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ABSTRACT

We propose Any-order Any-subset Autoregressive modeling (A3), a novel se-
quence generation framework that generalizes standard autoregressive (AR) fac-
torization to support the prediction of arbitrary token groups in any order. A3
overcomes the limitations of conventional left-to-right decoding by enabling flex-
ible groupwise generation while preserving probabilistic rigor and training stabil-
ity. Our design combines a two-stream attention architecture with a progressive
training strategy, allowing both efficient parallel decoding and robust modeling
of diverse dependency structures. Empirical results demonstrate that A3 achieves
a superior trade-off between generation speed, flexibility, and quality compared
to state-of-the-art AR and diffusion-based methods. This work offers a unified
approach for a flexible, efficient, and novel language modeling paradigm.

1 INTRODUCTION

Autoregressive (AR) modeling has been the dominant paradigm for text generation, underpinning
the success of most large language models (Touvron et al., 2023; Bai et al., 2023a; Radford et al.,
2018). In the AR framework, the joint probability of a token sequence is factorized in a fixed left-
to-right order, generating one token at a time. While simple and effective, this formulation imposes
several intrinsic limitations. For example, the strict left-to-right ordering prevents models from fully
exploiting bidirectional context during generation. Also, the one-token-at-a-time decoding process
creates a computational bottleneck that limits generation efficiency. These fundamental drawbacks
constrain both modeling flexibility and decoding speed, especially in long-context and complex
generation scenarios (Kuratov et al., 2024; Bai et al., 2023b).

Alternative approaches such as masked diffusion language models (Li et al., 2022; Gong et al., 2025;
Gulrajani & Hashimoto, 2024) attempt to address these limitations by enabling parallel prediction of
multiple tokens. By iteratively denoising partially masked sequences, diffusion models can achieve
any-order generation and leverage bidirectional context. However, these methods introduce new
challenges: they often require carefully tuned noise schedules and multi-step inference, which com-
plicates training and slows decoding, and they typically yield less stable training dynamics and lower
sample quality compared to AR approaches (Kim et al., 2025).

In this work, we propose Any-order Any-subset Autoregressive modeling (A3), a new framework
that merges the strengths of AR modeling with the flexibility of parallel generation. A3 generalizes
the standard AR factorization by partitioning the sequence into arbitrary groups of tokens and pre-
dicting them in any order. This groupwise factorization retains the probabilistic rigor of AR models
while enabling flexible dependency structures, bidirectional conditioning, and efficient groupwise
decoding.

To realize A3 in practice, we design a two-stream attention architecture that supports arbitrary group
orderings, and develop a progressive training strategy that adapts pretrained AR models to any-order
prediction. Our framework naturally supports diverse inference strategies, including groupwise AR
sampling and dynamic resampling, offering a tunable trade-off between generation speed and qual-
ity.

Through comprehensive experiments on question answering (Joshi et al., 2017), commonsense rea-
soning (Zellers et al., 2019; Sakaguchi et al., 2020; Sap et al., 2019; Bisk et al., 2020), and story
infilling tasks (Mostafazadeh et al., 2016), we show that A3 achieves strong performance across
diverse benchmarks while enabling flexible and efficient generation. Notably, A3 outperforms state-
of-the-art diffusion-based models despite using substantially less training data, and demonstrates
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promising scaling behavior with model size. These results suggest that A3 provides a new direction
for bridging the gap between AR and parallel generation paradigms.

Our contributions can be summarized as follows:

• Conceptually, we propose A3, a novel language modeling framework that leverages both
insights from AR modeling and parallel generation. With groupwise token partition, A3
successfully enables flexible generation at any subset in any order.

• Practically, we implement A3 for both training and inference phases. Building on a novel
attention architecture that supports arbitrary group orderings, A3 can be trained progres-
sively to adapt pretrained AR models to any-order prediction during inference.

• Empirically, we evaluate A3 across diverse reasoning and QA benchmarks to demonstrate
its strong performance while enabling flexible and efficient generation, showing its great
potential serving as next-generation of language modeling paradigm.

2 ANY-ORDER ANY-SUBSET AUTOREGRESSIVE MODELING

2.1 FORMULATION

In this section, we will demonstrate the formulation of our proposed Any-order Any-subset Autore-
gressive modeling (A3). The dominant paradigm for text generation is autoregressive (AR) model-
ing, where the joint probability of a sequence x1:N with length N is factorized in a fixed left-to-right
order:

P (x1:N ) =

N∏
t=1

P (xt|x<t). (1)

This formulation is simple, effective, and fundamental to most large language models (Touvron
et al., 2023; Bai et al., 2023a; Radford et al., 2018). However, it introduces two key limitations.
First, the left-to-right constraint forces the model to generate tokens sequentially, preventing it from
leveraging bidirectional context during both training and inference. Second, decoding proceeds one
token at a time, creating a bottleneck of inference efficiency. Together, these limitations restrict the
model’s ability to fully exploit contextual information and achieve faster generation.

