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ABSTRACT

Supervised learning models have been increasingly used in various domains such
as lending, college admission, natural language processing, face recognition, etc.
These models may inherit pre-existing biases from training datasets and exhibit
discrimination against protected social groups. Various fairness notions have been
introduced to address fairness issues. In general, finding a fair predictor leads to
a constrained optimization problem, and depending on the fairness notion, it may
be non-convex. In this work, we focus on Equalized Loss (EL), a fairness notion
that requires the prediction error/loss to be equalized across different demographic
groups. Imposing this constraint to the learning process leads to a non-convex op-
timization problem even if the loss function is convex. We introduce algorithms
that can leverage off-the-shelf convex programming tools and efficiently find the
global optimum of this non-convex problem. In particular, we first propose the
ELminimizer algorithm, which finds the optimal EL fair predictor by reducing
the non-convex optimization problem to a sequence of convex constrained opti-
mizations. We then propose a simple algorithm that is computationally more effi-
cient compared to ELminimizer and finds a sub-optimal EL fair predictor using
unconstrained convex programming tools. Experiments on real-world data show
the effectiveness of our algorithms.

1 INTRODUCTION

As machine learning (ML) algorithms are increasingly being used in applications such as education,
lending, recruitment, healthcare, criminal justice, etc., there is a growing concern that the algorithms
may exhibit discrimination against protected population groups. For example, speech recognition
products such as Google Home and Amazon Alexa were shown to have accent bias (Harwell, 2018).
The COMPAS recidivism prediction tool, used by courts in the US in parole decisions, has been
shown to have a substantially higher false positive rate for African Americans compared to the
general population (Dressel & Farid, 2018). Amazon had been using automated software since 2014
to assess applicants’ resumes, which were found to be biased against women (Dastin, 2018).

Various fairness notions have been proposed in the literature to measure and remedy the biases in
ML systems; they can be roughly classified into two classes: 1) individual fairness focuses on the
equity at individual level and it requires the similar individuals to be treated similarly (Dwork et al.,
2012; Biega et al., 2018; Jung et al., 2019; Gupta & Kamble, 2019); 2) group fairness requires
certain statistical measures to be (approximately) equalized across different groups distinguished by
some sensitive attributes. Their suitability for use is often application dependent, and many of them
are incompatible with each other (Zhang et al., 2019; Hardt et al., 2016; Conitzer et al., 2019; Zhang
et al., 2020; Khalili et al., 2020). Extensive approaches have been developed to satisfying a given
definition of fairness and they generally fall under three categories: pre-processing, by modifying
the original dataset such as removing certain features and reweighing, e.g., (Kamiran & Calders,
2012; Celis et al., 2020); in-processing, by modifying the algorithms such as imposing fairness
constraints or changing objective functions, e.g., (Zhang et al., 2018; Agarwal et al., 2018; 2019;
Reimers et al., 2021; Calmon et al., 2017); post-processing, by adjusting the output of the algorithms
based on sensitive attributes, e.g., (Hardt et al., 2016).
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In this paper, we focus on group fairness and we aim to mitigate unfairness issues in supervised
learning using in-processing approaches. The problem can be cast as a constrained optimization
problem where a fair predictor can be found by minimizing the prediction error (i.e., loss) subject to
certain group fairness constraint. In Section 2.1, we present a number of definitions of commonly
used group fairness notions, namely, statistical parity (Dwork et al., 2012), equal opportunity (Hardt
et al., 2016), equalized loss (Zhang et al., 2019), and bounded group loss (Agarwal et al., 2019).
Here we are particularly interested in equalized loss which requires the expected loss to be equalized
across different groups.

Constrained optimization problems for finding a fair predictor have been studied in the iterature. In
general, imposing a fairness criterion to the optimization problem may lead to a non-convex opti-
mization problem. Existing works have proposed various approaches to solving such a non-convex
optimization in different settings. For example, Komiyama et al. (2018) studied the non-convex op-
timization for regression problems under the coefficient of determination constraint. Agarwal et al.
(2019) proposed an approach to finding a fair regression model under bounded group loss and statis-
tical parity fairness constraints. Agarwal et al. (2018) studied classification problems and aimed at
finding fair classifiers under various fairness notions including statistical parity and equal opportu-
nity. In particular, they considered zero-one loss as the objective function and trained a randomized
fair classifier over a finite hypothesis space; this problem was reduced to a problem of finding the
saddle point of a linear Lagrangian function in (Agarwal et al., 2018). Zhang et al. (2018) proposed
an adversarial debasing technique to find a fair classifier under equalized odd, equal opportunity,
and statistical parity. However, there is no guarantee that this technique finds the global optimal
solution. The main difference between the present work and the existing in-processing approaches
are as follows: 1) we consider a non-convex problem for finding a fair predictor satisfying Equalized
Loss fairness notion, which has not been studied in the literature to the best of our knowledge. 2) We
propose algorithms for finding the global optimal solution to this non-convex problem efficiently.
3) Our algorithms are easy to implement and are applicable to both regression and classification
problems. 4) Unlike (Agarwal et al., 2018), our algorithms are not limited to finite hypothesis space.

