is 1) built on balancing hardness-concentration and confidence-concentration. Based on analysis in
the unified space of our framework, we 2) theoretically explain why FKLD and RKLD lead to suboptimal performance,
which further complements previous empirical observations. Fortunately, our framework 3) allows for flexible interpolation
between them, ensuring better performance. Furthermore, we 4) confirm the effectiveness of the newly introduced distillation
objective through extensive empirical experiments on language and vision datasets.

B. Continuous Extension of α-β-Divergence
The α-β-divergence can be extended through continuous extension (by applying L’Hopital’s Rule) to cover all values of
α, β ∈ R. Its more explicit form is defined as follows.

D(α,β)
AB =



∑
k −

1
αβ

[
p(k)αq(k)β − α

α+β p(k)
α+β − β

α+β q(k)
α+β

]
, for α, β, α+ β ̸= 0,∑

k
1
α2 [p(k)

α (ln p(k)α − ln q(k)α)− p(k)α + q(k)α] , for α ̸= 0, β = 0,∑
k

1
α2

[
ln q(k)α − ln p(k)α +

(
q(k)α

p(k)α

)−1

− 1

]
, for α = −β ̸= 0,∑

k
1
β2

[
q(k)β

(
ln q(k)β − ln p(k)β

)
− q(k)β + p(k)β

]
, for α = 0, β ̸= 0,∑

k
1
2 [ln p(k)− ln q(k)]

2
, for α, β = 0.

(8)
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C. More Discussion Related to Tracking Probability Allocation with Log Mass Ratio
C.1. The-Relationship-between-Log-Mass-Ratio-and-Logit-Gradient

For a given divergence algorithm ℓ ≜ DA(p ∥ q), consider using the gradient descent method to update the loss function ℓ
w.r.t the logits f t

y , then the distribution at the next step pt+1 is given by:

qAt+1(y) =
exp(f t+1

y )∑
k exp(f

t+1
k )

=
exp(f t

y − η∇ft
y
ℓ)∑

k exp(f
t
k − η∇ft

k
ℓ)

= qt(y) ·
exp(−η∇ft

y
ℓ)∑

k qt(k) exp(−η∇ft
k
ℓ)
.

(9)

Observing that the denominator serves as a normalization constant, this can be rewritten as:

qAt+1(y)

qt(y)
∝ exp

(
−η∇ft

y
ℓ
)
. (10)

Taking the logarithm on both sides, we get:

log
qAt+1(y)

qt(y)
= −η · ∇ft

y
ℓ+ NA

t (y), (11)

where NA
t (y) denotes constant normalization factors independent of y. This indicates that the log mass ratio is proportional

to ∇ft
y
ℓ.

C.2. The Relationship Between Overall Gradient and Logit Gradient

We first give the relationship between overall gradient and logit gradient:

∇W ℓ = J⊤ · ∇f ℓ. (12)

In this case, J is the Jacobian matrix representing the gradient of logits w.r.t. model parameters, and its dimensions are
C×M , where C is the dimensionality of logits, and M is the dimensionality of the model parameters W . Typically, we have
M ≫ C. For example, for an image classification task using ResNet-110 on CIFAR-100, C = 100 and M = 1, 110, 240.
In the case of instruction generation tasks, for GPT-2 XLarge, C = 50, 257 and M = 1, 500, 000, 000. Thus, the matrix J
is close to being full rank C.

In this case, if ∇W ℓ→ 0, then we must have:
J⊤ · ∇f ℓ→ 0. (13)

Since the Jacobian matrix J is full rank, the product can only approach zero if ∇f ℓ → 0, i.e., ∇fyℓ → 0 for all class
channels y.

D. α-β-divergence: Further Analysis on Trading off Hardness-Concentration and
Confidence-Concentration

Of course, there is no free lunch. A broad hyperparameter space offers more flexibility but also makes finding suitable
values more difficult. While grid search could theoretically yield optimal performance, it introduces additional overhead in
our framework. Fortunately, guided by the following theoretical insights, we can design a principled divergence algorithm
for the target task with inductive bias more efficiently.

Theorem D.1. Let q(α,β)t+1 (y) be the distribution obtained after one gradient step, starting from qt using the α-β-divergence.

Define ∆
(α,β)
t as the difference of log mass ratios across two classes y1 and y2, obtained from the α-β-divergence:

∆
(α,β)
t (y1, y2) ≜ LogR

(α,β)
t (y1)− LogR

(α,β)
t (y2). (14)
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We have the following (for appropriate positive constants ζ, δ1, δ2, and any real numbers α1 and α2 in the range [0, 1]
satisfying α1 < α2):

1. α-β-divergence transfers probability mass from overestimated classes to underestimated classes more aggressively
as α decreases. If y1 and y2 are such that δ1 < qt(y1) = qt(y2) ≤ p(y1) (where δ1 > 0), and p(y1) ≥ p(y2) + ζ, it
holds that ∆(α1,β)

t (y1, y2) ≥ ∆
(α2,β)
t (y1, y2).

2. α-β-divergence reduces the probability mass of classes with larger error |p(y) − qt(y)| more aggressively as α
decreases. If y1 and y2 are such that p(y1) < qt(y1) = qt(y2) ≤ 1 − δ2 (where δ2 > 0), and p(y1) ≥ p(y2) + ζ, it
holds that ∆(α1,β)

t (y1, y2) ≥ ∆
(α2,β)
t (y1, y2).

3. The α-β-divergence becomes more (less) preferential in focusing the error on classes with higher student confidence as
β increases (decreases) when reducing

∣∣∣LogR(α,β)
t (y)

∣∣∣.
The proof is in App. G.6. Case 1 shows that a smaller α (stronger hardness-concentration) leads to aggressive mass
reallocation across classes when some classes are overestimated. Case 2 shows that a smaller α will more aggressively
penalize overestimated classes with large errors (a.k.a., hard classes). In this sense, a proper assignment of α leads to a
better hardness-concentration effect. On the other hand, case 3 shows that a larger β tends to focus more on reducing the
error from classes with high student confidence and ignores the error from other classes, as shown in Fig. 6(c) and Fig. 6(d),
resulting in a sharper student distribution. As such, one can select a proper β to ensure a better confidence-concentration
effect.

Hyperparameter tuning guidelines. In principle, one may prefer to select a larger β than 0, which should be inversely
proportional to the ratio of non-target classes in the output distribution. A proper β allows the student to effectively learn
from the teacher’s soft labels while maintaining an adequate focus on the target class. On the other hand, choosing a smaller
α than 1 leads to more aggressive probability mass reallocation across classes. Therefore, a small and proper α can more
effectively avoid local optima. This becomes particularly important when the two distributions are far apart, as shown in
Fig. 6(b).

Empirically, we find that for tasks with low-dimensional output distributions, such as image classification on CIFAR-100,
selecting a large α and small β is sufficient to achieve optimal performance, as shown in Tab. 6 and Tab. 4. However, for
tasks with more high-dimensional output distributions, such as instruction generation on the Dolly dataset, selecting a small
α (which leads to more aggressive reallocation of probability mass) and a large β (to emphasize learning the soft label
information) are crucial for achieving exceptional performance, as shown in Fig. 1(a) and App. I.1.3.

E. Comparison of Gradients: FKLD, RKLD, and Our Framework
Lemma E.1 (Cichocki et al. 2011). Given two distributions p and qθ, the gradient of the α-β-divergence with respect to θ is
calculated as:

∂D(α,β)
AB (p ∥ qθ)

∂θ
= −

∑
k

∂qθ(k)

∂θ
· qθ(k)α+β−1︸ ︷︷ ︸

weights

rαp,qθ − 1

α︸ ︷︷ ︸
α-zoom

, (15)

where rp,qθ is the ratio between arbitrary distributions p and qθ.

Proof. The formula for the α-β-divergence is defined as follows:

D(α,β)
AB (p ∥ qθ) = −

1

αβ

∑
k

[
p(k)αqθ(k)

β − α

α+ β
p(k)α+β − β

α+ β
qθ(k)

α+β

]
. (16)

Taking the derivative of each term with respect to the parameter θ, we have:

∂D(α,β)
AB (p ∥ qθ)

∂θ
=
∑
k

∂

∂qθ(k)
D(α,β)

AB (p ∥ qθ) ·
∂qθ(k)

∂θ
, (17)
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where
∂

∂qθ(k)
D(α,β)

AB (p ∥ qθ) = −
1

αβ

(
βp(k)αqθ(k)

β−1 − βqθ(k)
α+β−1

)
= − 1

α

(
p(k)αqθ(k)

β−1 − qθ(k)
α+β−1

)
= −qθ(k)α+β−1 ·

(
p(k)
qθ(k)

)α
− 1

α
.

(18)

Substituting Eq. 18 into Eq. 17, we obtain:

∂D(α,β)
AB (p ∥ qθ)

∂θ
= −

∑
k

∂qθ(k)

∂θ
· qθ(k)α+β−1

(
p(k)
qθ(k)

)α
− 1

α
. (19)

This concludes the proof.

The gradient of the FKLD with respect to θ is given by

∂

∂θ
DKL(p∥qθ) = −

∑
k

∂qθ(k)

∂θ
· p(k)
qθ(k)

. (20)

The result is the negative gradient of the model probability, inversely weighted by its value. As Ko et al. (2024) stated, when
qθ(k) ≈ 0, the gradient norm increases, causing large, noisy updates that can hinder optimization. Similarly, the derivative
of the reverse KL divergence with respect to θ is given by:

∂

∂θ
DKL(qθ∥p) = −

∑
k

∂qθ(k)

∂θ
·
(
log

qθ(k)

p(k)
+ 1

)
. (21)

This value becomes very large when p(k) ≈ 0. In our framework, by Lem. E.1, the derivative of the α-β-divergence with
respect to θ is:

∂D(α,β)
AB (p ∥ qθ)

∂θ
= −

∑
k

∂q(k)

∂θ
· qθ(k)α+β−1 ·

(
p(k)
qθ(k)

)α
− 1

α
.

When α = 1 and β = 0, FKLD becomes a special case; when α = 0 and β = 1, RKLD becomes a special case. The
parameter α controls the focus on large or small ratios p/qθ, while β adjusts the weighting of these ratios through the scaling

factor qα+β−1
θ . When choosing α = 1, ∂D(α,β)

AB (p∥qθ)
∂θ tends to excessively focus on the extreme values of p/q (i.e., when

p(x) > 0 and q(x) ≈ 0). On the other hand, choosing a α close to 0 would overly focus on the extreme values of q/p (i.e.,
when q(x) > 0 and p(x) ≈ 0). Additionally, choosing a larger value of α+β > 1 would place more focus on p/q of classes
with high student confidence, while conversely treating all classes more equally. This means they provide a fine-grained
way to tune the model to emphasize specific likelihood ratio ranges, thereby ensuring stable gradient optimization.

F. Pursuing a Proper Mass allocation via α-Divergence
To achieve an effective trade-off between hardness-concentration and confidence-concentration, one can, for example, extend
FKLD and RKLD to a family of generalized divergences by introducing an additional dimension α, which is known as the
α-divergence (Chernoff, 1952).

Definition F.1 (α-divergence). Consider α ∈ R \ {0, 1}, the α-divergence of two distributions is given by:

Dα(p ∥ q) ≜
1

α(α− 1)

[∑
k

p(k)αq(k)1−α − 1

]
,

where p = [p(k)]Ck=1 and q = [q(k)]Ck=1 are two discrete distributions over C classes.
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Remark. The α-divergence includes DKL(p ∥ qθ) as α→ 1, and DKL(qθ ∥ p) as α→ 0.

The following proposition characterizes the effect of hyperparameter α on reducing |LogRα
t (y)|. The proof is in App. G.3.

Proposition F.2. The updates induced by α-divergence for qt within one gradient descent step are given by:∣∣∣LogRα
t (y)

∣∣∣ ≤ η qt(y)
1−α︸ ︷︷ ︸

(a)

∣∣∣∣p(y)α − qt(y)
α

α

∣∣∣∣︸ ︷︷ ︸
(b)

+qt(y)
∑
k

qt(k)
1−α︸ ︷︷ ︸

(a)

∣∣∣∣p(k)α − qt(k)
α

α

∣∣∣∣︸ ︷︷ ︸
(b)

+
∣∣Nα

t (y)
∣∣,

where Nα
t (y) denotes constant normalization factors.

