

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ANY-ORDER ANY-SUBSET AUTOREGRESSIVE MODEL

Anonymous authors

Paper under double-blind review

ABSTRACT

We propose Any-order Any-subset Autoregressive modeling (A3), a novel sequence generation framework that generalizes standard autoregressive (AR) factorization to support the prediction of arbitrary token groups in any order. A3 overcomes the limitations of conventional left-to-right decoding by enabling flexible groupwise generation while preserving probabilistic rigor and training stability. Our design combines a two-stream attention architecture with a progressive training strategy, allowing both efficient parallel decoding and robust modeling of diverse dependency structures. Empirical results demonstrate that A3 achieves a superior trade-off between generation speed, flexibility, and quality compared to state-of-the-art AR and diffusion-based methods. This work offers a unified approach for a flexible, efficient, and novel language modeling paradigm.

1 INTRODUCTION

Autoregressive (AR) modeling has been the dominant paradigm for text generation, underpinning the success of most large language models (Touvron et al., 2023; Bai et al., 2023a; Radford et al., 2018). In the AR framework, the joint probability of a token sequence is factorized in a fixed left-to-right order, generating one token at a time. While simple and effective, this formulation imposes several intrinsic limitations. For example, the strict left-to-right ordering prevents models from fully exploiting bidirectional context during generation. Also, the one-token-at-a-time decoding process creates a computational bottleneck that limits generation efficiency. These fundamental drawbacks constrain both modeling flexibility and decoding speed, especially in long-context and complex generation scenarios (Kuratov et al., 2024; Bai et al., 2023b).

Alternative approaches such as masked diffusion language models (Li et al., 2022; Gong et al., 2025; Gulrajani & Hashimoto, 2024) attempt to address these limitations by enabling parallel prediction of multiple tokens. By iteratively denoising partially masked sequences, diffusion models can achieve any-order generation and leverage bidirectional context. However, these methods introduce new challenges: they often require carefully tuned noise schedules and multi-step inference, which complicates training and slows decoding, and they typically yield less stable training dynamics and lower sample quality compared to AR approaches (Kim et al., 2025).

In this work, we propose **Any-order Any-subset Autoregressive modeling** (A3), a new framework that merges the strengths of AR modeling with the flexibility of parallel generation. A3 generalizes the standard AR factorization by partitioning the sequence into arbitrary groups of tokens and predicting them in any order. This groupwise factorization retains the probabilistic rigor of AR models while enabling flexible dependency structures, bidirectional conditioning, and efficient groupwise decoding.

To realize A3 in practice, we design a two-stream attention architecture that supports arbitrary group orderings, and develop a progressive training strategy that adapts pretrained AR models to any-order prediction. Our framework naturally supports diverse inference strategies, including groupwise AR sampling and dynamic resampling, offering a tunable trade-off between generation speed and quality.

Through comprehensive experiments on question answering (Joshi et al., 2017), commonsense reasoning (Zellers et al., 2019; Sakaguchi et al., 2020; Sap et al., 2019; Bisk et al., 2020), and story infilling tasks (Mostafazadeh et al., 2016), we show that A3 achieves strong performance across diverse benchmarks while enabling flexible and efficient generation. Notably, A3 outperforms state-of-the-art diffusion-based models despite using substantially less training data, and demonstrates

054 promising scaling behavior with model size. These results suggest that A3 provides a new direction
 055 for bridging the gap between AR and parallel generation paradigms.
 056

057 Our contributions can be summarized as follows:

- 058 • **Conceptually**, we propose A3, a novel language modeling framework that leverages both
 059 insights from AR modeling and parallel generation. With groupwise token partition, A3
 060 successfully enables flexible generation at *any subset in any order*.
- 061 • **Practically**, we implement A3 for both training and inference phases. Building on a novel
 062 attention architecture that supports arbitrary group orderings, A3 can be trained progres-
 063 sively to adapt pretrained AR models to any-order prediction during inference.
- 064 • **Empirically**, we evaluate A3 across diverse reasoning and QA benchmarks to demonstrate
 065 its strong performance while enabling flexible and efficient generation, showing its great
 066 potential serving as next-generation of language modeling paradigm.

068 2 ANY-ORDER ANY-SUBSET AUTOREGRESSIVE MODELING

069 2.1 FORMULATION

070 In this section, we will demonstrate the formulation of our proposed Any-order Any-subset Autore-
 071 gressive modeling (A3). The dominant paradigm for text generation is autoregressive (AR) model-
 072 ing, where the joint probability of a sequence $x_{1:N}$ with length N is factorized in a fixed left-to-right
 073 order:

$$074 P(x_{1:N}) = \prod_{t=1}^N P(x_t | x_{<t}). \quad (1)$$

075 This formulation is simple, effective, and fundamental to most large language models (Touvron
 076 et al., 2023; Bai et al., 2023a; Radford et al., 2018). However, it introduces two key limitations.
 077 First, the left-to-right constraint forces the model to generate tokens sequentially, preventing it from
 078 leveraging bidirectional context during both training and inference. Second, decoding proceeds one
 079 token at a time, creating a bottleneck of inference efficiency. Together, these limitations restrict the
 080 model’s ability to fully exploit contextual information and achieve faster generation.

081 Alternative paradigms such as masked diffusion models (Li et al., 2022; Gong et al., 2025; Gulrajani
 082 & Hashimoto, 2024) attempt to overcome the speed bottleneck by generating multiple tokens in
 083 parallel. Concretely, the index set $1, 2, \dots, N$ is partitioned into two disjoint subsets: a unmasked
 084 index group G_1 and its masked complement G_2 . The model then predicts the masked tokens x_{G_2}
 085 conditioned on the visible tokens x_{G_1} :

$$086 P(x_{G_2} | x_{G_1}) = \prod_{t \in G_2} P(x_t | x_{G_1}). \quad (2)$$

087 During inference, the model starts from a fully masked sequence (i.e., $G_2 = \emptyset$) and iteratively de-
 088 noises it by resampling subsets of positions, filling in multiple tokens at each step. This procedure
 089 alleviates the inference-speed limitation of AR models by enabling parallel token generation. How-
 090 ever, masked diffusion models suffer from two key drawbacks. First, since only a subset of tokens
 091 is predicted in each training step, the learning signal is partial and less informative, often yielding
 092 lower sample quality compared to AR models. Second, the training dynamics are unstable: perfor-
 093 mance depends heavily on carefully tuned noise schedules, masking strategies, and iteration counts,
 094 which complicates optimization and make it difficult to achieve consistent performance (Kim et al.,
 095 2025).

096 We now seek a middle ground: a model that preserves the probabilistic rigor of AR modeling while
 097 enabling flexible prediction orders and parallelism in decoding. This motivates **Any-order Any-**
 098 **subset Autoregressive** modeling (A3), which extends the AR framework to group-level prediction.
 099 Instead of using a fixed left-to-right order with unit-sized steps, A3 factorizes the joint probability
 100 by partitioning the token sequence into groups:

$$101 P(x_{1:N}) = \prod_{k=1}^K P(x_{G_k} | x_{g_{<k}}). \quad (3)$$

108 where G_1, G_2, \dots, G_K is a partition of the tokens and each group G_k may contain one or more
 109 tokens. Crucially, the ordering of groups is arbitrary, which enables flexible dependency structures.
 110

111 By training the model on random groupings and permutations, we expose it to a wide variety of
 112 factorization orders, forcing it to learn robust conditional dependencies beyond simple left-to-right
 113 context. This resembles the permutation LM objective of XLNet (Yang et al., 2019) but at the group
 114 level, enabling richer structural modeling.