Non-convex optimization problems have also been studied in other contexts such as learning over-
parametrized models. For example, deep neural networks are typically trained by solving uncon-
strained, non-convex problems, and methods such as gradient descent may not be suitable as they
are likely to find saddle points but not optimums. To address this issue, approaches have been pro-
posed in recent works by incorporating the higher order derivatives (Celis et al., 2020; Anandkumar
& Ge, 2016) or noisy gradients (Ge et al., 2015). However, these methods only find a local minimum
(not a global minimum) and are not applicable to our problem with a non-convex constraint.

In this work, we develop novel algorithms that find the fair (sub-)optimal solutions under Equalized
Loss fairness constraint efficiently. Note that while our approach and algorithms are presented in
the context of fair machine learning, they are applicable to any problem that can be formulated as a
constrained optimization problem in the form of minwww L0(www)+αL1(www) s.t. |L0(www)−L1(www)| < γ,
where α is a constant

Our main contributions and findings are as follows.
1. We study the relationship between Equalized Loss (EL) and Bounded Group Loss (BGL) fairness

notions. We show that given the existence of feasible solutions satisfying (approximate) BGL
fairness, imposing (approximate) EL fairness constraint never increase losses of both groups
simultaneously (Theorems 1 and 2 in Section 2.1). These results help policy makers to have a
better understanding of these two fairness notions.

2. We develop an algorithm (ELminimizer) to solve a non-convex constrained optimization prob-
lem that finds the optimal (approximate) EL fair solution. We show that such non-convex opti-
mization can be reduced to a sequence of convex constrained optimizations and the convergence
property of the algorithm is analyzed (Theorems 3 and 4, Section 3).

3. We develop a simple algorithm for finding a sub-optimal (approximate) EL fair solution. We
show that a sub-optimal solution is a linear combination of optimal solutions to two uncon-
strained optimizations and it can be found efficiently without solving constrained optimizations
(Theorem 5, Section 4).

4. We conduct sample complexity analysis and provide the guarantee on generalization performance
(Theorem 7, Section 5).

5. We validate the theoretical results by conducting experiments on real-world data (Section 6).
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2 PROBLEM FORMULATION

Consider a supervised learning problem where the training dataset consists of triples (XXX,A, Y )
from two social groups. Random variableXXX ∈ X ⊂ Rdx is the feature vector (in form of a column
vector), A ∈ {0, 1} is the sensitive attribute (e.g., race, gender) indicating the group membership,
and Y ∈ Y ⊂ R is the label. The feature vector XXX may or may not include sensitive attribute
A. Label Y can be either discrete or continuous depending on the given problem: if Y is discrete
(resp. continuous), then the problem is a classification (resp. regression) problem. Let F be a set
of predictors fwww : X → R parameterized by weight vector www ∈ Rdw .1 Consider loss function l :
Y×X → Rwhere l(Y, fwww(XXX)) measures the error of fwww in predicting label Y . Denote the expected
loss with respect to the joint probability distribution of (XXX,Y ) by L(www) := E{l(Y, fwww(XXX))}. Then,
La(www) := E{l(Y, fwww(XXX))|A = a} denotes the expected loss of the group with attribute A = a.

A predictor that minimizes the total expected loss, i.e., argminwww L(www), can be biased against certain
groups. To mitigate the risk of unfairness, various fairness notions have been proposed in the litera-
ture. Some of the most commonly used notions of group fairness are as follows: 1) Statistical Parity
(SP) (Dwork et al., 2012) implies that the predictor and the sensitive attribute should be indepen-
dent, i.e., fwww(XXX) ⊥ A; 2) Equal Opportunity (EqOpt) (Hardt et al., 2016) requires that conditional
on Y = 1, prediction and sensitive attribute are independent, i.e., fwww(XXX) ⊥ A|Y = 1; 3) Equalized
Odds (EO) (Hardt et al., 2016) requires the conditional independence between prediction and sen-
sitive attribute given Y , i.e., fwww(XXX) ⊥ A|Y ; 4) Equalized Loss (EL) (Zhang et al., 2019; Berk et al.,
2021) requires that the losses experienced by different groups are equalized, i.e., L0(www) = L1(www);
5) Bounded Group Loss (BGL) (Agarwal et al., 2019) requires that the loss experienced by each
group is bounded.

With fairness consideration, the goal is to find weight vectorwww that minimizes total expected loss in
predicting Y givenXXX , subject to certain fairness condition, i.e., minwww L(www) s.t. fairness constraint.
This is a typical formulation in fair machine learning literature, and above method of finding a fair
predictor belongs to in-processing approaches. Because such constrained optimization can be non-
convex, finding the optimal solution efficiently can be challenging. In this work, we develop novel
algorithms that solves such an optimization problem udder EL fairness constraint.

2.1 EQUALIZED LOSS (EL) AND BOUNDED GROUP LOSS (BGL)

As mentioned in Section 2, various fairness notions have been introduced in the literature. Among
them, Statistical Parity (SP), Equal Opportunity (EqOpt), Equalized Odds (EO), and Bounded
Group Loss (BGL) have been studied extensively in the literature, and both in-processing and post-
processing approaches have been developed to satisfy these constraints (Dwork et al., 2012; Agarwal
et al., 2018; Hardt et al., 2016; Zafar et al., 2019; Fitzsimons et al., 2019). Note that different fairness
notions may be conflict with each other and which one to adopt is application and context dependent.
In this work, we are interested in Equalized Loss (EL) fairness notion (Zhang et al., 2019; Berk et al.,
2021) which implies that the prediction error should be the same across different groups,2 and Group
Bounded Loss (BGL) fairness notion (Agarwal et al., 2019) which requires the prediction error of
every group to be bounded. We consider a relaxed version of EL fairness defined as follows.