Alternative paradigms such as masked diffusion models (Li et al., 2022; Gong et al., 2025; Gulrajani
& Hashimoto, 2024) attempt to overcome the speed bottleneck by generating multiple tokens in
parallel. Concretely, the index set 1, 2, . . . , N is partitioned into two disjoint subsets: a unmasked
index group G1 and its masked complement G2. The model then predicts the masked tokens xG2

conditioned on the visible tokens xG1
:

P (xG2 |xG1) =
∏
t∈G2

P (xt|xG1). (2)

During inference, the model starts from a fully masked sequence (i.e., G2 = ∅) and iteratively de-
noises it by resampling subsets of positions, filling in multiple tokens at each step. This procedure
alleviates the inference-speed limitation of AR models by enabling parallel token generation. How-
ever, masked diffusion models suffer from two key drawbacks. First, since only a subset of tokens
is predicted in each training step, the learning signal is partial and less informative, often yielding
lower sample quality compared to AR models. Second, the training dynamics are unstable: perfor-
mance depends heavily on carefully tuned noise schedules, masking strategies, and iteration counts,
which complicates optimization and make it difficult to achieve consistent performance (Kim et al.,
2025).

We now seek a middle ground: a model that preserves the probabilistic rigor of AR modeling while
enabling flexible prediction orders and parallelism in decoding. This motivates Any-order Any-
subset Autoregressive modeling (A3), which extends the AR framework to group-level prediction.
Instead of using a fixed left-to-right order with unit-sized steps, A3 factorizes the joint probability
by partitioning the token sequence into groups:

P (x1:N ) =

K∏
k=1

P (xGk
|xg<k

). (3)
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where G1, G2, . . . , GK is a partition of the tokens and each group Gk may contain one or more
tokens. Crucially, the ordering of groups is arbitrary, which enables flexible dependency structures.

By training the model on random groupings and permutations, we expose it to a wide variety of
factorization orders, forcing it to learn robust conditional dependencies beyond simple left-to-right
context. This resembles the permutation LM objective of XLNet (Yang et al., 2019) but at the group
level, enabling richer structural modeling.

2.2 DISCUSSION WITH PREVIOUS PARADIGMS

Comparison with Masked Diffusion Language Models. Masked diffusion language models
(MDLMs) have recently emerged as an alternative to AR decoding, aiming to overcome the se-
quential bottleneck of one-token-at-a-time generation. By iteratively denoising partially masked
sequences, MDLMs can update multiple tokens in parallel and exploit bidirectional context (Austin
et al., 2021; Li et al., 2022; Gong et al., 2025; Nie et al., 2025). This flexibility enables controllable,
any-order generation and supports tasks such as infilling and global rewriting. However, diffusion
approaches face two major limitations. First, inference speed is constrained by the need for many
iterative refinement steps, with generation efficiency depending critically on noise schedules and
step counts (Gong et al., 2025). While large-scale efforts such as DiffuGPT and LLaDA demon-
strate that diffusion LMs can match or surpass AR models in quality, they still require careful tuning
and incur nontrivial decoding costs (Gong et al., 2025; Nie et al., 2025). Second, training stability
is less favorable than AR: discrete diffusion objectives require complex forward–reverse processes
and additional pretraining or adaptation, making optimization more resource-intensive and sensitive
to hyperparameters (He et al., 2023).

In contrast, A3 preserves the probabilistic rigor and training simplicity of AR modeling while in-
troducing flexible groupwise factorization. This allows parallel prediction of token subsets without
relying on multi-step denoising schedules, thereby offering both efficiency and stability.

Comparison with AR Multi-Token Prediction. Another line of work seeks to improve AR effi-
ciency by enabling the model to predict multiple future tokens per step (Gloeckle et al., 2024; Kou
et al., 2024). Multi-token objectives and speculative decoding significantly reduce inference latency:
for instance, predicting four tokens at once can yield up to threefold speedups while preserving or
even improving generation quality, particularly in reasoning and code generation tasks (Gloeckle
et al., 2024). These methods retain the training stability of standard AR, since the additional ob-
jectives can be implemented as auxiliary losses with negligible computational overhead. However,
multi-token prediction remains bound to a fixed left-to-right ordering, limiting its modeling flexibil-
ity. The approach accelerates sequential decoding but does not enable infilling, bidirectional con-
ditioning, or arbitrary ordering of token generation. Moreover, these methods depend on multiple
linear heads, which limits maximum parallelism. Therefore, they cannot reach the same theoretical
decoding parallelism as diffusion-style iterative refinement. A3, by contrast, can reuse diffusion-
like scheduling using a single AR model, enabling it to achieve a higher theoretical upper bound on
parallel decoding efficiency while remaining within an AR framework.

A3 generalizes beyond this paradigm by relaxing the strict AR factorization. Through arbitrary
group partitions and orderings, A3 supports both sequential and parallel decoding strategies, com-
bining the efficiency gains of multi-token prediction with greater structural flexibility. For more
discussions with related work, refer to Appendix B.

3 IMPLEMENTATIONS OF TRAINING AND FLEXIBLE INFERENCE

In this section, we describe the implementation of A3. We begin with the architectural design
of A3, where we use a two-stream attention mechanism to enable predictions in arbitrary orders.
Next, we present our efficient continuous pretraining strategy, which progressively adapts the model
from standard AR prediction to group-based prediction. Finally, we introduce the flexible inference
strategy of A3, which leverages its general formulation to support diverse decoding modes.
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Figure 1: Architecture of the A3 model. Blue entries in the attention mask denote 0, and white en-
tries denote −∞. The model employs a two-stream attention module with distinct causal masks.
The content stream encodes contextual information and attends to tokens within its own group
as well as all preceding groups. The query stream encodes positional conditions and attends
only to tokens in preceding groups. The final cross-entropy loss is computed between the input
context and the query stream’s output. For illustration, we provide an example grouping with
G1 = {1, 2, 3}, G2 = {5, 6}, G3 = {4}, showing how the forward process and causal masks
are applied.

