
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAPTIVE THRESHOLD SAMPLING FOR FAST NOISY
SUBMODULAR MAXIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the problem of submodular maximization where objective function
f : 2U → R≥0 can only be accessed through i.i.d noisy queries. This problem
arises in many applications including influence maximization, diverse recommenda-
tion systems, and large-scale facility location optimization. We propose an efficient
adaptive sampling strategy, called Confident Sample (CS), that is inspired
by algorithms for best-arm-identification in multi-armed bandit, which signifi-
cantly improves sample efficiency. We integrate CS into existing approximation
algorithms for submodular maximization, resulting in algorithms with approxi-
mation guarantees arbitrarily close to the standard value oracle setting that are
highly sample-efficient. We propose and analyze sample-efficient algorithms for
monotone submodular maximization with cardinality and matroid constraints, as
well as unconstrained non-monotone submodular maximization. Our theoretical
analysis is complemented by empirical evaluation on real instances, demonstrating
the superior sample efficiency of our proposed algorithm relative to alternative
approaches.

1 INTRODUCTION

Submodularity is a property of set functions that arises in many applications such as cut functions in
graphs Balkanski et al. (2018), coverage functions Bateni et al. (2017), data summarization objectives
Tschiatschek et al. (2014), information theoretic quantities such as mutual information Iyer et al.
(2021), and viral marketing in social networks Kempe et al. (2003). A function f : 2U → R≥0

defined over subsets of the universe U of size n is submodular if for all X ⊆ Y ⊆ U and u /∈ Y ,
f(Y ∪ {u}) − f(Y) ≤ f(X ∪ {u}) − f(X). In addition, in many applications of submodular
functions f is monotone (Tschiatschek et al., 2014; Iyer et al., 2021; Kempe et al., 2003), meaning
that for all X ⊆ Y ⊆ U , f(X) ≤ f(Y). Proposed algorithms for submodular optimization typically
are assumed to have value oracle access to f . That is, f is a black box that can be queried for any
X ⊆ U , and the value of f(X) is returned Nemhauser et al. (1978); Badanidiyuru & Vondrák (2014);
Balkanski et al. (2019a); Buchbinder et al. (2015).

However, in many optimization scenarios, we can only make noisy queries from some random
distribution to estimate the objective. For example, in applications such as diversified recommender
system Yue & Guestrin (2011); Hiranandani et al. (2020), data summarization with human feedback
Singla et al. (2016), influence maximization Kempe et al. (2003); Wen et al. (2017), feature selection
tasks Krause & Guestrin (2005), querying the exact value of f is unrealistic, and instead a more
realistic assumption is that we can query f subject to some random noise. In particular, we assume
that the noisy sampling of f is random and is i.i.d sub-Gaussian, which is also referred to as bandit
feedback in the submodular bandit literature Singla et al. (2016); Chen et al. (2017). In a related
setting, submodular optimization algorithms that leverage the multilinear extension F of the function
f may only be able to access F via i.i.d noisy random samples and this is a major bottleneck in
terms of the efficiency of these algorithms Calinescu et al. (2011); Badanidiyuru & Vondrák (2014).
In this setting, the common approach is to use existing submodular optimization algorithms and
apply the fact that the objective can be evaluated to arbitrary precision by taking sufficiently many
samples and applying concentration inequalities in order to achieve a fixed-precision (see Section
2) approximation of the objective function Kempe et al. (2003); Calinescu et al. (2011). However,
modern massive datasets demand algorithms that are as efficient as possible in terms of runtime, and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

in the case of submodular optimization algorithms, the main computation time bottleneck for the
above approach would be the noisy queries to f .

Motivated by the above, our main insight is that an algorithm doesn’t necessarily need to approx-
imate f with such fine precision at every query in order to find a solution with an approximation
guarantee comparable to the exact value oracle setting. Instead, we propose methods of adaptively
approximating the function f based on decisions that the algorithm must make, with an emphasis on
minimizing the total number of noisy queries. Methods of efficient sampling in order to determine the
best action is related to the best-arm identification in submodular bandit, where the objective is that to
identify a super-arm (subset of the universe) with comparable approximation ratio in as few samples
as possible (Audibert et al., 2010; Singla et al., 2016). Therefore our algorithmic contributions and
analysis are inspired by ideas used in best-arm-identification in the bandit setting. In particular, the
contributions of the paper are as follows:

(i) We propose the adaptive sampling algorithm Confident Sample (CS) in Section 3,
which can be used to determine if the mean of a random variable X is approximately
above or below a given threshold w with high probability, in relatively few random samples.
Intuitively, the required number of samples is inversely proportional to the gap between
EX and w, and therefore we can significantly decrease the number of samples relative
to the fixed-precision approach by sampling less when the gap is large. CS is related but
significantly different from algorithms used for best-arm-identification in bandit, as we
explain in detail in Section 4. CS is used as a subroutine for all proposed algorithms for
submodular maximization problems in the paper, and as a result the proposed algorithms
exhibit an improved sample complexity compared with fixed-precision approximation.

(ii) We address the problem of Monotone Submodular Maximization with Cardinality constraint
(MSMC) in Section 4, which is defined to find the set argmax{f(X) : X ⊆ U, |X| ≤ κ}.
We prove two results for the proposed Confident Threshold Greedy algorithm
(CTG), Theorem 3 and Theorem 4. Theorem 3 is demonstrated to achieve an improved
sample complexity compared with that of the related work of Singla et al. (2016), while
achieving the same approximation guarantee. Theorem 4 is proved to achieve a better sample
complexity compared with the sampling before-hand approach in the application of influence
maximization.

(iii) In Section 5, the algorithm Confident Continuous Threshold Greedy (CCTG)
is proposed and analyzed for the problem of Monotone Submodular Maximization with
Matroid constraint (MSMM). MSMM is to find the solution of argmaxS⊆M f(S), where
M is a matroid defined on subsets of the ground set U . CCTG accesses the multilinear
extension of f via noisy samples, since the multilinear extension can be difficult to compute
in general Calinescu et al. (2011); Badanidiyuru & Vondrák (2014). In particular, we
demonstrate that CCTG has an improved sample complexity compared with the one proposed
in Badanidiyuru & Vondrák (2014).

(iv) In Section E, we propose Confident Double Greedy (CDG) for Unconstrained Sub-
modular Maximization (USM). The goal is to find a subset S ⊆ U that maximizes f(S)
where f is not necessarily monotone. The theoretical guarantee on sample complexity is
presented in Theorem 15 in the appendix.

(v) Finally, as a demonstration of our approach, we experimentally analyze CTG on instances
of noisy data summarization and influence maximization. We compare CTG to several
alternative methods including the algorithm of Singla et al. (2016) which is discussed in
more detail in Section 1.1 and in the appendix. CTG is demonstrated to be a practical choice
that can save many samples relative to alternative approaches.

1.1 RELATED WORK

Approximation algorithms for the maximization of a submodular objective function subject to various
constraints have been extensively studied in the literature Nemhauser et al. (1978); Badanidiyuru &
Vondrák (2014); Mirzasoleiman et al. (2015); Calinescu et al. (2011) with the assumption of oracle
access to f . The runtime of these algorithms is generally measured in queries to f as this is the main
bottleneck (see Section A for a more comprehensive discussion on the runtime of algorithms for
various submodular optimization problems).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

While there are many works assuming value oracle access to f , algorithms developed assuming noisy
access to f are relatively less explored Horel & Singer (2016); Singla et al. (2016); Hassidim &
Singer (2017); Qian et al. (2017); Crawford et al. (2019); Huang et al. (2022). One related setting to
ours is that we have noisy access to f , but this noise is persistent Horel & Singer (2016); Hassidim
& Singer (2017); Qian et al. (2017); Crawford et al. (2019); Huang et al. (2022). Our noisy setting
departs from this direction in that the noisy feedback is random and repeated samples should be
taken to diminish the noise. Another related but different setting is that of stochastic submodular
optimization Karimi et al. (2017); Staib et al. (2019); Özcan & Ioannidis (2023) which assumes the
optimization objective f is the expectation over some unknown distribution over a set of monotone
submodular functions. Therefore a sample average function can be built, which is also monotone
and submodular, and algorithms run on it. In contrast, in our setting, it is only assumed that we can
sample noisy queries at each subset X ⊆ U . The algorithm ExpGreedy of Singla et al. (2016) is for
a noisy setting identical to ours and is developed for the MSMC problem specifically. ExpGreedy
also incorporates an adaptive sampling approach. In particular, their algorithm combines the standard
greedy algorithm with the best arm identification problem found in combinatorial bandit literature
Chen et al. (2014). Their approach is still very different from ours, and an extensive comparison
of our algorithms and results with Singla et al. (2016) are presented in the appendix, as well as an
experimental comparison in Section 6.

The intuition behind CS is similar to the best-arm-identification problem in the multi-armed bandit
literature Kalyanakrishnan et al. (2012). Both the algorithm LUCB of Kalyanakrishnan et al. (2012)
and CS share a common underlying intuition: they leverage the difference between expectations to
reduce the number of noisy queries required. In LUCB, this difference is between the expectation of
the optimal arm and other arms, while in CS, it is between the expectation of the input variable and
the threshold value w.

2 PRELIMINARY DEFINITIONS AND NOTATIONS

In this section, we lay the groundwork definitions and notations for the remainder of the paper.
Throughout this paper, we assume f : 2U → R≥0 is submodular. U is the ground set of size
n. Let us denote the marginal gain of adding element u ∈ U to a set X ⊆ U as ∆f(X,u), i.e.,
∆f(X,u) := f(X ∪ {u})− f(X).

We first define the noisy model of access to f . In particular, given any subset X ⊆ U and u ∈ U ,
independent samples can be taken from the distribution D(X,u) to obtain noisy evaluations of
∆f(X,u). In this paper, we denote the random variable following the distribution of D(X,u) as
∆̃f(X,u). We assume the following properties about the distribution D(X,u): (i) E[∆̃f(X,u)] =

∆f(X,u); and (ii) ∆̃f(X,u) are bounded in the range of [0, R] for all X,u (or in some results, they
are assumed to be R-sub-Gaussian).1 In addition, in applications where instead we have noisy queries
directly to f instead of the marginal gain, this also satisfies our setting (see Section A in the appendix
of the supplementary material for more details).

Below we describe three different types motivating examples of our noisy setting and illustrate the
value of R on these instances.

1. Diversified recommender systems with human feedback. In this problem, the goal is to
select a subset of items to recommend to users. The objective function is the total number of
expected clicks by the users, typically defined by the cascading linear submodular bandit
model Hiranandani et al. (2020). In this setting, the objective function is computed in
expectation and can only be estimated through noisy feedback from the users. A noisy
sample corresponds to querying a person for feedback, and samples are i.i.d. On a related
note, the crowdsourced image source summarization considered by Singla et al. (2016)
follows a similar setting, where noisy samples correspond to human feedback. The maximum
value of feedback is then bounded by 1. Therefore can be set to be 1/2 for Theorem 1 and 1
for Theorem 2.

1A random variable that is bounded within the interval [0, R] can be demonstrated to be R/2 sub-Gaussian.
Consequently, the assumption of a random variable being sub-Gaussian is more general than that of boundedness.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2. Multi-linear extension. This setting specifically applies to our Algorithm CCTG, which
is our continuous algorithm that uses the multilinear extension of f to achieve an im-
proved approximation guarantee for the matroid constraint. The multilinear extension
is commonly used in submodular optimization algorithms, and is defined as F(x) =∑

S⊆U

∏
i∈S xi

∏
j /∈S(1− xj)f(S) where x ∈ [0, 1]n. Notice that obtaining the true value

of the multi-linear extension requires an exponential number of queries, therefore the pro-
posed algorithms often require sampling to approximate function values. Noisy queries for
the true value of the multilinear extension can be obtained by taking i.i.d. samples of sets,
further described in Section 5 of our paper. On this instance, the noisy marginal gain is
bounded by the maximum singleton value, so we can set R to be maxs∈U f(s).

3. Stochastic submodular maximization. Our problem setup covers the class of stochastic
submodular maximization (SSM) problems. The objective function of an SSM problem can
be expressed as f(S) = Eγ [fγ(S)]. To solve this problem, we would need to approximate
the function value f by taking samples of fγ(S) from the distribution of γ. Since the
distribution of γ doesn’t change, the sampling of the function f for each fixed S is i.i.d.
A specific application of this problem is the influence maximization problem, where the
objective function is the expected number of nodes influenced in the graph by a seed set S.
This problem has wide applications in social network analysis. (For a detailed definition
of influence maximization, please refer to the Appendix D.1). Another set of problems
that can also be solved by SSM is the large-scale weighted sum submodular maximization
problem where the objective can be expressed as f(S) =

∑N
i=1 wifi(S). Here N is very

large and
∑N

i=1 wi = 1. Examples of this problem include large-scale facility location
optimization. In this problem, the cost of accurately evaluating a problem would be high,
but we can estimate f(S) by sampling the index I ∈ [N] with probability wi and then
f(S) = EI [fI(S)].

Next, we present the definition of fixed ϵ-approximation and multi-linear extension.

Fixed ϵ-approximation. Given any random variable X , an estimate X̂ is a fixed ϵ-approximation
of X if EX − ϵ ≤ X̂ ≤ EX + ϵ. Notice that for any X that is R-sub-Gaussian, we can take
O
(

R2

ϵ2 log 1
δ

)
samples and the sample average is a fixed ϵ-approximation of X with probability at

least 1−δ by an application of Hoeffding’s Inequality (Lemma 19 in the appendix in the supplementary
material).

Multi-linear extension. For any submodular objective f , the multi-linear extension of f is defined as
F, i.e., F(x) =

∑
S⊆U

∏
i∈S xi

∏
j /∈S(1− xj)f(S) where x ∈ [0, 1]n. Here we define S(x) to be a

random set that contains each element i ∈ U with probability xi, then by definition, we have that
F(x) = E[f(S(x))].

3 CONFIDENT SAMPLING ALGORITHM

In this section, we propose and analyze the Confident Sample (CS) algorithm. CS is used in
order to determine if the expected value of a random variable X is approximately above or below
a threshold value with high probability. CS works for any random variable that is R-sub-Gaussian
(see Theorem 1) or bounded in the range of [0, R] (see Theorem 2). In Sections 4, E, and 5, we show
that CS is useful as a subroutine for a variety of submodular maximization algorithms where we only
have noisy access to the marginal gains.

We now describe CS. CS takes as input failure probability δ ∈ R>0, threshold error parameter
ϵ ∈ R>0, a threshold value w ∈ R>0, the unknown distribution DX of the random variable X , and
the sub-Gaussian parameter R. CS iteratively takes at most N1 samples from DX , while maintaining
a sample average and a confidence interval. In particular X̂t is the sample average after taking t-th
samples of X , i.e., X̂t = 1

t

∑t
i=1 Xi where Xi is the i-th random sample of X . The confidence

region, after taking the t-th sample of X , is a shrinking region [X̂t − Ct, X̂t + Ct] around X̂t that
reflects where CS is almost certain that the true value of EX has to be. We leave the exact definition
of both Ct and N1 until Theorems 1 and 2 for reasons that will become clear. Once the lower bound of
the confidence region crosses w− ϵ, or the upper bound crosses w+ ϵ, CS completes and returns true

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

w + ϵ

w

w − ϵ

(a)

(b)

(c) (d)

Figure 1: An illustration of the various states of CS. The blue dots depict the values of X̂t, while the
surrounding blue lines depict the confidence region [X̂t − Ct, X̂t + Ct]. Once the region looks like
(a), CS will return true. In (b), CS will return false. In (c), CS will continue sampling to reduce the
width of the confidence region. Finally, in (d) CS has taken N1 samples resulting in an ϵ-additive
approximation.