Definition 1 (γ-EL) A predictor f satisfies γ-EL if the expected losses experienced by different
demographic groups satisfy the following,

− γ ≤ L0(www)− L1(www) ≤ γ. (1)

Parameter γ controls the degree of fairness; the smaller γ implies the stronger fairness. When γ = 0,
the exact EL fairness is attained. We say a group is disadvantaged if it experiences a larger loss.
Similarly, Group Bounded Loss (BGL) fairness notion is formally defined as follows.

Definition 2 (γ-BGL) A predictor f satisfies γ-BGL if the expected loss of each demographic group
is bounded by γ, i.e.,

La(www) ≤ γ, ∀a ∈ {0, 1}. (2)
1Predictive models such as logistic regression, linear regression, deep learning models, etc., are parameter-

ized by a weight vector.
2EL has also been referred to as Overall Accuracy Equality in (Berk et al., 2021; Agarwal et al., 2019).

3



Under review as a conference paper at ICLR 2022

2.2 RELATIONS BETWEEN γ-EL AND γ-BGL

In this section, we formally study the relations between γ-EL and γ-BGL fairness notions. Under
γ-EL fairness constraint, finding a fair predictor is equivalent to solving the following constrained
optimization problem:

minwww L(www) s.t. |L0(www)− L1(www)| ≤ γ. (3)

Letwww∗ be denoted as the solution to (3) and fwww∗ is the optimal γ-EL fair predictor. Theorem 1 below
shows that given the existence of a feasible point satisfying γ-BGL fairness, it’s impossible for both
groups experiencing loss larger than γ from the optimal γ-EL fair predictor.

Theorem 1 Consider the following optimization for finding the optimal γ-BGL fair predictor,

minwww L(www) s.t. La(www) ≤ γ, ∀a ∈ {0, 1}. (4)

If L0(www
∗) > γ and L1(www

∗) > γ, then optimization problem (4) does not have a feasible point.

Proof 1 We prove by contradiction. Assume w̃̃w̃w is a feasible point of optimization (4). Note that w̃̃w̃w
is a feasible point for optimization problem (3) as well. Since both L0(www

∗) and L1(www
∗) are larger

than γ, we have,

E{l(Y, fwww∗)} = Pr{A = 0}L0(www
∗) + Pr{A = 1}L1(www

∗) > γ,

E{l(Y, fw̃̃w̃w)} = Pr{A = 0}L0(w̃̃w̃w) + Pr{A = 1}L1(w̃̃w̃w) ≤ γ.

Therefore,www∗ can not be the solution to (3). This contradiction proves that the optimization problem
(4) cannot have a feasible point.

Theorem 1 implies that if γ-EL notion leads to an increase of the loss of every demographic group,
then there is no optimal predictor under γ-BGL.3 The next theorem further shows that for any pre-
dictor satisfying γ-EL, it must satisfy 2γ-BGL.

Theorem 2 Assume optimization problem (4) has at least one feasible point. Then, we have,

min{L0(www
∗), L1(www

∗)} ≤ γ and max{L0(www
∗), L1(www

∗)} ≤ 2γ.

Proof 2 Let w̃̃w̃w be a feasible point of optimization problem (4), then w̃̃w̃w is also a feasible point to (3). If
min{L0(www

∗), L1(www
∗)} > γ, then L(www∗) > γ ≥ L(w̃̃w̃w) must hold. This is a contradiction because it

implies thatwww∗ is not an optimal solution to (3). Therefore, min{L0(www
∗), L1(www

∗)} ≤ γ. Similarly,
we can prove max{L0(www

∗), L1(www
∗)} ≤ 2γ by contradiction. Assume max{L0(www

∗), L1(www
∗)} >

2γ. Then, max{L0(www
∗), L1(www

∗)} − min{L0(www
∗), L1(www

∗)} > γ which shows that www∗ is not a
feasible point for (3). This is a contradiction. Therefore, max{L0(www

∗), L1(www
∗)} ≤ 2γ.

Theorems 1 and 2 investigated the relations between EL and BGL fairness notions. Since γ-EL
implies 2γ-BGL and it additionally requires the approximate equality across different groups, we
will focus on γ-EL fairness notion in the rest of the paper. Because optimization problem (3) is a
non-convex optimization, finding the optimal fair γ-EL solution efficiently can be challenging. In
the next sections, we propose a number of algorithms that are easy to implement and can solve the
optimization (3) efficiently.

3 OPTIMAL FAIR MODEL UNDER EL FAIRNESS

In this section, we consider the optimization problem (3) under the EL fairness constraint. Note
that this optimization problem is non-convex and finding the global optimal solution is difficult.
However, we propose an algorithm which is able to find the solution to non-convex optimization (3)
by solving a sequence of convex optimization problems. Before presenting the algorithm, we need
to introduce two assumptions.

