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ABSTRACT

Air pollution represents a pivotal environmental challenge globally, playing a ma-
jor role in climate change via greenhouse gas emissions and negatively affecting
the health of billions. However predicting the spatial and temporal patterns of
pollutants remains challenging. The scarcity of ground-based monitoring facil-
ities and the dependency of air pollution modeling on comprehensive datasets,
often inaccessible for numerous areas, complicate this issue. In this work, we in-
troduce GeoFormer, a compact model that combines a vision transformer module
with a highly efficient time-series transformer module to predict surface-level ni-
trogen dioxide (NO2) concentrations from Sentinel-5P satellite imagery. We train
the proposed model to predict surface-level NO2 measurements using a dataset
we constructed with Sentinel-5P images of ground-level monitoring stations, and
their corresponding NO2 concentration readings. The proposed model attains
high accuracy (MAE 5.65), demonstrating the efficacy of combining vision and
time-series transformer architectures to harness satellite-derived data for enhanced
GHG emission insights, proving instrumental in advancing climate change moni-
toring and emission regulation efforts globally.

1 INTRODUCTION

The emission of greenhouse gases (GHGs), primarily from industrial and transportation activities,
is a major contributor to the increasingly urgent climate change crisis. This article introduces inno-
vative methodologies for forecasting the levels of nitrogen dioxide (NO2), a prevalent byproduct of
fossil fuel combustion that poses significant risks to both human health and the environment. No-
tably, NO2 is closely associated with other air contaminants, such as fine particulate matter (PM2.5),
and is often released alongside CO2, a leading greenhouse gas, rendering it an effective indicator for
gauging CO2 emissions. The adverse effects of NO2 on human health, particularly on the cardio-
vascular and respiratory systems, underscore the necessity of managing NO2 levels. The ability to
accurately identify instances where safe exposure thresholds are exceeded, as well as to assess indi-
vidual exposure levels, demands detailed insight into the spatial and temporal distribution of NO2.
This requirement serves as a key motivation for our research.

The advent of high-resolution satellite imagery, such as that provided by the Sentinel-5P satellite,
offers unprecedented opportunities for the monitoring of atmospheric pollutants. The TROPOMI
device on the Sentinel-5P satellite enables detailed observation of NO2 emissions on a global scale
Bodah et al. (2022). However, the challenge lies in effectively analyzing this vast amount of data
to produce accurate and timely predictions of surface-level GHG concentrations. Although deep
learning models have demonstrated potential for estimating GHG emissions with the use of satellite
imagery, there is an increasing need for models that are both accurate and computationally efficient.
In response to these challenges, this paper presents an innovative architecture based on both a vision
transformer (ViT) and a time-series transformer, aimed at monitoring greenhouse gas (GHG) emis-
sions using Sentinel-5P imagery. Being a fraction of the size of models proposed for similar tasks,
this represents an advancement in the application of deep learning to environmental monitoring, es-
tablishing a new standard for tracking GHG emissions in real-time and with high efficiency and low
compute. In addition, it lays the groundwork for future efforts aimed at mitigating climate change.
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The following are the main contributions of this work:

1. A Dataset of Paired Sentinel-5P and NO2 Data: We introduce a comprehensive dataset
that pairs high-resolution Sentinel-5P satellite imagery with corresponding surface-level
NO2 concentration measurements. This dataset is characterized by its daily granularity
over the course of 15 months.

2. A Compact and Efficient Spatio-temporal Transformer Model: We propose a novel
transformer-based model that leverages the spatial and temporal dynamics of NO2 emis-
sions; the result is a model that outperforms existing methods in terms of accuracy while
being significantly more efficient in terms of computational resources required.

2 RELATED WORK

2.1 TRANSFORMER MODELS

The transformer architecture, introduced by Vaswani et al. (2017), revolutionized sequence model-
ing. The core mechanism here is self-attention, which allows the model to weigh the importance of
different parts of the input data relative to each other. Mathematically, the self-attention mechanism
can be described as:

Attention(Q,K,V ) = softmax
(
QKT

√
dk

)
V (1)

where Q, K, and V represent the query, key, and value matrices, respectively, derived from the
input, and dk is the dimensionality of the keys and queries, which serves as a scaling factor. This
ability to handle sequences in their entirety parallelizes computation and has led to state-of-the-art
results in various sequence modelling tasks (Devlin et al., 2019). However, as is noted by Zhou et al.
(2021), the vanilla transformer architecture has O(N2) time complexity, where N is the number of
input tokens.