116 2.2 DISCUSSION WITH PREVIOUS PARADIGMS

119 **Comparison with Masked Diffusion Language Models.** Masked diffusion language models
 120 (MDLMs) have recently emerged as an alternative to AR decoding, aiming to overcome the se-
 121 quential bottleneck of one-token-at-a-time generation. By iteratively denoising partially masked
 122 sequences, MDLMs can update multiple tokens in parallel and exploit bidirectional context (Austin
 123 et al., 2021; Li et al., 2022; Gong et al., 2025; Nie et al., 2025). This flexibility enables controllable,
 124 any-order generation and supports tasks such as infilling and global rewriting. However, diffusion
 125 approaches face two major limitations. First, inference speed is constrained by the need for many
 126 iterative refinement steps, with generation efficiency depending critically on noise schedules and
 127 step counts (Gong et al., 2025). While large-scale efforts such as DiffuGPT and LLaDA demon-
 128 strate that diffusion LMs can match or surpass AR models in quality, they still require careful tuning
 129 and incur nontrivial decoding costs (Gong et al., 2025; Nie et al., 2025). Second, training stability
 130 is less favorable than AR: discrete diffusion objectives require complex forward-reverse processes
 131 and additional pretraining or adaptation, making optimization more resource-intensive and sensitive
 132 to hyperparameters (He et al., 2023).

133 In contrast, A3 preserves the probabilistic rigor and training simplicity of AR modeling while in-
 134 troducing flexible groupwise factorization. This allows parallel prediction of token subsets without
 135 relying on multi-step denoising schedules, thereby offering both efficiency and stability.

136 **Comparison with AR Multi-Token Prediction.** Another line of work seeks to improve AR effi-
 137 ciency by enabling the model to predict multiple future tokens per step (Gloeckle et al., 2024; Kou
 138 et al., 2024). Multi-token objectives and speculative decoding significantly reduce inference latency:
 139 for instance, predicting four tokens at once can yield up to threefold speedups while preserving or
 140 even improving generation quality, particularly in reasoning and code generation tasks (Gloeckle
 141 et al., 2024). These methods retain the training stability of standard AR, since the additional ob-
 142 jectives can be implemented as auxiliary losses with negligible computational overhead. However,
 143 multi-token prediction remains bound to a fixed left-to-right ordering, limiting its modeling flexibil-
 144 ity. The approach accelerates sequential decoding but does not enable infilling, bidirectional con-
 145 ditioning, or arbitrary ordering of token generation. Moreover, these methods depend on multiple
 146 linear heads, which limits maximum parallelism. Therefore, they cannot reach the same theoretical
 147 decoding parallelism as diffusion-style iterative refinement. A3, by contrast, can reuse diffusion-
 148 like scheduling using a single AR model, enabling it to achieve a higher theoretical upper bound on
 149 parallel decoding efficiency while remaining within an AR framework.

150 A3 generalizes beyond this paradigm by relaxing the strict AR factorization. Through arbitrary
 151 group partitions and orderings, A3 supports both sequential and parallel decoding strategies, com-
 152 bining the efficiency gains of multi-token prediction with greater structural flexibility. For more
 153 discussions with related work, refer to Appendix B.

154 3 IMPLEMENTATIONS OF TRAINING AND FLEXIBLE INFERENCE

155 In this section, we describe the implementation of A3. We begin with the architectural design
 156 of A3, where we use a two-stream attention mechanism to enable predictions in arbitrary orders.
 157 Next, we present our efficient continuous pretraining strategy, which progressively adapts the model
 158 from standard AR prediction to group-based prediction. Finally, we introduce the flexible inference
 159 strategy of A3, which leverages its general formulation to support diverse decoding modes.

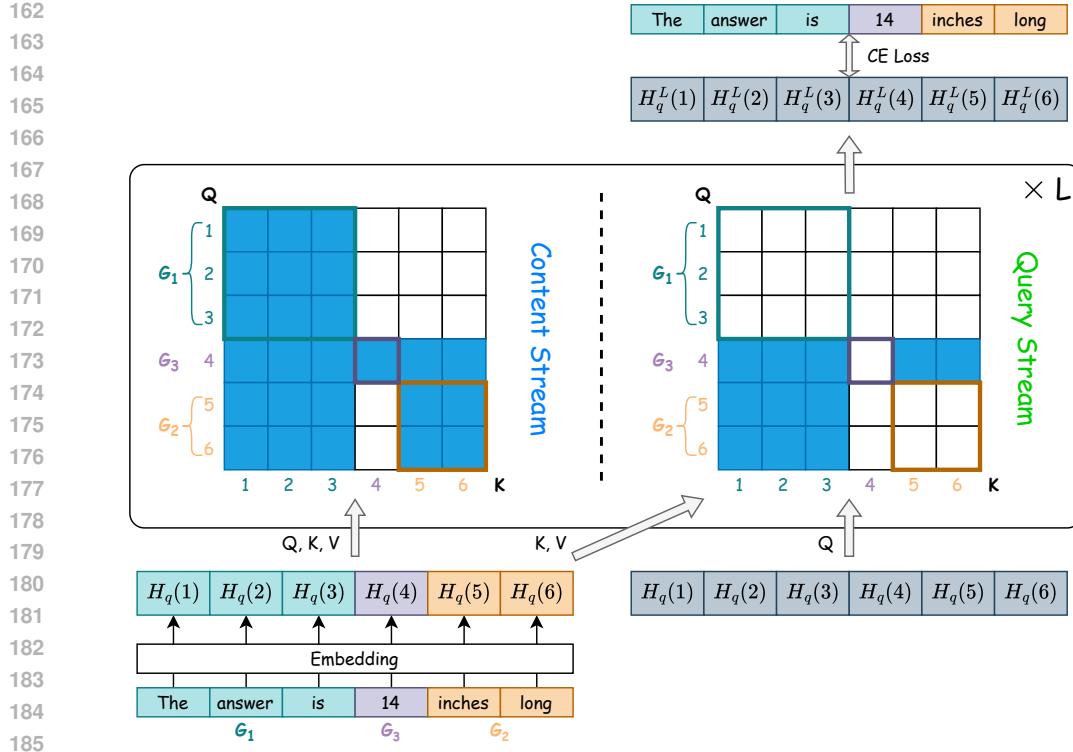


Figure 1: Architecture of the A3 model. Blue entries in the attention mask denote 0, and white entries denote $-\infty$. The model employs a two-stream attention module with distinct causal masks. The content stream encodes contextual information and attends to tokens within its own group as well as all preceding groups. The query stream encodes positional conditions and attends only to tokens in preceding groups. The final cross-entropy loss is computed between the input context and the query stream’s output. For illustration, we provide an example grouping with $G_1 = \{1, 2, 3\}, G_2 = \{5, 6\}, G_3 = \{4\}$, showing how the forward process and causal masks are applied.