Assumption 1 L0(www), L1(www), and L(www) are strictly convex functions inwww.
3Theorem 1 is related to (Agarwal et al., 2019). In particular, they considered γ-BGL fairness and mentioned

that the equalized loss fairness notion may increase the loss of both groups.
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Algorithm 1: Function ELminimizer
1 ELminimizer(wwwG0

,wwwG1
, ε, γ):

2 λ0start = L0(wwwG0
)

3 λ0end = L0(wwwG1
)

4 Define L̃1(www) = L1(www) + γ
5 i = 0

6 while λ(i)end − λ
(i)
start > ε do

7 λ
(i)
mid = (λ

(i)
end + λ

(i)
start)/2;

8 Solve the following convex optimization problem,

www∗i = argmin
www

L̃1(www) s.t. L0(www) ≤ λ(i)mid (5)

9 λ(i) = L̃1(www
∗
i );

10 if λ(i) ≥ λ(i)mid then
11 λ

(i+1)
start = λ

(i)
mid; λ(i+1)

end = λ
(i)
end;

12 end
13 else
14 λ

(i+1)
end = λ

(i)
mid; λ(i+1)

start = λ
(i)
start;

15 end
16 i = i+ 1;
17 end

18 Returnwww∗i

Example 1 Consider a linear classifier fwww(XXX) = wwwTXXX with squared loss l(Y, fwww(XXX)) = (wwwTXXX−
Y )2. In this example, E{l(Y, fwww(XXX))} = wwwTE{XXT }www − 2E{YXXXT }www + E{Y 2} is strictly
convex in www if covariance matrix E{XXT } is positive definite. Similarly, La(www) is strictly convex
if E{XXT |A = a} is positive definite.

LetwwwGa be the weight vector minimizing the loss associated with group A = a. That is,

wwwGa
= argmin

www
La(www). (6)

Since optimization problem (6) is an unconstrained convex optimization problem,wwwGa can be found
efficiently by the first order condition or the gradient descent. We make the following assumption.

Assumption 2 We assume that the following holds,

L0(wwwG0
) ≤ L1(wwwG0

) and L1(wwwG1
) ≤ L0(wwwG1

).

Algorithm 2: Solving Optimization Problem (3)
Input: wwwG0

,wwwG1
,ε,γ

1 wwwγ = ELminimizer(wwwG0
,wwwG1

, ε, γ);
2 www−γ = ELminimizer(wwwG0

,wwwG1
, ε,−γ);

3 if L(wwwγ) ≤ L(www−γ) then
4 www∗ = wwwγ ;
5 end
6 else
7 www∗ = www−γ ;
8 end

Output: www∗

Assumption 2 implies that when a group ex-
periences its lowest possible loss, it should
not be the disadvantaged group. Under
Assumption 2, given wwwG0 and wwwG1 , Al-
gorithm 1 with γ = 0 (i.e., function
ELminimizer(wwwG0 ,wwwG1 , ε, 0)) finds the
optimal 0-EL fair solution, where parame-
ter ε > 0 specifies the stopping criterion; as
ε → 0, the output approaches to the opti-
mal solution. Intuitively, Algorithm 1 solves
non-convex optimization (3) by solving a se-
quence of convex and constrained optimiza-
tion problems. If γ > 0, Algorithm 2 finds
the optimal predictor under γ-EL using func-
tion ELminimizer.

The convergence of Algorithm 1 for finding the optimal 0-EL fair solution, and convergence of
Algorithm 2 for finding the optimal γ-EL fair solution are proved in the following theorems.
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Theorem 3 Consider sequences {λ(i)mid|i = 1, 2, . . .} and {www∗i |i = 1, 2, . . .} generated by Algo-
rithm 1 when γ = 0, i.e., ELminimizer(wwwG0

,wwwG1
, ε → 0, 0). Under Assumptions 1 and 2, we

have,
lim
i→∞

www∗i = www∗ and lim
i→∞

λ
(i)
mid = E{L(Y, fwww∗(X))}

where fwww∗ is the optimal 0-EL fair predictor.

Similarly, we can prove the convergence for the approximate EL fairness when γ 6= 0.

Theorem 4 Assume that L0(wwwG0
) − L1(wwwG0

) < −γ and L0(wwwG1
) − L1(wwwG1

) > γ. Then, as
ε→ 0, the output of Algorithm 2 goes to the optimal γ-EL fair solutionwww∗.

Complexity Analysis: The While loop in Algorithm 1 is executed for O(log(1/ε)) times. There-
fore, Algorithm 1 needs to solve a constrained convex optimization problem for O(log(1/ε)) times.
Note that constrained convex optimization problems can be efficiently solved via sub-gradient meth-
ods (Nedić & Ozdaglar, 2009), brier methods (Wright, 2001), stochastic gradient descent with one
projection (Mahdavi et al., 2012), etc. For instance, Nedić & Ozdaglar (2009) introduces a sub-
gradient method that finds the saddle point of the Lagrangian function corresponding to (5) and it
converges at the rate ofO(1/k) (k is the number of iterations). Therefore, if ε is the maximum error
tolerance for (5), the total time complexity of Algorithm 2 is O(1/ε log(1/ε)).