3.1 ARCHITECTURE DESIGN WITH TWO-STREAM ATTENTION

Limitations of Current Architecture. The decoder-only Transformer has become the backbone
of modern large language models due to its simplicity and effectiveness in next-token prediction.
It operates with a single stream of hidden states, where information flow is regulated by a causal
attention mask. This mask ensures that the representation of the k-th token can only attend to the
first k tokens, thereby enforcing the AR constraint required for language modeling. While well-
suited for the standard left-to-right objective, this design assumes a fixed generation order: given the
first k tokens, the model is trained to treat the (k + 1)-th position as the unique next target. Such
rigidity makes it incompatible with any-order prediction, where the next position to be generated
need not follow the sequential index.

The encoder-only Transformer, widely used in masked language modeling, represents the opposite
design. Rather than causal masking, it processes the full sequence bidirectionally, with missing in-
formation represented by mask tokens. Through position embeddings on these masks, the model
identifies which locations are to be predicted, allowing arbitrary subsets of tokens to be recon-
structed simultaneously. However, this formulation limits dependency modeling: masked positions
are predicted in parallel and conditioned only on observed context in a single pass. Without recur-
sive, multi-layered dependencies across tokens, the encoder-only approach struggles to match the
generative fidelity of AR models.

Two-stream Attention Design for Any-order Prediction. To combine the flexibility of encoder-
style masking with the dependency modeling strength of autoregression, A3 extend the two-stream
attention mechanism proposed by XLNet (Yang et al., 2019). The model maintains two parallel
representations for each position: a content stream, which encodes semantic and contextual in-
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Figure 2: Causal masks for content stream and query stream in different stages. Blue for 0 and white
for −∞. Stage 1: AR initialization to reproduce AR factorization. Stage 2: Group expansion by
allowing groups of size greater than one. Stage 3: Order permutation with introducing any-order
prediction.

formation from the observed tokens, and a query stream, which provides position-aware signals
to drive prediction of the next group. This separation allows A3 to retain the recursive structure
of autoregression while relaxing the generation order constraint of decoder-only models. Figure 1
illustrates the pipeline of the forward process.

Formally, let X = (x1, . . . , xN ) denote the sequence, partitioned into groups {G1, . . . , GK}. In
the content stream, the input consists of the observed tokens, embedded and passed through Trans-
former layers with a designed causal mask. This mask ensures that a token at group k can attend to
all tokens in groups ≤ k, i.e., both its own group and all groups before it. Thus, the content stream
at group k aggregates all contextual evidence available up to that point. For group Gk, the hidden
states in the content stream at layer l are computed as:

H(l)
c (i) = Attn

(
Q = H(l−1)

c (i), K = H(l−1)
c (≤ Gk), V = H(l−1)

c (≤ Gk)
)
. (4)

In the query stream, the input is a shared learnable query vector injected at every position. The key
and value matrices are tied to those of the content stream, while the queries are separate. With an
appropriately designed causal mask, each query vector at group k can only attend to content tokens
in groups < k, not including its own group. This forces the query representation to serve as the
position-aware predictor for the tokens in group k, relying only on prior context rather than future
information. Conceptually, the query stream specifies where to predict (positional conditioning),
while the content stream provides what to predict (contextual grounding). The hidden states in the
query stream at layer l for group Gk are:

H(l)
q (i) = Attn

(
Q = H(l−1)

q (i), K = H(l−1)
c (< Gk), V = H(l−1)

c (< Gk)
)
, (5)

where the initialization H
(l−1)
q (i) = w is a learnable query vector shared across positions, and the

causal mask ensures the query stream at group k can only access content states from strictly earlier
groups.

Finally, the predictive distribution for token xi ∈ Gk is parameterized by:

p(xi | X<Gk
) = Softmax

(
W ·H(L)

q (i)
)
, (6)

where L is the final layer and W projects the query hidden state to the vocabulary.

3.2 MULTI-STAGE TRAINING WITH PROGRESSIVE TOKEN GROUPING

Building on the connection between standard AR and A3, we design a progressive adaptation strat-
egy that smoothly transitions from left-to-right generation to fully flexible any-order prediction. To
leverage the stability and strong initialization of existing AR models, we begin training A3 from a
pretrained AR checkpoint and gradually relax its constraints through three stages:

• Stage 1: AR Initialization. We align A3 with conventional AR training by setting the
two-stream causal masks to exactly reproduce left-to-right factorization (Figure 2 Stage 1).
Formally, the sequence x1:N is partitioned into singleton groups:

G1 = {1}, G2 = {2}, . . . , GN = {N}. (7)
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This ensures that P (x1:N ) =
∏N

t=1 P (xt | x<t), identical to standard AR, providing a
stable initialization.

• Stage 2: Group Expansion. We expand beyond token-level prediction by allowing groups
of size greater than one (Figure 2 Stage 2). Concretely, the sequence is partitioned into
contiguous segments of fixed size s > 1, e.g.,

G1 = {1, . . . , s}, G2 = {s+ 1, . . . , 2s}, . . . (8)

with s gradually increased from 1 to 4. This teaches the model to predict multiple tokens
jointly within each group while still maintaining AR dependencies across groups.