3.1 ARCHITECTURE DESIGN WITH TWO-STREAM ATTENTION

Limitations of Current Architecture. The decoder-only Transformer has become the backbone of modern large language models due to its simplicity and effectiveness in next-token prediction. It operates with a single stream of hidden states, where information flow is regulated by a causal attention mask. This mask ensures that the representation of the k -th token can only attend to the first k tokens, thereby enforcing the AR constraint required for language modeling. While well-suited for the standard left-to-right objective, this design assumes a fixed generation order: given the first k tokens, the model is trained to treat the $(k + 1)$ -th position as the unique next target. Such rigidity makes it incompatible with any-order prediction, where the next position to be generated need not follow the sequential index.

The encoder-only Transformer, widely used in masked language modeling, represents the opposite design. Rather than causal masking, it processes the full sequence bidirectionally, with missing information represented by mask tokens. Through position embeddings on these masks, the model identifies which locations are to be predicted, allowing arbitrary subsets of tokens to be reconstructed simultaneously. However, this formulation limits dependency modeling: masked positions are predicted in parallel and conditioned only on observed context in a single pass. Without recursive, multi-layered dependencies across tokens, the encoder-only approach struggles to match the generative fidelity of AR models.

Two-stream Attention Design for Any-order Prediction. To combine the flexibility of encoder-style masking with the dependency modeling strength of autoregression, A3 extend the two-stream attention mechanism proposed by XLNet (Yang et al., 2019). The model maintains two parallel representations for each position: a **content stream**, which encodes semantic and contextual in-

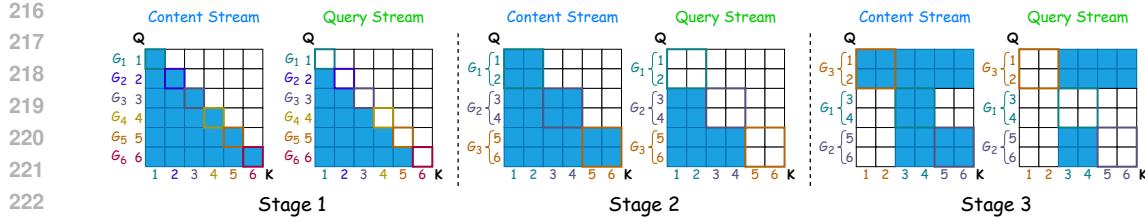


Figure 2: Causal masks for content stream and query stream in different stages. Blue for 0 and white for $-\infty$. Stage 1: **AR initialization** to reproduce AR factorization. Stage 2: **Group expansion** by allowing groups of size greater than one. Stage 3: **Order permutation** with introducing any-order prediction.

formation from the observed tokens, and a **query stream**, which provides position-aware signals to drive prediction of the next group. This separation allows A3 to retain the recursive structure of autoregression while relaxing the generation order constraint of decoder-only models. Figure 1 illustrates the pipeline of the forward process.

Formally, let $X = (x_1, \dots, x_N)$ denote the sequence, partitioned into groups $\{G_1, \dots, G_K\}$. In the **content stream**, the input consists of the observed tokens, embedded and passed through Transformer layers with a designed causal mask. This mask ensures that a token at group k can attend to all tokens in groups $\leq k$, i.e., both its own group and all groups before it. Thus, the content stream at group k aggregates all contextual evidence available up to that point. For group G_k , the hidden states in the content stream at layer l are computed as:

$$H_c^{(l)}(i) = \text{Attn}\left(Q = H_c^{(l-1)}(i), K = H_c^{(l-1)}(\leq G_k), V = H_c^{(l-1)}(\leq G_k)\right). \quad (4)$$

In the **query stream**, the input is a shared learnable query vector injected at every position. The key and value matrices are tied to those of the content stream, while the queries are separate. With an appropriately designed causal mask, each query vector at group k can only attend to content tokens in groups $< k$, not including its own group. This forces the query representation to serve as the position-aware predictor for the tokens in group k , relying only on prior context rather than future information. Conceptually, the query stream specifies *where* to predict (positional conditioning), while the content stream provides *what* to predict (contextual grounding). The hidden states in the query stream at layer l for group G_k are:

$$H_q^{(l)}(i) = \text{Attn}\left(Q = H_q^{(l-1)}(i), K = H_c^{(l-1)}(< G_k), V = H_c^{(l-1)}(< G_k)\right), \quad (5)$$

where the initialization $H_q^{(l-1)}(i) = w$ is a learnable query vector shared across positions, and the causal mask ensures the query stream at group k can only access content states from strictly earlier groups.

Finally, the predictive distribution for token $x_i \in G_k$ is parameterized by:

$$p(x_i | X_{< G_k}) = \text{Softmax}\left(W \cdot H_q^{(L)}(i)\right), \quad (6)$$

where L is the final layer and W projects the query hidden state to the vocabulary.

3.2 MULTI-STAGE TRAINING WITH PROGRESSIVE TOKEN GROUPING

Building on the connection between standard AR and A3, we design a progressive adaptation strategy that smoothly transitions from left-to-right generation to fully flexible any-order prediction. To leverage the stability and strong initialization of existing AR models, we begin training A3 from a pretrained AR checkpoint and gradually relax its constraints through three stages:

- **Stage 1: AR Initialization.** We align A3 with conventional AR training by setting the two-stream causal masks to exactly reproduce left-to-right factorization (Figure 2 Stage 1). Formally, the sequence $x_{1:N}$ is partitioned into singleton groups:

$$G_1 = \{1\}, G_2 = \{2\}, \dots, G_N = \{N\}. \quad (7)$$

270 This ensures that $P(x_{1:N}) = \prod_{t=1}^N P(x_t \mid x_{<t})$, identical to standard AR, providing a
 271 stable initialization.
 272

- 273 • **Stage 2: Group Expansion.** We expand beyond token-level prediction by allowing groups
 274 of size greater than one (Figure 2 Stage 2). Concretely, the sequence is partitioned into
 275 contiguous segments of fixed size $s > 1$, e.g.,

$$276 \quad G_1 = \{1, \dots, s\}, \quad G_2 = \{s+1, \dots, 2s\}, \quad \dots \quad (8)$$

277 with s gradually increased from 1 to 4. This teaches the model to predict multiple tokens
 278 jointly within each group while still maintaining AR dependencies across groups.
 279

- 280 • **Stage 3: Order Permutation.** We introduce any-order prediction within groups (Figure 2
 281 Stage 3). The group structure G_1, G_2, \dots, G_K remains sequential, but the token indices
 282 assigned to each group are drawn from a random permutation of $\{1, \dots, N\}$. For example,
 283 if π is a random permutation of indices, then

$$284 \quad G_1 = \{\pi(1), \dots, \pi(s)\}, \quad G_2 = \{\pi(s+1), \dots, \pi(2s)\}, \quad \dots \quad (9)$$

285 The model therefore learns to predict tokens in arbitrary subsets, while still preserving a
 286 group-to-group AR factorization:
 287

$$288 \quad P(x_{1:N}) = \prod_{k=1}^K P(x_{G_k} \mid x_{G_{<k}}). \quad (10)$$

292 This exposes the model to diverse intra-group orderings and enables it to generalize to
 293 arbitrary prediction targets at inference.
 294

295 By the end of this curriculum, the model is able to predict arbitrary subsets of tokens as coherent
 296 groups while preserving the recursive dependency structure of AR. Importantly, at every stage of
 297 training, each token in the sequence belongs to exactly one group, so all tokens are always predicted,
 298 maximizing the learning signal and computational efficiency.