4 SUB-OPTIMAL FAIR MODEL UNDER γ-EL

In Section 3, we have shown that non-convex optimization problem (3) can be reduced to a sequence
of convex constrained optimizations (5), and based on this we proposed an algorithm (Algorithm 2)
that finds the optimal γ-EL fair predictor. However, the proposed algorithm still requires solving
a convex constrained optimization in each iteration. In this section, we propose another algorithm
which finds a sub-optimal solution to optimization (3) without solving constrained optimization in
each iteration.

The algorithm consists of two phases in sequence: (1) finding two weight vectors by solving two
unconstrained convex optimization problems; (2) generating a new weight vector satisfying γ-EL
fairness with the two weight vectors found in the first phase. Because of the convexity, two uncon-
strained convex optimization problems in the first phase can be solved efficiently.

Phase 1: Unconstrained optimization. In this phase, we remove EL fairness constraint and first
solve the following uncontrained optimization problem,

wwwO = argmin
www

L(www) (7)

Because L(www) is strictly convex inwww, the above optimization problem can be solved efficiently using
the gradient descent method. Predictor fwwwO

is the optimal predictor without fairness constraint, and
L(wwwO) is the smallest overall expected loss that is attainable. Let â = argmaxa∈{0,1} La(wwwO), i.e.,
group â is the group that is disadvantaged under predictor fwwwO

. Then, for the disadvantaged group
â, we findwwwGâ

by solving unconstrained optimization problem (6).

Phase 2: Binary search to find the fair predictor. For β ∈ [0, 1], we define the followings,

g(β) = Lâ
(
(1− β)wwwO + βwwwGâ

)
− L1−â

(
(1− β)wwwO + βwwwGâ

)
;

h(β) = L
(
(1− β)wwwO + βwwwGâ

)
,

where function g(β) can be interpreted as loss disparity between two demographic group under
predictor f(1−β)wwwO+βwwwGâ

, and h(β) is the corresponding overall expected loss. Some properties of
functions g(.) and h(.) are summarized in the following theorem.

Theorem 5 Under Assumptions 1 and 2, the followings hold,

1. There exists β0 ∈ [0, 1] such that g(β0) = 0.

2. h(β) is strictly increasing in β ∈ [0, 1]; g(β) is strictly decreasing in β ∈ [0, 1].
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Theorem 5 implies that in a dw dimensional space, if we start fromwwwO and move towardwwwGâ
along

a straight line, the overall loss increases and the disparity between two groups decreases until we
reach (1 − β0)wwwO + β0wwwGâ

, at which 0-EL fairness is satisfied. Note that β0 is the unique root
of g. Since g(β) is a strictly decreasing function, β0 can be found using binary search. For the
approximate γ-EL fairness, there are multiple values of β such that (1− β)wwwO + βwwwGâ

satisfies γ-
EL. Since h(β) is strictly increasing in β, among all β that satisfies γ-EL fairness, we would choose
the smallest one. The method for finding a sub-optimal solution to optimization (3) is described in
Algorithm 3.

Algorithm 3: Sub-optimal solution to optimization problem (3)
1 Input: wwwGâ

,wwwO, ε, γ
2 Initialization: gγ(β) = g(β)− γ, i = 0, β(0)

start = 0, β
(0)
end = 1

3 if gγ(0) ≤ 0 then
4 www = wwwO, and go to line 16;
5 end
6 while β(i)

end − β
(i)
start > ε do

7 β
(i)
mid = (β

(i)
start + β

(i)
end)/2;

8 if gγ(β
(i)
mid) ≥ 0 then

9 β
(i+1)
start = β

(i)
mid, β

(i+1)
end = β

(i)
end;

10 end
11 else
12 β

(i+1)
start = β

(i)
start, β

(i+1)
end = β

(i)
mid;

13 end
14 end
15 www = (1− β(i)

mid)wwwO + β
(i)
midwwwGâ

;
16 Output: www

Note that while loop in Algorithm 3 is repeated for O(log(1/ε)) times. Since the time complexity
of operations in each loop isO(1), the total time complexity of Algorithm 3 isO(log(1/ε)). We can
formally prove that the output returned by Algorithm 3 satisfies γ-EL fairness constraint.

Theorem 6 Assume that Assumption 1 holds. If gγ(0) ≤ 0, then wwwO satisfies the γ-EL fairness; if
gγ(0) > 0, then limi→∞ β

(i)
mid = β

(∞)
mid exists, and (1 − β(∞)

mid)wwwO + β
(∞)
midwwwGâ

satisfies the γ-EL
fairness constraint.

It is worth mentioning, since h(β) is incrasing, we are intrested in finding the smallest possible β
that (1 − β)wwwO + βwwwGâ

satisfies γ-EL. Here, β(∞)
mid is the smallest possible β under which (1 −

β)wwwO + βwwwGâ
satisfies γ-EL.