This proposition indicates that term (a) scales the relative importance of large versus small qt(y), controlling the
confidence-concentration effect. Term (b) adjusts the relative emphasis of the error between p(y) and qt(y), control-
ling the hardness-concentration effect. Together, these terms are coupled, with their interaction governed by α and 1− α.
Unfortunately, this unnecessary constraint makes it intractable to adjust their effects independently.

The following theorem validates our idea and shows that the α-divergence can only inflexibly interpolate between FKLD
and RKLD (Fig. 1e) in a linear subspace of the planar space formed by terms (a) and (b), as shown in Fig.1(a). The proof
is deferred to App. G.4.

Theorem F.3. Let qαt+1(y) be the distribution obtained after one gradient step, starting from qt using the α-divergence.
Define ∆α

t as the difference of log mass ratios across two classes y1 and y2, obtained from the α-divergence:

∆α
t (y1, y2) ≜ LogRα

t (y1)− LogRα
t (y2).

We observe the following linear trend (for appropriate positive constants ζ, δ1, δ2, and any real numbers α1 and α2 in the
range [0, 1] satisfying α1 < α2):

1. The α-divergence transfers the probability mass of overestimated classes to underestimated ones more aggressively
as α decreases. If y1 and y2 are such that δ1 < qt(y1) = qt(y2) ≤ p(y1) (where δ1 > 0), and p(y1) ≥ p(y2) + ζ, it
holds that ∆α1

t (y1, y2) ≥ ∆α2
t (y1, y2).

2. α-divergence reduces the probability mass of classes with larger error |p(y)− qt(y)| more aggressively as α decreases.
If y1 and y2 are such that p(y1) < qt(y1) = qt(y2) ≤ 1 − δ2 (where δ2 > 0), and p(y1) ≥ p(y2) + ζ, it holds that
∆α1

t (y1, y2) ≥ ∆α2
t (y1, y2).

3. α-divergence increases the probability mass more preferentially on underestimated classes with larger probabilities
qt(y) as α decreases. If y1 and y2 are such that qt(y2)+ ζ ≤ qt(y1) ≤ 1− δ2, and p(y1) = p(y2) > c0 · qt(y1), where
c0 is a positive constant > 1, it holds that ∆α1

t (y1, y2) ≥ ∆α2
t (y1, y2).

4. α-divergence reduces the probability mass on overestimated classes with larger probabilities qt(y) more conservatively
as α decreases. If y1 and y2 are such that qt(y2)+ ζ ≤ qt(y1) ≤ 1− δ2, and c0 · qt(y2) < p(y1) = p(y2) < c1 · qt(y1),
where c0 and c1 are constants with c0 > 1 and c1 < 1, it holds that ∆α1

t (y1, y2) ≥ ∆α2
t (y1, y2).

These cases illustrate the differences in probability mass allocation for different α. Specifically, from Case 1 and Case
2, it can be seen that a smaller α leads to a more aggressive reduction of the probability mass on overestimated classes,
transferring it to underestimated classes. Case 3 and Case 4 show that a smaller α (or larger 1− α) tends to concentrate the
probability mass more on classes with high student confidence.

In summary, we have the following conclusion.

The α-divergence achieves suboptimal balance between hardness-concentration and confidence-concentration
inflexibly.
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G. Proofs
G.1. Proof of Proposition 3.1

Lemma G.1 (Tajwar et al., 2024). For a given distribution qt, the algebraic relationships between LogR and the gradient of
the logit fy with a given learning rate η in FKLD and RKLD are given by:

FKLD: LogRF
t (y) = η ·

(
p(y)− qt(y)

)
+ NF

t (y),

RKLD: LogRR
t (y) = η · qt(y)

(
log p(y)− log qt(y) +

∑
k

qt(k)
(
log qt(k)− log p(k)

))
+ NR

t (y),

where NF
t (y) and NR

t (y) denote constant normalization factors independent of y and vanish to zero when p = qt.

Restate of Proposition 3.1. The updates induced by FKLD and RKLD for qt within one gradient descent step are given by:

FKLD:
∣∣LogRF

t (y)
∣∣ ≤ η · 1︸︷︷︸

(a)

·
∣∣p(y)− qt(y)

∣∣︸ ︷︷ ︸
(b)

+
∣∣NF

t (y)
∣∣,

RKLD:
∣∣LogRR

t (y)
∣∣ ≤ η · qt(y)︸ ︷︷ ︸

(a1)

( ∣∣ log p(y)− log qt(y)
∣∣︸ ︷︷ ︸

(b1)

+
∑
k

qt(k)︸ ︷︷ ︸
(a2)

∣∣ log p(k)− log qt(k)
∣∣︸ ︷︷ ︸

(b2)

)
+
∣∣NR

t (y)
∣∣,

where NF
t (y) and NR

t (y) denote constant normalization factors independent of y and vanish to zero when p = qt.

Proof. By Lemma G.1, and applying the triangle inequality, we can directly obtain the following bounds:∣∣LogRF
t (y)

∣∣ ≤ η · 1 ·
∣∣p(y)− qt(y)

∣∣+ ∣∣NF
t (y)

∣∣, (22)∣∣LogRR
t (y)

∣∣ ≤ η · qt(y)
(∣∣ log p(y)− log qt(y)

∣∣+∑
k

qt(k)
∣∣ log p(k)− log qt(k)

∣∣)+ ∣∣NR
t (y)

∣∣, (23)

This completes the proof.

G.2. Proof of Theorem 3.2

Restate of Theorem 3.2. Let qft+1(y) be the distribution obtained after one gradient step, starting from qt using the FKLD.
Likewise, let qrt+1(y) be the distribution obtained using the RKLD, from qt. Define ∆f

t and ∆r
t as the difference of log mass

ratios across two classes y1 and y2, obtained from the forward and reverse divergences respectively:

∆f
t (y1, y2) ≜ LogRF

t (y1)− LogRF
t (y2),

and ∆r
t is similarly defined. Then we have the following (for appropriate positive constants ζ, δ1, δ2):

1. RKLD transfers probability mass from overestimated classes to underestimated classes more aggressively than FKLD.
If y1 and y2 are such that δ1 < qt(y1) = qt(y2) < p(y1) (where δ1 > 0, δ2 > 0), but p(y1) ≥ p(y2) + ζ, then,
∆r

t (y1, y2) > ∆f
t (y1, y2).

2. RKLD reduces the probability mass of overestimated classes with higher error |p(y)− qt(y) more aggressively than
FKLD. If y1 and y2 are such that p(y1) < qt(y1) = qt(y2) ≤ 1 − δ2, but p(y1) ≥ p(y2) + ζ, then, ∆r

t (y1, y2) >

∆f
t (y1, y2).

3. RKLD more preferentially increases probability mass on underestimated classes with larger probability qt(y) than
FKLD. If y1 and y2 are such that qt(y2) + ζ ≤ qt(y1) ≤ 1 − δ2, and p(y1) = p(y2) > c0 · qt(y1), where c0 is a
positive constant > 1, then, ∆r

t (y1, y2) > ∆f
t (y1, y2).

4. RKLD reduces probability mass on overestimated classes with larger probability qt(y) more conservatively than FKLD.
If y1 and y2 are such that qt(y2) + ζ ≤ qt(y1) ≤ 1− δ2, and c0 · qt(y2) < p(y1) = p(y2) < c1 · qt(y1), where c0 and
c1 are constants with c0 > 1 and c1 < 1, then, ∆r

t (y1, y2) > ∆f
t (y1, y2).
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Proof. For Case 1, note that qt(y1) = qt(y2) < p(y1), based on Lem. G.1, we have:

∆f (y1, y2) = η (p(y1)− p(y2)) , (24)

∆r(y1, y2) = ηq(y1) [log p(y1)− log p(y2)] . (25)

The discrepancy between ∆f and ∆r is now given by:

∆r(y1, y2)−∆f (y1, y2) = η · q(y1)
[
log p(y1)− log p(y2)−

p(y1)− p(y2)

q(y1)

]
. (26)

Notice that by the lagrange’s mean value theorem, there exists a c0 ∈ (p(y2), p(y1)) such that:

log p(y1)− log p(y2) =
d log p

dp

∣∣∣∣
p=c0

·
(
p(y1)− p(y2)

)
. (27)

Since d log p
dp

∣∣∣∣
p=c0

= 1
c0

, we have that:

∆r(y1, y2)−∆f (y1, y2) = η ·
(
p(y1)− p(y2)

)
·
[
q(y1)

c0
− 1

]
. (28)

This quantity is positive if q(y1) > c0 = δ1.

Then, for Case 2, similarly, since p(y1) < qt(y1) = qt(y2), we have:

∆r(y1, y2)−∆f (y1, y2) = η ·
(
p(y1)− p(y2)

)
·
[
q(y1)

c0
− 1

]
. (29)

where c0 ∈ (p(y2), p(y1)) is obtained by applying the lagrange’s mean value theorem to the difference log p(y1)− log p(y2).
Notice that q(y1) > p(y1), so this term is always positive.

The proof for Case 3 is consistent with Tajwar et al. (2024), and is omitted here.

Finally, we prove Case 4. Noting that q(y2) < p(y1) = p(y2) < q(y1), we have

∆f (y1, y2) = η(q(y2)− q(y1)). (30)

Additionally, for ∆r(y1, y2), we have

∆r(y1, y2) = η[q(y1)− q(y2)] log p(y1)︸ ︷︷ ︸
(a)

− η[q(y1) log(q(y1)− q(y2) log(q(y2)]︸ ︷︷ ︸
(b)

+ η(q(y1)− q(y2))DKL(p∥q)︸ ︷︷ ︸
≥0

.
(31)

For item (b), by the lagrange’s mean value theorem, there exists a point c0 ∈ (q(y2), q(y1)) such that

η[q(y1) log(q(y1)− q(y2) log(q(y2)] =
dq log q

dq

∣∣∣∣
q=c0

(q(y1)− q(y2))

= (1 + log c0)(q(y1)− q(y2)).

(32)

Substituting into Eq. 31, we obtain

∆r(y1, y2) = η[q(y1)− q(y2)][log p(y1)− log c0 − 1 + DKL(p∥q)]. (33)

We need to prove that

η[q(y1)− q(y2)][log p(y1)− log c0 − 1 + DKL(p∥q)] > −η[q(y1)− q(y2)]. (34)

It suffices to choose a sufficiently large p(y1) ∈ (q(y2), q(y1)) to ensure that

log p(y1)− log c0 + DKL(p∥q) > 0. (35)

This condition can be satisfied.
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Remark. These cases highlight the contrasting behaviors of FKLD and RKLD in certain scenarios. Specifically, Case 1
shows that RKLD is more aggressive in transferring probability mass from overestimated classes (i.e., p(y) < q(y)) to
underestimated ones (i.e., p(y) > q(y)). Case 2 indicates that when two classes have the same predicted values q(y) greater
than the target values p(y), RKLD more aggressively penalizes hard classes with larger overestimations (i.e., larger error
|p(y) − q(y)|). Case 3 indicates that when the predicted values q(y) for two classes y1 and y2 are both below the target
value p(y), RKLD preferentially increases the probability mass of the class with larger student confidence q(y), even though
both predictions are equal at the target value p(y). Case 4 suggests that when one class y1 is overestimated and another class
y2 is underestimated, RKLD reduces the overestimation of high-probability classes more conservatively.

In summary, combining Case 1 and Case 2, we conclude that RKLD reallocates the probability mass across classes more
aggressively by penalizing errors in hard classes compared to FKLD, aiming to achieve better matching. This can help avoid
local optima more quickly in some cases, ensuring superior performance and faster convergence throughout the training
process, as shown in Fig. 2. From Case 3 and Case 4, it can be inferred that RKLD tends to concentrate the probability
mass on a few classes with high prediction confidence. In contrast, FKLD reallocates the probability mass evenly across all
classes since the weights for different classes are identical. This can lead to a sharper distribution when using RKLD, as
empirically validated in Fig. 6(c) and (d) (β = 0 for FKLD and β = 1 for RKLD).

G.3. Proof of Proposition F.2

Lemma G.2. The gradient of the softmax function q(i) = efi∑
k efk

with respect to fj is given by:

∂q(i)

∂fj
=

{
q(i)(1− q(i)) if i = j,

−q(i)q(j) if i ̸= j.