Algorithm 1: Confident Sample (CS)

1: Input: w, ϵ, δ, DX , R
2: for t = 1, 2, ...N1 do
3: X̂t ← updated sample mean after taking t-th sample from DX

4: Ct ← updated confidence interval
5: if X̂t − Ct ≥ w − ϵ then
6: return true
7: else if X̂t + Ct ≤ w + ϵ then
8: return false
9: end if

10: end for
11: if X̂t ≥ w then
12: return true
13: else
14: return false
15: end if

or false respectively. Note that the CS algorithm differs significantly from the fixed-ϵ approximation
approach commonly used in the submodular optimization literature, such as Algorithm 2 in Fahrbach
et al. (2019). A detailed discussion of this distinction is provided in Section C.1 of the appendix.

We now state our first main result for CS in Theorem 1 below. The second item of Theorem 1 states that
with high probability, CS will correctly return the answer to whether EX is approximately above or
below the input threshold w. The first item states that, in the worst case, CS takes O(R2 log(1/δ)/ϵ2)
samples from DX to return true or false no matter what the value of EX is. However, the further the
value of EX is from w, as reflected by ϕ, the fewer samples CS needs to make a decision. Figure 2
illustrates how the sample complexity changes with the increase of gap function ϕ in the result of
Theorem 1.

The details of the proof of Theorem 1 can be found in Section C.2 of the supplementary material.
Theorem 1. For any random variable X that is R-sub-Gaussian, if we define N1 = 2R2/ϵ2 log 4

δ ,

and Ct = R
√

2
t log

8t2

δ , then the algorithm Confident Sample achieves that with probability
at least 1− δ

1. CS on input (w, ϵ, δ,DX , R) takes at most the minimum between{
2R2

ϵ2
log

(
4

δ

)
,
8R2

ϕ2
X

log

(
16R2

ϕ2
X

√
2

δ

)}

noisy samples, where ϕX = ϵ+|w−EX|
2 .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

gap

nu
m

x0

Figure 2: A plot to illustrate how the number of samples taken by CS (num) changes with the gap
function ϕX (see Theorem 1). There exists some x0 such that when 0 < ϕX ≤ x0, the required
number of samples is R2

2ϵ2 log
2
δ (the left side in the sample complexity result in Theorem 1). When

ϕX > x0, the right-hand side in Theorem 1 is the minimum and the sample complexity of the
algorithm decreases fast as ϕX increases.

2. If CS returns true, then EX ≥ w − ϵ. If CS returns false, then EX ≤ w + ϵ.

Here we provide explanation for the result of sample complexity in the second point of Theorem 1.
The term on the left-hand side, 2R2

ϵ2 log
(
4
δ

)
, represents the number of samples required to approximate

X within ϵ-distance with probability, i.e., |X − EX| ≤ ϵ. This corresponds to case (d) in Figure
1, and is the number of samples that the fixed ϵ-approximation would take. Such a large number of
samples is only necessary when EX is close to the threshold, and therefore many samples are needed
to see if it is above or below the threshold. Importantly, this value can be obtained without adaptive
sampling.

The value on the right-hand side comes from the adaptive sampling, and it is the number of samples
required to shrink the confidence interval just enough so that we can conclude whether EX is
approximately above or below the threshold, and it depends on how far EX is from the threshold
i.e. the value of ϕ (since a larger gap allows for a wider confidence interval upon stopping and thus
fewer samples.). This latter value cannot be computed before we start sampling, and is a result of the
adaptive sampling where we do not know how many samples we will take initially. This corresponds
to cases (a) and (b) in Figure 1.

Our second result, Theorem 2, is related to Theorem 1 but instead of an additive approximation error
(i.e. EX ≥ w − ϵ or EX ≤ w + ϵ), the error is a combination of multiplicative and additive. The
intuition behind using this result is that in many submodular algorithms that require the thresholding
procedure, the threshold decreases exponentially which allows the multiplicative error. On the other
hand, in the case where R can be as large as n, the result in Theorem 2 can be more sample efficient.
In order to get Theorem 2, a different definition of the confidence radius Ct as well as the maximum
number of samples N1 is needed. Theorem 2 is proven in the supplementary material in Section C.3.
Theorem 2. For any random variable X that is bounded in the range of [0, R], if we define
Ct = 3R

tα log(8R
2

δ), and N1 = 3R
αϵ log(

4
δ) where α is an additional parameter that controls the

multiplicative error rate, the algorithm Confident Sample achieves that with probability at
least 1− δ

1. CS on input (w, ϵ, δ,DX , R) takes at most the minimum between{
3R

ϵα
log

(
4

δ

)
,
12R

αϕ′
X

log

(
12R

αϕ′
X

√
8

δ

)}

noisy samples, ϕ′
X = ϵ−αEX+|w−EX|

2 .
2. If the output is true, then (1+α)EX ≥ w−ϵ. If the output is false, then (1−α)EX ≤ w+ϵ.

4 MONOTONE SUBMODULAR MAXIMIZATION

In this section, we address the MSMC problem under the noisy setting, where we assume the noisy
sampling of the marginal gain ∆f(S, s) is R-sub-Gaussian for any S ⊆ U and s ∈ U . Necessary
definitions and notations are first given in Section 2. We propose two algorithms Confident

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2: Confident Threshold Greedy (CTG)

1: Input: ϵ, δ, α
2: N2 ← 2R2 log(6n/δ)/(ϵ2)
3: for all s ∈ U do
4: f̂(s)← sample mean over N2 samples from D(∅, s)
5: end for
6: d := maxs∈U f̂(s),
7: w ← d, S ← ∅
8: while w > αd/κ do
9: for all u ∈ U do

10: if |S| < κ then
11: thre = Confident Sample (w, ϵ, 2δ

3nh(α) , D(S, u), R)
12: if thre then
13: S ← S ∪ {u}
14: end if
15: end if
16: end for
17: w = w(1− α)
18: end while
19: return S

Threshold Greedy (CTG) and Confident Threshold Greedy2 (CTG2) for this prob-
lem. A detailed description of CTG is given in Section 4.1. The approximation and sample complexity
guarantees of CTG and CTG2 are presented in Theorem 3 and Theorem 4 in Section 4.2. For CTG2,
the algorithm description and pseudocode are provided in Section D.3 of the appendix.

4.1 ALGORITHM DESCRIPTION OF CTG

Here we describe Confident Threshold Greedy (CTG). CTG is based on the algorithm
Threshold Greedy (TG) of Badanidiyuru & Vondrák (2014) which is for MSMC with an exact
value oracle. Pseudocode for CTG can be found in Algorithm 2.

The algorithm CTG takes as input a parameter α ∈ (0, 1). CTG proceeds in O(log(κ/α)/α) rounds,
where each round corresponds to a value of w. The threshold w is first set to d, which is an ϵ-additive
approximation of the maximum singleton value with high probability. In particular, d satisfies that
with probability at least 1 − δ/3, maxs∈U f(s) + ϵ ≥ d ≥ maxs∈U f(s) − ϵ. During each round,
CTG iterates through all elements in U . Since for each S and u, the noisy query to the marginal gain
∆f(S, u) is R-sub-Gaussian, CTG can use CS as the subroutine to determine whether to include u

to the solution set S. Here h(α) = log (κ/α)
α . The worst-case query complexity N1 and confidence

interval Ct in CS are defined as in Theorem 1.

4.2 THEORETICAL GUARANTEES AND ANALYSIS

The main result of CTG is the Theorem 3 below.
Theorem 3. Suppose the noisy marginal gain of any subset S ⊆ U and element s ∈ U is R-sub-
Gaussian, then CTG makes at most n log(κ/α)/α calls of CS. In addition, with probability at least
1− δ, the following statements hold:

• The exact function value of the output solution set S satisfies that f(S) ≥ (1 − e−1 −
α)f(OPT)− 2κϵ;

• Each call of CS on input (w, ϵ, 2δ
3nh(α) , D(S, u), R) takes at most the minimum between 8R2

ϕ2(S, u)
log

16R2
√

3nh(α)
δ

ϕ2(S, u)

 ,
2R2

ϵ2
log

(
6nh(α)

δ

)
and noisy samples. Here OPT is an optimal solution to the MSMC problem, ϕ(S, u) =
ϵ+|w−∆f(S,u)|

2 , and h(α) = log (κ/α)
α .

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

The proof and analysis of Theorem 3 are deferred to Section D.2 in the appendix. We make a
comparison of the theoretical guarantees between our results and those of ExpGreedy in Singla
et al. (2016), which combines the standard greedy algorithm with the best arm identification algorithm
used in bandit literature. The detailed discussion is provided in Section B in the appendix. Here we
briefly summarize the results as follows.

First of all, we consider the runtime. Since ExpGreedy requires updating the confidence interval
for all the elements and two sorting of all elements each time a noisy query is taken, the required
runtime is O(n log n). However, both CTG and EPS-AP have more efficient runtime complexity and
require only one update of the confidence interval in Line 4 and two comparisons in Line 5 and 7 in
CS, which is only O(1) in computation.

Next, we consider sample complexity. ExpGreedy is based on the standard greedy algorithm where

each iteration takes at most O
(
nκ′R2 min

{
4

∆2
max

, 1
ϵ2

}
log

(
R2κnmin{ 4

∆2
max

, 1
ϵ2

}

δ

))
samples, which

depends on the gap ∆max between the top two marginal gains. Therefore, the sample complexity can
be sensitive to the small difference between top elements. However, our results depend on ϕ, which
only depends on the difference between and is thus more robust. When ∆ and ϕ are in the same order,
the average sample complexity per marginal gain in CTG is better than ExpGreedy. In addition,
The total evaluated marginal gain in CTG is smaller compared with ExpGreedy.

Next, we present the theoretical guarantee of CTG2 (Algorithm 3, provided in Appendix D.3) in
Theorem 4, the proof of which is deferred to Section D.2 in the appendix.
Theorem 4. Suppose the noisy marginal gain of any subset S ⊆ U and element s ∈ U is bounded in
[0, R], CTG2 makes at most 3n log(κ/α)/α calls of CS. In addition, with probability at least 1− δ,
the following statements hold:

• The exact function value of the output solution set S satisfies that f(S) ≥ (1 − e−1 −
α)f(OPT)− 2κϵ;

• Each call of CS on input (w, ϵ, 2δ
3nh′(α) , D(S, u), R) takes at most the minimum between{

9R

ϵα
log

(
6nh′(α)

δ

)
,

36R

αϕ′(S, u)
log

(
36R

αϕ′(S, u)

√
12nh′(α)

δ

)}
noisy samples. Here OPT is an optimal solution to the MSMC problem, ϕ′(S, u) =
ϵ−α∆f(S,u)/3+|w−∆f(S,u)|

2 , and h′(α) = 3
α log (3κα).

Here the term nh(α) and nh′(α) in Theorem 1 and Theorem 2 represents the total number of calls
to the CS algorithm respectively. The result of sample complexity is derived by setting the failure
probability δ in Theorem 1 and Theorem 2 to be the reciprocal of the total number of calls to CS,
(i.e. the number of marginal gain queries) multiplied by δ′. This adjustment ensures that, via a union
bound, the overall algorithm succeeds with a probability of at least 1− δ.

Notice that the sample complexity in Theorem 4 has a dependence of O(R) concerning the order
of the parameter R, while the sample complexity result in Theorem 3 is O(R2) in the order of R.
Consequently, in some applications such as influence maximization, where R can be as large as the
size of ground set n, Theorem 4 has an advantage in sample complexity compared with Theorem 3.
Another related method is the classic sampling-before-hand approach as described in Section D.1
in the appendix. Compared with this approach, CTG2 has improved sample complexity and is more
practical since in real-world scenarios, it might be impossible to store all the graph data and obtain
the sampling of an entire graph. (see Section D.1 for more details.)

5 CONTINUOUS THRESHOLD GREEDY WITH NOISY QUERIES

In this section, we consider the problem of Monotone Submodular Maximization with a Matroid
constraint (MSMM) assuming noisy access to f . More specifically, we assume that for any set S ⊆ U

and element s ∈ U , the noisy marginal gain ∆̃f(S, s) is bounded in [0, R]. In many applications,
even with access to an exact oracle for f , F is not able to be evaluated exactly due to the inherent
randomness in S(x) in the definition of F (see Section 2), so we can only make noisy queries

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

to F. In addition, our results hold even for the case that only noisy access to f is provided. We
propose the Confident Continuous Threshold Greedy (CCTG) algorithm for MSMM,
which leverages the continuous multilinear extension F of the submodular function f to obtain an
approximation guarantee arbitrarily close to the best possible result of 1− 1/e.

We now describe CCTG, the pseudocode of which is deferred to Algorithm 5 in Section F of the
appendix. Let κ to denote the rank of the matroid, and let S(x) be a random set that contains each
element i ∈ U with probability xi The CCTG algorithm initializes a solution in the origin, x = 0.
Then at each step, CCTG selects a subset of coordinates B to increment by a predetermined step
size ϵ. The set of coordinates B is chosen by the subroutine algorithm Decreasing-Threshold
Procedure (DTP), which is described in Algorithm 6. Here the parameters N1 and Ct in the
subroutine algorithm CS are defined as in Theorem 2 with the multiplicative error parameter α set
to be ϵ/3. After the CCTG is complete, we process the fractional solution x with the swap rounding
procedure in Vondrák et al. (2011) to obtain the final solution set S.
Theorem 5. CCTG makes at most 3n

ϵ2 log 3κ
ϵ calls of CS. In addition, with probability at least 1− δ,

the following statements hold:

• The output fractional solution x achieves the approximation guarantee of F(x) ≥ (1 −
e−1 − 2ϵ)f(OPT)−Rϵ.

• Each call of CS on input (w, ϵR
2κ , δϵ

2nh′(ϵ) , DX , R) requires at most the minimum between{
18κ

ϵ2
log

(
8nh′(ϵ)

δϵ

)
,
36R

ϵϕ′′
X

log

(
144R

ϵϕ′′
X

√
nh′(ϵ)

δϵ

)}
noisy queries to the marginal gain. Here OPT is an optimal solution to the MSMM problem.
ϕ′′
X =

ϵR
2κ −ϵEX/3+|w−EX|

2 , and h′(ϵ) = 3
ϵ log (

3κ
ϵ).

The proof of Theorem 5 is deterred to Appendix F. Besides, we discuss and compare our results in
Theorem 5 with the Accelerated Continuous Greedy algorithm in Badanidiyuru & Vondrák (2014)
in Section F.1. Here we briefly summarize the results as follows: First of all, in the case where we
have exact access to the value oracle, the sample complexity of CCTG is better than Accelerated
Continuous Greedy algorithm in Badanidiyuru & Vondrák (2014) while both algorithms achieve the
approximation ratio of 1− 1/e−O(ϵ). Second, in the case where ∆f is noisy, as long as the upper
bound on the noisy marginal gain R is less than f(OPT), the sample complexity and approximation
ratio remains the same. Therefore, the assumption of access to noisy marginal gain does not lead to
additional sample complexity or worse approximation ratio when compared to the scenario with an
exact value oracle.