5 GENERALIZATION PERFORMANCE

So far we proposed algorithms for solving optimization (3). In practice, the joint probability distribu-
tion of (XXX,A, Y ) is often unknown and the expected loss needs to be estimated using the empirical
loss. Specifically, given n samples (XXXi, Ai, Yi), i = 1, . . . , n and predictor fwww, the empirical losses
of entire population and each group are defined as follows,

L̂(www) =
1

n

n∑
i=1

l(Yi, fwww(XXXi)); L̂a(www) =
1

na

∑
i:Ai=a

l(Yi, fwww(XXXi)), (8)

where na = |{i|Ai = a}|. Because γ-EL fairness constraint is defined in terms of expected loss, the
optimization problem of finding an optimal γ-EL fair predictor using empirical losses is as follows,

ŵ̂ŵw = argmin
www

L̂(www) s.t. |L̂0(www)− L̂1(www)| ≤ γ̂. (9)

Note that γ̂ 6= γ and one goal in this section is to find relation between γ̂ and γ. We aim to investigate
how to determine γ̂ so that with high probability the predictor found by solving problem (9) satisfies
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γ-EL fairness, and meanwhile ŵ̂ŵw is a good estimate of www∗. To present our result, we make the
following assumption.

Assumption 3 With probability 1− δ, we have the following,
sup
fwww∈F

|L(www)− L̂(www)| ≤ B(δ, n,F),

where B(δ, n,F) is a bound that goes to zero as n goes to infinity.

Note that if the class F is learnable with respect to loss function l, then there exists such a bound
B(δ, n,F) that goes to zero as n goes to infinity (Shalev-Shwartz & Ben-David, 2014).4

Theorem 7 Let F be a set of learnable functions, and let fŵww and fwww∗ be the solution to (9) and
(3) respectively with γ̂ = γ +

∑
a∈{0,1}B(δ, na,F). Then, with probability at least 1 − 6δ the

followings hold,
L(ŵ̂ŵw)− L(www∗) ≤ 2B(δ, n,F) and |L0(ŵ̂ŵw)− L1(ŵ̂ŵw)| ≤ γ + 2B(δ, n0,F) + 2B(δ, n1,F).

Theorem 7 shows that as n0, n1 go to infinity, γ̂ → γ, and both empirical loss and expected loss
satisfy γ-EL. In addition, as n goes to infinity, the expected loss at ŵww goes to the minimum possible
expected loss. Therefore, solving (9) using empirical loss is equivalent to solving (3) if the number
of data points from each group is sufficiently large.

6 EXPERIMENTS

6.1 EXPERIMENT 1: QUADRATIC FUNCTIONS

First, we solve optimization problem (3) given the following quadratic functions,
L0(www) = (w1 + 5)2 + (w2 + 2)2 + (w3 + 1)2 + 4w1 · w3,

L1(www) = (w1 − 9)2 + (w2 − 9)2 + (w3 − 9)2 + w1 · w2 + w2 · w3 + w1 · w3 + 1,

L(www) = L0(www) + L1(www).

By the first order condition, we obtainwwwG0
,wwwG1

,wwwO as follows,
wwwG0

= [1,−2,−3]T , wwwG1
= [4.5, 4.5, 4.5]T , wwwO = [24.53, 3.0, 26.53]T

We use Algorithm 1 to find the optimal solution to (3) and run Algorithm 3 to find a sub-optimal so-
lution. In particular, we adopt the penalty method (Ben-Tal & Zibulevsky, 1997) to solve constrained
convex optimization (5), i.e., by solving the following unconstrained optimization,

min
www

L1(www) + t ·max{0, (L0(www)− λ(i)mid)}
2, (10)

where t is the penalty parameter. We solve the optimization problem (10) using gradient descent
with learning rate 0.001 and 10000 iterations. We set penalty parameter t = 0.5 and increase t by
0.1 after every 250 iterations. Note that optimization (5) is convex and the penalty method for a
constrained convex optimization converges to the optimal solution (Ben-Tal & Zibulevsky, 1997).

We compare the our algorithms with a baseline: the solution to optimization problem (3) found
using the penalty method, i.e., by solving the following unconstrained optimization,
min
www

L0(www) +L1(www) + t ·
[
max{0, (L0(www)− L1(www)− γ)}2 +max{0, (L1(www)− L0(www)− γ)}2

]
.

(11)
When solving the optimization problem (11), we use learning rate 0.001. We set penalty parameter
t = 0.5 and increase it by 0.1 every 250 iterations. Figure 1a illustrates the overall loss L(www) at the
(sub-) optimal points obtained from Algorithms 2 and 3 and the baseline. x-axis represents fairness
parameter γ. Since Algorithm 2 converges to the optimal solution, it achieves the smallest loss.
Figure 1b illustrates the distance of the optimal point www∗ from the sub-optimal solutions obtained
by Algorithm 3 and the baseline penalty method. It shows that when γ is sufficiently large (less
strict fairness constraint), a sub-optimal solution generated by Algorithm 3 is closer to the optimal
solution than the solution found using the baseline method.

4As an example, if F is a compact subset of linear predictors in Reproducing Kernel Hilbert Space (RKHS)
and loss l(y, f(x)) is Lipschitz in f(x) (second argument), then Assumption 3 can be satisfied (Bartlett &
Mendelson, 2002). Vast majority of linear predictors such as support vector machine and logistic regression
can be defined in RKHS.