• Stage 3: Order Permutation. We introduce any-order prediction within groups (Figure 2
Stage 3). The group structure G1, G2, . . . , GK remains sequential, but the token indices
assigned to each group are drawn from a random permutation of {1, . . . , N}. For example,
if π is a random permutation of indices, then

G1 = {π(1), . . . , π(s)}, G2 = {π(s+ 1), . . . , π(2s)}, . . . (9)

The model therefore learns to predict tokens in arbitrary subsets, while still preserving a
group-to-group AR factorization:

P (x1:N ) =

K∏
k=1

P (xGk
| xG<k

). (10)

This exposes the model to diverse intra-group orderings and enables it to generalize to
arbitrary prediction targets at inference.

By the end of this curriculum, the model is able to predict arbitrary subsets of tokens as coherent
groups while preserving the recursive dependency structure of AR. Importantly, at every stage of
training, each token in the sequence belongs to exactly one group, so all tokens are always predicted,
maximizing the learning signal and computational efficiency.

3.3 FLEXIBLE INFERENCE VIA GROUPWISE DECODING

Building on the A3 formulation, we propose flexible inference strategies that extend beyond con-
ventional AR decoding. The first decoding method we introduce is groupwise AR sampling, which
generalizes standard left-to-right generation by sampling groups of tokens sequentially rather than
strictly one-by-one. Formally, let the token positions of a sequence be partitioned into K groups
G = {G1, G2, . . . , GK}, where Gk ⊆ {1, . . . , n} and

⋃K
k=1 Gk = {1, . . . , n}. Given a prompt

covering groups G1, . . . , Gk0 , the model generates subsequent groups by conditioning on all pre-
ceding groups:

pθ(xGk0+1
, . . . , xGK

| xG≤k0
) =

K∏
k=k0+1

pθ(xGk
| xG<k

). (11)

Here, xGk
denotes the tokens within group Gk, and xG<k

the tokens of all earlier groups. This
reduces to the classical AR factorization when |Gk| = 1 for all k, but naturally generalizes to larger
groups. The procedure is summarized in Algorithm 1. Concretely, several grouping strategies can
be applied:

1. Token-wise grouping. Each token is treated as its own group, i.e., Gk = {k}. The
decoding reduces to the standard left-to-right AR generation:

pθ(x1, . . . , xn) =

n∏
t=1

pθ(xt | x<t). (12)

2. Fixed-size grouping. Tokens are partitioned into groups of size s, e.g., Gk = {(k− 1)s+
1, . . . , ks} for s ∈ {2, 4}. In this case, the model predicts s tokens jointly per step and
accelerates decoding.

6
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3. Task-specific grouping. For infilling tasks we allow groups to be arbitrary index subsets
and then assign group ids so that groups containing masked positions are decoded after
groups used as context. Concretely, let the sequence be partitioned into left, middle and
right index sets L,M,R (so {1, . . . , n} = L ∪M ∪ R). We choose an index k0 such that
every group Gk satisfying Gk ∩M = ∅ has k ≤ k0, while every group that contains any
masked position satisfies k > k0 (groups need not be contiguous and a single group may
contain tokens from both L and R). Under this design, all context groups (those covering
L and R) appear before the masked groups, and the model performs:

pθ(xM | xG≤k0
) =

K∏
k=k0+1

pθ
(
xGk
| xG<k

)
, (13)

which realizes AR dependencies inside each masked group while conditioning on both left
and right contexts. This flexible assignment enables infilling where context groups are
formed from arbitrary subsets of L ∪ R, and masked spans are predicted group-by-group.
This capability distinguishes A3 from conventional AR models, which cannot directly con-
dition on future context during generation.

Dynamic Resampling Inference. Beyond fixed grouping, A3 also supports a more adaptive in-
ference procedure inspired by iterative refinement (Li et al., 2022; Chen et al., 2024a). Here, the
grouping G is not fixed. At each step, the model evaluates all unfinished positions simultaneously,
conditioned on the completed tokens. Formally, suppose Ut ⊆ {1, . . . , n} is the set of unfinished
(blank) positions at iteration t, and Ft is its complement of finished positions. The model computes
predictive distributions

pθ(xi | xFt), ∀i ∈ Ut. (14)
Based on these distributions, we then select a subset St ⊆ Ut to be committed at this step, according
to some criterion such as maximum confidence, lowest entropy (Kim et al., 2025), or simply random
sampling. Once St is chosen, the tokens at St are sampled and added to the finished set:

Ft+1 = Ft ∪ St, Ut+1 = Ut \ St. (15)

This process repeats until UT = ∅, at which point the sequence is fully generated. The procedure is
summarized in Algorithm 2. The advantage of this dynamic resampling strategy is twofold. First, it
allows the model to adaptively choose the granularity of generation based on prediction confidence,
committing to easy tokens early while deferring more uncertain positions until later. Second, unlike
diffusion-style denoising which follows a pre-specified noise schedule, A3 inference directly uses
the conditional distributions defined by the AR factorization, ensuring consistency between training
and inference.

These inference strategies highlight a trade-off between efficiency and flexibility. Fixed-group sam-
pling is fast but less adaptive, as performance depends on group alignment with text structure. Dy-
namic resampling is slower since all unfinished positions are reevaluated at each step, but it yields
greater accuracy by adapting token commitment to model confidence. We will compare these strate-
gies in the next section on real-world tasks.