6 APPLICATIONS AND EXPERIMENTS

In this section, we conduct an experimental evaluation of our algorithm CTG on instances of MSMC
with noisy marginal gain evaluations. In particular, we consider instances of the noisy data summa-
rization application, which is described in Section H.1.1 in the appendix. Synthetic noise is introduced
into marginal gain queries by adding a zero-mean Gaussian random variable with σ = 1.0 (σ is
the standard deviation) to the exact value of marginal gain. Therefore, parameter R = 1.0. Our
experiments are conducted on a subset of the Delicious dataset of URLs that are tagged with topics
Soleimani & Miller (2016), and subsets of the Corel5k dataset of tagged images Duygulu et al. (2002).
We give more details about the datasets we use in the appendix in the supplementary material. We
additionally consider the influence maximization problem in the appendix in the supplementary
material. The setup of our experiments is described in Section 6.1, while our results are presented in
Section 6.2.

6.1 EXPERIMENTAL SETUP

We now describe the setup of our experiments. In addition to our algorithm CTG, we compare
the following alternative approaches to noisy MSMC: (i) The fixed ϵ approximation (“EPS-AP”)
algorithm; (ii) Two special case of the algorithm ExpGreedy of Singla et al. (2016) “EXP-GREEDY”
and “EXP-GREEDY-K” with the parameter k′ in ExpGreedy set to be k′ = 1 and k′ = κ

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.10 0.15 0.20
ε

0.0

0.6

1.2

1.8

2.4

sa
m
pl
es

×107

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(a) delicious_300 samples

0.10 0.15 0.20
ε

0

1

2

3

av
er

ag
e

sa
m

pl
es

×103

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(b) delicious_300 average
samples

20 40 60 80
k

0.0

0.8

1.6

2.4

3.2

sa
m
pl
es

×106

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(c) delicious_300 samples

20 40 60 80
k

0

150

300

450

600

av
er

ag
e

sa
m

pl
es

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(d) delicious_300 average
samples

0.05 0.10 0.15
ε

0.0

0.6

1.2

1.8

2.4

sa
m
pl
es

×107

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(e) corel_60 samples

0.05 0.10 0.15
ε

0

1

2

3

4
av

er
ag

e
sa

m
pl

es

×104

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(f) corel_60 average sam-
ples

5 10 15 20
k

0.0

1.5

3.0

4.5

6.0

sa
m
pl
es

×106

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(g) corel_60 samples

5 10 15 20
k

0.0

0.3

0.6

0.9

1.2

av
er

ag
e

sa
m

pl
es

×104

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(h) corel_60 average sam-
ples

0.05 0.10 0.15 0.20
ε

0.0

1.5

3.0

4.5

sa
m
pl
es

×108

CTG
EPS-AP

(i) delicious samples

50 100 150 200 250
k

2

4

6

8

sa
m
pl
es

×107

CTG
EPS-AP

(j) delicious samples

0.02 0.04 0.06 0.08
ε

0

2

4

6

8

sa
m
pl
es

×109

CTG
EPS-AP

(k) corel samples

10 20 30 40
k

1.6

2.4

3.2

4.0

sa
m
pl
es

×107

CTG
EPS-AP

(l) corel samples

Figure 3: The experimental results of running different algorithms on instances of data summarization
on the delicious URL dataset ("delicious", "delicious_300") and Corel5k dataset ("corel", "corel_60").

respectively. More details about the three algorithms can be found in the appendix. We evaluate
CTG and EPS-AP on all the datasets. However, EXP-GREEDY and EXP-GREEDY-K have greater
runtime as discussed in the appendix in the supplementary material, and so we only evaluate them
on the smaller datasets. Details about the parameter settings can be found in the appendix in the
supplementary material.

6.2 EXPERIMENTAL RESULTS

We now present our experimental results. The algorithms are compared in terms of: (i) The
function value f of their solution; (ii) The total number of noisy samples of the marginal
gain; (iii) The average number of samples per marginal gain estimation (average sam-
ples=total samples/# of evaluated marginal gains).

Our results for different values of ϵ and κ are presented in Figure 3. From Figures 3(a), 3(c), 3(e) and
3(g), one can see that the total samples required by CTG tends to be smaller than those required by
EPS-AP, EXP-GREEDY and EXP-GREEDY-K, which demonstrates the advantage of CTG in sample
efficiency, which was the main goal of the paper. However, on the delicious_300 dataset (Figures
3(b) and 3(d)), the average samples of EXP-GREEDY-K is slightly better than CTG, and on the other
hand CTG has significantly better average samples compared to EXP-GREEDY-K on the corel_60
dataset (Figures 3(f) and 3(h)). This demonstrates the incomparability of the instance-dependent
sample query bounds given for marginal gain computations on CTG vs that of ExpGreedy.

From the results where we vary ϵ, it can be seen that both the total samples and average samples of
our algorithm CTG increase less compared with EPS-AP and EXP-GREEDY as ϵ decreases (Figures
3(a), 3(b), 3(e) and 3(f)), which corresponds to our theoretical results (see the discussion in Section

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

H.2 in the appendix). For the experiments comparing different κ, we can see that the total queries of
the EXP-GREEDY and EXP-GREEDY-K increases faster compared with EPS-AP and CTG (Figure
3(c)), which can be attributed to the better dependence on κ that TG exhibits compared to the standard
greedy algorithm. A result that is a little different from the above is that the number of total queries
of EXP-GREEDY-K decreases on dataset corel_60 when κ becomes large (Figure 3(g)), which is
because when κ increases, EXP-GREEDY-K is able to better deal with tiny differences in marginal
gains (see the appendix).

Finally, the results on the larger dataset (corel and delicious) of CTG and EPS-AP are presented
in Figures 3(i), 3(j), 3(k) and 3(l). Notably, our proposed algorithm (CTG) showcases considerable
advantages over the EPS-AP algorithm in terms of both required total samples and average samples.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identification in multi-armed
bandits. In COLT, pp. 41–53, 2010.

Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular functions.
In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pp.
1497–1514. SIAM, 2014.

Eric Balkanski, Adam Breuer, and Yaron Singer. Non-monotone submodular maximization in
exponentially fewer iterations. Advances in Neural Information Processing Systems, 31, 2018.

Eric Balkanski, Aviad Rubinstein, and Yaron Singer. An exponential speedup in parallel running
time for submodular maximization without loss in approximation. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 283–302. SIAM, 2019a.

Eric Balkanski, Aviad Rubinstein, and Yaron Singer. An optimal approximation for submodular
maximization under a matroid constraint in the adaptive complexity model. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 66–77, 2019b.

MohammadHossein Bateni, Hossein Esfandiari, and Vahab Mirrokni. Almost optimal streaming
algorithms for coverage problems. In Proceedings of the 29th ACM Symposium on Parallelism in
Algorithms and Architectures, pp. 13–23, 2017.

Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maximizing social influence
in nearly optimal time. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms, pp. 946–957. SIAM, 2014.

Niv Buchbinder and Moran Feldman. Deterministic algorithms for submodular maximization
problems. ACM Transactions on Algorithms (TALG), 14(3):1–20, 2018.

Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM Journal on Computing, 44(5):
1384–1402, 2015.

Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a monotone submodular
function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766, 2011.

Lin Chen, Andreas Krause, and Amin Karbasi. Interactive submodular bandit. Advances in Neural
Information Processing Systems, 30, 2017.

Shouyuan Chen, Tian Lin, Irwin King, Michael R Lyu, and Wei Chen. Combinatorial pure exploration
of multi-armed bandits. Advances in neural information processing systems, 27, 2014.

Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social networks. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 199–208, 2009.

Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for prevalent viral marketing
in large-scale social networks. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 1029–1038, 2010.

Victoria Crawford. Scalable bicriteria algorithms for non-monotone submodular cover. In Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 9517–9537. PMLR, 2023.

Victoria Crawford, Alan Kuhnle, and My Thai. Submodular cost submodular cover with an ap-
proximate oracle. In International Conference on Machine Learning, pp. 1426–1435. PMLR,
2019.

Pinar Duygulu, Kobus Barnard, Joao FG de Freitas, and David A Forsyth. Object recognition as
machine translation: Learning a lexicon for a fixed image vocabulary. In Computer Vision—ECCV
2002: 7th European Conference on Computer Vision Copenhagen, Denmark, May 28–31, 2002
Proceedings, Part IV 7, pp. 97–112. Springer, 2002.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac bounds for multi-armed bandit and markov
decision processes. In Computational Learning Theory: 15th Annual Conference on Computational
Learning Theory, COLT 2002 Sydney, Australia, July 8–10, 2002 Proceedings 15, pp. 255–270.
Springer, 2002.

Matthew Fahrbach, Vahab Mirrokni, and Morteza Zadimoghaddam. Submodular maximization with
nearly optimal approximation, adaptivity and query complexity. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 255–273. SIAM, 2019.

Uriel Feige, Vahab S Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular functions.
SIAM Journal on Computing, 40(4):1133–1153, 2011.

Marshall L Fisher, George L Nemhauser, and Laurence A Wolsey. An analysis of approximations for
maximizing submodular set functions—II. Springer, 1978.

Tobias Friedrich and Frank Neumann. Maximizing submodular functions under matroid constraints
by multi-objective evolutionary algorithms. In International Conference on Parallel Problem
Solving from Nature, pp. 922–931. Springer, 2014.

Avinatan Hassidim and Yaron Singer. Submodular optimization under noise. In Conference on
Learning Theory, pp. 1069–1122. PMLR, 2017.

Gaurush Hiranandani, Harvineet Singh, Prakhar Gupta, Iftikhar Ahamath Burhanuddin, Zheng Wen,
and Branislav Kveton. Cascading linear submodular bandits: Accounting for position bias and
diversity in online learning to rank. In Uncertainty in Artificial Intelligence, pp. 722–732. PMLR,
2020.

Thibaut Horel and Yaron Singer. Maximization of approximately submodular functions. Advances in
neural information processing systems, 29, 2016.

Lingxiao Huang, Yuyi Wang, Chunxue Yang, and Huanjian Zhou. Efficient submodular optimization
under noise: Local search is robust. Advances in Neural Information Processing Systems, 35:
26122–26134, 2022.

Rishabh Iyer, Ninad Khargonkar, Jeff Bilmes, and Himanshu Asnani. Generalized submodular
information measures: Theoretical properties, examples, optimization algorithms, and applications.
IEEE Transactions on Information Theory, 68(2):752–781, 2021.

Kwang-Sung Jun, Kevin Jamieson, Robert Nowak, and Xiaojin Zhu. Top arm identification in
multi-armed bandits with batch arm pulls. In Artificial Intelligence and Statistics, pp. 139–148.
PMLR, 2016.

Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone. Pac subset selection in
stochastic multi-armed bandits. In ICML, volume 12, pp. 655–662, 2012.

Mohammad Karimi, Mario Lucic, Hamed Hassani, and Andreas Krause. Stochastic submodular
maximization: The case of coverage functions. Advances in Neural Information Processing
Systems, 30, 2017.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best arm identification
in multi-armed bandit models. Journal of Machine Learning Research, 17:1–42, 2016.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social
network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 137–146, 2003.

Andreas Krause and Carlos Guestrin. Near-optimal nonmyopic value of information in graphical
models. In Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence,
pp. 324–331, 2005.

Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining library.
ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1–20, 2016.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier than lazy greedy. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical programming, 14:265–294, 1978.

Gözde Özcan and Stratis Ioannidis. Stochastic submodular maximization via polynomial estimators.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 535–548. Springer,
2023.

Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang, and Zhi-Hua Zhou. Subset selection under noise.
Advances in neural information processing systems, 30, 2017.

Adish Singla, Sebastian Tschiatschek, and Andreas Krause. Noisy submodular maximization via adap-
tive sampling with applications to crowdsourced image collection summarization. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Hossein Soleimani and David J Miller. Semi-supervised multi-label topic models for document
classification and sentence labeling. In Proceedings of the 25th ACM international on conference
on information and knowledge management, pp. 105–114, 2016.

Matthew Staib, Bryan Wilder, and Stefanie Jegelka. Distributionally robust submodular maximization.
In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 506–516. PMLR,
2019.

Sebastian Tschiatschek, Rishabh K Iyer, Haochen Wei, and Jeff A Bilmes. Learning mixtures
of submodular functions for image collection summarization. Advances in neural information
processing systems, 27, 2014.

Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular function maximization via the
multilinear relaxation and contention resolution schemes. In Proceedings of the forty-third annual
ACM symposium on Theory of computing, pp. 783–792, 2011.

Zheng Wen, Branislav Kveton, Michal Valko, and Sharan Vaswani. Online influence maximization
under independent cascade model with semi-bandit feedback. Advances in neural information
processing systems, 30, 2017.

Yisong Yue and Carlos Guestrin. Linear submodular bandits and their application to diversified
retrieval. Advances in Neural Information Processing Systems, 24, 2011.

Yuan Zhou, Xi Chen, and Jian Li. Optimal pac multiple arm identification with applications to
crowdsourcing. In International Conference on Machine Learning, pp. 217–225. PMLR, 2014.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix

A ADDITIONAL RELATED WORK

Approximation algorithms for submodular maximization problems with exact value oracle have
been extensively studied in the literature Nemhauser et al. (1978); Badanidiyuru & Vondrák (2014);
Mirzasoleiman et al. (2015); Balkanski et al. (2019a). For MSMC, the standard greedy algorithm
produces a solution set with the best possible 1− 1/e approximation guarantee in O(n2) queries of f .
Badanidiyuru & Vondrák (2014) proposed a faster greedy-like algorithm that gives an approximation
guarantee of 1− 1/e−O(ϵ) while reducing the sample complexity to O(nϵ log

n
ϵ).

Another variant is USM Buchbinder et al. (2015); Feige et al. (2011); Buchbinder & Feldman (2018).
Notably, Buchbinder et al. (2015) introduced a deterministic algorithm that gives a 1/3 guarantee in
O(n) queries to an oracle for f , and a randomized version of their algorithm yields the best possible
1/2 guarantee in expectation in the same number of queries.

The final variant of submodular maximization we consider is MSMM Balkanski et al. (2019b);
Friedrich & Neumann (2014); Fisher et al. (1978). The greedy algorithm only yields an approximation
ratio of 1/2 in this setting Fisher et al. (1978). But by extending the discrete submodular function to
its continuous counterpart, known as the multilinear extension (see the definition in Section 2), and
by solving the problem in this regime, it is proved that an approximation ratio arbitrarily close to the
best possible 1− 1/e can be achieved Badanidiyuru & Vondrák (2014); Calinescu et al. (2011).

Our work is also related to the best-arm-identification in multi-armed bandit literature Audibert et al.
(2010); Kaufmann et al. (2016); Jun et al. (2016), where the objective is to estimate the best action by
choosing arms and receiving stochastic rewards from the environment. The most widely considered
setting is the PAC learning setting Even-Dar et al. (2002); Kalyanakrishnan et al. (2012); Zhou et al.
(2014).