8
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Figure 1: a) Experiment 1: loss as a function of fairness parameter γ. Algorithm 2 and Algorithm
3 significantly improve the loss compared to the baseline. b) Experiment 1: distance between the
sub-optimal solution and the optimal solution. Algorithm 3 generates a sub-optimal solution closer
to the optimal solution compared to the baseline. c) Experiment 2: loss as a function of fairness
parameter γ. Both Algorithm 2 and Algorithm 3 outperform the baseline. d) Experiment 2: distance
between the sub-optimal solution and the optimal solution.

6.2 EXPERIMENT 2: LOGISTIC REGRESSION AND THE ADULT INCOME DATASET

The adult income dataset is a public dataset containing the information of 48,842 individuals (Ko-
havi, 1996). Each data point includes 14 features including age, education, race, etc. Consider race
(White or Black) as the sensitive attribute, we denote White demographic group byA = 0 and Black
group by A = 1.

We first pre-process the dataset by removing the data points with a missing value or with the race
other than Black and White and obtain 41,961 data points. Among these data points, 4585 belong
to Black demographic group. For each data point, we convert all the categorical features to one-hot
vectors and result in dx = 110 dimensional features. We then normalize the feature vectors such
that they have zero mean value and unit variance. Our goal is to find a logistic regression model
satisfying γ-EL to predict whether the income of an individual is above $50K or not.

We use Algorithm 2 and Algorithm 3 with ε = 0.01 to find the optimal logistic regression model
under EL. We use the penalty method described in equation (11) as the baseline. Similar to Experi-
ment 1, we set learning rate as 0.001 for solving (10) and (11). Penalty parameter t is set to be 0.5
and increases by 0.1 every 250 iterations. Figure 1c illustrates the loss of logistic regression model
trained by Algorithm 2, Algorithm 3, and the baseline. It shows that Algorithm 2 outperforms the
baseline; this is because that the baseline only finds a sub-optimal solution while Algorithm 2 finds
the global optimal solution. As mentioned in Section 4, Algorithm 3 finds a sub-optimal solution
that satisfies γ-EL, and its performance can vary from case to case. Even though Algorithm 3 has a
good performance in Experiment 1, it does not outperform the baseline in Experiment 2. Figure 1d
illustrates the distances from the optimal point www∗ to the sub-optimal solutions obtained by Algo-
rithm 3 and the baseline penalty method. It shows that the distance fromwww∗ to the solution obtained
under Algorithm 3 is slightly larger than that fromwww∗ to the solution obtained under the baseline.

7 CONCLUSION

In this work, we studied the problem of fair supervised learning under the Equalized Loss (EL)
fairness notion which requires the prediction error/loss to be the same across different demographic
groups. By imposing EL constraint, the learning problem can be formulated as a non-convex op-
timization problem. We introduce a number of algorithms that find the global optimal solution to
this non-convex optimization problem. In particular, we showed that the optimal solution to such
a non-convex problem can be found by solving a sequence of convex constrained optimizations.
We also introduced a simple algorithm for finding a sub-optimal solution to the non-convex problem
without solving constrained convex optimization problems. In addition to the theoretical guarantees,
we demonstrated the performance of the proposed algorithm through numerical experiments.

9
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8 REPRODUCIBILITY STATEMENT

Regarding the theoretical results: This paper includes six Theorems. The proof of Theorem 1 and
Theorem 2 have been provided in the main text. Due to the page limit, the proofs of the other
theorems have been provided in the appendix.

Regarding the numerical examples: the first experiment does not use any dataset, and we study
the performance of our proposed method on quadratic objective functions. The values for hyper-
parameters (including learning and penalty parameter) have been explicitly mentioned in section 6.
In the second numerical example, we used the adult income dataset which is a well-known public
dataset in our community. We explained the data pre-processing procedure in Section 6.2 in details.

9 ETHICS STATEMENT

In this work, we proposed algorithms to find fair predictors under the EL fairness notion. We want
to emphasize that selecting a right fairness notion depends on the application and the authors do not
make any suggestions to policy/law makers about choosing or avoiding this fairness notion.
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APPENDIX

PROOFS

In order to prove Theorem 3, we first introduce two lemmas.

Lemma 1 Under assumption 2, there exists www ∈ Rdw such that L0(www) = L1(www) = L(www) and
λ
(1)
start ≤ L(www) ≤ λ

(1)
end.

Proof. Let h0(β) = L0((1 − β)wwwG0
+ βwwwG1

) and h1(β) = L1((1 − β)wwwG0
+ βwwwG1

), and
h(β) = h0(β) − h1(β), β ∈ [0, 1]. Note that ∇wwwLa(wwwGa

) = 0 because wwwGa
is the minimizer of

La(www). Moreover, ∇2
wwwLa(www) is positive semi-definit because La(.) is a strictly convex function.

First, we show that L0((1− β)wwwG0 + βwwwG1) is an increasing function in β, and L1((1− β)wwwG0 +
βwwwG1) is a decreasing function in β. Note that h′0(0) = (wwwG1 − wwwG0)

T∇wwwL0(wwwG0) = 0, and
h′′0(0) = (wwwG1 −wwwG0)

T∇2
wwwL0(wwwG0)(wwwG1 −wwwG0) ≥ 0. This implies that h′0(β) ≥ 0,∀β ∈ [0, 1].

Similarly, we can show that h′1(β) ≤ 0,∀β ∈ [0, 1].