4 EXPERIMENTS

4.1 SETUP

Training Setup. We initialize our models from the LLaMA series, including LLaMA-3.1-8B,
LLaMA-3.2-3B, and LLaMA-3.2-1B (Dubey et al., 2024). For training data, we construct a mixture
of the FineWeb dataset (Penedo et al., 2024) and the SlimPajama dataset (Soboleva et al., 2023),
following prior work on DLMs and AR models. From this mixture, we sample 2B tokens and
apply sequence packing with a maximum context length of 2048. All models are trained with full-
parameter fine-tuning in bf16. In the progressive adaptation recipe, the first two training stages are
trained for one epoch over 20% of the dataset, while the final stage is trained for one epoch over the
full dataset. Additional training details are provided in Appendix A.

Evaluation Setup. We adopt the evaluation protocol of Gong et al. (2025) to compare our mod-
els against both diffusion and AR baselines. For reading comprehension, we evaluate on TriviaQA
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Algorithm 1 Groupwise AR Sampling

Require: Prompt tokens x1:m,
grouping strategy G =
{G1, G2, . . . , GK}, model fθ

Ensure: Generated sequence x̂1:n

1: Initialize x̂1:m ← x1:m

2: Find the last group index k0 in the
prompt

3: for k = k0 + 1 to K do
4: Compute context representa-

tion h← fθ(x̂G<k
)

5: Sample tokens x̂Gk
∼ pθ(· |

h)
6: end for
7: return Completed sequence x̂1:n

Algorithm 2 Dynamic Resampling

Require: : Prompt tokens, model fθ, criterion
1: Initialize F0 with prompt tokens, U0 with blank posi-

tions
2: while Ut ̸= ∅ do
3: for each i ∈ Ut do
4: Compute pθ(xi | xFt)
5: end for
6: Select subset St ⊆ Ut based on criterion
7: for each i ∈ St do
8: Sample x̂i ∼ pθ(xi | xFt

)
9: end for

10: Update Ft+1 ← Ft ∪ St, Ut+1 ← Ut \ St

11: end while
12: return Completed sequence x1:n

(Joshi et al., 2017) using exact match accuracy. For commonsense reasoning, we consider Hel-
laSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2020), SIQA (Sap et al., 2019), and
PIQA (Bisk et al., 2020), all assessed by multiple-choice accuracy. For story infilling, we use ROC-
Stories (Mostafazadeh et al., 2016) and report ROUGE scores (Lin, 2004). We compare against two
categories of baselines: (a) the base AR model LLaMA-3.1-8B, and (b) recent diffusion language
models of varying sizes, including Plaid-1B (Gulrajani & Hashimoto, 2024), Dream-7B (Ye et al.,
2025), and DiffuLlama-7B (Gong et al., 2025).

4.2 MAIN RESULTS

The results in Table 1 show that A3 consistently outperforms diffusion-based models across QA,
commonsense reasoning, and infilling tasks. For example, A3-8B achieves 19.4 accuracy on Triv-
iaQA and 78.1 on PIQA, surpassing all the diffusion baselines, while also attaining competitive
ROUGE scores for story infilling. In fact, A3 also achieves better latency number on the infilling
task (0.15 s/sample for A3 v.s. 0.17 s/sample for DiffuLlama and 0.21 s/sample for Llama-3.1-
8B). These gains are particularly noteworthy given that A3 is trained on only 2B tokens, whereas
DiffuLlama is trained on 65B. Although A3 still underperforms the AR baseline, this gap is likely at-
tributable to limited training data; with larger-scale pretraining, we expect A3 to close the difference
further.

Importantly, A3 demonstrates clear scaling behavior: performance improves steadily from 1B to
3B to 8B parameters, indicating that the method benefits from larger models in the same way as
conventional AR training. Overall, these results confirm that A3 offers a favorable balance between
AR and diffusion paradigms, combining strong reasoning accuracy with flexible generation, and
holds promise for further improvements under larger-scale training.

4.3 ABLATION STUDY

Inference Strategies. To better understand the trade-offs between the two proposed inference strate-
gies in Section 3.3, we conducted unconditional generation experiments under the A3 decoding
framework. For groupwise AR sampling, we vary the group size from 1 to 4. For dynamic resam-
pling, we vary the group size from 1 to 16 and implemented two selection criteria: (1) Confidence-
based: selecting positions with highest maximum softmax probability. (2) Entropy-based: selecting
positions with minimum output entropy. For each sequence, we sample with temperature of 1.5 and
top-p of 0.95. Figure 3 reports the log of perplexity measured by Llama-3.1-8B and the average
decoding time for one sequence.

We observe that dynamic resampling methods consistently achieve lower perplexity than group-
wise AR sampling, indicating that they produce higher-quality generations. The confidence-based
and entropy-based criteria yield very similar performance, with confidence being slightly better at
smaller group sizes. However, all strategies show a trend of increasing perplexity as group size
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Table 1: Comprehensive evaluation of different language models. There are 4 types of these models:
AR for autoregressive, DD for discrete diffusion, CD for continuous diffusion and A3 for our pro-
posed model. For the infilling task, we use ROUGE-1/2/L score; for other tasks, we use the accuracy
(%) metric. * refers to the results reported in DiffuLlama (Gong et al., 2025).