Our paper studies the same noisy setting as Singla et al. (2016). There are essentially two versions of
ExpGreedy, one gives an approximation guarantee of about 1− 1/e with high probability (like our
algorithm CTG does), and the other gives the same approximation guarantee but is randomized. The
benefit of the latter over the former is better sample complexity. The bounds given on the sample
complexity of ExpGreedy and the ones given in this paper for CTG are instance-dependent and
incomparable to one another. We discuss how our algorithm relates to ExpGreedy in more depth
in Section B, but we briefly list here the potential advantages of our algorithm CTG compared to
ExpGreedy: (i) Our algorithm has an approximation guarantee of about 1−1/e with high probability
as opposed to an approximation guarantee of about 1 − 1/e in expectation as in the randomized
version of ExpGreedy; (ii) Our algorithm is not as sensitive to small differences in marginal gain
between elements since it is not based on the standard greedy algorithm as ExpGreedy is; (iii) The
algorithm of ExpGreedy has greater time complexity beyond just the sample complexity because
it requires O(n log n) computations per each noisy query to ∆f ; (iv) Our algorithm makes less
estimations of ∆f overall since it is based on a faster variant of the greedy algorithm (TG). We further
compare the algorithms experimentally in Section 6.2.

A.1 OTHER NOISY MODEL

If the noisy model is that the the samples are taken from distribution D(X) to evaluate f(X) instead
of the marginal gain, the model also satisfies our setting. This is because if the noisy evaluation of
f(X) is R-sub-Gaussian, the noisy evaluation of the marginal gain ∆f(X,u) can be obtained by
taking two noisy samples of f and calculating D(X ∪ {u})−D(X) and that the difference of two
independent sub-Gaussian random variables is also sub-Gaussian.

B COMPARISON WITH EXPGREEDY

In this section, we provide more discussion about the related algorithm ExpGreedy of Singla
et al. (2016). ExpGreedy combines the standard greedy algorithm with the best arm identification
algorithm used in combinatorial bandit literature Chen et al. (2014).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

In particular, the standard greedy algorithm for MSMC Nemhauser et al. (1978) goes as follows:
A solution S is built by iteratively choosing the element u ∈ U that maximizes the marginal gain
∆f(S, u) until the cardinality constraint κ is exhausted. ExpGreedy follows a setting like ours, so
instead of choosing the element of maximum marginal gain at each iteration, they follow the standard
greedy algorithm but adaptive sampling following techniques from the best-arm identification problem
is done in order to identify the element(s) with the highest marginal gain. The simplest version of
their algorithm identifies one element with the highest marginal gain at each iteration, and this version
has a guarantee of about 1− 1/e with high probability as in CTG. This algorithm is EXP-GREEDY in
Section 6. However, a downside of this approach is that many samples are often needed to distinguish
between elements of nearly the same marginal gain. In contrast, notice that our algorithm CTG does
not need to compare marginal gains between elements and therefore does not have this issue.

In order to deal with the sample inefficiency, ExpGreedy is generalized to a randomized version. The
randomized version of ExpGreedy involves a subroutine called TOPX, which adaptively samples
marginal gains until a subset of elements with relatively high marginal gains have been identified.
Then a randomly selected element among the subset is added to the solution set. In particular, given an
integer 0 < κ′ ≤ κ, the TOPX algorithm runs TOP-l selection algorithms for each l ∈ {1, 2, ..., κ′},
and each of the TOP-l selection algorithm runs until it returns a subset of l items with highest
marginal gain with high probability. The TOPX algorithm stops once there exists some l such that
the TOP-l selection algorithm ends. This randomized version of ExpGreedy has an almost 1− 1/e
approximation guarantee, but it holds in expectation and with high probability. The case where κ′ = κ
is EXP-GREEDY-K in Section 6.

Now that we have described the two versions of ExpGreedy and their corresponding approximation
guarantee, we look into more detail about the efficiency of ExpGreedy in terms of runtime and
sample complexity.

It is proven by Singla et al. (2016) that the number of samples taken for each iteration where an
element is added to the solution is at most

O

(
nκ′R2 min

{
4

∆2
max

,
1

ϵ2

}
log

(
R2κnmin{ 4

∆2
max

, 1
ϵ2 }

δ

))
where ∆max is the largest difference amongst the first κ′ element’s marginal gains. In other words,
this is the number of samples taken each time TOPX is called. Since an element being added involves
approximating the marginal gains over all of the elements of U , the average sample complexity to
compute an approximate marginal gain for a single element is then

O

(
κ′R2 min

{
4

∆2
max

,
1

ϵ2

}
log

(
R2κnmin{ 4

∆2
max

, 1
ϵ2 }

δ

))
.

We compare the above to a single call of CS in our algorithm CTG, which is the analogous computation
where we are approximating the marginal gain for an element of U . Recall from Theorem 3 that the
bound for the sample complexity for CS is the minimum between 2R2

ϕ2(S, u)
log

4R2
√

3nh(α)
δ

ϕ2(S, u)

 ,
R2

2ϵ2
log

(
6nh(α)

δ

) .

If k′ = 1, i.e. the non-randomized version of ExpGreedy that has a similar approximation guarantee
to our algorithm CTG, then ∆max is the difference between the top two marginal gains, which could
be very small and therefore the sample complexity quite high. On the other hand, CS is not sensitive
to this property. In order to make ∆max bigger, one could increase k′ and use the randomized version
of ExpGreedy. But this case could have worse sample complexity compared to ours as well. If
∆max is small and satisfies that ∆max = O(ϵ), then the sample complexity of ExpGreedy is worse
than our averaged sample complexity by a factor of at least O(κ′).

Further, since ExpGreedy follows the standard greedy algorithm, there are κ calls made to TOPX.
In contrast, CTG is based on the faster variant of the greedy algorithm, TG, and so only requires
O(log(κ)) iterations over U .

Another factor that makes CTG preferable to ExpGreedy is its run time besides sample complexity.
From the description of ExpGreedy in Singla et al. (2016), we can see that at each time a noisy

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

query to ∆f is taken, the TOP-l selection algorithm updates the confidence interval for all the
elements, and then the algorithm sorts all elements to find the set Mt of l elements with highest
empirical marginal gain. Then another estimate of the marginal gains is computed to be the empirical
mean plus a confidence interval or minus the confidence interval depending on whether the elements
are within Mt. Next, the algorithm sorts the newly obtained estimates to find the top-l set with respect
to the new estimates. However, both CTG and EPS-AP have more efficient runtime complexity and
require only one update of the confidence interval in Line 4 and two comparisons in Line 5 and 7 in
CS, which is only O(1) in computation.

C APPENDIX FOR SECTION 3

In this section, we present the omitted content of Section 3. In Section C.1, we present a comparison
of our result with the fixed ϵ-approximation. In Section C.2, we present the proof of Theorem 1. In
Section C.3, we present the proof of Theorem 2.

C.1 COMPARISON OF CS TO FIXED ϵ-APPROXIMATION

In this section, we present a comparison of our result with the fixed ϵ-approximation. A fixed ϵ-
approximation is essentially when one applies a concentration inequality such as Hoeffding’s or the
Chernoff Bound for a fixed number of noisy samples such that the empirical mean of the evaluated
random variable X , which is denoted as X̂ , satisfies that |X̂ − E[X]| ≤ ϵ. (see also discussion in
Section 2).

The fundamental reason this approach is less efficient compared to CS is that we are only interested
in determining whether f(X) is approximately above a threshold or not, not in obtaining a precise
approximation. In other words, we don’t need the guarantee that the |X̂ −EX| ≤ ϵ in Hoeffding’s
inequality; instead, we care about whether EX ≥ w. Ideally, we would approximate f(X) just finely
enough to determine if it’s above the threshold or not. However, this isn’t feasible with the fixed
ϵ-approximation, because we don’t have any prior knowledge of how far f(X) is from the threshold.
Consequently, we can’t determine the required number of samples, and the fixed ϵ-approximation
approach requires that there be a single batch of i.i.d. samples, which limits flexibility.

In contrast, CS uses an adaptive sampling approach where samples are iteratively taken one-by-one
until an evolving confidence interval crosses a threshold. The goal of CS is to use fewer samples
compared to a fixed ϵ-approximation. While CS might initially seem similar to fixed ϵ-approximation,
there are several critical differences that introduce unique technical challenges in its development and
analysis:

• Fixed ϵ-approximation approaches have a batch of samples in which a single application of
a concentration inequality is applied in order to approximate EX . In contrast, in CS, we
apply a concentration inequality after every single sample, and then take a union bound over
all the applications. However, this is challenging because we don’t know how many samples
we will end up taking to approximate the mean value sufficiently well since that depends on
the result of the sampling. So we have to carefully design our confidence intervals.

• Fixed ϵ-approximation approach takes a predetermined number of samples, independent of
the sampling results. In contrast, the CS algorithm dynamically determines the number of
samples based on the outcomes of previous samples. Additionally, CS reuses samples across
multiple applications of concentration bounds, enhancing its efficiency.

• In CS, the size of the confidence interval evolves with each additional sample, shrinking as
the number of samples increases (see Theorem 1). Additionally, when applying concentration
inequalities, the failure probability is adjusted dynamically based on how many samples
we’ve taken so far (see proof of Lemma 6). The benefit of the varying failure probability is

that the obtained sample complexity 8R2

ϕ2
X

log
(

16R2

ϕ2
X

√
2
δ

)
won’t suffer from small values of

ϵ.

• In Theorem 2 and 4, we use a combination of Hoeffding and Chernoff that is well-suited
to the threshold algorithms, rather than using one or the other. This approach improves the
sample complexity from O(R2) in Theorem 1 to O(R) when R is large.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

CS is in fact related to adaptive approaches used in the Upper Confidence Bound (UCB) algorithm in
multi-armed bandit, and is distinct from most existing approaches in submodular optimization, with
the notable exception of Singla et al. (2016), which integrates a best-arm identification algorithm into
the standard greedy framework.

C.2 ADDITIONAL LEMMAS AND ANALYSIS OF THEOREM 1

In this section, we present the proof of Theorem 2, which provides the theoretical results of sample
complexity and approximation guarantee of the CS algorithm. First of all, we provide the statement
of Theorem 1 again.

Theorem 1. For any random variable X that is R-sub-Gaussian, if we define N1 = 2R2/ϵ2 log 4
δ ,

and Ct = R
√

2
t log

8t2

δ , then the algorithm Confident Sample achieves that with probability
at least 1− δ

1. CS on input (w, ϵ, δ,DX , R) takes at most the minimum between{
2R2

ϵ2
log

(
4

δ

)
,
8R2

ϕ2
X

log

(
16R2

ϕ2
X

√
2

δ

)}

noisy samples, where R is as defined in Section 2, ϕX = ϵ+|w−EX|
2 .

2. If CS returns true, then EX ≥ w − ϵ. If CS returns false, then EX ≤ w + ϵ.

Before we present the detailed proof, here we provide an overview of the proof. In order for CS to
correctly determine whether EX is approximately above or below the threshold w, i.e. the second
result of Theorem 1, two random events must occur during CS. The first event is that at all iterations
during the for loop, the confidence regions around the sample mean (X̂t) contain the true expected
value (EX). The second event is that after N1 samples taken by the for loop on Line 2, we have
achieved an ϵ-additive approximation of the expected value. Basically these two events together mean
that CS is correct about the region where EX is throughout the algorithm, and therefore it returns
the correct answer to whether EX is approximately above or below the threshold w. The following
Lemma states that on a run of CS, the two events hold with probability at least 1− δ.
Lemma 6. With probability at least 1− δ, the following two events hold.

1. At any time t ∈ N+, the sample mean X̂t satisfies that |X̂t − EX| ≤ Ct, where Ct :=

R
√

2
t log

8t2

δ .

2. The sample mean X̂N1
at time N1 := 2R2

ϵ2 log 4
δ satisfies that |X̂N1

−EX| ≤ ϵ.

Proof. First, we apply the Hoeffding’s inequality on X̂N1 and it follows that

P
(
|X̂N1 −EX| ≥ ϵ

)
≤ 2 exp

(
−N1ϵ

2

2R2

)
≤ δ

2
.

Next, by applying the Hoeffding’s inequality for any fixed time t, we have that

P
(
|X̂t −EX| ≥ Ct

)
≤ δ

4t2
.

By taking the union bound for any time t, it follows that

P (∃t s.t. |X̂t −EX| ≥ Ct)

≤
∞∑
t=1

P (|X̂t −EX| ≥ Ct)

≤ δ

4

∞∑
t=1

1

t2
≤ δ

2
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

By taking the union bound again on the two events above, we have that

P (|X̂N1
−EX| ≥ ϵ or ∃t s.t. |X̂t −EX| ≥ Ct)

≤ P
(
|X̂N1

−EX| ≥ ϵ
)
+ P (∃t s.t. |X̂t −EX| ≥ Ct)

≤ δ.

The second lemma required for establishing Theorem 1 concerns the number of samples that CS
takes before its approximation of EX is sufficiently accurate so that it can terminate. The number of
samples depends on how far away the true value of f is from the threshold. In particular, Lemma 7
below states that once the confidence interval goes beneath the corresponding ϕ value (as defined in
Theorem 1), then CS will complete. Lemma 7 and its proof are stated below.
Lemma 7. With probability at least 1− δ, when the confidence interval Ct satisfies that

Ct ≤ ϕX ,

the sampling of X finishes, where ϕX = ϵ+|w−EX|
2 .

Proof. If Ct ≤ ϵ+w−EX
2 , then we have EX ≤ w + ϵ − 2Ct. From Lemma 6, we have that with

probability at least 1− δ, it holds that X̂t −EX ≤ Ct. Therefore,

X̂t + Ct

≤ (X̂t −EX) +EX + Ct

≤ w + ϵ.

Thus the algorithm ends.

Similarly, we consider the case where Ct ≤ ϵ−w+EX
2 . In this case, we have that EX ≥ 2Ct +w− ϵ.

Notice that conditioned on the clean event defined in Lemma 6, we have that X̂t−EX ≥ −Ct. Then

X̂t − Ct ≥ X̂t −EX

+EX − Ct

≥ −Ct + 2Ct

+ w − ϵ− Ct

= w − ϵ.

Therefore, the algorithm ends.

Now we present the proof of Theorem 1.

Proof. We first prove the result on sample complexity, which is the first result in Theorem 1. From
Lemma 7, we have if

Ct ≤ ϕX , (1)

then the Algorithm 1 finishes. Since Ct = R
√

2
t log

8t2

δ , we have the above inequality (1) is
equivalent to that

4 log(
√

8
δ t)

t
≤ ϕ2

X

R2
.

Since
√

8
δ t ≥ 2, from Lemma 23, we have when

t ≥ 8R2

ϕ2
X

log(
16R2

ϕ2
X

√
2

δ
),

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

the above inequality holds and the Algorithm 1 ends. Therefore, the number of samples required is

bounded by min{ 8R
2

ϕ2
X
(log 16R2

ϕ2
X

√
2
δ), N1}.

Next, we prove the second result in Theorem 1. If t = N1 when CS ends, then conditioned on the
events in Lemma 6, |X̂N1 −EX| ≤ ϵ. Thus if the algorithm returns true, EX ≥ X̂t − ϵ ≥ w− ϵ. If
the output of the algorithm is false, then X̂t ≤ w. Similarly we have that EX ≤ X̂t + ϵ ≤ w + ϵ.
Secondly, let us consider the case where t < N1 when the algorithm CS ends. Conditioned on the
second event in Lemma 6, we have if the algorithm CS returns true, EX ≥ X̂t − Ct ≥ w − ϵ. If the
output is false, EX ≤ X̂t + Ct ≤ w + ϵ.

C.3 PROOF AND ANALYSIS OF THEOREM 2

In this section, we present the omitted proofs of Theorem 2 in Section 3. Theorem 2 provides another
result of the approximation error for the CS algorithm by defining the confidence interval Ct to be
Ct =

3R
tα log

(
8t2

δ

)
and the worst-case sample complexity N1 to be N1 = 3R

ϵα log
(
4
δ

)
. We begin by

stating Theorem 2, followed by the proof of the theorem. Finally, we establish the lemmas crucial to
the proof of the theorem.