Proof. To derive ∂q(i)
∂fj

, we consider two cases: i = j and i ̸= j.

1. Case i = j: Using the quotient rule, we have:

∂q(i)

∂f(i)
=

ef(i) ·
∑

k e
f(k) − ef(i) · ef(i)(∑
k e

f(k)
)2

=
efi∑
k e

fk
− efi · efi

(
∑

k e
fk)

2 .

(36)

Simplifying:
∂q(i)

∂f(i)
= q(i)(1− q(i)). (37)

2. Case i ̸= j: We have
∂q(i)

∂fj
= − efiefj

(
∑

k e
fk)

2

= −q(i)q(j).
(38)

In conclusion, the derivative is:
∂q(i)

∂f(j)
=

{
q(i)(1− q(i)) if i = j,

−q(i)q(j) if i ̸= j.
(39)

Restate of Proposition F.2. The updates induced by α-divergence for qt within one gradient descent step are given by:

log
qαt+1(x)

qt(x)
≤ η qt(y)

1−α︸ ︷︷ ︸
(a)

∣∣∣∣p(y)α − qt(y)
α

α

∣∣∣∣︸ ︷︷ ︸
(b)

+qt(y)
∑
k

qt(k)
1−α︸ ︷︷ ︸

(a)

∣∣∣∣p(k)α − qt(k)
α

α

∣∣∣∣︸ ︷︷ ︸
(b)

+
∣∣Nα

t (y)
∣∣,

where Nα
t (y) denotes constant normalization factors.
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Proof. The formula for the α-divergence is:

Dα(p ∥ q) ≜
1

α(α− 1)

[∑
k

p(k)αq(k)1−α − 1

]
, (40)

Using the chain rule, we have:
∂

∂fy
Dα(p ∥ q) =

∑
k

∂Dα(p ∥ q)
∂q(k)

∂q(k)

∂fy
, (41)

where
∂Dα(p ∥ q)

∂q(y)
= − 1

α

(
p(y)

q(y)

)α

, (42)

and
∂q(y)

∂fy
=

∂

∂fy

efy∑
k e

fk
. (43)

Combining Lem. G.2, the Eq. 41 can be expressed as

∂

∂fy
Dα(p ∥ q) =

∑
k ̸=y

∂Dα(p ∥ q)
∂q(k)

∂q(k)

∂f(y)
+

∂Dα(p ∥ q)
∂q(y)

∂q(y)

∂fj

=
∑
k ̸=y

(
− 1

α

(
p(k)

q(k)

)α)
· (−q(k)q(y)) +

(
− 1

α

(
p(y)

q(y)

)α)
· (q(y)(1− q(y)))

= − 1

α

[
q(y)1−α (p(y)α − q(y)α) + q(y)

(∑
k

q(k)1−α(q(k)α − p(k)α)

)]
.

(44)

Now, consider using the gradient descent method to update the loss function ℓ with respect to the logits f t
y, then the

distribution at the next step pt+1 is given by:

qt+1(y) =
exp(f t+1

y )∑
k exp(f

t+1
k )

=
exp(f t

y − η∇ft
y
ℓ)∑

k exp(f
t
k − η∇ft

k
ℓ)

= qt(y) ·
exp(−η∇ft+1

y )ℓ)∑
k qt(k) exp(−η∇ft

k
ℓ)
.

(45)

Now, substituting the gradient formula of the α-divergence, the characterization of qαt+1(xj) is obtained as:

qαt+1(y) = qt(y) ·
exp

(
η
α

[
q(y)1−α (p(y)α − q(y)α) + q(y)

(∑
k q(k)

1−α(q(k)α − p(k)α)
)])∑

i qt(i) exp
(
η
α [q(i)1−α (p(i)α − q(i)α) + q(i) (

∑
k q(k)

1−α(q(k)α − p(k)α))]
) . (46)

Observing that the denominator serves as a normalization constant, this can be rewritten as:

qft+1(y)

qt(y)
∝ exp

(
η

α

[
q(y)1−α (p(y)α − q(y)α) + q(y)

(∑
k

q(k)1−α(q(k)α − p(k)α)

)])
. (47)

Taking the logarithm on both sides, we get:

log
qαt+1(y)

qt(y)
= η

[
qt(y)

1−α

(
p(y)α − qt(y)

α

α

)
+ qt(y)

∑
k

qt(k)
1−α

(
qt(k)

α − p(k)α

α

)]
︸ ︷︷ ︸

−∇fy ℓ

+Nα
t (y),

(48)

where Nα
t (y) denotes constant normalization factors. We can further derive that∣∣ log qαt+1(y)

qt(y)

∣∣ ≤ η qt(y)
1−α︸ ︷︷ ︸

(a)

∣∣∣∣p(y)α − qt(y)
α

α

∣∣∣∣︸ ︷︷ ︸
(b)

+qt(y)
∑
k

qt(k)
1−α︸ ︷︷ ︸

(a)

∣∣∣∣p(k)α − qt(k)
α

α

∣∣∣∣︸ ︷︷ ︸
(b)

+
∣∣Nα

t (y)
∣∣. (49)

This completes the proof.
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G.4. Proof of Theorem F.3

Lemma G.3. Let p and q be normalized probability distributions over class numbers C i.e.,
∑C

k p(k) =
∑C

k q(k) = 1.
Define the function F (α) for α ∈ [0, 1] as:

F (α) ≜
1

α

(
1−

∑
k

p(k)αq(k)1−α

)
.

Then, F (α) decreases monotonically as α increases, and F (α) ≥ 0 on [0, 1].

Proof. Define:
S(α) ≜

∑
k

p(k)αq(k)1−α. (50)

Thus, the function F (α) can be written as:

F (α) =
1− S(α)

α
. (51)

First, compute the first derivative of S(α):

S′(α) =
∑
k

p(k)αq(k)1−α (ln p(k)− ln q(k)) . (52)

and the second derivative:
S′′(α) =

∑
k

p(k)αq(k)1−α (ln p(k)− ln q(k))
2

≥ 0.

(53)

Since S′′(α) ≥ 0 for all α, S(α) is a convex function of α.

Now, compute the derivative of F (α):

F ′(α) =
d

dα

(
1− S(α)

α

)
=
−S′(α) · α− (1− S(α))

α2

=
N(α)

α2
,

(54)

where
N(α) ≜ −αS′(α)− 1 + S(α). (55)

To show F ′(α) ≤ 0, it suffices to prove N(α) ≤ 0.

Since S(α) is convex, S′(α) is non-decreasing. Additionally, considering the boundary conditions:

N(0) = 0, N(1) = −DKL(p∥q) ≤ 0, (56)

and since

N ′(α) =
d

dα
(S(α)− αS′(α)− 1)

= −αS′′(α)

≤ 0,

(57)

N(α) is monotonically decreasing.

Therefore, for all α ∈ [0, 1]:
N(α) ≤ 0. (58)
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Thus,

F ′(α) =
N(α)

α2

≤ 0.
(59)

Hence, F (α) is monotonically decreasing with respect to α on the interval [0, 1].

Finally, note that F (1) = 0, and therefore F (α) ≥ 0. This completes the proof.

Lemma G.4. Consider the function f(α) ≜ p(x)α − q(yi)
α, where p(x) and q(yi) are constants. The derivative of the

logarithm of f(α) with respect to α is:

d

dα
ln (p(x)α − q(yi)

α) = ln p(x) +
−
(

q(yi)
p(x)

)α
ln
(

q(yi)
p(x)

)
1−

(
q(yi)
p(x)

)α . (60)

Proof. Start with:

ln (p(x)α − q(yi)
α) = ln p(x)α + ln

(
1−

(
q(yi)

p(x)

)α)
. (61)

Differentiating with respect to α, we get:

d

dα
ln (p(x)α − q(yi)

α) =
d

dα
ln p(x)α +

d

dα
ln

(
1−

(
q(yi)

p(x)

)α)
. (62)

The derivative of ln p(x)α is ln p(x), and the derivative of the second term is:

d

dα
ln

(
1−

(
q(yi)

p(x)

)α)
=
−
(

q(yi)
p(x)

)α
ln
(

q(yi)
p(x)

)
1−

(
q(yi)
p(x)

)α . (63)

Combining these gives the desired result:

d

dα
ln (p(x)α − q(yi)

α) = ln p(x) +
−
(

q(yi)
p(x)

)α
ln
(

q(yi)
p(x)

)
1−

(
q(yi)
p(x)

)α . (64)

Lemma G.5. Let 1 ≥ α > 0 and define
h(s) ≜ 1− s2α − 2αsα| ln s| (65)

for 0 < s < 1. Then h(s) is strictly decreasing on (0, 1).

Proof. Since 0 < s < 1, we have ln s < 0, thus | ln s| = − ln s. Substitute this:

h(s) = 1− s2α + 2αsα ln s. (66)

Differentiating term-by-term,
h′(s) = −2αs2α−1 + 2α(αsα−1 ln s+ sα−1)

= 2αsα−1(α ln s+ 1− sα).
(67)

Set
q(s) = α ln s+ 1− sα. (68)

As s→ 0+, ln s→ −∞ and thus q(s)→ −∞. At s = 1, q(1) = α · 0 + 1− 1 = 0. Moreover,

q′(s) =
α(1− sα)

s
> 0.

(69)
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Since 0 < s < 1 implies 1− sα > 0. Hence q(s) is strictly increasing on (0, 1), and we have q(1) = 0. Thus q(s) < 0 for
all 0 < s < 1.

Since 2αsα−1 > 0 and q(s) < 0, we have h′(s) < 0 for all 0 < s < 1. Therefore, h(s) is strictly decreasing on (0, 1).

Lemma G.6. For 0 < s < 1 and 1 ≥ α > 0, define

β(s, α) ≜
2(1− sα)(1 + sα)| ln s|

(1 + sα)2(ln s)2
. (70)

Then β(s, α) is strictly increasing in s on (0, 1) and increases from 0 to α as s goes from 0 to 1.

Proof. Since 0 < s < 1, we have ln s < 0 and thus | ln s| = − ln s. Substituting this into Eq. 70 and simplifying, we obtain:

β(s, α) =
2(1− sα)

(1 + sα)| ln s|
. (71)

To differentiate β(s, α) with respect to s, let:

f(s) ≜ 1− sα, f ′(s) = −αsα−1, (72)

g(s) ≜ 1 + sα, g′(s) = αsα−1, (73)

h(s) ≜ | ln s| = − ln s, h′(s) = −1

s
. (74)

Thus,

β(s, α) =
2f(s)

g(s)h(s)
. (75)

Applying the quotient rule:

dβ

ds
= 2

f ′(s)g(s)h(s)− f(s)g′(s)h(s)− f(s)g(s)h′(s)

[g(s)h(s)]2
. (76)

Plugging Eq. 72, Eq. 73 and Eq. 74 into Eq. 76 and simplifying, we arrive at:

dβ

ds
=

2h(s)

(1 + sα)2(ln s)2
with h(s) = 1− s2α − 2αsα| ln s|. (77)

From Lem. G.5, it follows that h(s) is decreasing on (0, 1). As s→ 1−, h(s)→ 0. Therefore, h(s) > 0 on (0, 1).

Since (1 + sα)2(ln s)2 > 0, it follows from Eq. 77 that dβ
ds > 0. Therefore, β(s, α) is strictly increasing. Furthermore,

taking limits:
lim

s→0+
β(s, α) = 0, lim

s→1−
β(s, α) = α,

so β(s, α) increases from 0 to α as s goes from 0 to 1.

Lemma G.7. Let f(s, α) ≜ sα(ln s)2

(1−sα)2 , where 0 < s < 1 and α > 0. Then, f(s, α) is strictly increasing with respect to s for

all 0 < s < 1 and α > 0, i.e., ∂f
∂s > 0.