Model Size Type QA CommonSense Reasoning Infilling
TriQA HSwag Wino. SIQA PIQA ROCStories

Llama-3.1 8B AR 52.1 76.0 63.9 46.7 80.3 11.7/2.3/10.5

Plaid* 1B CD 1.2 39.3 51.3 32.3 54.5 12.1/1.1/11.2
Dream 7B DD 18.3 26.9 51.8 36.6 55.8 11.7/2.3/10.5
DiffuLlama* 7B DD 18.5 58.7 56.4 43.2 63.3 23.3/5.5/21.2

A3
1B A3 10.2 40.2 52.8 35.1 64.7 11.8/1.7/11.1
3B A3 15.9 49.6 54.3 38.9 70.1 11.3/2.3/10.2
8B A3 19.4 58.4 60.2 45.2 78.1 19.2/4.6/18.6

Figure 3: Unconditional generation log(perplexity) and speed using A3-8B. The perplexity is mea-
sured by Llama-3.1-8B and we compare several decoding strategies. Dynamic resampling will cost
more time but have lower perplexity.

grows, reflecting the trade-off between decoding granularity and modeling accuracy. We can also
see that decoding time decreases sharply with larger group sizes. Groupwise AR sampling is fastest
at the same group size because it only generates the designated group per step, while dynamic re-
sampling requires evaluating all unfinished tokens at each iteration, making it slower. However, as
group size increases, dynamic resampling speeds up considerably, nearly matching the efficiency of
groupwise sampling at large group sizes.

Overall, these results demonstrate a speed–accuracy trade-off. Groupwise AR sampling is faster
but less accurate, while dynamic resampling achieves better perplexity at the cost of slower decod-
ing. Importantly, A3 provides the flexibility to choose between these strategies depending on the
requirements of the application, making it more flexible than conventional AR or diffusion-based
methods.

Curriculum schedule. A3 introduces a different causal mask and attention flow from a standard
AR transformer, and the model must progressively adapt from strict left-to-right prediction to multi-
token and eventually arbitrary-order factorization. To assess the sensitivity of the schedule, we
train two variants on 0.5B tokens: 1. original curriculum, and 2. skipping stage 1 and 2 (directly
training on stage 3: order permutations). Results are shown in Table 2. Skipping the early stages
consistently hurts performance by 4–6 points on several benchmarks, which proves the importance
of such adaptation stage. An adaptive schedule, e.g., based on training loss, may further improve
robustness. We plan to investigate this direction in the future work.

Performance with more data. Since the training budget for A3 is much less than the baseline (2B
for A3, 60B for DiffuLlama and 15T for Llama-3.1-8B), in order to isolate the architecture effect
on the worse performance than the AR baseline, we track how A3 improves under increasing post-
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Table 2: Performance with different training curriculum schedule. We evaulate two variants trained
on 0.5B tokens: 1. original curriculum and, 2. skipping stage 1 and 2 (directly training on stage 3:
order permutations).

Schedule QA CommonSense Reasoning Infilling
TriQA HSwag Wino. SIQA PIQA ROCStories

Original 15.6 49.3 56.7 39.6 69.4 13.2/2.3/12.6
Skipping Stage 1 & 2 11.3 44.2 54.1 37.3 64.2 13.1/2.2/12.4

Table 3: Performance of A3 with different training data
on TriviaQA and perplexity measured by Llama-3.1-8B.

Model TriviaQA log(Perplexity)

A3 (1.5B tokens) 16.2 2.9
A3 (2B tokens) 19.4 2.5
A3 (2.5B tokens) 22.5 2.3

AR (15T) 52.1 0.8

Table 4: Model loss of A3 across context
lengths, which is stably small.

Length Model loss

256 3.54
512 3.51
1024 3.34
2048 3.23

training data. We use 1.5B, 2B (default) and 2.5B tokens to train A3. The results are shown in Table
3. Performance increases steadily with more data. This confirms that A3 benefits strongly from data
scale and that the gap to fully-trained AR models is due to training budget, not a limitation of the
A3 architecture.

Robustness on context length. In order to investigate whether A3 is robust across different context
lengths, we input contexts with length of 512, 1024 and 2048 to A3 and calculate the loss. The
results are shown in Table 4. The model loss keeps stable within the training length, indicating the
robustness of A3 across different context lengths.

5 CONCLUSION

We have presented Any-order Any-subset Autoregressive modeling (A3), a novel framework that
generalizes traditional autoregressive factorization to enable flexible, groupwise generation of to-
kens in arbitrary orders. By combining a two-stream attention architecture with a progressive train-
ing strategy, A3 achieves the dual goals of generation flexibility and modeling stability. Our ap-
proach supports a wide range of decoding strategies, including groupwise autoregressive sampling
and dynamic resampling, offering a tunable trade-off between speed and accuracy. Through com-
prehensive experiments, we demonstrate that A3 outperforms diffusion-based models in reasoning,
question answering, and infilling tasks. These results highlight A3’s ability to balance efficiency,
flexibility, and quality, making it a promising direction for future sequence modeling. In the fu-
ture, we plan to explore scaling A3 to larger models and datasets, as well as applying it to more
challenging tasks such as long-context reasoning.