2.2 DEEP LEARNING FOR GREENHOUSE GAS EMISSIONS

Historically, the estimation of the spatial distribution of atmospheric pollutants, including green-
house gases, has predominantly been based on discrete point measurements from specific locales.
These measurements are then extrapolated over larger areas through geostatistical techniques such
as kriging Janssen et al. (2008) or Land-Use Regression (LUR) models Hoek et al. (2008). Although
these traditional methods have proven useful, they are hampered by their need for detailed variable
selection and lack the capability for efficient large-scale application.

In contrast, recent progress in the field of deep learning has shown promise for improving the ac-
curacy of greenhouse gas quantification. For instance, Scheibenreif et al. (2021); Hanna et al.
(2021) leverage Sentinel-2 and Sentinel-5P data to estimate CO2and NO2 surface-level emissions
using convolutional neural network (CNN) backbones. Khirwar & Narang (2023) propose a vi-
sion transformer-based approach, achieving better results with a more compact model on the dataset
proposed by Scheibenreif et al. (2021). However, this dataset has at most a monthly granularity.
Although this may have applications for identifying longer-term trends, such a dataset does not offer
the opportunity to detect anomalous spikes in greenhouse gases/pollutants quickly.

3 METHODOLOGY

3.1 VISION TRANSFORMER MODULE

Transformers have been adapted to image data by treating images as sequences of patches Doso-
vitskiy et al. (2020). The fundamental principle here is to decompose an image into a sequence of
smaller, fixed-size patches, apply linear transformations to project these patches into an embedding
space, and then process the embeddings using the Transformer’s self-attention mechanism. This al-
lows each element to attend over all positions, as opposed to convolutional neural networks (CNNs)
that are limited by their kernel sizes Wang et al. (2021). Mathematically,
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Figure 1: GeoFormer model architecture. Here, mt represents an NO2 prediction at timestamp t,
and CAM represents the cross-attention module.

MHSA(E) = softmax
(
EQETK√

dk

)
EV (2)

where MHSA denotes the multi-head self-attention mechanism, Q, K, and V are the query, key, and
value projections of the embeddings E, and dk represents the dimensionality of the keys and queries.
The output from the encoder is a high-dimensional representation that captures the attention-driven
spatial relationships between different patches of the input image.

3.2 EFFICIENT TIME-SERIES TRANSFORMER

The Efficient Sequence Transformer module is designed to process sequences of NO2 concentration
data by employing a sparsity-enhanced self-attention mechanism to generate attention feature maps
as proposed by Zhou et al. (2021). This mechanism, adapted from the canonical self-attention
framework Vaswani et al. (2017), has time-complexity O(N log(N)) and is thus allows for more
tractable compute, compared to traditional self-attention, when applied to long sequences. The
authors introduce a sparsity-driven approach, ProbSparse self-attention, which selectively computes
attention weights for a subset of dominant queries, thereby reducing the computational complexity.
This is based on the observation that self-attention weight distributions often exhibit sparsity, with
a few key-query interactions dominating the attention mechanism. The ProbSparse self-attention
mechanism is formalized by replacing Q with Qsparse from equation 1. Here, Qsparse contains only
the top-u queries based on a sparsity measurement M(qi,K), which quantifies the diversity of
the attention distribution for each query. This measurement helps identify queries that contribute
significantly to the attention distribution, allowing for a sparse computation of attention weights.

The output from this module is a latent representation that captures the attention-driven temporal
relationships between historical predictions of NO2 concentration.

3.3 INTEGRATION OF SPATIO-TEMPORAL FEATURES VIA CROSS ATTENTION

The model takes latent representations from the ViT encoder and time-series transformer to dy-
namically weigh the importance of spatial information from satellite imagery against the temporal
patterns of predicted NO2 concentrations, producing a contextually enriched feature vector Gheini
et al. (2021) that embodies both spatial and temporal insights. Finally, the enriched feature vector is
passed through a series of fully connected layers to regress the final scalar output representing the
predicted NO2 concentration. The architecture is represented in figure 2, where mt is the surface
level NO2 concentration prediction at timestamp t.