Proof. To compute ∂f
∂s , we use the quotient rule. Define:

u ≜ sα(ln s)2, v ≜ (1− sα)2, f(s, α) ≜
u

v
. (78)

The derivative is given by:
∂f

∂s
=

u′v − uv′

v2
. (79)
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First, compute u′:

u = sα(ln s)2, u′ = αsα−1(ln s)2 + 2sα−1 ln s = sα−1
[
α(ln s)2 + 2 ln s

]
. (80)

Next, compute v′:
v = (1− sα)2, v′ = 2(1− sα) · (−αsα−1) = −2αsα−1(1− sα). (81)

Substituting u′ and v′ into the quotient rule:

∂f

∂s
=

sα−1
[
α(ln s)2 + 2 ln s

]
(1− sα)2 + 2αs2α−1(ln s)2(1− sα)

(1− sα)4
. (82)

Simplify the numerator:

Numerator = sα−1(1− sα)
[
α(ln s)2 + 2 ln s

]
+ 2αs2α−1(ln s)2. (83)

Factorize:
Numerator = sα−1(1− sα)

[
α(1 + sα)(ln s)2 + 2(1− sα) ln s

]
. (84)

Thus:
∂f

∂s
=

sα−1
[
α(1 + sα)(ln s)2 + 2(1− sα) ln s

]
(1− sα)3

. (85)

To determine the sign of ∂f
∂s , note:

• sα−1 > 0 since 0 < s < 1 and α > 0,

• (1− sα)3 > 0 since 0 < s < 1 and α > 0,

• ln s < 0 for 0 < s < 1, hence (ln s)2 > 0.

Denote the remaining expression inside the brackets as:

N ≜ α(1 + sα)(ln s)2 + 2(1− sα) ln s. (86)

Rewrite N as:
N = | ln s| [α(1 + sα)| ln s| − 2(1− sα)] . (87)

Since | ln s| > 0, we analyze α(1 + sα)| ln s| − 2(1− sα) > 0:

α >
2(1− sα)

(1 + sα)| ln s|
. (88)

From Lem. G.6, it follows that for all 0 < s < 1 and α > 0, α > β(s, α) always holds, implying:

N > 0. (89)

Hence:
∂f

∂s
> 0, (90)

which shows that f(s, α) is strictly increasing with respect to s.

Lemma G.8. Considering p(x), q(y1), q(y2) ∈ [0, 1] such that p(x) ≥ q(y1) ≥ q(y2), and α > 0, the following function:

F (α) ≜
q(y1)

1−α

q(y2)1−α
· p(x)

α − q(y1)
α

p(x)α − q(y2)α
, (91)

F (α) decreases as α increases.
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Proof. Let h(α) ≜ lnF (α), we get

h(α) = (1− α) ln
q(y1)

q(y2)
+ ln (p(x)α − q(y1)

α)− ln (p(x)α − q(y2)
α) . (92)

Differentiating h(α) with respect to α, we get

h′(α) = − ln
q(y1)

q(y2)
+

d ln (p(x)α − q(y1)
α)

dα
− d ln (p(x)α − q(y2)

α)

dα
. (93)

Combining Lem. G.4, we obtain the following expression for the derivative of h(α):

h′(α) = − ln
q(y1)

q(y2)
−

(
q(y1)
p(x)

)α
ln
(

q(y1)
p(x)

)
1−

(
q(y1)
p(x)

)α +

(
q(y2)
p(x)

)α
ln
(

q(y2)
p(x)

)
1−

(
q(y2)
p(x)

)α . (94)

For convenience, define the variables si =
q(xi)
p(x) for i = 1, 2, where 1 ≥ s1 ≥ s2. Using this substitution, we obtain:

h′(α) = − ln
s1
s2
− sα1 ln s1

1− sα1︸ ︷︷ ︸
(a)

+
sα2 ln s2
1− sα2︸ ︷︷ ︸

(b)

. (95)

To analyze the sign of h′(α), consider the second derivative with respect to α:

h′′(α) =
d

dα

(
−sα1 ln s1

1− sα1
+

sα2 ln s2
1− sα2

)
. (96)

Using the quotient rule, differentiate each term separately:

d

dα

(
sα ln s

1− sα

)
=

sα(ln s)2

(1− sα)2
. (97)

Therefore:

h′′(α) = −sα1 (ln s1)
2

(1− sα1 )
2
+

sα2 (ln s2)
2

(1− sα2 )
2
. (98)

From Lem. G.7, we have
h′′(α) ≤ 0.

Thus, we have shown that h′(α) is monotonically decreasing. Considering the limit of h′(α) as α→ 0+, we have:

lim
α→0+

h′(α) = 0.

Therefore, h′(α) < 0 always holds, and F (α) decreases as α increases.

Lemma G.9. Define
f(p(y1)) ≜ − (log p(y1)− log q(y2))

2
q(y2)

1−α

+ (log p(y1)− log q(y1))
2
q(y1)

1−α,

where 0 < q(y2) < p(y1) < q(y1). Then:

1. The function f(p(y1)) is monotonically decreasing with respect to p(y1).

2. There exists a unique constant c0 ∈ (q(y2), q(y1)) such that f(c0) = 0. Moreover, for all p(y1) > c0, it holds that
f(p(y1)) < 0.

29



ABKD: Pursuing a Proper Allocation of the Probability Mass in Knowledge Distillation via α-β-Divergence

Proof. The derivative of f with respect to p(y1) is:

f ′(p(y1)) =
2

p(y1)

[
(log p(y1)− log q(y1)) q(y1)

1−α − (log p(y1)− log q(y2)) q(y2)
1−α

]
. (99)

Noting that 0 < q(y2) < p(y1) < q(y1), therefore f ′(p(y1)) ≤ 0. When p(y1) = q(y2):

f(q2) = (log q2 − log q1)
2q1−α

1 > 0. (100)

When p(y1) = q(y1):
f(q1) = −(log q1 − log q2)

2q1−α
2 < 0. (101)

According to the intermediate value theorem, since f(p) is continuous on p ∈ (q2, q1) and decreases from a positive value
to a negative value, there exists a unique c0 ∈ (q2, q1) such that f(c0) = 0. Therefore, when p > c0, f(p) < 0.

Restate of Theorem F.3. Let qαt+1(y) be the distribution obtained after one gradient step, starting from qt using the
α-divergence. Define ∆α

t as the difference of log mass ratios across two classes y1 and y2, obtained from the α-divergence:

∆α
t (y1, y2) ≜ LogRα

t (y1)− LogRα
t (y2).

We observe the following linear trend (for appropriate positive constants ζ, δ1, δ2, and any real numbers α1 and α2 in the
range [0, 1] satisfying α1 < α2):

1. The α-divergence transfers the probability mass of overestimated classes to underestimated ones more aggressively
as α decreases. If y1 and y2 are such that δ1 < qt(y1) = qt(y2) ≤ p(y1) (where δ1 > 0), and p(y1) ≥ p(y2) + ζ, it
holds that ∆α1

t (y1, y2) ≥ ∆α2
t (y1, y2).

2. α-divergence reduces the probability mass of classes with larger error |p(y)− qt(y)| more aggressively as α decreases.
If y1 and y2 are such that p(y1) < qt(y1) = qt(y2) ≤ 1 − δ2 (where δ2 > 0), and p(y1) ≥ p(y2) + ζ, it holds that
∆α1

t (y1, y2) ≥ ∆α2
t (y1, y2).

3. α-divergence increases the probability mass more preferentially on underestimated classes with larger probabilities
qt(y) as α decreases. If y1 and y2 are such that qt(y2)+ ζ ≤ qt(y1) ≤ 1− δ2, and p(y1) = p(y2) > c0 · qt(y1), where
c0 is a positive constant > 1, it holds that ∆α1

t (y1, y2) ≥ ∆α2
t (y1, y2).

4. α-divergence reduces the probability mass on overestimated classes with larger probabilities qt(y) more conservatively
as α decreases. If y1 and y2 are such that qt(y2)+ ζ ≤ qt(y1) ≤ 1− δ2, and c0 · qt(y2) < p(y1) = p(y2) < c1 · qt(y1),
where c0 and c1 are constants with c0 > 1 and c1 < 1, it holds that ∆α1

t (y1, y2) ≥ ∆α2
t (y1, y2).

Proof. First, we prove Case 1. Note that qt(y1) = qt(y2) = q(x), based on Eq. 48, we have

∆α
t = ηq(x)1−α · p(y1)

α − p(y2)
α

α
. (102)

Let f(α) = q(x)1−α · p(y1)
α−p(y2)

α

α , and then it can be rewritten as

f(α) ≜ q(x)1−α

∫ p(y1)

p(y2)

yα−1 dy. (103)

Let t = y
q(x) , substituting gives

f(α) = q(x)1−α

∫ p(y1)

q(x)

p(y2)

q(x)

tα−1 · q(x)α−1 · q(x) dt

= q(x)

∫ p(y1)

q(x)

p(y2)

q(x)

tα−1 dt.

(104)
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Using Leibniz’s rule, we get

f ′(α) = q(x)

∫ p(y1)

q(x)

p(y2)

q(x)

tα−1 ln t dt. (105)

Note that the sign of f ′(α) depends only on
∫ p(y1)

q(x)

p(y2)

q(x)

tα−1 ln t dt, so we define

h ≜
∫ p(y1)

q(x)

p(y2)

q(x)

tα−1 ln t dt. (106)

Clearly, the sign of h depends on the relative size of q(x) with respect to p(y1) and p(y2). To differentiate h with respect to
q(x), using Leibniz’s Rule, we get

h′(q(x)) =
d

dq(x)

∫ p(y1)

q(x)

p(y2)

q(x)

tα−1 ln t dt

=
[
tα−1 ln t

]
t=

p(y1)

q(x)

·
(
−p(y1)

q(x)2

)
−
[
tα−1 ln t

]
t=

p(y2)

q(x)

·
(
−p(y2)

q(x)2

)
.

(107)

Simplifying, we obtain:

h′(q(x)) =
p(y2)

α ln
(

p(y2)
q(x)

)
− p(y1)

α ln
(

p(y1)
q(x)

)
q(x)α+1

=
p(y2)

α ln p(y2)− p(y1)
α ln p(y1) + (p(y1)

α − p(y2)
α) ln q(x)

q(x)α+1
.

(108)

Note that the sign of h′(q(x)) depends only on the sign of the numerator, and the numerator is a monotonic increasing
function of q(x) ((p(y1) ≥ p(y2)). Note that q(x) ≤ p(y1), we have

h′(q(x)) ≤ h′(p(y1))

=
p(y2)

α ln
(

p(y2)
p(y1)

)
p(y1)α+1

≤ 0.

(109)

Thus, we have proven that h is monotonically decreasing as q(x) increases. Also, since

h(p(y2)) =

∫ p(y1)

p(y2)

1

tα−1 ln t dt

≥ 0,

(110)

and

h(p(y1)) =

∫ 1

p(y2)

p(xi)

tα−1 ln t dt

≤ 0.

(111)

By the intermediate value theorem, there exists cα ∈ [p(y2), p(y1)] such that when q(x) > cα, we have

h(q(x)) ≤ 0 (112)

for all values. By combining Eq. 105, we can conclude that f ′(α) < 0. Furthermore, let δ1 ≜ max(cα) for any α ∈ [0, 1].
Then, when p(y1) ≥ q(x) > δ1, we have f ′(α) ≤ 0 for α ∈ [0, 1]. Thus, we have proven that for any α1 and α2 ∈ [0, 1]
such that α1 < α2, we have

∆α1
t (y1, y2) ≥ ∆α2

t (y1, y2).
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Next, we prove Case 2. Similarly, since qt(y1) = qt(y2) = q(x), we can deduce that

∆α
t = ηq(x)1−α · p(y1)

α − p(y2)
α

α
. (113)

Let f(α) ≜ q(x)1−α · p(y1)
α−p(y2)

α

α ., we get

f(α) = q(x)

∫ p(y1)

q(x)

p(y2)

q(x)

tα−1 dt. (114)

Using Leibniz’s rule, we get

f ′(α) = q(x)

∫ p(y1)

q(x)

p(y2)

q(x)

tα−1 ln t dt. (115)

Note that q(x) > p(y1), so
f ′(α) ≤ 0. (116)

Thus, this proves that for any α1 and α2 such that α1 < α2, we have

∆α1
t (y1, y2) ≥ ∆α2

t (y1, y2).