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. While our methods are general, they may be
applied in contexts with societal implications, including risks related to bias, fairness, and privacy.
We encourage responsible use and declare no conflicts of interest.
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A TRAINING HYPERPARAMETERS

We list the hyperparameters in the training stage in Table 5

Table 5: The hyperparameter list

Hyperparameter Value

Training
Batch Size 64
Epoch [0.2, 0.2, 1]
Optimizer AdamW
LR 2e-5
Betas (0.9, 0.999)
Weight Decay 0.01
LR Schedule WarmupLR
Warmup Iters [50, 50, 50]
Max Sequence Length 2048

Sampling (Section 4.3)
Top-p 0.95
Temperature 1.5

B ADDITIONAL RELATED WORK

Continue Pre-training. Pretraining large language models has been proven to be complex and
computationally expensive (Samragh et al., 2024). Consequently, continued pre-training has been
proposed as an effective method to adapt existing large language models to specific domains (Ke
et al., 2023; Gururangan et al., 2020) or to endow them with new capabilities, such as handling
longer contexts (Chen et al., 2024b; Fu et al., 2024; Xiong et al., 2023) or code generation (Xu et al.,
2024). Notably, certain continued pre-training efforts, such as those in scaling diffusion language
models (Gong et al., 2025), have transcended autoregressive (AR) language modeling by converting
large language models into diffusion-based architectures, thereby enabling parallel token genera-
tion. In contrast, our work retains autoregressive language modeling but innovatively incorporates a
two-stream architecture and semi-autoregressive decoding to similarly support parallel prediction of
multiple tokens, achieving significant reductions in inference latency compared to both autoregres-
sive and diffusion-based baselines.

Diffusion Language Model. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2020) have demonstrated remarkable capabilities in image generation. Consequently, a series
of works have sought to extend diffusion models to text generation, which can be roughly divided
into the continuous diffusion model and the discrete diffusion model. One straightforward approach
involves embedding text data into a continuous space and directly applying diffusion models (Li
et al., 2022; Gong et al., 2022; Han et al., 2022; Dieleman et al., 2022). However, the scalability
of continuous diffusion methods remains a challenge, as they require substantially greater compu-
tational cost compared to AR models to achieve equivalent performance(Gulrajani & Hashimoto,
2024). To better accommodate the discrete nature of text, an alternative paradigm replaces con-
tinuous diffusion with a discrete process, introducing an absorbing [MASK] state as noise (Austin
et al., 2021; Hoogeboom et al., 2021; Zheng et al., 2024; Sahoo et al., 2024). Lou et al. (2023)
demonstrated that masked diffusion models (MDMs) achieve perplexity comparable to or even sur-
passing that of AR models at the GPT-2 scale. Ou et al. (2024) established foundational theoretical
results, affirming the feasibility of MDMs. In comparison to MDMs, our method similarly enables
parallel prediction of groups of tokens and leverages bidirectional context. However, by retaining
autoregressive modeling, our approach utilizes every token during training, thereby facilitating faster
convergence relative to MDMs.

Non-autoregressive Generation. Non-autoregressive (NAR) generation (Gu et al., 2017) accel-
erates inference by producing target tokens in parallel, eliminating the dependency on previously
generated tokens inherent in traditional AR models. This approach substantially improves genera-
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tion speed, but potentially at the cost of some accuracy. Conventional NAR models have focused
mainly on machine translation and automatic speech recognition, emphasizing the trade-off between
speed and quality (Higuchi et al., 2020; Lee et al., 2018). For instance, Guo et al. (2020) employed
sequence-to-sequence labels in translation tasks, training NAR models via a curriculum learning
strategy on attention masks. However, early NAR methods in text generation remain constrained by
issues of global coherence and diversity. In recent years, insertion-based models(Stern et al., 2019;
Gu et al., 2019) and diffusion language models (Gong et al., 2022; Lou et al., 2023; Shen et al., 2023)
have progressively addressed these limitations. For example, SSD-LM (Han et al., 2022) leverages
a diffusion-based language model to generate text blocks in a semi-autoregressive manner, enabling
local bidirectional context updates. Compared to diffusion language models, our method similarly
achieves parallel multi-token prediction and bidirectional context modeling, while benefiting from
faster training convergence due to the absence of masked tokens during training.

Multi-token Prediction. Multi-Token Prediction (MTP) seeks to move beyond strictly stepwise
next-token prediction by enabling models to forecast multiple future tokens per autoregressive step,
improving inference efficiency with minimal quality degradation. Some methods achieve MTP by
modifying the Transformer architecture. For instance, Stern et al. (2018) demonstrated through
blockwise decoding that multi-token acceptance is feasible when supported by verification mech-
anisms. Medusa (Cai et al., 2024) add parallel heads to predict multi-step continuations with
lightweight acceptance rules. Other approaches realize MTP via multi-model collaboration. Specu-
lative decoding (Leviathan et al., 2023) uses a draft model to propose multi-token candidates that the
main model verifies, while EAGLE-like validators (Li et al., 2024) further strengthen multi-token
verification. Our method similarly modifies the Transformer structure, but innovatively leverages
a two-stream architecture and semi-autoregressive decoding to achieve MTP, significantly reducing
generation latency while attaining higher accuracy than baselines.

Permutation Network. Previous permutation-style networks like XLNet (Yang et al., 2019) models
the text sequence in a bidirectional AR style, achieving better performance on language understand-
ing tasks. However, they were all about boosting contextual understanding like hink QA and text
classification. A3 repurposes these tools to realize the ability that traditional AR models never have:
generate text in any order, or even just specific subsets of it. And it does this while hanging onto
AR’s biggest strengths–solid probabilistic rigor and stable training, which diffusion models have
to sacrifice. Besides, A3 is the first to take permutation-style AR and scale it up to 7B+ parame-
ter models for generative tasks. The earlier ideas behind permutation LMs (like the core concept
in XLNet) never got past single-token prediction. It’s A3’s group-based curriculum and decoding
strategies that make large-scale, parallel, and flexible generation actually work.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, LLMs are primarily employed for polishing the language of the manuscript to ensure
grammatical correctness and coherence. Importantly, all conceptual development, experimental de-
sign, and result interpretation are conducted independently by the authors. The use of LLMs is
strictly limited to auxiliary tasks, ensuring that the scientific contributions of this paper remain en-
tirely unaffected by such tools.