3.3 FLEXIBLE INFERENCE VIA GROUPWISE DECODING

301 Building on the A3 formulation, we propose flexible inference strategies that extend beyond conventional AR decoding. The first decoding method we introduce is **groupwise AR sampling**, which
 302 generalizes standard left-to-right generation by sampling groups of tokens sequentially rather than
 303 strictly one-by-one. Formally, let the token positions of a sequence be partitioned into K groups
 304 $\mathcal{G} = \{G_1, G_2, \dots, G_K\}$, where $G_k \subseteq \{1, \dots, n\}$ and $\bigcup_{k=1}^K G_k = \{1, \dots, n\}$. Given a prompt
 305 covering groups G_1, \dots, G_{k_0} , the model generates subsequent groups by conditioning on all pre-
 306 ceding groups:
 307

$$308 \quad p_\theta(x_{G_{k_0+1}}, \dots, x_{G_K} \mid x_{G_{\leq k_0}}) = \prod_{k=k_0+1}^K p_\theta(x_{G_k} \mid x_{G_{<k}}). \quad (11)$$

311 Here, x_{G_k} denotes the tokens within group G_k , and $x_{G_{<k}}$ the tokens of all earlier groups. This
 312 reduces to the classical AR factorization when $|G_k| = 1$ for all k , but naturally generalizes to larger
 313 groups. The procedure is summarized in Algorithm 1. Concretely, several grouping strategies can
 314 be applied:
 315

- 316 1. **Token-wise grouping.** Each token is treated as its own group, i.e., $G_k = \{k\}$. The
 317 decoding reduces to the standard left-to-right AR generation:

$$319 \quad p_\theta(x_1, \dots, x_n) = \prod_{t=1}^n p_\theta(x_t \mid x_{<t}). \quad (12)$$

- 322 2. **Fixed-size grouping.** Tokens are partitioned into groups of size s , e.g., $G_k = \{(k-1)s +$
 323 $1, \dots, ks\}$ for $s \in \{2, 4\}$. In this case, the model predicts s tokens jointly per step and
 324 accelerates decoding.

324 3. **Task-specific grouping.** For infilling tasks we allow groups to be arbitrary index subsets
 325 and then assign group ids so that groups containing masked positions are decoded after
 326 groups used as context. Concretely, let the sequence be partitioned into left, middle and
 327 right index sets L, M, R (so $\{1, \dots, n\} = L \cup M \cup R$). We choose an index k_0 such that
 328 every group G_k satisfying $G_k \cap M = \emptyset$ has $k \leq k_0$, while every group that contains any
 329 masked position satisfies $k > k_0$ (groups need not be contiguous and a single group may
 330 contain tokens from both L and R). Under this design, all context groups (those covering
 331 L and R) appear before the masked groups, and the model performs:

332
$$p_{\theta}(x_M \mid x_{G_{\leq k_0}}) = \prod_{k=k_0+1}^K p_{\theta}(x_{G_k} \mid x_{G_{<k}}), \quad (13)$$

 333
 334

335 which realizes AR dependencies inside each masked group while conditioning on both left
 336 and right contexts. This flexible assignment enables infilling where context groups are
 337 formed from arbitrary subsets of $L \cup R$, and masked spans are predicted group-by-group.
 338 This capability distinguishes A3 from conventional AR models, which cannot directly con-
 339 dition on future context during generation.

340 **Dynamic Resampling Inference.** Beyond fixed grouping, A3 also supports a more adaptive in-
 341 ference procedure inspired by iterative refinement (Li et al., 2022; Chen et al., 2024a). Here, the
 342 grouping \mathcal{G} is not fixed. At each step, the model evaluates all unfinished positions simultaneously,
 343 conditioned on the completed tokens. Formally, suppose $U_t \subseteq \{1, \dots, n\}$ is the set of unfinished
 344 (blank) positions at iteration t , and F_t is its complement of finished positions. The model computes
 345 predictive distributions

$$p_{\theta}(x_i \mid x_{F_t}), \quad \forall i \in U_t. \quad (14)$$

346 Based on these distributions, we then select a subset $S_t \subseteq U_t$ to be committed at this step, according
 347 to some criterion such as maximum confidence, lowest entropy (Kim et al., 2025), or simply random
 348 sampling. Once S_t is chosen, the tokens at S_t are sampled and added to the finished set:

$$F_{t+1} = F_t \cup S_t, \quad U_{t+1} = U_t \setminus S_t. \quad (15)$$

349 This process repeats until $U_T = \emptyset$, at which point the sequence is fully generated. The procedure is
 350 summarized in Algorithm 2. The advantage of this dynamic resampling strategy is twofold. First, it
 351 allows the model to adaptively choose the granularity of generation based on prediction confidence,
 352 committing to easy tokens early while deferring more uncertain positions until later. Second, unlike
 353 diffusion-style denoising which follows a pre-specified noise schedule, A3 inference directly uses
 354 the conditional distributions defined by the AR factorization, ensuring consistency between training
 355 and inference.

356 These inference strategies highlight a trade-off between efficiency and flexibility. Fixed-group sam-
 357 pling is fast but less adaptive, as performance depends on group alignment with text structure. Dy-
 358 namic resampling is slower since all unfinished positions are reevaluated at each step, but it yields
 359 greater accuracy by adapting token commitment to model confidence. We will compare these strate-
 360 gies in the next section on real-world tasks.

4 EXPERIMENTS

4.1 SETUP

361 **Training Setup.** We initialize our models from the LLaMA series, including LLaMA-3.1-8B,
 362 LLaMA-3.2-3B, and LLaMA-3.2-1B (Dubey et al., 2024). For training data, we construct a mixture
 363 of the FineWeb dataset (Penedo et al., 2024) and the SlimPajama dataset (Soboleva et al., 2023),
 364 following prior work on DLMs and AR models. From this mixture, we sample 2B tokens and
 365 apply sequence packing with a maximum context length of 2048. All models are trained with full-
 366 parameter fine-tuning in bf16 . In the progressive adaptation recipe, the first two training stages are
 367 trained for one epoch over 20% of the dataset, while the final stage is trained for one epoch over the
 368 full dataset. Additional training details are provided in Appendix A.