Theorem 2. For any random variable X that is bounded in the range of [0, R], if we define
Ct = 3R

tα log(8t
2

δ), and N1 = 3R
ϵα log

(
4
δ

)
where α is an additional parameter that controls the

multiplicative error rate, the algorithm Confident Sample achieves that with probability at
least 1− δ, the algorithm Confident Sample achieves that with probability at least 1− δ

1. CS on input (w, ϵ, δ,DX , R) takes at most the minimum between{
3R

ϵα
log

(
4

δ

)
,
12R

αϕ′
X

log

(
12R

αϕ′
X

√
8

δ

)}
noisy samples, ϕ′

X = ϵ−αEX+|w−EX|
2 .

2. If the output is true, then (1+α)EX ≥ w−ϵ. If the output is false, then (1−α)EX ≤ w+ϵ.

Proof. First of all, we prove the result on the sample complexity as presented in the first result in
Theorem 2. From Lemma 9, we have if

Ct ≤ ϕ′
X ,

the algorithm ends. By definition of Ct, we have that the above result is equivalent to that

3R

tα
log(

8t2

δ
) ≤ ϕ′

X .

From Lemma 23, we have that when

t ≥ 12R

αϕ′
X

log
(12R
αϕ′

X

√
8

δ

)
the above inequality holds and thus the algorithm ends. From the description of the algorithm, we
have that the number of samples is also bounded by N1. Therefore, the first result in Theorem 2 is
proved.

Next, we prove the second result on the difference of EX and w. If t = N1 when CS ends, then if
the algorithm returns true, we have that with probability at least 1− δ,

(1 + α)EX + ϵ ≥ X̂N1 ≥ w.

where the first inequality follows from Lemma 8. If the algorithm returns false and t = N1 when the
algorithm ends, then with probability at least 1− δ,

(1− α)EX − ϵ ≤ X̂N1
≤ w.

Next, we consider the case where t < N1 when the algorithm ends. Conditioned on the first event in
Lemma 8 and from the stopping condition of CS, we can see if CS returns true, then

(1 + α)EX + ϵ ≥ X̂t − Ct + ϵ ≥ w.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

If CS returns false, then

(1− α)EX − ϵ ≤ X̂t + Ct − ϵ ≤ w.

We now present the statement and the proofs of the lemmas used in the proof of Theorem 2. We start
by introducing Lemma 8, which defines two "clean events".
Lemma 8. With probability at least 1− δ, the following two events hold.

1. At any time t ∈ N+, the sample average X̂t satisfies that |X̂t −EX| ≤ αEX + Ct, where
Ct :=

3R
tα log(8t

2

δ).

2. The sample average X̂N1
at time N1 := 3R

ϵα log
(
4
δ

)
satisfies that |X̂N1

−EX| ≤ αEX+ ϵ.

Proof. By applying the Lemma 20, we have that for any fixed time step t,

P
(
|X̂t −EX| > αEX + Ct

)
≤ 2 exp{− tαCt

3R
}

≤ δ

4t2
.

By taking the union bound over all time step t ∈ N+, we have

P
(
|X̂t −EX| > αEX + Ct,∀t

)
≤

∞∑
t=1

P
(
|X̂t −EX| > αEX + Ct

)
≤

∞∑
t=1

δ

4t2
≤ δ

2
.

Therefore the first event in the lemma holds with probability at least 1− δ/2. By applying the Lemma
20 again, we have that for t = N1,

P
(
|X̂N1

−EX| > αEX + ϵ
)
≤ 2 exp{−N1αϵ

3R
} = δ/2.

It follows that the second event in the lemma holds with probability at least 1− δ/2. By combining
the two results and applying the union bound again, we know that with probability at least 1− δ, the
two events both hold.

Next, we prove another lemma that is used in the proof of the sample complexity result in Theorem 2.
Lemma 9. With probability at least 1− δ, when the confidence interval Ct satisfies that

Ct ≤ ϕ′
X ,

the sampling of X finishes, where ϕ′
X = ϵ−αEX+|w−EX|

2 .

Proof. To prove the lemma, it is equivalent to prove that when Ct ≤ ϵ−αEX+w−EX
2 or Ct ≤

ϵ−αEX−w+EX
2 , the algorithm ends. First of all, if Ct ≤ ϵ−αEX+w−EX

2 , then (1 + α)EX + 2Ct ≤
w + ϵ. Conditioned on the events in Lemma 8, we have that with probability at least 1− δ, it follows
that

X̂t + Ct ≤ (1 + α)EX + 2Ct ≤ w + ϵ.

Thus the sampling of X ends. Next, if Ct ≤ ϵ−αEX−w+EX
2 , then (1− α)EX − 2Ct ≥ w − ϵ. By

Lemma 8,

X̂t − Ct ≥ (1− α)EX − 2Ct ≥ w − ϵ.

Then the algorithm ends.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D APPENDIX FOR SECTION 4

In this section, we present the omitted content in Section 4, which is organized as follows: In Section
D.1, we discuss and compare the theoretical performance of our algorithm, CTG2, with the sampling-
before-hand algorithm in the context of the influence maximization problem. Next, we provide the
proof of our main result, Theorem 3, in Section D.2. Theorem 3 gives the theoretical guarantee of the
CTG algorithm. Finally, in Section D.3, we provide the brief description of CTG2 algorithm and the
detailed proof of Theorem 4.

D.1 COMPARING TO SAMPLING-BEFORE-HAND ALGORITHM

Before we describe the sampling-before-hand algorithm and dive into the comparison of this algorithm
and CTG2, first we present a detailed description of the application of influence maximization. In
the influence maximization problem in large-scale networks, the submodular objective is defined as
follows:

Influence aximization Suppose the social graph is described by G = (V,E, w̄), where V is the set
of nodes with |V | = n, E denotes the set of edges, and w̄ is the weight vector defined on the set of
edges E. Given a seed set S, let us define f(S;w) to be the number of nodes reachable from the seed
set S under the graph realizations determined by a random weight vector w. Therefore, f(S;w) is
bounded by the number of nodes in the graph, i.e., 0 ≤ f(S;w) ≤ n. The submodular objective is
defined as f(S) = Ew∼D(w̄)f(S;w). Here D(w̄) is the distribution of the weight vector.

The marginal gain can be calculated as

∆f(S, s) = Ew∼D(w̄)∆f(S, s;w)

= Ew∼D(w̄)f(S ∪ {u};w)−Ew∼D(w̄)f(S),

which is also bounded in the range of [0, n].

Next, we describe the sampling-before-hand algorithm, which runs as follows:

1. Sampling: The algorithm begins by sampling N i.i.d graph realizations. For the i-th graph
realization, we denote its weight vector as wi and the corresponding function value for a set
S as fi(S) = f(S;wi).

2. Average objective Function: Next, we define the average function f̂ over the sampled
graph realizations. This function is given by f̂(S) =

∑N
i=1 fi(S)

N for any S ⊆ U .
3. Threshold-greedy algorithm: We run Threshold Greedy (TG) with the average func-

tion f̂ as the submodular objective. The output of the threshold-greedy algorithm is returned
as the solution set, denoted as S.

D.1.1 ANALYSIS OF SAMPLING-BEFORE-HAND APPROACH

Now we present the analysis of the sampling-before-hand algorithm. From Lemma 20, and by taking
the union bound, we can prove that

P (|f̂(X)− f(X)| ≥ αf(X) + ϵ,∀|X| ≤ κ)

≤ 2nκ exp{−Nαϵ

3n
}.

Therefore, to guarantee that

P (|f̂(X)− f(X)| ≥ αf(X) + ϵ,∀|X| ≤ κ) ≤ δ,

it is enough to take

N ∈ Ω
(n
αϵ

(κ log n+ log
1

δ
)
)

number of graph realizations. Since TG requires n
α log n

α number of evaluations of f̂ . The total number
of evaluations of noisy realizations of f would be

O
(n2

α2ϵ
log

n

α
(κ log n+ log

1

δ
)
)
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Next, we prove the approximation guarantee. From the analysis above, we can see that with probability
at least 1− δ

f(S) ≥ f̂(S)− ϵ

1 + α

≥ (1− α)f̂(S)− ϵ

≥ (1− 1/e− α)(1− α)f̂(OPT)− ϵ

≥ (1− 1/e− 2α)f̂(OPT)− ϵ

≥ (1− 1/e− 3α)f(OPT)− 2ϵ.

Now we compare the theoretical guarantees of the sampling-based algorithm and CTG2. The theoreti-
cal results of CTG2 are in Theorem 4. Notice that by substituting ϵ with ϵ/k in Theorem 4, we obtain
a similar approximation guarantee for CTG2: f(S) ≥ (1 − 1/e − O(α))f(OPT) − O(ϵ), which
matches the result achieved by the sampling-based algorithm.

For the sample complexity, each call of CS requires at most the minimum between O(κnϵα log n
δ)

and O(n
αϕ′(S,u) log

n
αϕ′(S,u)δ) number of samples. The first bound is derived by considering the

fixed ϵ- approximation of the marginal gain. If we only consider this bound, then the total number
of marginal gains would be O(kn

2

ϵα2 (log
n
α)(log

n
δ)). In practice, the parameter δ is usually set to

be O(Poly(1/n)), such as O(1/n2). Consequently, the sample complexity of both CTG2 and the
sampling-before-hand approach would be O(κnϵα log n). However, it is important to note that CS
employs the adaptive thresholding technique, which often allows the algorithm to terminate much
earlier before reaching the worst-case sample complexity required for fixed-confidence approximation.
As a result, CTG2 can be significantly more sample-efficient in practice.

In comparison to the sampling-before-hand algorithm, CTG2 offers an additional advantage. The
sampling-before-hand algorithm requires obtaining N independent graph realizations and storing all
the data at the beginning of the algorithm. However, this can pose practical challenges. Firstly, in
scenarios where both N and the graph are exceedingly large, storing all the data might be infeasible.
Secondly, in certain applications, such as real-world social networks, obtaining an entire graph
realization may not be possible, as we might only be able to sample a portion of the graph at each
time.

D.2 PROOF OF THEOREM 3

In this section, we move towards proving one of our main results, Theorem 3 about CTG for the
MSMC problem. We state the theorem again as follows.

Theorem 3. Suppose the noisy marginal gain of any subset S ⊆ U and element s ∈ U is R-sub-
Gaussian, then CTG makes at most n log(κ/α)/α calls of CS. In addition, with probability at least
1− δ, the following statements hold:

• The exact function value of the output solution set S satisfies that f(S) ≥ (1 − e−1 −
α)f(OPT)− 2κϵ;

• Each call of CS on input (w, ϵ, 2δ
3nh(α) , D(S, u), R) takes at most the minimum between

8R2

ϕ2(S, u)
log

16R2
√

3nh(α)
δ

ϕ2(S, u)


and

2R2

ϵ2
log

(
6nh(α)

δ

)
noisy samples. Here OPT is an optimal solution to the MSMC problem, ϕ(S, u) =
ϵ+|w−∆f(S,u)|

2 , and h(α) = log (κ/α)
α .

To prove the theorem, we first present a series of needed lemmas. In order for the guarantees of
Theorem 3 to hold, two random events must occur during CTG. The first event is that the estimate of

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

the max singleton value of f on Line 4 in CTG is an ϵ-approximation of its true value. More formally,
we have the following lemma.

Lemma 10. With probability at least 1− δ/3, we have maxs∈U f(s)− ϵ ≤ d ≤ maxs∈U f(s) + ϵ.

Proof. For a fix s ∈ U , by Hoeffding’s inequality we would have that

P (|f̂(s)− f(s)| ≥ ϵ) ≤ δ

3n
. (2)

Taking a union bound over all elements we would have that

P (∃s ∈ U, s.t.|f̂(s)− f(s)| ≥ ϵ) ≤ δ

3
.

Then with probability at least 1− δ
3 , |f̂(s)− f(s)| ≤ ϵ for all s ∈ U . It then follows that ∀s ∈ U ,

f(s)− ϵ ≤ f̂(s) ≤ f(s) + ϵ. Therefore

max
s∈U

(f(s)− ϵ) ≤ max
s∈U

f̂(s) ≤ max
s∈U

(f(s) + ϵ).

Thus we have

max
s∈U

f(s)− ϵ ≤ d ≤ max
s∈U

f(s) + ϵ.

The second event is that for all calls of CS, the result in Theorem 1 holds, which is stated formally as
follows.

Lemma 11. With probability at least 1− 2δ/3, we have that during each call of CS with the solution
set S and element u, the output satisfies that if thre is true, then ∆f(S, u) ≥ w − ϵ. If thre is false,
then ∆f(S, u) ≤ w + ϵ.

Proof. First, since each sampling result of the marginal gain is assumed to be R-sub-Gaussian, by
applying the result in Theorem 1, we can prove that for each call of CS during CTG with a fixed
solution set S and evaluated element u as input, and with probability at least 1− 2δ

3nh(α) , if the output
of CS is true, then ∆f(S, u) ≥ w − ϵ. Otherwise, ∆f(S, u) ≤ w + ϵ. Since there are n elements in
the universe and the number of iterations in Algorithm 2 is bounded by log κ/α

log(1/(1−α)) ≤ h(α), there
are at most nh(α) number of marginal gains to evaluate in Algorithm 2. Therefore, by taking the
union bound we have that with probability at least 1− 2δ/3, the statement holds.

With the above Lemma 10 and Lemma 11, and by taking the union bound, we have that with
probability at least 1 − δ, the two events both hold during the CTG. Our next step is to show that
if both of the events occur during CTG, the approximation guarantees and sample complexity of
Theorem 3 hold. To this end, we need the following Lemma 12.

Lemma 12. Assume the events defined in Lemma 10 and Lemma 11 above hold during CTG. Then
for any element s that is added to the solution set S, the following statement holds.

∆f(S, s) ≥ 1− α

κ
(f(OPT)− f(S))− 2ϵ.

Proof. At the first iteration, if an element s is added to the solution set, it holds by Lemma 10
that ∆f(S, s) ≥ w − ϵ. Since at the first iteration w = d and d ≥ maxs∈U f(s) − ϵ. It follows
that ∆f(S, s) ≥ maxs∈U f(s) − 2ϵ. By submodularity we have that κmaxs∈U f(s) ≥ f(OPT).
Therefore, ∆f(S, s) ≥ f(OPT)−f(S)

κ − 2ϵ.

At iteration i where i > 1, if an element o ∈ OPT is not added to the solution set, then it is
not added to the solution at the last iteration, where the threshold is w

1−α . By Lemma 6, we have

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

∆f(S, o) ≤ w
1−α + ϵ. Since for any element s that is added to the solution at iteration i, by Lemma 6

it holds that ∆f(S, s) ≥ w − ϵ. Therefore, we have

∆f(S, s) ≥ w − ϵ

≥ (1− α)(∆f(S, o)− ϵ)− ϵ

≥ (1− α)∆f(S, o)− 2ϵ.

By submodularity, it holds that ∆f(S, s) ≥ (1− α) f(OPT)−f(S)
κ − 2ϵ.

We now prove the main result, Theorem 3, which relies on the previous Lemma 10, 11 and 12.