4 EXPERIMENTATION AND RESULTS

4.1 DATA COLLECTION AND TRAINING

Ground-level NO2 concentration data were collected from 35 monitoring stations distributed across
Europe. Daily average NO concentrations2 were compiled for the period October 2022 to January
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2024. Corresponding Sentinel-5P satellite images were acquired for the same time period. We
train the proposed model for 600 epochs on an Nvidia Tesla T4 GPU. We test the performance of
the model on an unseen subset of the 35 locations that comprise our dataset, such that they are
effectively out-of-distribution with respect to the training data.

4.2 RESULTS

We present a comparative analysis of the metrics achieved by our proposed model on the proposed
dataset, along with results achieved by Scheibenreif et al. (2021); Khirwar & Narang (2023) on
the dataset proposed by Scheibenreif et al. (2021). For a more direct comparison, we also present
an analysis of all three models on our proposed dataset. Since the dataset proposed by Scheibenreif
et al. (2021) has low temporal granularity, sequences of datapoints from the same location aren’t long
enough for a sequence modelling module to capture useful dependencies between sequential NO2
readings. Thus, the dataset proposed herein enables us to leverage sequence modeling to a more
profound effect than would be possible with previously established datasets for NO2 monitoring.
We also do not include comparisons of our model with simpler baselines such as gradient-boosting
methods or from kriging, as Scheibenreif et al. (2021) have previously demonstrated the marked
superiority of deep learning-based approached to these baselines.

This allows us to do away with the need for a Sentinel-2 image (as is used by Scheibenreif et al.
(2021); Khirwar & Narang (2023)), which greatly reduces the size of the model (since Sentinel-2
images have 12 spectral channels, whereas Sentinel-5P images have only one). As is seen in table
1, our proposed model is more than an order of magnitude less in size when compared to models
that use a Sentinel-2 image in conjunction with a Sentinel-5P image, while achieving or surpassing
results that previous models achieve (albeit on a different dataset). We also offer a comparison of
modifications of these models trained on the proposed dataset (such that they only take Sentinel-5P
input), and we see that performance drops considerably, as these models do not have a time-series
modeling component. In table 1, models trained on the dataset introduced by Scheibenreif et al.
(2021) are marked with an asterisk (*).

Table 1: Comparison of models based on MAE, MSE, and size. Best metrics are in bold.
Model MAE MSE Size (MB)
GeoViT* 5.84 58.9 850
CNN Backbone* 6.68 78.4 1964
GeoViT 6.69 72.70 65
CNN Backbone 6.49 67.25 32
GeoFormer (proposed) 5.65 56.95 70

5 CONCLUSION AND FUTURE WORK

This paper presented a comprehensive approach for predicting NO2 concentrations by leveraging at-
tention between spatio-temporal features as well as a long-sequence dataset combining Sentinel-5P
imagery with ground-level monitoring station readings. Future research will explore the integration
of Vision Transformers with optical flow-based models Guizilini et al. (2022) for sequence mod-
elling, such that instead of a single image and a series of historical predictions, the model can take a
series of satellite images as well as a series of historical predictions as input. Additionally, explor-
ing the scalability of our model to other pollutants and environmental indicators could broaden the
applicability of the proposed work.
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A DATASET

A.1 DATA COLLECTION PROCESS

The following steps were taken to create the paired Sentinel-5P and NO2 concentration dataset:

1. Temporal Alignment: Sentinel-5P images were collected to align with the timestamps
of the daily ground-level NO2 data. To enhance the temporal resolution and mitigate the
effects of cloud cover and other atmospheric disturbances, images were mosaicked over
rolling 10-day windows. This approach ensured that each satellite image represented an
aggregate view of NO2 concentrations over the 10 days preceding each ground measure-
ment date.

2. Spatial Coverage: For each monitoring station, a bounding box was calculated around its
coordinates to define the region of interest for satellite imagery collection. This bounding
box was determined based on a fixed radius from the station’s location, ensuring that the
satellite images encompassed the local atmospheric conditions relevant to the ground-level
NO2 readings.

3. Image Processing: Satellite images were processed to match the spatial resolution and
scale required for analysis. This included center cropping and resizing operations to stan-
dardize the image dimensions, facilitating consistent comparison and integration with the
ground-level NO2 data.
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A.2 DATA SAMPLES

Figure 2: Example of Sentinel-5P imagery with corresponding surface-level NO2conentrations for
6 consecutive days at the same location.
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