369 **Evaluation Setup.** We adopt the evaluation protocol of Gong et al. (2025) to compare our mod-
 370 els against both diffusion and AR baselines. For reading comprehension, we evaluate on TriviaQA

378

379

380

Algorithm 1 Groupwise AR Sampling

Require: Prompt tokens $x_{1:m}$, grouping strategy $\mathcal{G} = \{G_1, G_2, \dots, G_K\}$, model f_θ
Ensure: Generated sequence $\hat{x}_{1:n}$

- 1: Initialize $\hat{x}_{1:m} \leftarrow x_{1:m}$
- 2: Find the last group index k_0 in the prompt
- 3: **for** $k = k_0 + 1$ to K **do**
- 4: Compute context representation $h \leftarrow f_\theta(\hat{x}_{G_{<k}})$
- 5: Sample tokens $\hat{x}_{G_k} \sim p_\theta(\cdot | h)$
- 6: **end for**
- 7: **return** Completed sequence $\hat{x}_{1:n}$

394

395

(Joshi et al., 2017) using exact match accuracy. For commonsense reasoning, we consider Hellaswag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2020), SIQA (Sap et al., 2019), and PIQA (Bisk et al., 2020), all assessed by multiple-choice accuracy. For story infilling, we use ROC-Stories (Mostafazadeh et al., 2016) and report ROUGE scores (Lin, 2004). We compare against two categories of baselines: (a) the base AR model LLaMA-3.1-8B, and (b) recent diffusion language models of varying sizes, including Plaid-1B (Gulrajani & Hashimoto, 2024), Dream-7B (Ye et al., 2025), and DiffuLlama-7B (Gong et al., 2025).

402

403

4.2 MAIN RESULTS

404

The results in Table 1 show that A3 consistently outperforms diffusion-based models across QA, commonsense reasoning, and infilling tasks. For example, A3-8B achieves 19.4 accuracy on TriviaQA and 78.1 on PIQA, surpassing all the diffusion baselines, while also attaining competitive ROUGE scores for story infilling. In fact, A3 also achieves better latency number on the infilling task (0.15 s/sample for A3 v.s. 0.17 s/sample for DiffuLlama and 0.21 s/sample for Llama-3.1-8B). These gains are particularly noteworthy given that A3 is trained on only 2B tokens, whereas DiffuLlama is trained on 65B. Although A3 still underperforms the AR baseline, this gap is likely attributable to limited training data; with larger-scale pretraining, we expect A3 to close the difference further.

413

Importantly, A3 demonstrates clear scaling behavior: performance improves steadily from 1B to 3B to 8B parameters, indicating that the method benefits from larger models in the same way as conventional AR training. Overall, these results confirm that A3 offers a favorable balance between AR and diffusion paradigms, combining strong reasoning accuracy with flexible generation, and holds promise for further improvements under larger-scale training.

418

419

4.3 ABLATION STUDY

420

Inference Strategies. To better understand the trade-offs between the two proposed inference strategies in Section 3.3, we conducted unconditional generation experiments under the A3 decoding framework. For groupwise AR sampling, we vary the group size from 1 to 4. For dynamic resampling, we vary the group size from 1 to 16 and implemented two selection criteria: (1) Confidence-based: selecting positions with highest maximum softmax probability. (2) Entropy-based: selecting positions with minimum output entropy. For each sequence, we sample with temperature of 1.5 and top-p of 0.95. Figure 3 reports the log of perplexity measured by Llama-3.1-8B and the average decoding time for one sequence.

429

430

431

We observe that dynamic resampling methods consistently achieve lower perplexity than groupwise AR sampling, indicating that they produce higher-quality generations. The confidence-based and entropy-based criteria yield very similar performance, with confidence being slightly better at smaller group sizes. However, all strategies show a trend of increasing perplexity as group size

378

379

380

Algorithm 2 Dynamic Resampling

Require: : Prompt tokens, model f_θ , criterion

- 1: Initialize F_0 with prompt tokens, U_0 with blank positions
- 2: **while** $U_t \neq \emptyset$ **do**
- 3: **for** each $i \in U_t$ **do**
- 4: Compute $p_\theta(x_i | x_{F_t})$
- 5: **end for**
- 6: Select subset $S_t \subseteq U_t$ based on criterion
- 7: **for** each $i \in S_t$ **do**
- 8: Sample $\hat{x}_i \sim p_\theta(x_i | x_{F_t})$
- 9: **end for**
- 10: Update $F_{t+1} \leftarrow F_t \cup S_t$, $U_{t+1} \leftarrow U_t \setminus S_t$
- 11: **end while**
- 12: **return** Completed sequence $x_{1:n}$

432
 433 Table 1: Comprehensive evaluation of different language models. There are 4 types of these models:
 434 AR for autoregressive, DD for discrete diffusion, CD for continuous diffusion and A3 for our pro-
 435 posed model. For the infilling task, we use ROUGE-1/2/L score; for other tasks, we use the accuracy
 436 (%) metric. * refers to the results reported in DiffuLlama (Gong et al., 2025).

437 Model	438 Size	439 Type	440 QA TriQA	441 CommonSense Reasoning			442 Infilling	
				443 HSwag	444 Wino.	445 SIQA	446 PIQA	447 ROCStories
Llama-3.1	8B	AR	52.1	76.0	63.9	46.7	80.3	11.7/2.3/10.5
Plaid*	1B	CD	1.2	39.3	51.3	32.3	54.5	12.1/1.1/11.2
Dream	7B	DD	18.3	26.9	51.8	36.6	55.8	11.7/2.3/10.5
DiffuLlama*	7B	DD	18.5	58.7	56.4	43.2	63.3	23.3/5.5/21.2
	1B	A3	10.2	40.2	52.8	35.1	64.7	11.8/1.7/11.1
A3	3B	A3	15.9	49.6	54.3	38.9	70.1	11.3/2.3/10.2
	8B	A3	19.4	58.4	60.2	45.2	78.1	19.2/4.6/18.6

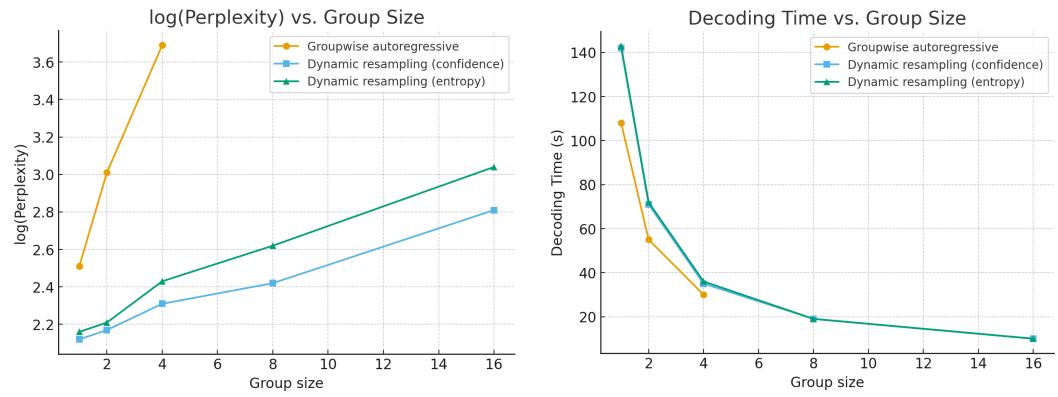


Figure 3: Unconditional generation log(perplexity) and speed using A3-8B. The perplexity is measured by Llama-3.1-8B and we compare several decoding strategies. Dynamic resampling will cost more time but have lower perplexity.

grows, reflecting the trade-off between decoding granularity and modeling accuracy. We can also see that decoding time decreases sharply with larger group sizes. Groupwise AR sampling is fastest at the same group size because it only generates the designated group per step, while dynamic resampling requires evaluating all unfinished tokens at each iteration, making it slower. However, as group size increases, dynamic resampling speeds up considerably, nearly matching the efficiency of groupwise sampling at large group sizes.