Proof. The events defined in Lemma 10, 11 hold with probability at least 1− δ by combining Lemma
10, 11, and taking the union bound. Therefore in order to prove Theorem 3, we assume that both the
two events have occurred. The proof of the first result in the theorem depends on the Lemma 12. First,
consider the case where the output solution set satisfies |S| = κ. Denote the solution set S after the
i-th element is added as Si. Then by Lemma 12, we have

f(Si+1) ≥
1− α

κ
f(OPT) + (1− 1− α

κ
)f(Si)− 2ϵ.

By induction, we have that

f(Sκ) ≥ (1− (1− 1− α

κ
)k){f(OPT)− 2κϵ

1− α
}

≥ (1− e−1+α){f(OPT)− 2κϵ

1− α
}

≥ (1− e−1 − α){f(OPT)− 2κϵ

1− α
}

≥ (1− e−1 − α)f(OPT)− 2κϵ.

If the size of the output solution set S is smaller than κ, then any element o ∈ OPT that is not added
to S at the last iteration satisfies that ∆f(S, o) ≤ w + ϵ. Since the threshold w in the last iteration
satisfies that w ≤ αd

κ , we have

∆f(S, o) ≤ αd

κ
+ ϵ.

It follows that ∑
o∈OPT\S

∆f(S, o) ≤ α(max
s∈S

f(s) + ϵ) + κϵ

≤ αf(OPT) + 2κϵ.

By submodularity and monotonicity of f , we have f(S) ≥ (1− α)f(OPT)− 2κϵ.

D.3 ANALYSIS OF CTG2

In this section, we analyze Theorem 4, which establishes the sample complexity and approxima-
tion ratio guarantees for the solution obtained by Confident Threshold Greedy2 (CTG2).
CTG2 is an algorithm for the MSMC problem where only noisy queries to ∆f are available. The
corresponding algorithm description is presented in Algorithm 3.

First of all, we give a brief description of the CTG2 algorithm. CTG2 shares a similar idea with
the CTG algorithm presented in Section 4. Both of the two algorithms utilize CS to determine if
the expectation of the evaluated marginal gain is approximately above a threshold w. However,
they differ in their error approximation guarantees on the expectation of evaluated marginal gain.
Specifically, CTG invokes the Confident Sample procedure (CS) with the following inputs:
threshold w, approximation error bound ϵ, error probability 2δ

3nh′(α) where h′(α) = 3 log (3κ/α)
α ,

random distribution D(S, u), and upper bound of the noisy marginal gain R as input. Different

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Algorithm 3: Confident Threshold Greedy2 (CTG2)

1: Input: ϵ, δ, α
2: N3 ← 9R

ϵα log 6n
δ

3: for all s ∈ U do
4: f̂N3

(s)← sample mean over N3 samples from D(∅, s)
5: end for
6: d := maxs∈U f̂N3(s),
7: w ← d, S ← ∅
8: while w > αd

3κ do
9: for all u ∈ U do

10: if |S| < κ then
11: thre = Confident Sample (w, ϵ, 2δ

3nh′(α) , D(S, u), R)
12: if thre then
13: S ← S ∪ {u}
14: end if
15: end if
16: end for
17: w = w(1− α/3)
18: end while
19: return S

from the subroutine algorithm CS in CTG, the worst-case query complexity N1 and confidence
interval Ct in CS are defined as in Theorem 2 with the multiplicative input parameter set to α/3.
Therefore, the output of CS in CTG2 satisfies that with high probability, if the output is true, then
(1 + α/3)∆f(S, u) ≥ w − ϵ. If the output is false, then (1− α/3)∆f(S, u) ≤ w + ϵ.

Next, we present the analysis of Theorem 4.

Theorem 4. Suppose the noisy marginal gain of any subset S ⊆ U and element s ∈ U is bounded in
[0, R], CTG2 makes at most 3n log(κ/α)/α calls of CS. In addition, with probability at least 1− δ,
the following statements hold:

• The exact function value of the output solution set S satisfies that f(S) ≥ (1 − e−1 −
α)f(OPT)− 2κϵ;

• Each call of CS on input (w, ϵ, 2δ
3nh′(α) , D(S, u), R) takes at most the minimum between

9R

ϵα
log

(
6nh′(α)

δ

)
and

36R

αϕ′(S, u)
log

(
36R

αϕ′(S, u)

√
12nh′(α)

δ

)
noisy samples. Here OPT is an optimal solution to the MSMC problem, ϕ′(S, u) =
ϵ−α∆f(S,u)/3+|w−∆f(S,u)|

2 , and h′(α) = 3
α log (3κα).

Now we present the proof of Theorem 4. The organization of the proof for Theorem 4 is as follows:
we begin by presenting the proof of the Theorem 4. Then the proofs of two lemmas, Lemma 13 and
Lemma 14, that are used in the proof of Theorem 4 are presented.

Proof. First, since the number of iterations in the while loop from Line 9 to Line 17 in CTG2 (see
Algorithm 3) is upper bounded by 3

α log 3κ
α , CTG2 makes at most 3n

α log 3κ
α calls of CS. Next, we

prove the second result in Theorem 4, which guarantees the upper bound on the required number of
samples. By applying Lemma 13 on the sampling of the noisy marginal gain of ∆f(S, u), we can see
that with probability at least 1− δ, for each call of CS, we have that the number of noisy queries is

bounded by the minimum between 9R
ϵα log

(
6nh′(α)

δ

)
and 36R

αϕ′(S,u) log

(
36R

αϕ′(S,u)

√
12nh′(α)

δ

)
.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Now we prove the first result. Since the proof of the first result is similar to the proof of Theorem 3,
here we provide a proof sketch and omit the details. First of all, by Lemma 14, we have

f(Si+1) ≥
1− α

κ
f(OPT) + (1− 1− α

κ
)f(Si)− 2ϵ.

Let us denote the solution set S after the i-th element is added as Si. Notice that the result in Lemma
12 is the same as Lemma 14. Therefore, following the same proof as that in Theorem 3, we would get
that if |S| = κ, then by induction

f(Sκ) ≥ (1− e−1 − α)f(OPT)− 2κϵ.

If the size of the output solution set S is smaller than κ, then any element o ∈ OPT that is not added
to S at the last iteration satisfies that (1− α/3)∆f(S, o) ≤ w+ ϵ. Since at the last iteration w ≤ αd

3κ ,
and that conditioned on the events in Lemma 13, d ≤ (1 + α/3)maxs∈U f(s) + ϵ, it follows that

(1− α/3)∆f(S, o) ≤ α

3κ
{(1 + α/3)max

s∈U
f(s) + ϵ}+ ϵ

By submodularity and monotonicity of f , we have

f(OPT)− f(S) ≤
∑

o∈OPT

∆f(S, o)

≤ α

3(1− α/3)
{(1 + α/3)max

s∈U
f(s) + ϵ}

+
κϵ

(1− α/3)

≤ αmax
s∈U

f(s) + 2κϵ

≤ αf(OPT) + 2κϵ.

Then we have f(S) ≥ (1− α)f(OPT)− 2κϵ.

The proof of the above Theorem 4 depends on Lemma 14. Before proving Lemma 14, we first prove
the Lemma 13.
Lemma 13. With probability at least 1− δ, the following two events hold.

1. (1− α/3)maxs∈U f(s)− ϵ ≤ d ≤ (1 + α/3)maxs∈U f(s) + ϵ.

2. During each call of CS on input (w, ϵ, 2δ
3nh′(α) , D(S, u), R), if the output is true, then

(1 + α/3)∆f(S, u) ≥ w − ϵ. If the output is false, then (1 − α/3)∆f(S, u) ≤ w + ϵ. In
addition, the number of samples taken by CS is at most the minimum between

9R

ϵα
log

(
6nh′(α)

δ

)
(3)

and

36R

αϕ′(S, u)
log

(
36R

αϕ′(S, u)

√
12nh′(α)

δ

)
, (4)

where ϕ′(S, u) = ϵ−α∆f(S,u)/3+|w−∆f(S,u)|
2 , and h′(α) = 3

α log (3κα).

Proof. First of all, by applying the inequality in Lemma 20, we have that for fixed element s ∈ U

P
(
|f̂N3(s)− f(s)| ≥ α

3
f(s) + ϵ

)
≤ δ

3n
.

Taking a union bound over all elements in U , it follows that

P
(
|f̂N3

(s)− f(s)| ≥ α

3
f(s) + ϵ,∀s ∈ U

)
≤ δ

3
,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

where N3 = 9R
ϵα log 6n

δ . Therefore, with probability at least 1 − δ/3, we have |f̂N3
(s) − f(s)| ≤

α
3 f(s) + ϵ for each s ∈ U . Denote s1 = argmaxs∈U f̂N3(s) and s2 = argmaxs∈U f(s). It follows
that with probability at least 1− δ/3, we have that

d = f̂N3
(s1) ≤ (1 + α/3)f(s1) + ϵ ≤ (1 + α/3)f(s2) + ϵ,

and that

d = f̂N3
(s1) ≥ f̂N3

(s2) ≥ (1− α/3)f(s2)− ϵ.

Since d = maxs∈U f̂N3
(s) = f̂N3

(s1) and f(s2) = maxs∈U f(s), the first result holds with
probability at least 1− δ/3.

Next, we prove the second result. For each call of the sampling algorithm CS with fixed input
(w, ϵ, 2δ

3nh′(α) , D(S, u), R), and given that N1 and Ct are defined in accordance with Theorem 2
with the multiplicative error parameter set to α/3, we can leverage the second result in Theorem 2.
Consequently, with probability at least 1− 2δ

3nh′(α) , the following two things hold:

1. If the output of CS is true, then (1 + α/3)∆f(S, s) ≥ w − ϵ. If the output is false, then
(1− α/3)∆f(S, s) ≤ w + ϵ.

2. The number of noisy queries is bounded by the minimum between (3) and (4) in the lemma.

Since there are at most log(3κ/α)

log 1
1−α/3

≤ h′(α) = 3
α log 3κ

α number of iterations in CTG2, there are at

most nh′(α) calls of CS. Therefore, by taking the union bound we have that with probability at least
1 − 2δ/3, the two events defined above hold for all calls to CS during CTG2. By taking the union
bound again, we have that with probability at least 1− δ, the two results in the lemma both hold.

Now we prove the Lemma 14.
Lemma 14. Assume the events defined in Lemma 13 hold during CTG2. Then for any element s that
is added to the solution set S, the following statement holds.

∆f(S, s) ≥ 1− α

κ
(f(OPT)− f(S))− 2ϵ.

Proof. At the first iteration, if an element s is added to the solution set, it holds by Lemma 13 that (1+
α
3)∆f(S, s) ≥ w−ϵ. Since at the first iteration w = d and d ≥ (1−α/3)maxs∈U f(s)−ϵ. It follows
that ∆f(S, s) ≥ 1−α/3

1+α/3 maxs∈U f(s)− 2ϵ
1+α/3 ≥ (1−α)maxs∈U f(s)− 2ϵ. By submodularity we

have that κmaxs∈U f(s) ≥ f(OPT). Therefore, ∆f(S, s) ≥ 1−α
κ (f(OPT)− f(S))− 2ϵ.

At iteration i where i > 1, if an element o ∈ OPT is not added to the solution set, then it is not
added to the solution set at the last iteration, where the threshold is w

1−α/3 . By Lemma 13, we have
(1 − α/3)∆f(S, o) ≤ w

1−α/3 + ϵ. For any element s that is added to the solution at iteration i, by
Lemma 13 it holds that (1 + α/3)∆f(S, s) ≥ w − ϵ. Therefore, we have

∆f(S, s) ≥ w − ϵ

1 + α/3

≥ (1− α/3)2∆f(S, o)− (1− α/3)ϵ− ϵ

1 + α/3

≥ (1− α)∆f(S, o)− 2ϵ.

By submodularity, it holds that ∆f(S, s) ≥ (1− α) f(OPT)−f(S)
κ − 2ϵ.

E NON-MONOTONE SUBMODULAR OBJECTIVES

In Section 4 and Section 5, we employ the adaptive sampling algorithm CS as a subroutine in
algorithms that share the same intuition as TG to determine if the marginal gain is approximately

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

above or below the threshold w. In this section, we demonstrate that CS can also be employed to
develop a deterministic algorithm for the Submodular Maximization (USM) problem, following a
similar idea as in Buchbinder et al. (2015). Here we assume that the sampling of the marginal gain
∆f(S, s) is R-sub-Gaussian for any S ⊆ U and s ∈ U .

We propose the algorithm CDG, which is based upon the deterministic algorithm presented in
Buchbinder et al. (2015) ("Double Greedy") for USM in the noise-free setting, with our procedure
CS integrated into it in order to deal with the noisy access to f . Here the parameters N1 and Ct in
the subroutine algorithm CS are defined in accordance with Theorem 1. We denote the sets A and
B after the i-th iteration in CDG as Ai and Bi, and the element processed in the i-th iteration as ui.
Pseudocode for CDG is presented in Algorithm 4.

We start by briefly describing the deterministic algorithm in Buchbinder et al. (2015). In par-
ticular, the algorithm of Buchbinder et al. (2015) maintains two sets A and B as it makes a
single pass through the ground set U in the order u1, ..., un. At each element ui, the algo-
rithm evaluates whether ∆f(Ai−1, ui), the marginal gain of adding the new element ui, sur-
passes the loss incurred by removing it from set Bi−1/{ui}, which is −∆f(Bi−1/{ui}, ui). If
∆f(Ai−1, ui) ≥ −∆f(Bi−1/{ui}, ui), then ui is added to the final solution set. Otherwise, it is
removed from Bi−1. Our insight is that this procedure in fact is asking about whether the value of the
function ∆f(Ai−1, ui) + ∆f(Bi−1/{ui}, ui) is above or below the threshold 0.

It is important to note that CS cannot be used as a subroutine in the randomized algorithm with a
1/2 approximation guarantee as presented in Buchbinder et al. (2015). This is due to a fundamental
difference in the requirements of the two algorithms. The randomized algorithm in Buchbinder et al.
(2015) requires knowing the exact ratio of ∆f(Ai−1,ui)

∆f(Ai−1,ui)+∆f(Bi−1/{ui},ui)
, while CS only guarantees

the difference between the mean of a random variable and a threshold value w. Therefore, in the
deterministic algorithm, we can apply CS to find whether the expectation of Xi = ∆̃f(Ai−1, ui) +

∆̃f(Bi−1/{ui}, ui) is approximately above or below 0.

We now present our theoretical guarantees for CDG below in Theorem 15. The proof of Theorem
15 can be found in the supplementary material. We note that our algorithm CDG achieves nearly the
same approximation guarantee as that of Buchbinder et al. (2015), but with a small penalty due to the
noisy setting.

Theorem 15. CDG makes n calls of CS. In addition, with probability at least 1− δ, the following
statements hold:

1. The exact function value of the output solution set S satisfies that f(S) ≥ f(OPT)
3 − ϵ;

2. Each call of CS on input (0, 3ϵ
n , δ

n ,DXi ,
√
2R) takes at most the minimum between{

4n2R2

9ϵ2
log

(
4n

δ

)
,
16R2

ϕ2
i

log

(
32R2

ϕ2
i

√
2n

δ

)}

noisy samples. Here OPT is an optimal solution to the USM problem, and

ϕi :=
3ϵ/n+ |EXi|

2

=
3ϵ/n+ |∆f(Ai−1, ui) + ∆f(Bi−1/{ui}, ui)|

2
.