We now proceed to prove Case 3. Note that p(y1) = p(y2) ≥ q(y1) ≥ q(y2) + ζ, thus we can deduce

∆α(y1, y2) = ηq(y1)
1−α · p(y1)

α − q(y1)
α

α︸ ︷︷ ︸
(a)

− ηq(y2)
1−α · p(y1)

α − q(y2)
α

α︸ ︷︷ ︸
(b)

+
η (q(y1)− q(y2))

α
·

[∑
k

q(k)1−α (q(k)α − p(k)α)

]
︸ ︷︷ ︸

(c)

.
(117)

First, through Lem. G.3, we know that (c) ≥ 0, and it increases as α decreases on [0, 1]. Then, we consider the term
(a)− (b):

∆α(y1, y2) ≥ (a)− (b)

= ηq(y1)
1−α · p(y1)

α − q(y1)
α

α
− ηq(y2)

1−α · p(y2)
α − q(y2)

α

α

= η q(y2)
1−α · p(y2)

α − q(y2)
α

α︸ ︷︷ ︸
(1)

q(y1)1−α

q(y2)1−α
· p(y1)

α − q(y1)
α

p(y2)α − q(y2)α︸ ︷︷ ︸
(2)

−1

 .

(118)

From Lem. G.8, it can be seen that term (2) increases as α decreases. Term (1) can be expressed as:

q(y2)
1−α · p(y2)

α − q(y2)
α

α
= q(y2)

1−α ·
∫ p(y2)

q(y2)

tα−1 dt

= q(y2) ·
∫ p(y2)

q(y2)

1

tα−1 dt.

(119)

Noting that
d

dα

∫ p(y2)

q(y2)

1

tα−1 dt =

∫ p(y2)

q(y2)

1

tα−1 ln t dt

≥ 0,

(120)

it follows that term (1) decreases as α decreases. Therefore, as α decreases, if term (2) ≤ 1, the value of (a)− (b) increases
as α decreases, although its value remains overall less than 0. If term (2) ≥ 1, we have (a) − (b) ≥ 0, even though
∆α=1(y1, y2) < 0.
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Finally, we prove Case 4. Since p(y1) = p(y2) and q(y2) ≤ q(y1), we have

∆α(y1, y2) = ηq(y1)
1−α · p(y1)

α − q(y1)
α

α
− ηq(y2)

1−α · p(y1)
α − q(y2)

α

α

+
η (q(y1)− q(y2))

α
·

[∑
k

q(k)1−α (q(k)α − p(k)α)

]
.

(121)

Considering f(α) ≜ ∆α(y1, y2)/η, taking the derivative with respect to α yields:

f ′(α) =
1

α2

[
(−1 + α log p(y1)− α log q(y1))p(y1)

αq(y1)
1−α

+ (1− α log p(y1) + α log q(y2))p(y1)
αq(y2)

1−α

− (q(y1)− q(y2))

(
− 1 +

∑
k

q(k)1−α
(
− p(k)α + q(k)α

)
− α

∑
k

(
− log q(k) q(k)1−α

(
− p(xk)

α + q(xk)
α
)

+ q(k)1−α
(
− log p(k) p(k)α + log q(k) q(k)α

)))]
.

(122)

Noting that the sign of f ′(α) depends solely on the numerator, let h(α) denote its numerator. Differentiating h(α) with
respect to α, we obtain:

h′(α) = αp(y1)
αq(y1)

−αq(y2)
−α
[
− (log p(y1)− log q(y2))

2q(y1)
αq(y2)

+ (log p(y1)− log q(y1))
2q(y1)q(y2)

α
]

− α (q(y1)− q(y2))
∑
k

q(k)1−αp(k)α (log q(k)− log p(k))
2

︸ ︷︷ ︸
≥0

≤ αp(y1)
αq(y1)

−αq(y2)
−α
[
− (log p(y1)− log q(y2))

2q(y1)
αq(y2)

+ (log p(y1)− log q(y1))
2q(y1)q(y2)

α
]
.

(123)

From Lem.G.9, it can be concluded that for any α, there exists a point cα ∈ (q(y2), q(y1)) such that when p(y1) > cα,
h′(α) < 0. Therefore, let δ1 = max(cα) for α ∈ [0, 1]. Then, when p(y1) > δ1, h(α) is monotonically decreasing for
α ∈ [0, 1].

Noting that as α → 0+, we have limα→0+ h(α) = 0. Hence, h(α) < 0 when α > 0. In this way, we have proven that
f ′(α) < 0, i.e., ∆α(y1, y2) increases as α decreases.

G.5. Proof of Proposition 4.2

Restate of Proposition 4.2 The updates induced by α-β-divergence for qt within one gradient descent step are given by:∣∣LogR(α,β)
t (y)

∣∣ ≤ η qt(y)
β︸ ︷︷ ︸

(a)

∣∣∣∣p(y)α − qt(y)
α

α

∣∣∣∣︸ ︷︷ ︸
(b)

+ qt(y)
∑
k

qt(k)
β︸ ︷︷ ︸

(a)

∣∣∣∣p(k)α − qt(k)
α

α

∣∣∣∣︸ ︷︷ ︸
(b)

+
∣∣N(α,β)

t (y)
∣∣,

where Nα,β
t (y) denotes constant normalization factor independent of y.
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Proof. The formula for the α-β-divergence is:

D(α,β)
AB (p ∥ q) ≜ − 1

αβ

∑
k

[
p(k)αq(k)β − α

α+ β
p(k)α+β − β

α+ β
q(k)α+β

]
. (124)

Using the chain rule, we have:
∂

∂fy
D(α,β)

AB (p ∥ q) =
∑
k

∂D(α,β)
AB (p ∥ q)
∂q(k)

∂q(k)

∂fy
, (125)

where
∂D(α,β)

AB (p ∥ q)
∂q(y)

= − 1

α

(
p(y)αq(y)β−1 − q(y)α+β−1

)
, (126)

and
∂q(y)

∂fy
=

∂

∂fy

efy∑
k e

fk
. (127)

Combining Lem. G.2, the Eq. 125 can be expressed as

∂

∂fy
Dα(p ∥ q) =

∑
k ̸=y

∂Dα(p ∥ q)
∂q(k)

∂q(k)

∂f(y)
+

∂Dα(p ∥ q)
∂q(y)

∂q(y)

∂fj

= − 1

α

[
q(y)β (p(y)α − q(y)α) + q(y)

(∑
k

q(k)β(q(k)α − p(k)α)

)]
.

(128)

Now, consider using the gradient descent method to update the loss function ℓ with respect to the logits f t
y, then the

distribution at the next step pt+1 is given by:

qt+1(y) =
exp(f t+1

y )∑
k exp(f

t+1
k )

=
exp(f t

y − η∇ft
y
ℓ)∑

k exp(f
t
k − η∇ft

k
ℓ)

= qt(y) ·
exp(−η∇ft+1

y )ℓ)∑
k qt(k) exp(−η∇ft

k
ℓ)
.

(129)

Now, substituting the gradient formula of the α-β-divergence, the characterization of q(α,β)t+1 (xj) is obtained as:

q
(α,β)
t+1 (y) = qt(y) ·

exp
(
η
α

[
q(y)β (p(y)α − q(y)α) + q(y)

(∑
k q(k)

β(q(k)α − p(k)α)
)])∑

i qt(i) exp
(
η
α [q(i)β (p(i)α − q(i)α) + q(i) (

∑
k q(k)

β(q(k)α − p(k)α))]
) . (130)

Observing that the denominator serves as a normalization constant, this can be rewritten as:

q
(α,β)
t+1 (y)

qt(y)
∝ exp

(
η

α

[
q(y)β (p(y)α − q(y)α) + q(y)

(∑
k

q(k)β(q(k)α − p(k)α)

)])
. (131)

Taking the logarithm on both sides, we get:

log
q
(α,β)
t+1 (y)

qt(y)
= η

[
qt(y)

β

(
p(y)α − qt(y)

α

α

)
+ qt(y)

∑
k

qt(k)
β

(
qt(k)

α − p(k)α

α

)]
︸ ︷︷ ︸

−∇fy ℓ

+N
(α,β)
t (y),

(132)

where N
(α,β)
t (y) denotes constant normalization factors independent of y. We can further derive that

∣∣ log q
(α,β)
t+1 (y)

qt(y)

∣∣ ≤ η qt(y)
β︸ ︷︷ ︸

(a)

∣∣∣∣p(y)α − qt(y)
α

α

∣∣∣∣︸ ︷︷ ︸
(b)

+qt(y)
∑
k

qt(k)
β︸ ︷︷ ︸

(a)

∣∣∣∣p(k)α − qt(k)
α

α

∣∣∣∣︸ ︷︷ ︸
(b)

+
∣∣N(α,β)

t (y)
∣∣. (133)

This completes the proof.

34



ABKD: Pursuing a Proper Allocation of the Probability Mass in Knowledge Distillation via α-β-Divergence

G.6. Proof of Theorem D.1

Restate of Theorem D.1. Let q(α,β)t+1 (y) be the distribution obtained after one gradient step, starting from qt using the

α-β-divergence. Define ∆
(α,β)
t as the difference of log mass ratios across two classes y1 and y2, obtained from the

α-β-divergence:

∆
(α,β)
t (y1, y2) ≜ LogR

(α,β)
t (y1)− LogR

(α,β)
t (y2).

We have the following (for appropriate positive constants ζ, δ1, δ2, and any real numbers α1 and α2 in the range [0, 1]
satisfying α1 < α2):

1. α-β-divergence transfers probability mass from overestimated classes to underestimated classes more aggressively
as α decreases. If y1 and y2 are such that δ1 < qt(y1) = qt(y2) ≤ p(y1) (where δ1 > 0), and p(y1) ≥ p(y2) + ζ, it
holds that ∆(α1,β)

t (y1, y2) ≥ ∆
(α2,β)
t (y1, y2).

2. α-β-divergence reduces the probability mass of classes with larger error |p(y) − qt(y)| more aggressively as α
decreases. If y1 and y2 are such that p(y1) < qt(y1) = qt(y2) ≤ 1 − δ2 (where δ2 > 0), and p(y1) ≥ p(y2) + ζ, it
holds that ∆(α1,β)

t (y1, y2) ≥ ∆
(α2,β)
t (y1, y2).

3. The α-β-divergence becomes more (less) preferential in focusing the error on classes with higher student confidence as
β increases (decreases) when reducing

∣∣∣LogR(α,β)
t (y)

∣∣∣.
Proof. First, we prove Case 1. Note that qt(y1) = qt(y2) = q(x), Based on Eq. 132, we have

∆
(α,β)
t = ηq(x)β · p(y1)

α − p(y2)
α

α

= ηq(x)β ·
∫ p(y1)

p(y2)

tα−1 dt.

(134)

Taking the derivative with respect to α, we get

∂

∂α
∆

(α,β)
t = ηq(x)β ·

∫ p(y1)

p(y2)

tα−1 ln t dt. (135)

Note that p(y1) ≤ 1 and p(y2) ≤ 1, we have
∂

∂α
∆

(α,β)
t ≤ 0. (136)

since ln t ≤ 0 when t ∈ (0, 1]. Therefore, we have ∆
(α1,β)
t > ∆

(α2,β)
t when α1 < α2.

The proof of Case 2 is similar to Case 1 and thus is omitted.

Finally, we prove Case 3. Recall that when reducing
∣∣∣LogR(α,β)

t (y)
∣∣∣, we have the following relationship:

∣∣LogR(α,β)
t (y)

∣∣ ≤ η qt(y)
β︸ ︷︷ ︸

(a)

∣∣∣∣p(y)α − qt(y)
α

α

∣∣∣∣︸ ︷︷ ︸
(b)

+ηqt(y)
∑
k

qt(k)
β︸ ︷︷ ︸

(a1)

∣∣∣∣p(k)α − qt(k)
α

α

∣∣∣∣︸ ︷︷ ︸
(b1)

+
∣∣N(α,β)

t (y)
∣∣,

where terms (a) and (a1) act as weighting functions. Therefore, selecting a larger (smaller) β will place more (less) emphasis
on errors from classes with higher student confidence qt(y), as shown in Fig. 1(c).