Overall, these results demonstrate a speed–accuracy trade-off. Groupwise AR sampling is faster but less accurate, while dynamic resampling achieves better perplexity at the cost of slower decoding. Importantly, A3 provides the flexibility to choose between these strategies depending on the requirements of the application, making it more flexible than conventional AR or diffusion-based methods.

Curriculum schedule. A3 introduces a different causal mask and attention flow from a standard AR transformer, and the model must progressively adapt from strict left-to-right prediction to multi-token and eventually arbitrary-order factorization. To assess the sensitivity of the schedule, we train two variants on 0.5B tokens: 1. original curriculum, and 2. skipping stage 1 and 2 (directly training on stage 3: order permutations). Results are shown in Table 2. Skipping the early stages consistently hurts performance by 4–6 points on several benchmarks, which proves the importance of such adaptation stage. An adaptive schedule, e.g., based on training loss, may further improve robustness. We plan to investigate this direction in the future work.

Performance with more data. Since the training budget for A3 is much less than the baseline (2B for A3, 60B for DiffuLlama and 15T for Llama-3.1-8B), in order to isolate the architecture effect on the worse performance than the AR baseline, we track how A3 improves under increasing post-

486
 487 Table 2: Performance with different training curriculum schedule. We evaluate two variants trained
 488 on 0.5B tokens: 1. original curriculum and, 2. skipping stage 1 and 2 (directly training on stage 3:
 489 order permutations).

490 491 Schedule	492 QA			493 CommonSense Reasoning		494 Infilling
	495 TriQA	496 HSwag	497 Wino.	498 SIQA	499 PIQA	500 ROCStories
Original	15.6	49.3	56.7	39.6	69.4	13.2/2.3/12.6
Skipping Stage 1 & 2	11.3	44.2	54.1	37.3	64.2	13.1/2.2/12.4

495
 496 Table 3: Performance of A3 with different training data
 497 on TriviaQA and perplexity measured by Llama-3.1-8B.

500 Model	501 TriviaQA	502 log(Perplexity)
A3 (1.5B tokens)	16.2	2.9
A3 (2B tokens)	19.4	2.5
A3 (2.5B tokens)	22.5	2.3
AR (15T)	52.1	0.8

Table 4: Model loss of A3 across context
 lengths, which is stably small.

Length	Model loss
256	3.54
512	3.51
1024	3.34
2048	3.23

505
 506 training data. We use 1.5B, 2B (default) and 2.5B tokens to train A3. The results are shown in Table
 507 3. Performance increases steadily with more data. This confirms that A3 benefits strongly from data
 508 scale and that the gap to fully-trained AR models is due to training budget, not a limitation of the
 509 A3 architecture.

510
 511 **Robustness on context length.** In order to investigate whether A3 is robust across different context
 512 lengths, we input contexts with length of 512, 1024 and 2048 to A3 and calculate the loss. The
 513 results are shown in Table 4. The model loss keeps stable within the training length, indicating the
 514 robustness of A3 across different context lengths.

5 CONCLUSION

517
 518 We have presented Any-order Any-subset Autoregressive modeling (A3), a novel framework that
 519 generalizes traditional autoregressive factorization to enable flexible, groupwise generation of to-
 520 kens in arbitrary orders. By combining a two-stream attention architecture with a progressive train-
 521 ing strategy, A3 achieves the dual goals of generation flexibility and modeling stability. Our ap-
 522 proach supports a wide range of decoding strategies, including groupwise autoregressive sampling
 523 and dynamic resampling, offering a tunable trade-off between speed and accuracy. Through com-
 524 prehensive experiments, we demonstrate that A3 outperforms diffusion-based models in reasoning,
 525 question answering, and infilling tasks. These results highlight A3’s ability to balance efficiency,
 526 flexibility, and quality, making it a promising direction for future sequence modeling. In the fu-
 527 ture, we plan to explore scaling A3 to larger models and datasets, as well as applying it to more
 528 challenging tasks such as long-context reasoning.

529 ETHICS STATEMENT

531
 532 This work complies with the ICLR Code of Ethics. While our methods are general, they may be
 533 applied in contexts with societal implications, including risks related to bias, fairness, and privacy.
 534 We encourage responsible use and declare no conflicts of interest.

535 REPRODUCIBILITY STATEMENT

536
 537 We provide detailed descriptions of our methodology, datasets, model configurations, and eval-
 538 uation metrics in both the main text and the Appendix. Codes will be released upon accep-
 539 tance.

540 REFERENCES
541

542 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
543 denoising diffusion models in discrete state-spaces. *Advances in neural information processing*
544 *systems*, 34:17981–17993, 2021. 3, 15

545 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
546 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023a. 1, 2
547

548 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
549 Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
550 context understanding. *arXiv preprint arXiv:2308.14508*, 2023b. 1, 17, 18

551 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
552 commonsense in natural language. In *AAAI*, 2020. 1, 8
553

554 Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
555 Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. *arXiv*
556 *preprint arXiv:2401.10774*, 2024. 16

557 Pinzhen Chen, Zhicheng Guo, Barry Haddow, and Kenneth Heafield. Iterative translation refinement
558 with large language models. In *EAMT*, 2024a. 7
559

560 Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
561 gloRA: Efficient fine-tuning of long-context large language models. In *ICLR*, 2024b. 15

562 Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H
563 Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continuous diffu-
564 sion for categorical data. *arXiv preprint arXiv:2211.15089*, 2022. 15
565

566 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
567 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
568 *arXiv e-prints*, pp. arXiv–2407, 2024. 7

569 Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
570 Data engineering for scaling language models to 128k context. *arXiv preprint arXiv:2402.10171*,
571 2024. 15
572

573 Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Synnaeve.
574 Better & faster large language models via multi-token prediction. In *ICML*, 2024. 3

575 Shanshan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
576 sequence text generation with diffusion models. *arXiv preprint arXiv:2210.08933*, 2022. 15, 16
577

578 Shanshan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
579 Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
580 autoregressive models. In *ICLR*, 2025. 1, 2, 3, 7, 8, 9, 15

581 Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-autoregressive
582 neural machine translation. *arXiv preprint arXiv:1711.02281*, 2017. 15
583

584 Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. *Advances in neural infor-*
585 *mation processing systems*, 32, 2019. 16

586 Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models. In
587 *NeurIPS*, 2024. 1, 2, 8, 15

588 Gabe Guo and Stefano Ermon. Reviving any-subset autoregressive models with principled parallel
589 sampling and speculative decoding. *arXiv preprint arXiv:2504.20456*, 2025. 17
590

591 Junliang Guo, Xu Tan, Linli Xu, Tao Qin, Enhong Chen, and Tie-Yan Liu. Fine-tuning by cur-
592 riculum learning for non-autoregressive neural machine translation. In *Proceedings of the AAAI*
593 *Conference on Artificial Intelligence*, volume 34, pp. 7839–7846, 2020. 16