From Theorem 15, we can see that CDG achieves an approximation guarantee that is arbitrarily close
to 1/3, which matches the result of the deterministic algorithm in Buchbinder et al. (2015).

Now we start to prove the results in Theorem 15. Notice that conditioned on the solution set Ai−1 and
Bi−1, the random variables ∆̃f(Ai−1, ui) and ∆̃f(Bi−1/{ui}, ui) are R-sub-Gaussian. Therefore,
Xi := ∆̃f(Ai−1, ui) + ∆̃f(Bi−1/{ui}, ui) is

√
2R-sub-Gaussian, the second result is implied by

applying Theorem 1 immediately. To prove the first result in Theorem 15, we need the following
lemma.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Algorithm 4: Confident Double Greedy (CDG)

1: Input: ϵ, δ
2: A← ∅, B ← U
3: for all u ∈ U do
4: Define r.v. X = ∆̃f(A, u) + ∆̃f(B/{u}, u),
5: thre = Confident Sample (0, 3ϵ

n , δ
n , DX ,

√
2R)

6: if thre then
7: A← A ∪ {u}
8: else
9: B ← B/{u}

10: end if
11: end for
12: return A

Lemma 16. With probability at least 1− δ
n , the i-th call of CS satisfies the following inequality

f(Ai−1 ∪OPTi−1)− f(Ai ∪OPTi) ≤

[f(Ai)− f(Ai−1)] + [f(Bi)− f(Bi−1)] +
3ϵ

n
. (5)

where OPTi is the set of all elements from OPT that arrives after the i-th iteration.

Proof. From the statement of the algorithm, we know that the element ui is added to the solution if
and only if the output of CS is true. By applying the results in Theorem 1, we have that for each fixed
i, with probability at least 1− δ/n if ui is added, then ∆f(Ai−1, ui) ≥ −∆f(Bi−1/{ui}, ui)− 3ϵ

n .
Otherwise, ∆f(Ai−1, ui) ≤ −∆f(Bi−1/{ui}, ui) +

3ϵ
n . Let us denote the above event as Ei, we

discuss the following four cases in our analysis

1. If ui ∈ Ai, and ui ∈ OPT , then
f(Ai−1 ∪OPTi−1)−f(Ai ∪OPTi) = 0

Notice that ui ∈ Ai, then conditioned on Ei, we have ∆f(Ai−1, ui) ≥
−∆f(Bi−1/{ui}, ui)− 3ϵ

n . By submodularity, ∆f(Bi−1/{ui}, ui) ≤ ∆f(Ai−1, ui). Then
it follows that ∆f(Ai−1, ui) +

3ϵ
2n ≥ 0. Therefore, the term on the right-hand side of (5)

satisfies

[f(Ai)− f(Ai−1)] + [f(Bi)− f(Bi−1)] +
3ϵ

n

= ∆f(Ai−1, ui) +
3ϵ

n
≥ 0.

2. If ui ∈ Ai, and ui /∈ OPT , then
f(Ai−1 ∪OPTi−1)−f(Ai ∪OPTi)

= −∆f(Ai−1 ∪OPTi, ui)

≤ −∆f(Bi−1/{ui}, ui),

where the inequality is obtained by submodularity. The right-hand side in (5) is

[f(Ai)− f(Ai−1)] + [f(Bi)− f(Bi−1)] +
3ϵ

n

= ∆f(Ai−1, ui) +
3ϵ

n
.

Notice that ui ∈ Ai, then conditioned on Ei, we have ∆f(Ai−1, ui) ≥
−∆f(Bi/{ui}, ui)− 3ϵ

n . Therefore,

[f(Ai)− f(Ai−1)] + [f(Bi)− f(Bi−1)] +
3ϵ

n

= ∆f(Ai−1, ui) +
3ϵ

n
≥ −∆f(Bi−1/{ui}, ui).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

3. If ui /∈ Ai, and ui /∈ OPT , then

f(Ai−1 ∪OPTi−1)−f(Ai ∪OPTi) = 0.

Similarly as the first case, we have that −∆f(Bi−1/{ui}, ui) ≥ 3ϵ
2n . Since the right-hand

side is −∆f(Bi−1/{ui}, ui) +
3ϵ
n , the inequality holds.

4. If ui /∈ Ai, and ui ∈ OPT , then

f(Ai−1 ∪OPTi−1)− f(Ai ∪OPTi)

= ∆f(Ai−1 ∪OPTi, ui) ≤ ∆f(Ai−1, ui),

where the inequality holds by submodularity. Conditioned on the event Ei, it follows that
∆f(Ai−1, ui) ≤ −∆f(Bi/{ui}, ui) +

3ϵ
n . Since the right-hand side is

[f(Ai)− f(Ai−1)] + [f(Bi)− f(Bi−1)] +
3ϵ

n

= −∆f(Bi/{ui}, ui) +
3ϵ

n
,

the result is proved.

Now we prove Theorem 15.

Proof. Define the event

Fi = {f(Ai−1 ∪OPTi−1)− f(Ai ∪OPTi) ≤

[f(Ai)− f(Ai−1)] + [f(Bi)− f(Bi−1)] +
3ϵ

n
}.

From Lemma 16 and by taking the union bound, it follows that

P (Fi,∀i ∈ [n]) ≥ 1− δ

Therefore, with probability at least 1− δ, Fi holds for all i. Then by summing over all i, we would
get

n∑
i=1

f(Ai−1 ∪OPTi−1)− f(Ai ∪OPTi) ≤

n∑
i=1

{[f(Ai)− f(Ai−1)]

+ [f(Bi)− f(Bi−1)]}+ 3ϵ.

It follows that

f(OPT0)− f(An) ≤
[f(An)− f(A0)] + [f(Bn)− f(B0)]}+ 3ϵ.

Since the submodular function is nonnegative, and that f(An) = f(Bn), OPT0 = OPT , it follows
that f(A) ≥ f(OPT)/3− ϵ.

F APPENDIX FOR SECTION 5

In this section, we present supplementary material to Section 5. In particular, we present the com-
parison of the result of Confident Continuous Threshold Greedy in Theorem 5 to the
Accelerated Continuous Greedy algorithm (ACG) in Badanidiyuru & Vondrák (2014). Then in Section
F, we provide detailed proof of Theorem 5. In addition, we provide the psedocode of Confident
Continuous Threshold Greedy in Algorithm 5.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

F.1 COMPARISON OF CCTG WITH ACCELERATED CONTINUOUS GREEDY ALGORITHM

In this section, we compare the results of Theorem 5 and the Accelerated Continuous Greedy
algorithm (ACG) as presented in Badanidiyuru & Vondrák (2014).

1. First of all, we consider the case where we have exact access to the value oracle. In
this case, we can get that ∆̃f(S, s) = ∆f(S, s) ≤ maxs∈S f(s) for any subset S ⊆ U
and element s ∈ U . This implies that R can be set to be maxs∈S f(s). Consequently,
from Theorem 5, the output solution set of CCTG satisfies that f(S) ≥ (1 − 1/e −
O(ϵ))f(OPT), which aligns with the approximation ratio presented in Badanidiyuru &
Vondrák (2014). For the result on sample complexity, notice that each call of CS takes
at most min{O(κ

ϵ2 log
n
δϵ), O(κ

ϵϕ′′
X
log n

δϵϕ′′
X
)} number of samples, where the first result is

obtained by considering the worst case sample complexity of a fixed ϵ-approximation. Since
there are at most 3n

ϵ2 log κ
ϵ calls of CS during CCTG, if we only consider the worst-case

sample complexity, the total required sample complexity is at most O(κnϵ3 log2 n
ϵ) for CCTG.

This matches the result in Badanidiyuru & Vondrák (2014). In this sense, we improve the
sample complexity when reduced to the case of assuming an exact oracle to the marginal
gains.

2. On the other hand, from Theorem 5, we can see that even if the access to ∆f is noisy, as
long as the upper bound on the noisy marginal gain R is less than f(OPT), the above
analysis on sample complexity and approximation ratio holds. Hence, we can conclude that
compared to access to an exact value oracle, the assumption of access to noisy marginal
gain does not lead to additional sample complexity or a deterioration in the approximation
ratio when compared to the scenario with an exact value oracle.

F.2 PROOF OF THEOREM 5

In this section, we present the detailed proof of Theorem 5 about our algorithm CCTG.

Theorem 5. CCTG makes at most 3n
ϵ2 log 3κ

ϵ calls of CS. In addition, with probability at least 1− δ,
the following statements hold:

• The output fractional solution x achieves the approximation guarantee of F(x) ≥ (1 −
e−1 − 2ϵ)f(OPT)−Rϵ.

• Each call of CS on input (w, ϵR
2κ , δϵ

2nh′(ϵ) , DX , R) requires at most the minimum between

18κ

ϵ2
log

(
8nh′(ϵ)

δϵ

)
and

36R

ϵϕ′′
X

log

(
144R

ϵϕ′′
X

√
nh′(ϵ)

δϵ

)
noisy queries to the marginal gain. Here OPT is an optimal solution to the MSMM problem,
ϕ′′
X =

ϵR
2κ −ϵEX/3+|w−EX|

2 , and h′(ϵ) = 3
ϵ log (

3κ
ϵ).

Proof. The second result on the sample complexity of calling the subroutine algorithm CS can be
obtained immediately by applying the second result in (2a) in Lemma 17. Here we prove the first
result in the theorem. Let us denote the fractional solution at time step t as xt. From Lemma 18, it
follows that conditioned on the events in Lemma 17, we have

F(xt+1)− F(xt) ≥ ϵ(1− ϵ)f(OPT)

− ϵ(1− ϵ)F(xt+1)− ϵ2R.

It then follows that

F(xt+1) ≥
F(xt) + ϵ(1− ϵ)f(OPT)− ϵ2R

1 + ϵ(1− ϵ)

≥ (1− ϵ)F(xt) + ϵ(1− ϵ)2f(OPT)− ϵ2R

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Algorithm 5: Confident Continuous Threshold Greedy (CCTG)

1: Input: ϵ, δ,M∈ 2U

2: x← 0
3: for all s ∈ U and s ∈M do
4: f̂(s)← sample mean over 18κ

ϵ2 log 4n
δ samples from D(∅, s)

5: end for
6: d := maxs∈M f̂(s),
7: for t = 1 to 1/ϵ do
8: B ←Decreasing-Threshold Procedure (x, ϵ, δ, d,M)
9: x← x + ϵ · 1B

10: end for
11: return x

Algorithm 6: Decreasing-Threshold Procedure (DTP)

1: Input: x, ϵ, δ, d,M∈ 2U

2: w ← d, B ← ∅
3: while w > ϵd

3κ do
4: for all u ∈ U do
5: if B ∪ {u} ∈ M then
6: X = ∆̃f(S(x + ϵ1B), u)
7: thre = Confident Sample (w, Rϵ

2κ , δϵ
2nh′(ϵ) , DX , R)

8: if thre then
9: B ← B ∪ {u}

10: end if
11: end if
12: end for
13: w = w(1− ϵ/3)
14: end while
15: return B

Since there are 1/ϵ iterations in CCTG, the output x satisfies that x = x1/ϵ. By applying induction to
the above inequality, we would get

F(x1/ϵ) ≥ (1− (1− ϵ)1/ϵ){(1− ϵ)2f(OPT)− ϵR}
≥ (1− 1/e){(1− ϵ)2f(OPT)− ϵR}
≥ (1− 1/e− 2ϵ)f(OPT)− ϵR.

Lemma 17. With probability at least 1− δ, the following two events hold.

1. (1− ϵ/3)maxs∈U f(s)− Rϵ
2κ ≤ d ≤ (1 + ϵ/3)maxs∈U f(s) + Rϵ

2κ .

2. During each call of CS on the input (w, ϵR
2κ , δϵ

2nh′(ϵ) ,DX , R, ϵ/3) with the evaluated random

variable being X = ∆̃f(S(x + ϵ1B), u) where x is the fractional solution , B is the set of
coordinates and u is an element in U , the results in Theorem 2 holds. I.e.,

(a) CS takes at most the minimum between

18κ

ϵ2
log

(
8nh′(ϵ)

δϵ

)
and

36R

ϵϕ′′
X

log

(
144R

ϵϕ′′
X

√
nh′(ϵ)

δϵ

)
.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(b) If the output is true, then

(1 + ϵ/3)E∆̃f(S(x + ϵ1B), u) ≥ w − ϵR

2κ
.

If the output is false, then

(1− ϵ/3)E∆̃f(S(x + ϵ1B), u) ≤ w +
ϵR

2κ
.

Proof. First of all, by applying the inequality in Lemma 20, we have that for each fixed s ∈ U , after
taking N4 = 18κ

ϵ2 log 4n
δ number of samples, it follows that

P
(
|f̂N4(s)− f(s)| ≥ ϵ

3
f(s) +

Rϵ

2κ

)
≤ δ

2n
.

Taking a union bound over all elements in U , it follows that

P
(
|f̂N4(s)− f(s)| ≥ ϵ

3
f(s) +

Rϵ

2κ
,∀s ∈ U

)
≤ δ

2
.

Following the similar idea as in the proof of the Lemma 8, we can prove the first result.

Now we start to prove the second result. For each fixed call of CS with input (w, ϵR
2κ , δϵ

2nh′(ϵ) , DX ,
R, ϵ/3), by applying the results in Theorem 2, we have that with probability at least 1 − δϵ

2nh′(ϵ) ,
both the statements about the sample complexity in (2a) and approximation guarantee in (2b) in the
lemma holds. Since there are 1/ϵ calls of the Decreasing-Threshold Procedure and each
Decreasing-Threshold Procedure makes at most nh′(ϵ) calls of the CS algorithm, there
are at most nh′(ϵ)/ϵ calls of the CS algorithm. By taking the union bound, we can prove that with
probability at least 1− δ/2, the second results hold. By taking the union bound again, we can see
that with probability at least 1− δ, all of the results in the lemma hold.

Lemma 18. Conditioned on the two events defined in Lemma 17, we have that during each im-
plementation of Decreasing-Threshold Procedure, the output coordinate set B satisfies
that

F(x + ϵ1B)− F(x) ≥ ϵ(1− ϵ){f(OPT)− F(x + ϵ1B)}
− ϵ2R.

Proof. Here we denote the output solution set as B = {b1, b2, ..., bκ} where bi is the i-th element
that is added to set B. Here if |B| < κ, then for any i > |B|, bi is defined as a dummy variable. Since
M is a matroid, there exists a permutation of the optimal solution OPT = {o1, o2, ..., oκ} such that
Bi−1∪{oi} ∈ M for each i ∈ [κ]. For notation simplicity, we also define G(x, u) = E∆̃f(S(x), u).
First of all, we prove the following claim: for each i ∈ [κ], we have that

G(x + ϵ1Bi−1 , bi) ≥ (1− ϵ)G(x + ϵ1Bi−1 , oi)−
ϵR

κ

The proof is as follows: if the element bi is added at the first iteration, then from Lemma 17, we have
that (1 + ϵ/3)G(x + ϵ1Bi−1

, bi) ≥ w − ϵR
2κ . Since the threshold at the first iteration is w = d, and

d ≥ (1− ϵ/3)maxs∈U f(s)− Rϵ
2κ according to the first result in Lemma 17, then

(1 + ϵ/3)G(x + ϵ1Bi−1
, bi) ≥ (1− ϵ/3)max

s∈U
f(s)− ϵR

κ
.