Remark. Case 1 and Case 2 show that selecting a smaller α leads to a more aggressive reduction of errors across classes by
shifting the probability mass from overestimated to underestimated classes. On the other hand, Case 3 shows that increasing
β emphasizes minimizing errors more in classes with higher student confidence.
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Algorithm 1 alpha beta Divergence Function

Input: Student distribution qθ, Teacher distribution p, and Hyperparameters α and β

Output: Divergence value D(α,β)
AB (p∥qθ)

1: return − 1
αβ

∑
k

(
p(k)αq(k)β − α

α+β p(k)
α+β − β

α+β q(k)
α+β

)
Algorithm 2 Generalized distillation framework with α-β-divergence.

Input: Dataset D with input-target pair {{xn,yn}}Nn=1, Teacher fT , Student fS , loss weight λ, α-β-divergence function
D(α,β)

AB in Algo. 1, and Hyperparameters α and β
Output: Trained student model fS
1: for each (xn,yn) in D do
2: fT ← fT (xn), f

S ← fS(xn)
3: p← softmax(fT )
4: qθ ← softmax(fS)

5: ℓKD ← D(α,β)
AB (p∥qθ)

6: Update fS towards minimizing ℓCE(yn, qθ) + λℓKD(p, qθ)
7: end for

H. Algorithm Protocol
Algo. 1 and Algo. 2 give the algorithmic protocol of our framework, which is easy to implement and applicable to common
KD downstream tasks.

I. Additional Experiment Settings
In this section, we provide a more detailed description of the experimental protocol.

I.1. Natural Language Processing Tasks

I.1.1. DATASETS

Following Gu et al. (2024a); Ko et al. (2024), we select 14K samples from databricks-dolly-15k (Conover et al.,
2023) for training and 500 samples each for validation and testing. After distillation, the models are evaluated on five task-
agnostic instruction-following benchmarks: Dolly-evaluation, Self-Instruct, Vicuna-evaluation, Super-Natural Instructions,
and Unnatural Instruction. The details for each dataset are as follows:

• databricks-dolly-15k (Conover et al., 2023): An open-source dataset of instruction-following records created by
thousands of Databricks employees. It includes several behavioral classes from Ouyang et al. (2022), such as
brainstorming, classification, closed QA, generation, information extraction, open QA, and summarization.

• Self-Instruct (Wang et al., 2023): A framework that enhances a language model’s instruction-following by using its
own outputs to generate extensive instructional data. It contains 52K instructions and 82K input-output pairs for tuning,
252 expert-written tasks for practical use, and 50K public dataset examples for benchmarking.

• Vicuna: Utilizes 80 challenging questions for evaluating Vicuna, following (Ko et al., 2024; Gu et al., 2024a).

• Super-Natural Instruction (Wang et al., 2022a): A benchmark of 1,616 diverse NLP tasks with expert-written
instructions, covering 76 task types. The test set includes 9K samples across 119 tasks.

• Unnatural Instruction (Honovich et al., 2023): AI-generated dataset with 240K instructions created with minimal
human input, proving AI data can match human data for training language models. The core set has 60K samples.

For experiments on these datasets, we use ROUGE-L (Lin, 2004) as the evaluation metric. ROUGE-L measures the quality
of generated text by calculating the Longest Common Subsequence (LCS) between the generated text y and the reference
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text x. A higher ROUGE-L score indicates that the generated text is more similar to the reference text. The metric is
computed based on the harmonic mean of recall RLCS and precision PLCS, defined as:

RLCS =
LCS(x,y)

Lx
,

PLCS =
LCS(x,y)

Ly
,

ROUGE-L =
2 ·RLCS · PLCS

RLCS + PLCS
.

Here, LCS(x,y) is the length of the longest common subsequence, Lx is the length of the reference text, and Ly is the
length of the generated text.

I.1.2. COMPETITORS

Here we give a more detailed summary of the competitors mentioned in the experiments and their SGOs approaches (if
exists).

• SFT is supervised fine-tuning of student model using ground-truth on the Fixed dataset (using predefined input-output
pairs).

• KD (Hinton, 2015) trains the student distribution to mimic the teacher distribution on the Fixed dataset using FKLD.

• SeqKD (Kim & Rush, 2016) maximizes the likelihood of high probability sequences generated by the teacher, and can
be viewed as SFT on teacher-generated outputs.

• MiniLLM (Gu et al., 2024a) trains on the student-generated sentences (SGOs) and uses an On-policy gradient method.
Their distillation object is to minimize the RKLD between the teacher and student distributions.

• GKD (Agarwal et al., 2024) uses the generalized Jensen-Shannon divergence (DJSD(β)(p∥qθ) = βD(p∥βp + (1 −
β)qθ) + (1− β)D(qθ∥βp+ (1− β)qθ)), training on a Mixture of datasets, either teacher-generated or ground-truth,
and on-policy student-generated sequences.

• DISTILLM (Ko et al., 2024) uses Skew KL (D(p∥αp + (1 − αqθ)) or Skew RKL (D(qθ∥αqθ + (1 − αp)) and
reports the better performing one. They train on a mixed dataset consisting of fixed outputs and student-generated
outputs. Additionally, they use an Adaptive off-policy method to determine whether to use student-generated outputs
for training based on validation loss, thereby removing noisy SGOs data.

I.1.3. IMPLEMENTATION DETAILS

Training. For training the teacher and student models, we used four RTX 3090 24GB GPUs. Our experimental setup for
training LMs on databricks-dolly-15k primarily follows the experimental setup for Ko et al. (2024). We search
for the learning rates in {5e-4, 1e-4, 5e-5}, the batch sizes in {4, 8, 16} within the possible maximum batch size for 3090
24GB GPUs, and train these models for 20 epochs. We fully use the distillation loss for the instruction-following dataset and
language modeling loss for OpenWebText (Gokaslan et al., 2019) corpus. The checkpoints of each student are selected by
the ROUGE-L scores on the validation set. For all teacher-student configurations, we set α = 0.2 and β = 0.7. Additionally,
the cross-entropy loss ℓCE was not considered to ensure a fair comparison with previous methods.

To ensure a fair comparison, for other competitors, we rerun them (with the necessary hyperparameter tuning) and select the
best-performing checkpoint on the validation set.

Evaluation. For evaluating the teacher and student models, we applied a single RTX 3090 24GB GPU. Following (Ko et al.,
2024; Gu et al., 2024a), We adopt a prompt template as shown in Fig. 7. We sample the responses from each model using a
temperature of 1.0, a max-length limit of 512, and five random seeds (i.e., {10, 20, 30, 40, 50}).
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Below ls an Instructlon that describes a taskK. 

Write aresponse that appropriately completes the request. 

### Instructlon: 

{lnstructlon} 

### ]nput: 

{Lnput} 

### Response: 

Figure 7. The prompt template for training and evaluation of instruction-following task experiments from (Ko et al., 2024; Gu et al.,
2024a).

I.2. Vision Tasks

I.2.1. DATASETS

In this section, we provide detailed descriptions of the image datasets used.

• CIFAR-100: It is a generic image dataset consisting of 60,000 32×32 color images across 100 classes, with 600 images
per class. It is further split into 50,000 training images and 10,000 test images.

• ImageNet (Deng et al., 2009): It is a widely recognized object classification dataset containing approximately 1.28
million training images and 50,000 test images across 1,000 object classes. The images are sourced from the web and
organized using the WordNet hierarchy, making it a standard benchmark for evaluating object recognition models.

• Caltech101 (Fei-Fei et al., 2004): It is an object classification dataset with 101 classes and a background class,
containing approximately 7,650 training images and 3,300 test images. The images vary significantly in scale,
orientation, and lighting conditions.

• OxfordPets (Parkhi et al., 2012): It is a fine-grained pet classification dataset with 37 pet breed classes, featuring
nearly equal numbers of training (3,680) and test (3,669) images. It also includes pixel-level segmentation masks.

• StanfordCars (Krause et al., 2013): It is a fine-grained car model recognition dataset with 196 classes, based on
make, model, and year. It contains 8,144 training images and 8,041 test images, capturing diverse vehicle angles and
environments.

• Flowers102 (Nilsback & Zisserman, 2008): It is a dataset of 102 flower species for fine-grained classification tasks.
It includes 6,149 training images and 1,020 test images, posing challenges in distinguishing visually similar flower
classes.

• Food101 (Bossard et al., 2014): It is a fine-grained food classification dataset with 101 dish classes, comprising 75,750
training images and 25,250 test images. It poses challenges in recognizing overlapping ingredients and presentation
styles.

• FGVCAircraft (Maji et al., 2013): It is a fine-grained aircraft classification dataset with 100 classes, distinguishing
between models and manufacturers. It contains 6,667 training images and 3,333 test images.

• SUN397 (Xiao et al., 2010): It is a comprehensive scene recognition dataset with 397 classes, including natural
landscapes, indoor spaces, and urban environments. It contains approximately 50,000 training images and 50,000 test
images.

• UCF101 (Soomro, 2012): It is a video dataset for action recognition, featuring 101 action classes ranging from sports
to daily activities. It contains approximately 9,500 training clips and 3,700 test clips, collected from YouTube.

• DTD (Soomro, 2012): It is a texture classification dataset with 47 texture classes described using human-interpretable
attributes. It contains 3,760 training images and 1,880 test images.
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• EuroSAT (Helber et al., 2019): It is a satellite image dataset for land-use and land-cover classification, with 10 classes
such as agricultural areas, forests, and urban regions. It contains 21,600 training images and 5,400 test images.

For experiments on these datasets, we follow the popular setup in classification tasks to use accuracy as the evaluation
metric.

I.2.2. COMPETITORS

In this section, we provide a more in-depth overview of the competitors discussed in the vision experiments.

First, we introduce the distillation-based methods:

• KD (Hinton, 2015) directly minimizes the FKLD between the student and teacher distributions to transfer knowledge.

• DKD (Zhao et al., 2022) uses FKLD for distillation, where the knowledge of the teacher’s distribution is decoupled
into target class and non-target class knowledge for separate learning.

• LSD (Sun et al., 2024) uses FKLD for distillation in their experiments, where they first normalize the logit vector
before obtaining the model output distribution.

• TTM (Zheng & Yang, 2024) uses FKLD for distillation, and they also introduce Rényi entropy as a regularization to
make the student distribution smoother.

Next, we describe the SFT-based methods:

• CLIP is supervised fine-tuning using ground-truth on standard datasets.

• CoCoOp (Zhou et al., 2022) enhances new class performance by transforming the unified context into an instance-
adaptive context, where each sample is assigned a specific prompt that focuses on its unique features or attributes.

• MaPLe (Khattak et al., 2023a) improves vision-language alignment by simultaneously adapting both the text and
image encoders in CLIP using hierarchical prompts.

• PromptSRC (Khattak et al., 2023b) ensures better performance on both base and new classes by minimizing the task
cross-entropy loss and the FKLD between the output distribution of the model and the pre-trained model.

I.2.3. IMPLEMENTATION DETAILS

We conduct all vision experiments on a single RTX 3090 GPU. The detailed experimental setups are as follows.

Standard Training-Evaluation setup. In this experimental setup, we consider model architectures including VGG
(Simonyan, 2014), ResNet (He et al., 2016), and WideResNet (Zagoruyko, 2016). Following (Zheng & Yang, 2024; Sun
et al., 2024; Zhao et al., 2022), we train the student models on all class samples. We also consider a standard training data
augmentation scheme including padding 4 pixels prior to random cropping and horizontal flipping. We set the batch size
as 64 and the initial learning rate as 0.05. We train the model for 240 epochs, in which the learning rate is decayed by 10
every 30 epochs after 150 epochs. We use stochastic gradient descent (SGD) as the optimizer with weight decay 5e-4 and
momentum 0.9.

For evaluation, we report the average accuracy across all classes on the test set. We list the hyperparameters α and β used
across the above experiments in Tab. 4. In our ABKD, the weight λ of ℓKD is set to the default value 32. For those
re-implemented methods, we only adjust α and β and follow the other hyperparameters as reported in their original papers.

Base-to-New setup. In this experimental setup, we use the ViT-L/14 CLIP model as the teacher and the ViT-B/16 CLIP
model as the student. We adopt the recently popular prompt tuning setup for CLIP, as it performs sufficiently well across
many tasks, despite freezing most of the model parameters and training only a subset of the learnable prompt tokens. We
split the training and testing datasets into base and new classes same as previous work (Khattak et al., 2023a; Kim et al.,
2024). Tab. 5 provides the details of the number of images used for training on the base-to-new setup.