594 Suchin Gururangan, Ana Marasović, Swabha Swamyamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
 595 and Noah A Smith. Don't stop pretraining: Adapt language models to domains and tasks. *arXiv*
 596 *preprint arXiv:2004.10964*, 2020. 15

597

598 Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. Ssd-lm: Semi-autoregressive simplex-
 599 based diffusion language model for text generation and modular control. *arXiv preprint*
 600 *arXiv:2210.17432*, 2022. 15, 16

601 Zhengfu He, Tianxiang Sun, Qiong Tang, Kuanning Wang, Xuan-Jing Huang, and Xipeng Qiu.
 602 Diffusionbert: Improving generative masked language models with diffusion models. In *ACL*,
 603 2023. 3

604

605 Yosuke Higuchi, Shinji Watanabe, Nanxin Chen, Tetsuji Ogawa, and Tetsunori Kobayashi.
 606 Mask ctc: Non-autoregressive end-to-end asr with ctc and mask predict. *arXiv preprint*
 607 *arXiv:2005.08700*, 2020. 16

608 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
 609 2020. 15

610

611 Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
 612 and multinomial diffusion: Learning categorical distributions. In *NeurIPS*, 2021. 15

613 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 614 supervised challenge dataset for reading comprehension. In *ACL*, 2017. 1, 8

615

616 Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual pre-
 617 training of language models. In *ICLR*, 2023. 15

618 Jaeyeon Kim, Kulin Shah, Vasilis Kontonis, Sham M Kakade, and Sitan Chen. Train for the worst,
 619 plan for the best: Understanding token ordering in masked diffusions. In *ICML*, 2025. 1, 2, 7

620

621 Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Cllms: consistency large language
 622 models. In *ICML*, 2024. 3

623

624 Yury Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
 625 Mikhail Burtsev. Babilong: Testing the limits of llms with long context reasoning-in-a-haystack.
 626 *NeurIPS*, 2024. 1

627 Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural se-
 628 quence modeling by iterative refinement. *arXiv preprint arXiv:1802.06901*, 2018. 16

629

630 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 631 decoding. In *ICML*, 2023. 16

632

633 Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
 634 lm improves controllable text generation. In *NeurIPS*, 2022. 1, 2, 3, 7, 15

635

636 Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
 637 rethinking feature uncertainty. *arXiv preprint arXiv:2401.15077*, 2024. 16

638

639 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization
 branches out*, pp. 74–81, 2004. 8

640

641 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
 642 the ratios of the data distribution. *arXiv preprint arXiv:2310.16834*, 2023. 15, 16

643

644 Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vander-
 645 wende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper understanding
 646 of commonsense stories. In *NAACL*, 2016. 1, 8

647

648 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, JUN ZHOU, Yankai Lin,
 649 Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. In *ICLR 2025 Workshop on
 650 Deep Generative Model in Machine Learning: Theory, Principle and Efficacy*, 2025. 3

648 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
 649 Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
 650 *arXiv preprint arXiv:2406.03736*, 2024. 15

651 Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
 652 Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
 653 at scale. In *NeurIPS*, 2024. 7

654 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
 655 standing by generative pre-training. 2018. 1, 2

656 Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
 657 transformers for long-range sequence modelling. *arXiv preprint arXiv:1911.05507*, 2019. 17

658 Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
 659 Alexander Rush, and jiuVolodymyr Kuleshov. Simple and effective masked diffusion language
 660 models. In *NeurIPS*, 2024. 15

661 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 662 sarial winograd schema challenge at scale. In *AAAI*, 2020. 1, 8

663 Mohammad Samragh, Iman Mirzadeh, Keivan Alizadeh Vahid, Fartash Faghri, Minsik Cho, Moin
 664 Nabi, Devang Naik, and Mehrdad Farajtabar. Scaling smart: Accelerating large language model
 665 pre-training with small model initialization. *arXiv preprint arXiv:2409.12903*, 2024. 15

666 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
 667 sense reasoning about social interactions. In *EMNLP*, 2019. 1, 8

668 Tianxiao Shen, Hao Peng, Ruoqi Shen, Yao Fu, Zaid Harchaoui, and Yejin Choi. Film: Fill-in
 669 language models for any-order generation. *arXiv preprint arXiv:2310.09930*, 2023. 16

670 Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
 671 SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, 2023. URL <https://huggingface.co/datasets/cerebras/SlimPajama-627B>. 7

672 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 673 learning using nonequilibrium thermodynamics. In *ICML*, 2015. 15

674 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 675 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 676 arXiv:2011.13456*, 2020. 15

677 Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
 678 gressive models. *Advances in Neural Information Processing Systems*, 31, 2018. 16

679 Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion transformer: Flexible
 680 sequence generation via insertion operations. In *International Conference on Machine Learning*,
 681 pp. 5976–5985. PMLR, 2019. 16

682 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 683 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 684 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023. 1, 2

685 Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin,
 686 Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. Effective long-context scaling
 687 of foundation models. *arXiv preprint arXiv:2309.16039*, 2023. 15

688 Yiheng Xu, Hongjin SU, Chen Xing, Boyu Mi, Qian Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao
 689 Liu, Tianbao Xie, Zhoujun Cheng, Siheng Zhao, Lingpeng Kong, Bailin Wang, Caiming Xiong,
 690 and Tao Yu. Lemur: Harmonizing natural language and code for language agents. In *ICLR*, 2024.
 691 15

692 Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
 693 Xlnet: Generalized autoregressive pretraining for language understanding. In *NeurIPS*, 2019. 3,
 694 4, 16

702 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
703 Kong. Dream 7b: Diffusion large language models. *arXiv preprint arXiv:2508.15487*, 2025. 8
704

705 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
706 chine really finish your sentence? In *ACL*, 2019. 1, 8

707 Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
708 for text generation. In *COLM*, 2024. 15
709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A TRAINING HYPERPARAMETERS**
757758 We list the hyperparameters in the training stage in Table 5
759760 Table 5: The hyperparameter list
761

762 Hyperparameter	763 Value
<i>Training</i>	
764 Batch Size	765 64
766 Epoch	767 [0.2, 0.2, 1]
768 Optimizer	769 AdamW
770 LR	771 2e-5
772 Betas	773 (0.9, 0.999)
774 Weight Decay	775 0.01
776 LR Schedule	777 WarmupLR
778 Warmup Iters	779 [50, 50, 50]
780 Max Sequence Length	781 2048
<i>Sampling (Section 4.3)</i>	
782 Top-p	783 0.95
784 Temperature	785 1.5