Since maxs∈U f(s) ≥ maxo∈OPT f(o) ≥ G(x + ϵ1Bi−1
, oi), ∀i ∈ [κ], it then follows that

G(x + ϵ1Bi−1
, bi) ≥ (1− ϵ)G(x + ϵ1Bi−1

, oi)−
ϵR

κ
.

If bi is not a dummy variable and is not added in the first iteration, we can see that (1 + ϵ/3)G(x +
ϵ1Bi−1

, bi) ≥ w − Rϵ
2κ . Since the element oi is not added to B, it is not added at the last iteration. By

the construction of OPT , we have that Bi−1 ∪ {oi} ∈ M. Therefore,

(1− ϵ/3)G(x + ϵ1Bi−1
, oi) ≤

w

1− ϵ/3
+

Rϵ

2κ
.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Then

G(x + ϵ1Bi−1
, bi) ≥

(1− ϵ/3)2G(x + ϵ1Bi−1 , oi)

1 + ϵ/3

− (1− ϵ/3)ϵR

2(1 + ϵ/3)κ
− Rϵ

2(1 + ϵ/3)κ

≥ (1− ϵ)G(x + ϵ1Bi−1 , oi)−
ϵR

κ
.

Next, we consider the case where bi is a dummy variable. In this case G(x + ϵ1Bi−1 , bi) = 0. Since
oi is not added,

(1− ϵ/3)G(x + ϵ1Bi−1 , oi) ≤
ϵd

3κ
+

Rϵ

2κ
.

Since d ≤ (1 + ϵ/3)maxs∈U f(s) + Rϵ
2κ ≤ (1 + ϵ/3)R + Rϵ

2κ . Notice that when ϵ > 0.5, the
approximation guarantee in Theorem 5 is trivial. Therefore, here we can assume ϵ ≤ 0.5, which
implies that d ≤ 3R/2. Then we have that

(1− ϵ/3)G(x + ϵ1Bi−1 , oi) ≤ ϵR/κ.

Therefore,

G(x + ϵ1Bi−1
, bi) = 0

≥ (1− ϵ/3)G(x + ϵ1Bi−1 , oi)− ϵR/κ.

With this claim, we can prove the results of the lemma.

F(x + ϵ1B)− F(x) =
κ∑

i=1

F(x + ϵ1Bi
)− F(x + ϵ1Bi−1

)

=

κ∑
i=1

ϵ · ∂F
∂bi

∣∣
x=x+1Bi−1

≥ ϵ

κ∑
i=1

E∆f(S(x + ϵ1Bi−1
), bi)

= ϵ

κ∑
i=1

G(x + ϵ1Bi−1
, bi).

Here the last equality comes from the fact that E∆f(S(x), u) = E∆̃f(S(x), u). By the claim, it
follows that

F(x + ϵ1B)− F(x) ≥ ϵ

κ∑
i=1

(1− ϵ)G(x + ϵ1Bi−1
, oi)− ϵ2R

= ϵ(1− ϵ)

κ∑
i=1

E∆f(S(x + ϵ1Bi−1
), oi)

− ϵ2R

≥ ϵ(1− ϵ)

κ∑
i=1

E∆f(S(x + ϵ1B), oi)

− ϵ2R

≥ ϵ(1− ϵ){f(OPT)− F(x + ϵ1B)}
− ϵ2R.

Here the second and third inequality are due to submodularity and monotonicity.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

G TECHNICAL LEMMAS

Lemma 19 (Hoeffding’s Inequality). Let X1, ..., XN be independent random variables such that Xi

is R-sub-Gaussian and E[Xi] = µ for all i. Let X = 1
N

∑N
i=1 Xi. Then for any t > 0,

P (|X − µ| ≥ t) ≤ 2 exp{−Nt2

2R2
}.

Lemma 20 (Relative + Additive Chernoff Bound (Lemma 2.3 in Badanidiyuru & Vondrák (2014))).
Let X1, ..., XN be independent random variables such that for each i, Xi ∈ [0, R] and E[Xi] = µ

for all i. Let X̂N = 1
N

∑N
i=1 Xi. Then

P (|X̂N − µ| > αµ+ ϵ) ≤ 2 exp{−Nαϵ

3R
}.

Lemma 21. Let X1, ..., XN be independent random variables such that Xi ∈ [0, R] and E[Xi] = µ

for all i. Let X = 1
N

∑N
i=1 Xi. Then for any t > 0 and δ > 0, if

N ≥ R2 ln(1/δ)

t2
,

then P (|X − µ| ≥ t) ≤ δ.

Proof. This result follows easily from Hoeffding’s Inequality.

Lemma 22. Let X1, ..., XN be independent random variables such that Xi ∈ [0, R] and E[Xi] = µ

for all i. Let X = 1
N

∑N
i=1 Xi. Then for any δ > 0, if

c ≥ R

√
ln(2/δ)

2N
, (6)

it is the case that

P (µ ∈ [X − c,X + c]) ≤ δ.

Proof. This result follows easily from Hoeffding’s Inequality.

Lemma 23. Suppose x ∈ R and x ≥ 2, if we have x ≥ 2
a log 2

a , then it holds that

log x

x
≤ a

Proof. Since y = log x
x is decreasing when x ≥ 2, if x > 2

a log 2
a , then we have

log x

x
<

a

2
·
log(2a log 2

a)

log 2
a

≤ a.

H ADDITIONAL EXPERIMENTS

In this section, we present some additional details of our experiments. In particular, we present
additional detail about the experimental setup in Section H.1. Next, we present the additional
experimental results in Section H.2.

H.1 ADDITIONAL EXPERIMENTAL SETUP

First of all, we provide details about the two applications used to evaluate our algorithms. The two
applications considered here are noisy data summarization as presented in Section H.1.1 and influence
maximization in Section H.1.2.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

H.1.1 NOISY DATA SUMMARIZATION

In data summarization, U is a dataset that we wish to summarize by choosing a subset of U of
cardinality at most κ. The objective function f : 2U → R≥0 takes a subset X ⊆ U to a measure
of how well X summarizes the entire dataset U , and in many cases is monotone and submodular
Tschiatschek et al. (2014). However, in real instances of data summarization, we may not have
access to an exact measure f of the quality of a summary, but instead, we may have authentic human
feedback which is modeled as noisy queries to some underlying monotone and submodular function
Singla et al. (2016).

Motivated by this, we run our experiments using instances of noisy data summarization. Our underly-
ing monotone submodular function f is defined as follows: U is assumed to be a labeled dataset, e.g.
images tagged with descriptive words, and for any X ⊆ U , f takes X to the total number of tags
represented by at least one element in X Crawford (2023). Notice that this is essentially the instance
of set cover.

H.1.2 INFLUENCE MAXIMIZATION

Another application is the influence maximization problem in large-scale networks Kempe et al.
(2003). In this application, the universe is the set of users in the social network, and the objective
is to choose a subset of users to seed with a product to advertise in order to maximize the spread
throughout the network. The marginal gain of adding an element s to set S is defined as ∆f(S, s) :=
Ew∼D(w̄)∆f(S, s;w), where w is the noisy realization of the graph from some unknown distribution
D(w̄), and ∆f(S, s;w) = f(S ∪ {s};w)− f(S;w). In a noisy graph realization with parameter w,
f(S;w) is the number of elements influenced by the set S under some influence cascade model. It is
#P-hard to evaluate the objective in influence maximization Chen et al. (2010). Many of the previous
works Chen et al. (2009) assume the entire graph can be stored by the algorithm and the influence
cascade model is known. The algorithm first samples some graph realizations to approximate the
true objective and run submodular maximization algorithms on the sampled graphs. In contrast, our
setting and algorithm do not assume that a graph is stored or the model of influence is explicitly
known, only that we could simulate it for a subset. Therefore our approach could apply in more
general influence maximization settings than the sampled realization approach.

Next, we describe the details about the three algorithms that we compare to: (i) The fixed ϵ approxi-
mation (“EPS-AP”) algorithm. This is where we essentially run CTG, except instead of using the
subroutine CS to adaptively sample in order to reduce the number of samples, we simply sample
down to an ϵ-approximation of every marginal gain. This takes N1 samples for every marginal
gain computation, see definition of N1 in Algorithm 1. The element u is added to S if and only
if the empirical estimate ∆̂fN1

(S, u) ≥ w; (ii) The special case of the algorithm ExpGreedy
of Singla et al. (2016) that yields about a (1 − 1/e)-approximate solution with high probability,
“EXP-GREEDY”, which is described in Section 1.1 and in the appendix. In the detailed description of
ExpGreedy found in the appendix in the supplementary material, this is the case that k′ is set to be
1; (iii) The randomized version of the algorithm of ExpGreedy, “EXP-GREEDY-K”, which yields
about a (1− 1/e)-approximation guarantee in expectation. Since EXP-GREEDY-K is a randomized
algorithm, we average the results for EXP-GREEDY-K over 10 trials. This is the case that k′ = κ.

Then we provide some additional details for experiments on instances of data summarization. The
parameter δ for all the experiments is set to be 0.2, and the approximation precision parameter α is
0.2 for both CTG and EPS-AP. The value of ϵ of the experiments for different κ are 0.1, 0.2, 0.1 and
0.1 on corel_60, delicious_300, delicious, and corel respectively. The value of κ for different ϵ are
10, 80, 200 and 100 on corel_60, delicious_300, delicious and corel respectively.

At last, we introduce the experimental setup for influence maximization. We run the four algorithms
described above on the experiments for different values of κ and ϵ. The dataset used here is a sub-
graph extracted from the EuAll dataset with n = 29 Leskovec & Sosič (2016). The underlying weight
of each edge is uniformly sampled from [0, 1] (“euall”). In our experiments, we simulate the influence
maximization under the influence cascade model. We further use the reverse influence sampling (RIS)
Borgs et al. (2014) to enhance the computation efficiency of our algorithm. Here R is the number of
nodes in the graph and is thus 29. The value of κ for different ϵ is 8, and the value of ϵ for different κ
is 0.15. The parameters δ and α are set to be 0.2 for both of the experiments. Since EXP-GREEDY-K

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

0.10 0.15 0.20
ε

0.00

0.25

0.50

0.75

1.00

f

×103

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(a) delicious_300 f

20 40 60 80
k

0.0

0.3

0.6

0.9

1.2

f

×103

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(b) delicious_300 f

0.05 0.10 0.15
ε

0

10

20

30

40

f

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(c) corel_60 f

5 10 15 20
k

0

20

40

60

80

f

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(d) corel_60 f

0.02 0.04 0.06 0.08
ε

0

80

160

240

320

f

CTG
EPS-AP

(e) corel f

10 20 30 40
k

0

50

100

150

200

f

CTG
EPS-AP

(f) corel f

0.05 0.10 0.15 0.20
ε

0.0

0.8

1.6

2.4

f

×103

CTG
EPS-AP

(g) delicious f

50 100 150 200 250
k

0.0

0.8

1.6

2.4

3.2

f

×103

CTG
EPS-AP

(h) delicious f

Figure 4: The experimental results of f of running different algorithms on instances of data summa-
rization on the delicious URL dataset ("delicious", "delicious_300") and Corel5k dataset ("corel",
"corel_60").

is a randomized algorithm, the experimental results for EXP-GREEDY-K are averaged over 4 trials
for different ϵ, and 8 trials for different κ.

H.2 ADDTIONAL EXPERIMENTAL RESULTS

First, we present the result analysis of the experiments where we vary ϵ. It can be seen from Figures
3(a), 3(b), 3(e) and 3(f) that both the total samples and average samples of our algorithm CTG increase
less compared with EPS-AP and EXP-GREEDY as ϵ decreases. This is not surprising, because the
theoretical guarantee on the number of samples taken per marginal gain contribution in EPS-AP is
O(1

ϵ2), which would increase rapidly when ϵ decreases. This also makes sense for EXP-GREEDY,
since the theoretical guarantee on the number of queries of each iteration is O(nR

2

ϵ2 log
(
R2kn
δϵ2

)
) if

the difference between elements marginal gains are very small.

Then we present the additional experimental results with respect to the function value f on the
instance of data summarization in the main paper. The results are in Figure 4. The experimental
results of f for different κ are in Figure 4(b), 4(h), 4(d) and 4(f). From the results, one can see
that the f values for different algorithms are very almost the same in most cases. However, when
κ increases and becomes large, the f value of EXP-GREEDY-K is smaller than other algorithms,
which is because when κ is large, it allows for more randomness in EXP-GREEDY-K and is less
accurate.

Next, we present the experimental results on the instance of influence maximization. The results
are plotted in Figure 5. From the results, we can see that our proposed algorithm CTG outperforms
the other three algorithms in terms of the total number of samples (see Figure 5(a), 5(d)). When
κ increases, the average number of samples decreases fast for CTG. This is because the marginal
gain on this instance decreases rapidly when κ increases while the threshold value decreases only
by a factor of 1 − α at the end of each iteration, in many iterations the threshold value w is much
higher than the marginal gain and thus the gap function ϕ(S, s) is large. According to the results
of sample complexity in Theorem 3, the number of required samples decreases fast as κ increases.
This is also why the average number of samples of CTG is much smaller than EXP-GREEDY and
EXP-GREEDY-K as is presented in Figure 5(b) and Figure 5(e).

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

0.10 0.15 0.20
ε

0.0

0.6

1.2

1.8

2.4

sa
m
pl
es

×108

CTG
EPS-AP
EXP-GREEDY-K
EXP-GREEDY

(a) euall samples

0.10 0.15 0.20
ε

0

2

4

6

av
er

ag
e

sa
m

pl
es

×105

CTG
EPS-AP
EXP-GREEDY-K
EXP-GREEDY

(b) euall average samples

0.10 0.15 0.20
ε

0

6

12

18

24
f

CTG
EPS-AP
EXP-GREEDY-K
EXP-GREEDY

(c) euall f

2 4 6 8
k

2

4

6

8

sa
m
pl
es

×107

CTG
EPS-AP
EXP-GREEDY-K
EXP-GREEDY

(d) euall samples

2 4 6 8
k

0.8

1.6

2.4

3.2

av
er

ag
e

sa
m

pl
es

×105

CTG
EPS-AP
EXP-GREEDY-K
EXP-GREEDY

(e) euall average samples

2 4 6 8
k

0

4

8

12

16

f

CTG
EPS-AP
EXP-GREEDY-K
EXP-GREEDY

(f) euall f

Figure 5: The experimental results of running different algorithms on the instance of influence
maximization on the EuAll dataset ("euall").

39

	Introduction
	Related work

	Preliminary Definitions and Notations
	Confident Sampling Algorithm
	Monotone Submodular Maximization
	Algorithm description of CTG
	Theoretical guarantees and analysis

	Continuous Threshold Greedy with Noisy Queries
	Applications and Experiments
	Experimental setup
	Experimental results

	Additional Related Work
	Other noisy model

	Comparison with ExpGreedy
	Appendix for Section 3
	Comparison of CS to fixed -approximation
	Additional lemmas and analysis of Theorem 1
	Proof and analysis of Theorem 2

	Appendix for Section 4
	Comparing to sampling-before-hand algorithm
	Analysis of sampling-before-hand approach

	Proof of Theorem 3
	Analysis of CTG2

	Non-monotone Submodular Objectives
	Appendix for Section 5
	Comparison of CCTG with Accelerated Continuous Greedy algorithm
	Proof of Theorem 5

	Technical Lemmas
	Additional Experiments
	Additional experimental setup
	Noisy data summarization
	Influence maximization

	Addtional experimental results