39



ABKD: Pursuing a Proper Allocation of the Probability Mass in Knowledge Distillation via α-β-Divergence

Table 4. Hyperparameters for different architecture distillations on CIFAR-100.
Teacher WRN-40-2 WRN-40-2 resnet56 resnet110 resnet110 resnet32x4 vgg13 resnet110
Student WRN-16-2 WRN-40-1 resnet20 resnet20 resnet32 resnet8x4 vgg8 resnet44

ABKD α = 0.6, β = 0.5 α = 0.9, β = 0.2 α = 0.8, β = 0.3 α = 0.8, β = 0.3 α = 0.7, β = 0.4 α = 0.5, β = 0.5 α = 0.9, β = 0.2 α = 0.8, β = 0.3
ABDKD α = 0.8, β = 0.4 α = 1.0, β = 0.2 α = 1.0, β = 0.2 α = 0.8, β = 0.3 α = 0.9, β = 0.3 α = 0.8, β = 0.3 α = 0.7, β = 0.4 α = 0.8, β = 0.3
ABLSD α = 0.9, β = 0.1 α = 0.8, β = 0.4 α = 0.9, β = 0.3 α = 1.2, β = −0.1 α = 0.9, β = 0.2 α = 1.2, β = −0.2 α = 1.0, β = 0.2 α = 1.0, β = 0.2
ABTTM α = 0.8, β = 0.3 α = 1.0, β = 0.1 α = 0.7, β = 0.5 α = 0.9, β = 0.2 α = 0.8, β = 0.3 α = 0.8, β = 0.3 α = 0.7, β = 0.5 α = 0.8, β = 0.2

Table 5. Number of images used for distillation and testing per-dataset. To ensure a fair comparison, we follow the same data split as prior
arts (Kim et al., 2024).

Dataset ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101

Train 1,281,167 4,128 2,944 6,509 4,093 50,500 3,334 15,880 2,820 13,500 7,639
Test Base 25,000 1,549 1,881 4,002 1,053 15,300 1,666 9,950 864 4,200 1,934
Test New 25,000 916 1,788 4,039 1,410 15,000 1,667 9,900 828 3,900 1,849

The teacher is pre-trained using the PromptSRC (Khattak et al., 2023b) method, following which it is fine-tuned on the
base classes using ground truth supervision. Following (Kim et al., 2024), all distillation-based methods use the unlabeled
training set to train students for a fair comparison, and we search for λ in {100, 200, 300, 500, 1000, 2000, 3000}. We set
the prompt depth to 9 and the vision and language prompt lengths to 4. We use SGD as the optimizer. All student models
are trained for 20 epochs with a batch size of 8 and a learning rate of 0.005. We follow the data augmentation scheme as in
Khattak et al. (2023b), i.e., random resized cropping and random flipping. The text prompts of the first layer are initialized
with the word embeddings of “a photo of a {classname}”.

For evaluation, we report the model’s accuracy on both the base classes and the new classes separately. Additionally, we
report the Harmonic Mean (HM) of the two accuracies, defined as:

HM =
2× BaseAcc× NewAcc

BaseAcc + NewAcc
. (137)

We list the hyperparameters α and β used across different datasets in Tab. 6. In addition, since LSD, DKD, and TTM did not
report performance under the base-to-new setting, we reran their source code and report the best results (with necessary
hyperparameter tuning).

Table 6. Hyperparameters for different datasets on base-to-new setting.
Dataset ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101

α 0.5 0.8 0.8 0.6 0.9 0.5 0.6 0.8 1.0 0.6 0.8
β 0.5 0.2 0.4 0.4 0.1 0.5 0.5 0.2 0.2 0.5 0.2

J. Additional Experiment Analysis
In this section, we present additional experimental results on language and vision tasks.

J.1. Natural Language Processing Tasks

J.1.1. EFFECTS OF SGOS

Prior arts (Ko et al., 2024; Agarwal et al., 2024) highlight that existing KD methods suffer from distribution mismatch
between the output sequences seen during training and those generated by the student during inference in auto-regressive
language models. To address this, these works incorporate student-generated outputs (SGOs) along with teacher feedback
(i.e., token-level predict distribution for these sentences) during training, leading to significant improvements. To assess the
applicability of our framework, we evaluate the performance after training with different SGO strategies, as shown in Tab. 7.
The results indicate that by integrating these promising techniques, our framework achieves further improvements across
most datasets compared to training with fixed data.
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Table 7. Effects of our framework using different SGOs strategies (i.e., On-policy, Mixed, and Adaptive Off-policy). Fixed denotes that
our framework uses only the original dataset for training without augmentation. Following (Ko et al., 2024), in the mixed strategy, we
apply the on-policy optimization method with a probability of 0.5. Otherwise, we sample from the fixed dataset.

Method Dolly Eval Self-Instruct Vicuna Eval Super-Natural Unnatural

Prior SOTA result 25.32 (0.14) 12.49 (0.56) 17.30 (0.41) 23.76 (0.38) 25.79 (0.08)

Fixed + Ours 25.65 (0.24) 13.47 (0.42) 16.06 (0.25) 26.47 (0.31) 29.32 (0.08)
On-policy (Gu et al., 2024a) + Ours 25.96 (0.42) 13.44 (0.37) 17.32 (0.38) 26.86 (0.26) 29.57 (0.13)
Mixed (Agarwal et al., 2024) + Ours 26.49 (0.23) 14.62 (0.27) 17.14 (0.26) 27.54 (0.44) 30.98 (0.09)
Adaptive Off-policy (Ko et al., 2024) + Ours 26.58 (0.18) 14.25 (0.25) 17.79 (0.35) 27.79 (0.26) 31.13 (0.12)

J.1.2. DISTILLING FROM STRONGER TEACHER

Recent research (Cho & Hariharan, 2019; Huang et al., 2022) shows that as the size of the teacher model increases, the
distillation performance does not always improve for the student models and may even degrade due to the capacity gap
between them. It is not clear how our framework performs when scaling up the teacher models’ sizes. To this end, we report
the performance of our method using teacher models of varying sizes while keeping the student model size fixed, as shown
in Tab. 8. From the results, we have the following observations: 1) Our α-β-divergence consistently outperforms FKLD
and RKLD across different teacher models; 2) FKLD and RKLD fail to ensure that the student model consistently benefits
from the rich supervision provided by larger teacher models and thus leads to suboptimal performance. 3) In contrast,
the α-β-divergence can maintain the student model’s performance nearly positively correlated with teacher model size by
smoothly interpolating between FKLD and RKLD.

Table 8. Performance of GPT-2 on five task-agostic instruction-following datasets with different teacher model sizes.
Method Dolly Eval Self-Instruct Vicuna Eval Super-Natural Unnatural

GPT-2 Medium (0.3B)→ GPT-2 (0.1B)

FKLD 23.68 (0.29) 10.14 (0.53) 15.44 (0.48) 18.54 (0.30) 20.44 (0.20)
RKLD 24.66 (0.20) 11.73 (0.31) 15.27 (0.41) 22.65 (0.25) 25.27 (0.24)
α-β-divergence (Ours) 25.47 (0.25) 13.13 (0.46) 15.84 (0.21) 26.29 (0.13) 28.31 (0.14)

GPT-2 Large (0.8B)→ GPT-2 (0.1B)

FKLD 20.01 (0.23) 9.89 (0.59) 14.98 (0.35) 19.00 (0.26) 18.72 (0.13)
RKLD 25.27 (0.28) 11.77 (0.24) 14.78 (0.26) 23.61 (0.36) 26.41 (0.13)
α-β-divergence (Ours) 25.72 (0.52) 13.08 (0.45) 15.80 (0.62) 26.44 (0.32) 29.25 (0.10)

GPT-2 XL (1.5B)→ GPT-2 (0.1B)

FKLD 23.80 (0.37) 10.01 (0.75) 15.25 (0.65) 17.69 (0.26) 18.99 (0.05)
RKLD 24.77 (0.37) 12.02 (0.48) 15.06 (0.28) 23.27 (0.29) 26.01 (0.11)
α-β-divergence (Ours) 25.65 (0.24) 13.47 (0.42) 16.06 (0.25) 26.47 (0.31) 29.32 (0.08)

J.1.3. COMPARISON WITH MORE BASELINES

To further demonstrate the effectiveness of the proposed method, we additionally consider several KD baselines that were
not included in the main text, namely (1) AlphaNet (Wang et al., 2021), (2) BDKD (Amara et al., 2022), (3) AKL (Wu et al.,
2024), and (4) Jensen’s KL (Binici et al., 2022).

The results are shown in Tab. 9. ABKD outperforms all other baselines across different benchmarks, with improvements
ranging from 0.42 to 1.76. In addition, we visualize the performance dynamics of different methods throughout the
training process, as shown in Fig. 8. The α-β divergence consistently achieves the highest performance throughout training,
especially in the early stages, demonstrating its faster convergence ability.

Finally, it is worth noting that although AlphaNet achieves performance comparable to ours, it requires tuning three
hyperparameters (while ours only has two), which significantly increases the search overhead. In addition, a key advantage
of our approach is that its hyperparameters have clear physical interpretations. This allows one to leverage inductive bias
and follow principled guidelines to more efficiently search for suitable hyperparameters for the target task (App. D).
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Figure 8. Performance on the validation set when distilling GPT-2 XL (1.5B) to GPT-2 (0.1B).

Table 9. ROUGE-L scores (↑) of different loss functions on five task-agnostic instruction-following datasets when distilling GPT-2 XL
(1.5B) into GPT-2 (0.1B). We report the average and standard deviation of ROUGE-L scores across five random seeds [10, 20, 30, 40,
50].

Loss Function Dolly Self-Instruct Vicuna Super-Natural Unnatural
FKLD 23.80 (0.37) 10.01 (0.75) 15.25 (0.65) 17.69 (0.26) 18.99 (0.05)
RKLD 24.77 (0.37) 12.02 (0.48) 15.06 (0.28) 23.27 (0.29) 26.01 (0.11)
WSD 23.33 (0.52) 10.52 (0.47) 14.83 (0.61) 19.67 (0.13) 21.21 (0.21)
BDKD 23.94 (0.24) 11.83 (0.39) 15.21 (0.23) 19.56 (0.23) 21.66 (0.23)
Jensen’s KL 23.79 (0.24) 11.52 (0.18) 15.35 (0.80) 21.36 (0.17) 21.97 (0.10)
AKL 23.83 (0.59) 10.87 (0.42) 15.63 (0.66) 20.07 (0.32) 21.97 (0.13)
AlphaNet 25.13 (0.27) 12.46 (0.46) 15.64 (0.40) 25.27 (0.20) 27.56 (0.15)
α-β-divergence (Ours) 25.65 (0.24) 13.47 (0.42) 16.06 (0.25) 26.47 (0.31) 29.32 (0.08)

J.1.4. LLAMA FAMILY DISTILLATION

The following analysis aims to investigate whether the proposed method remains effective in distillation experiments
involving larger-scale models. To this end, we conducted distillation from OpenLLaMA2-7B (Touvron et al., 2023b) to 3B
and compared our approach with various KD baselines.

Table 10. ROUGE-L scores (↑) on five task-agnostic instruction-following datasets when distilling OpenLLaMA2-7B into OpenLLaMA2-
3B. Experiments are conducted on eight RTX 3090 24GB GPUs. * indicates that SGOs are used.

Method Dolly Self-Instruct Vicuna Super-Natural Unnatural
SFT 24.54 (0.51) 16.80 (0.64) 16.15 (0.15) 29.29 (0.13) 27.43 (0.21)
FKLD 25.23 (0.44) 18.90 (1.20) 16.67 (0.35) 31.68 (0.22) 29.36 (0.13)
RKLD 27.74 (0.45) 20.61 (0.80) 18.83 (0.40) 35.31 (0.24) 33.86 (0.16)
Jensen’s KL 26.28 (0.43) 18.84 (0.66) 17.81 (0.38) 30.92 (0.12) 29.79 (0.17)
BDKD 26.78 (0.53) 18.94 (0.68) 17.81 (0.52) 32.15 (0.34) 30.89 (0.24)
AKL 26.38 (0.41) 17.69 (0.46) 16.72 (0.48) 33.02 (0.16) 31.29 (0.08)
DISTILLM* 28.24 (0.48) 21.00 (0.72) 19.12 (0.53) 37.06 (0.35) 35.05 (0.13)
AlphaNet 28.11 (0.29) 21.30 (0.63) 18.70 (0.23) 37.86 (0.44) 35.40 (0.17)
Ours (ABKD) 30.25 (0.37) 22.39 (0.62) 20.83 (0.42) 38.51 (0.32) 38.66 (0.10)

The results are presented in Tab. 10. ABKD outperforms others by 0.65-3.26, especially excelling in Dolly and Unnatural.