786 **B ADDITIONAL RELATED WORK**
787788 **Continue Pre-training.** Pretraining large language models has been proven to be complex and
789 computationally expensive (Samragh et al., 2024). Consequently, continued pre-training has been
790 proposed as an effective method to adapt existing large language models to specific domains (Ke
791 et al., 2023; Gururangan et al., 2020) or to endow them with new capabilities, such as handling
792 longer contexts (Chen et al., 2024b; Fu et al., 2024; Xiong et al., 2023) or code generation (Xu et al.,
793 2024). Notably, certain continued pre-training efforts, such as those in scaling diffusion language
794 models (Gong et al., 2025), have transcended autoregressive (AR) language modeling by converting
795 large language models into diffusion-based architectures, thereby enabling parallel token genera-
796 tion. In contrast, our work retains autoregressive language modeling but innovatively incorporates a
797 two-stream architecture and semi-autoregressive decoding to similarly support parallel prediction of
798 multiple tokens, achieving significant reductions in inference latency compared to both autoregres-
799 sive and diffusion-based baselines.
800801 **Diffusion Language Model.** Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
802 et al., 2020) have demonstrated remarkable capabilities in image generation. Consequently, a series
803 of works have sought to extend diffusion models to text generation, which can be roughly divided
804 into the continuous diffusion model and the discrete diffusion model. One straightforward approach
805 involves embedding text data into a continuous space and directly applying diffusion models (Li
806 et al., 2022; Gong et al., 2022; Han et al., 2022; Dieleman et al., 2022). However, the scalability
807 of continuous diffusion methods remains a challenge, as they require substantially greater compu-
808 tational cost compared to AR models to achieve equivalent performance (Gulrajani & Hashimoto,
809 2024). To better accommodate the discrete nature of text, an alternative paradigm replaces con-
810 tinuous diffusion with a discrete process, introducing an absorbing [MASK] state as noise (Austin
811 et al., 2021; Hoogeboom et al., 2021; Zheng et al., 2024; Sahoo et al., 2024). Lou et al. (2023)
812 demonstrated that masked diffusion models (MDMs) achieve perplexity comparable to or even sur-
813 passing that of AR models at the GPT-2 scale. Ou et al. (2024) established foundational theoretical
814 results, affirming the feasibility of MDMs. In comparison to MDMs, our method similarly enables
815 parallel prediction of groups of tokens and leverages bidirectional context. However, by retaining
816 autoregressive modeling, our approach utilizes every token during training, thereby facilitating faster
817 convergence relative to MDMs.
818819 **Non-autoregressive Generation.** Non-autoregressive (NAR) generation (Gu et al., 2017) accel-
820 erates inference by producing target tokens in parallel, eliminating the dependency on previously
821 generated tokens inherent in traditional AR models. This approach substantially improves genera-
822

810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248

864 Table 6: Comparison between speculative decoding and A3 on generating perplexity and time.
865

	log(perplexity)	Time
Speculative decoding	1.9	1.2×
A3	2.1	1×

871 **thogonal** to speculative/MTP: these accelerations can also be applied on top of A3’s factorization in
872 principle.
873

874 **Comparison with recent any-subset AR.** A recent any-subset AR work ASSD (Guo & Ermon,
875 2025) starts to provide provable joint-distribution correct parallel sampling by speculative decod-
876 ing, which is not used in our A3 decoding process. The motivation for ASSD using correct-by-
877 construction decoding is that, they model the sequence one token by one token using absorbing state
878 DTMC and assume

$$879 \sum_{i \in [m, N]} \log p(x_{\sigma(i)} | \mathbf{x}_{\sigma(<m)}) \neq \log p(\mathbf{x}_{\sigma(\geq m)} | \mathbf{x}_{\sigma(<m)}). \quad (16)$$

$$880$$

881 Therefore, when they sample a new group $\sigma(m), \dots, \sigma(N-1)$, they need to use rejection sampling
882 to get the right distribution for the new group. However, A3 directly models the sequence group by
883 group. Therefore, the sampling results from $P(x_{G_t} | x_{\cup_{j < t} G_j})$ in each step faithfully represent the
884 true distribution.

885 We compare A3’s dynamical resampling with confidence and ASSD sampling method in uncondi-
886 tional generation as the same setting in Figure 3 using a group size of 4. We show the results in Table
887 7. With comparative results on generation quality, ASSD costs $2.4 \times$ time due to additional compu-
888 tation for resampling. This proves the high quality and high efficiency of A3’s dynamic resampling
889 method.

890 **Practical speed-quality trade-off comparison.** We now explicitly measure decoding time for
891 Llama-3.1-8B (AR baseline) and DiffuLlama (Diffusion baseline) under the same setting in Figure
892 3. We evaluate all models’ log-perplexity with Llama-3.1-70B. The results are shown in Table 8.
893 Compared with the AR baseline, with small groups (size 1 & 2), A3 achieves better performance
894 at the trade of longer time due to more complex architecture. With moderate groups (size 4), A3
895 achieves faster decoding than the AR baseline (67s \rightarrow 37s) at a small quality tradeoff. Comapred
896 with diffusion baseline, A3 consistently performs better with the same group size or with the same
897 time (e.g. A3 2.1 37s v.s. DiffuLlama 2.2 51s). These results prove A3’s practical decoding effi-
898 ciency.

899 **Results on longer contexts.** To evaluate whether A3 remains stable under significantly longer con-
900 texts than 2k tokens, we finetuned both Llama-3.1-8B and A3-8B on 8k-length sequences from
901 PG19 (Rae et al., 2019) using the same training budget (100 steps, batch size 64). We then eval-
902 uated them on the single-document QA task from LongBench v1 (Bai et al., 2023b), which requires
903 reasoning over long passages. We used dynamic sampling for A3 with group size 1 and group size
904 2. The results are shown in Table 9.

905 A3 (group size 1) improves over the AR baseline with 1.7%, suggesting that the A3 factorization
906 does not degrade long-context modeling and may offer small gains without parallel decoding. A3
907 (group size 2) achieves 30% faster decoding, demonstrating that A3’s groupwise inference can
908 provide real latency benefits in longer contexts. This result shows that larger groups introduce
909 more parallelism but can slightly reduce accuracy, which is consistent with our analyses in shorter
910 contexts.

911 Our 8k experiments indicate that A3 can scale to significantly longer sequences without degradation
912 and provides decoding-time advantages via groupwise generation. These results support the poten-
913 tial of A3 for future long-context extensions and we will explore longer context in future works.
914

915
916
917

918
919
920
921
922923 Table 7: Comparison between A3’s dynamical resampling and ASSD sampling method.
924

	log(perplexity)	Time
ASSD	2.3	2.4 \times
A3	2.2	1\times

925
926
927
928
929
930
931
932
933
934
935
936
937
938939 Table 8: Comparison with Llama-3.1-8B and DiffuLlama on speed-quality tradeoff.
940

	log(perplexity)	Time
Llama-3.1-8B (baseline)	1.9	67s
DiffuLlama (group size = 1)	1.9	102s
DiffuLlama (group size = 2)	2.2	51s
DiffuLlama (group size = 4)	2.3	25s
A3 (group size = 1)	1.7	142s
A3 (group size = 2)	1.8	71s
A3 (group size = 4)	2.1	37s

950
951
952
953
954
955
956
957
958
959960 Table 9: Accuracy and time comparison on Single Document QA task of LongBench v1 (Bai et al.,
961 2023b).
962

	QA task acc (%)	Average Time
Llama-3.1-8B (baseline)	25.4	1.0 \times
A3 (group size = 1)	27.1	1.3 \times
A3 (group size = 2)	22.5	0.7\times

963
964
965
966
967
968
969
970
971