D MORE ANALYSIS EXPERIMENTS

Comparison with speculative decoding. We additionally conduct generation experiments as in
Figure 3. We use speculative decoding (Leviathan et al., 2023) with Llama-3.2-1B as the draft
model and Llama-3.1-8B as the target model, matching A3’s group size (max 4). Perplexity is
measured by Llama-3.1-70B. Results are shown in Table 6. Speculative decoding achieves lower
perplexity but at higher wall-clock cost, while A3 provides competitive quality with faster decoding
in this setting.

Importantly, semi-AR methods such as speculative decoding and multi-token prediction are
decoding-level accelerators: they maintain the same left-to-right AR factorization and improve effi-
ciency through draft-model proposals or multi-step predictions. In contrast, A3 changes the model
factorization itself by enabling groupwise and permutation-based prediction. This makes A3 or-
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Table 6: Comparison between speculative decoding and A3 on generating perplexity and time.

log(perplexity) Time

Speculative decoding 1.9 1.2×
A3 2.1 1×

thogonal to speculative/MTP: these accelerations can also be applied on top of A3’s factorization in
principle.

Comparison with recent any-subset AR. A recent any-subset AR work ASSD (Guo & Ermon,
2025) starts to provide provable joint-distribution correct parallel sampling by speculative decod-
ing, which is not used in our A3 decoding process. The motivation for ASSD using correct-by-
construction decoding is that, they model the sequence one token by one token using absorning state
DTMC and assume ∑

i∈[m,N)

log p(xσ(i)|xσ(<m)) ̸= log p(xσ(≥m)|xσ(<m)). (16)

Therefore, when they sample a new group σ(m), . . . , σ(N −1), they need to use rejection sampling
to get the right distribution for the new group. However, A3 directly models the sequence group by
group. Therefore, the sampling results from P (xGt | x∪j<tGj ) in each step faithfully represent the
true distribution.

We compare A3’s dynamical resampling with confidence and ASSD sampling method in uncondi-
tional generation as the same setting in Figure 3 using a group size of 4. We show the results in Table
7. With comparative results on generation quality, ASSD costs 2.4× time due to additional compu-
tation for resampling. This proves the high quality and high efficiency of A3’s dynamic resampling
method.

Practical speed–quality trade-off comparison. We now explicitly measure decoding time for
Llama-3.1-8B (AR baseline) and DiffuLlama (Diffusion baseline) under the same setting in Figure
3. We evaluate all models’ log-perplexity with Llama-3.1-70B. The results are shown in Table 8.
Compared with the AR baseline, with small groups (size 1 & 2), A3 achieves better performance
at the trade of longer time due to more complex architecture. With moderate groups (size 4), A3
achieves faster decoding than the AR baseline (67s → 37s) at a small quality tradeoff. Comapred
with diffusion baseline, A3 consistently performs better with the same group size or with the same
time (e.g. A3 2.1 37s v.s. DiffuLlama 2.2 51s). These results prove A3’s practical decoding effi-
ciency.

Results on longer contexts. To evaluate whether A3 remains stable under significantly longer con-
texts than 2k tokens, we finetuned both Llama-3.1-8B and A3-8B on 8k-length sequences from
PG19 (Rae et al., 2019) using the same training budget (100 steps, batch size 64). We then evalu-
ated them on the single-document QA task from LongBench v1 (Bai et al., 2023b), which requires
reasoning over long passages. We used dynamic sampling for A3 with group size 1 and group size
2. The results are shown in Table 9.

A3 (group size 1) improves over the AR baseline with 1.7%, suggesting that the A3 factorization
does not degrade long-context modeling and may offer small gains without parallel decoding. A3
(group size 2) achieves 30% faster decoding, demonstrating that A3’s groupwise inference can
provide real latency benefits in longer contexts. This result shows that larger groups introduce
more parallelism but can slightly reduce accuracy, which is consistent with our analyses in shorter
contexts.

Our 8k experiments indicate that A3 can scale to significantly longer sequences without degradation
and provides decoding-time advantages via groupwise generation. These results support the poten-
tial of A3 for future long-context extensions and we will explore longer context in future works.
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Table 7: Comparison between A3’s dynamical resampling and ASSD sampling method.

log(perplexity) Time

ASSD 2.3 2.4×
A3 2.2 1×

Table 8: Comparison with Llama-3.1-8B and DiffuLlama on speed-quality tradeoff.

log(perplexity) Time

Llama-3.1-8B (baseline) 1.9 67s

DiffuLlama (group size = 1) 1.9 102s
DiffuLlama (group size = 2) 2.2 51s
DiffuLlama (group size = 4) 2.3 25s
A3 (group size = 1) 1.7 142s
A3 (group size = 2) 1.8 71s
A3 (group size = 4) 2.1 37s

Table 9: Accuracy and time comparison on Single Document QA task of LongBench v1 (Bai et al.,
2023b).

QA task acc (%) Average Time

Llama-3.1-8B (baseline) 25.4 1.0×
A3 (group size = 1) 27.1 1.3×
A3 (group size = 2) 22.5 0.7×
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