J.1.5. QUALITATIVE EVALUATION

In this section, we present several case studies to illustrate the effectiveness of ABKD. As shown in Tab. 15, ABKD is better
at generating more accurate responses according to the predefined requirements specified in the instructions.
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J.2. Vision Tasks

J.2.1. DISTILLING FROM STRONGER TEACHER

To evaluate the potential of our framework to benefit from a larger teacher, we examine the distillation effect when different-
sized teacher models are used to distill a student model of the same size, as shown in Tab. 11. Encouragingly, our framework
consistently outperforms FKLD and RKLD, with performance gains remaining stable as the teacher model size increases.

Table 11. Performance of resnet20 on CIFAR-100 with different teacher model sizes. For a fair comparison, we set α = 0.8 and β = 0.3
across all teacher-student configurations.

Student Teacher
Accuracy (%)

Student Teacher FKLD RKLD α-β-divergence (Ours)

resnet20

resnet32

69.06

71.93 71.03 (0.23) 70.91 (0.29) 71.46 (0.15)
resnet44 72.25 71.51 (0.11) 71.29 (0.16) 71.76 (0.25)
resnet56 72.34 70.66 (0.24) 71.43 (0.16) 71.79 (0.16)
resnet110 74.31 70.67 (0.27) 71.41 (0.23) 71.72 (0.18)

J.2.2. CROSS-ARCHITECTURE DISTILLATION

Although the analysis in the main text has demonstrated the effectiveness of the proposed method for distillation within the
same architecture, it remains unclear how much improvement our method can achieve when the teacher and student have
different architectures. To this end, we performed distillation from ResNet50 to VGG8. The results in Tab. 12 show that our
method outperforms previous approaches by a margin of 0.15 to 0.89.

Table 12. Accuracy (%) comparison of different distillation methods from ResNet50 to VGG8 on CIFAR-100.
Method Accuracy (%)
KD 73.81
ABKD (Ours) 74.62 (0.81)
DKD 74.37
ABDKD (Ours) 75.26 (0.89)
LSD 74.52
ABLSD (Ours) 74.77 (0.25)
TTM 74.87
ABTTM (Ours) 75.02 (0.15)

J.2.3. HOW DOES ABKD PERFORM WITH ALPHA/BETA OUTSIDE [0,1]?

Another interesting question is how ABKD performs when α or β fall outside the range [0, 1] (e.g., α = 1.5, β = −0.5).
To address this concern, we tested the settings with α > 1 and β < 0 when distilling ResNet56 to ResNet20, as shown in
Tab. 13.

Table 13. Accuracy (%) of ABKD with α > 1 and β < 0 when distilling ResNet56 to ResNet20.
α\β −0.1 −0.3 −0.5
1.2 70.81 71.10 70.35
1.4 71.29 71.24 70.92
1.6 70.55 70.53 70.34

The results indicate that excessively large values of α weaken the hardness-concentration effect, while overly small values of
β diminish the confidence-concentration effect. Both cases can lead to degraded distillation performance. This observation
aligns with our objective: we aim to balance FKLD and RKLD, which correspond to the extreme cases of α = 1, α = 0,
β = 0, and β = 1. Therefore, a natural approach is to search for parameters within the range [0, 1].
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Table 14. Comparison with existing SOTA methods on base-to-new generalization. Teacher: ViT-L/14 CLIP. Student: ViT-B/16 CLIP.
ViT-B/16 Base Novel HM

Teacher 87.85 81.45 84.39

CLIP 69.34 74.22 71.70
CoCoOp 80.47 71.69 75.83
MaPLe 82.28 75.14 78.55
PromptSRC 84.26 76.10 79.97

KD 86.96 80.73 83.63
DKD 87.02 81.02 83.79
LSD 86.31 79.99 82.89

Ours 87.27 81.41 84.17
(a) Average over 11 datasets

ViT-B/16 Base Novel HM

Teacher 83.24 76.83 79.91

CLIP 72.43 68.14 70.22
CoCoOp 76.66 70.54 73.47
MaPLe 77.00 74.05 75.49
PromptSRC 77.63 74.97 76.26

KD 80.83 74.66 77.62
DKD 80.98 74.85 77.79
LSD 80.85 74.62 77.61

Ours 81.23 75.02 78.00
(b) ImageNet

ViT-B/16 Base Novel HM

Teacher 98.71 98.03 98.37

CLIP 96.84 94.00 95.40
CoCoOp 97.96 93.81 95.84
MaPLe 97.74 94.36 96.02
PromptSRC 98.10 94.03 96.02

KD 98.91 96.65 97.77
DKD 99.12 96.52 97.80
LSD 99.05 96.24 97.62

Ours 99.46 96.93 98.18
(c) Caltech101

ViT-B/16 Base Novel HM

Teacher 96.86 98.82 97.83

CLIP 91.17 97.26 94.12
CoCoOp 95.23 97.69 96.43
MaPLe 95.43 97.96 96.68
PromptSRC 95.33 97.30 96.30

KD 96.30 98.01 97.15
DKD 96.36 98.52 97.43
LSD 95.96 98.32 97.13

Ours 96.49 98.55 97.51
(d) OxfordPets

ViT-B/16 Base Novel HM

Teacher 84.53 84.25 84.39

CLIP 63.37 74.89 68.65
CoCoOp 70.49 73.59 72.01
MaPLe 72.94 74.00 73.47
PromptSRC 78.27 74.97 76.56

KD 82.80 83.37 83.13
DKD 82.23 84.20 83.21
LSD 78.29 79.48 78.88

Ours 83.43 84.01 83.72
(e) StanfordCars

ViT-B/16 Base Novel HM

Teacher 99.05 82.60 90.08

CLIP 72.08 77.80 74.83
CoCoOp 94.47 71.75 81.01
MaPLe 95.92 72.64 82.56
PromptSRC 98.02 76.50 85.92

KD 99.42 82.62 90.24
DKD 99.15 82.64 90.15
LSD 98.86 81.84 89.55

Ours 99.24 83.47 90.67
(f) Flowers102

ViT-B/16 Base Novel HM

Teacher 94.56 95.15 94.85

CLIP 90.10 91.22 90.66
CoCoOp 90.70 91.29 90.99
MaPLe 90.91 91.25 91.08
PromptSRC 90.67 91.53 91.10

KD 92.43 93.68 93.05
DKD 92.35 93.72 93.03
LSD 92.07 93.07 92.57

Ours 92.46 93.84 93.14
(g) Food101

ViT-B/16 Base Novel HM

Teacher 54.44 43.07 48.09

CLIP 27.19 36.29 31.09
CoCoOp 33.41 23.71 27.74
MaPLe 37.44 35.41 36.50
PromptSRC 42.73 37.87 40.15

KD 49.12 41.81 45.17
DKD 48.92 42.43 45.44
LSD 47.76 39.84 43.44

Ours 49.06 43.05 45.86
(h) FGVCAircraft

ViT-B/16 Base Novel HM

Teacher 84.97 81.09 82.98

CLIP 69.36 75.35 72.23
CoCoOp 79.74 76.86 78.27
MaPLe 82.88 78.70 80.75
PromptSRC 82.67 78.47 80.52

KD 83.69 81.54 82.60
DKD 83.87 81.32 82.58
LSD 83.34 80.62 81.96

Ours 83.88 81.75 82.80
(i) SUN397

ViT-B/16 Base Novel HM

Teacher 85.76 70.65 77.48

CLIP 53.24 59.90 56.37
CoCoOp 77.01 56.00 64.85
MaPLe 80.36 59.18 68.16
PromptSRC 83.37 62.97 71.75

KD 85.84 71.37 77.94
DKD 86.83 71.91 78.67
LSD 86.35 70.97 77.91

Ours 86.52 72.65 78.98
(j) DTD

ViT-B/16 Base Novel HM

Teacher 94.79 83.15 88.59

CLIP 56.48 64.05 60.03
CoCoOp 90.89 71.64 80.11
MaPLe 93.32 71.26 80.94
PromptSRC 92.90 73.90 82.32

KD 97.54 82.08 89.14
DKD 97.14 83.72 89.93
LSD 97.31 83.31 89.77

Ours 97.75 83.92 90.30
(k) EuroSAT

ViT-B/16 Base Novel HM

Teacher 89.50 82.26 85.73

CLIP 70.53 77.50 73.85
CoCoOp 82.33 74.95 78.47
MaPLe 83.08 78.60 80.76
PromptSRC 87.10 78.01 82.30

KD 89.71 82.27 86.10
DKD 90.28 81.40 85.61
LSD 89.62 81.53 85.38

Ours 90.44 82.31 86.73
(l) UCF101
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Table 15. Instruction-following cases from the Unnatural (Honovich et al., 2023) dataset. ABKD is better at generating responses that
meet the requirements of the given instructions.

Case # 1

Instruction In this task, you’re given a short description of an event. Your job is to order the steps involved in the event from first to last. Note that there may
be multiple correct answers for each event.

Input Description: A man walks into a bar and orders a drink. He pays for his drink and leaves the bar.

Ground-truth The man walks into the bar.\n He orders a drink. \n He pays for his drink.\n He leaves the bar.

SFT A man walks into a bar, asks a bartender who is in the bar and drinks.

KD
A man walks into a bar, pays for his drink, and leaves the bar with a short description of the event. \n \n A woman walks into a coffee shop,
opens the door, and asks the bartender for him to order them. \n \n A man asks the bartender for their order and alcohol. The woman hands the
coffee, and begins making her coffee. At the end, the men exit, and the woman returns to the bar.

SeqKD A man walks into a bar with a drink and leaves the bar; he pays for his drink and enters the bar.

MiniLLM The event was a man walking into a bar and ordering a drink.

GKD A man walks into a bar. He paid for his drink and leaves The bar.

DISTILLM A man walks into a bar, orders a drink and leaves the bar

Ours (ABKD) A man walks into a bar & orders a drink. He pays for his drink & leaves the bar.

Case # 2

Instruction You need to output the text of the passage after capitalizing all proper nouns.

Input Rami went to new york city on business. While he was there, he met his good friend ali, who showed him around town.

Ground-truth Rami went to New York City on business. While he was there, he met his good friend Ali, who showed him around town.

SFT Rami went to new yORK city on business. While she was there, he met His good friend ali, who shows him around town.

KD Rami went to new yORK city on business. While she was there, he met His good friend ali, who taught him how to go city.

SeqKD Rami went to new yorks city on business. While being there, he met his bad friend ali, who showed you around town.

MiniLLM Rami went to new yorks city on business. While being there, he met his friend ali, who showed he around town.

GKD Rami went to new yORK city on business. While there, he met his bad friend Ali, who showed him around Town.

DISTILLM York City, Holds: ali, who showed him that you are a good friend.

Ours (ABKD) Rami went to New York Citys on business. While he was there, he met her good friend Ali, who shown him around town.

Case # 3

Instruction You will be given a text consisting of multiple sentences. The task is to find the number of questions present in the text, and then print them out
separately. A question is defined as a sentence that ends with a question mark (’?’).

Input Text: I was born on October 3rd, 1984. Do you know when you were born? What month are we in currently?

Ground-truth Do you know when you were born? \n What month are we in currently?

SFT I was born on October 3, 1984. What year are we in currently?

KD I was born on October 3nd, 1984. Do you actually know? I’m not sure because I don’t know when I was born.

SeqKD You are in currently.

MiniLLM The text of the question is: I was born on September 3rd, 1984.

GKD I am born on October 3rd 1984. Do you know what month are we in currently, year?

DISTILLM The task is to find the answer to a question that begins with a question mark (’!’). The task is to find the answer to a question that begins with a
question mark (’!’). The task is to find the answer to a question that begins with a question mark (’!’).

Ours (ABKD) I was born on October 3nd, 1984. Do you remember when you were born?
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