Note that under Assumption (2), h(0) < 0 and h(1) > 0. Therefore, by the intermediate value
theorem, the exists β ∈ (0, 1) such that h(β) = 0. Definewww = (1− β)wwwG0 + βwwwG1 . We have,

h(β) = 0 =⇒ L0(www) = L1(www) = L(www) (12)

wwwG0
is minimizer of L0 =⇒ L(www) = L0(www) ≥ λ(1)start (13)

h′0(β) ≥ 0,∀β ∈ [0, 1] =⇒ h0(1) ≥ h0(β) =⇒ λ
(1)
end ≥ L0(www) = L(www) (14)

Lemma 2 L0(www
∗
i ) = λ

(i)
mid, wherewww∗i is the solution to (5).

Proof. We proceed by contradiction. Assume that L0(www
∗
i ) < λ

(i)
mid. SincewwwG1 is not in the feasible

set of (5),∇wwwL1(www
∗
i ) 6= 0. This is a contradiction becausewww∗i is an interior point of the feasible set

of a convex optimization and cannot be optimal if∇wwwL1(www
∗
i ) is equal to zero.

Proof [Theorem 3]

Let Ii = [λ
(i)
start, λ

(i)
end] be a sequence of intervals. It is easy to see that I1 ⊇ I2 ⊇ · · · and

λ
(i)
end−λ

(i)
start → 0 as i→∞. Therefore, by the Nested Interval Theorem, ∩∞i=1Ii consists of exactly

one real number λ∗, and both λ(i)start and λ(i)end converge to λ∗. Because λ(i)mid =
λ
(i)
start+λ

(i)
start

2 , λ(i)mid
also converges to λ∗.

Now, we show that L(www∗) ∈ Ii for all i. Note that L(www∗) = L0(www
∗) ≥ λ

(1)
start because wwwG0 is the

minimizer of L0. Moreover, λ(1)end ≥ L(www∗) otherwise L(www) < L(www∗) (www is defined in Lemma 1)
andwww∗ is not optimal solution under 0-EL. Therefore, L(www∗) ∈ I1.

Now we proceed by induction. Suppose L(www∗) ∈ Ii. We show that L(www∗) ∈ Ii+1 as well. We
consider two cases.

• L(www∗) ≤ λ
(i)
mid. In this case www∗ is a feasible point for (5), and λ(i) ≤ L(www∗) ≤ λ

(i)
mid.

Therefore, L(www∗) ∈ Ii+1.

• L(www∗) < λ
(i)
mid. In this case, we proceed by contradiction to show that λ(i) ≥ λ

(i)
mid.

Assume that λ(i) < λ
(i)
mid. Define g(β) = g0(β)−g1(β), where gi(β) = Li((1−β)wwwG0

+

βwww∗i ). Note that λ(i) = g1(1) By Lemma 2, g0(1) = λ
(i)
mid. Therefore, g(1) = λ

(i)
mid −

λ(i) > 0. Moreover, under Assumption 2, g(0) < 0. Therefore, by the intermediate value
theorem, there exists β ∈ (0, 1) such that g(β) = 0. Similar to the proof of Lemma 1,
we can show that g0(β) in an increasing function for all β ∈ [0, 1]. As a result g0(β) <

12
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g0(1) = λ
(i)
mid. Definewww = (1− β)wwwG0

+ βwww∗i . We have,

g0(β) = L0(www) = L1(www) = L(www) < λ
(i)
mid (15)

L(www∗) < λ
(i)
mid (16)

The last two equations imply that www∗ is not an optimal fair solution under 0-EL fairness
constraint. This is a contradiction. Therefore, if L(www∗) > λ

(i)
mid, then λ(i) ≥ λ

(i)
mid. As a

result, L(www∗) ∈ Ii+1

By two above cases and the nested interval theorem, we conclude that,

L(www∗) ∈ ∩∞i=1Ii, lim
i→∞

λ
(i)
mid = L(www∗)

For the second part of the theorem, consider the following,

www∗∞ = argmin
www

L1(www)s.t., L0(www) ≤ λ∞mid = L(www∗)

lim
i→∞

www∗i = www∗∞

In order to show that www∗∞ is equal to www∗, we proceed by contradiction. Suppose www∗∞ 6= www∗. As a
result, L1(www

∗
∞) < L(www∗). Define η(β) = η0(β)− η1(β), where ηi(β) = Li((1− β)wwwG0

+ βwww∗∞).
Note that L1(www

∗
∞) = η1(1). By Lemma 2, the condition in (5) is binding and η0(1) = L(www∗).

Therefore, η(1) = L(www∗) − L1(www
∗
∞) > 0. Moreover, under Assumption 2, η(0) < 0. Therefore,

by the intermediate value theorem, there exists β ∈ (0, 1) such that η(β) = 0. Similar to the
proof of Lemma 1, we can show that η0(β) is an increasing function for all β ∈ [0, 1]. As a result
η0(β) < η0(1) = L(www∗). Definewww = (1− β)wwwG0

+ βwww∗∞. We have,

η0(β) = L0(www) = L1(www) = L(www) < L(www∗) (17)

The last equation implies thatwww∗ is not an optimal fair solution under 0-EL fairness constraint. This
a contradiction. As a result,www∗∞ = ŵ̂ŵw.

Proof [Theorem 4 ]

Letwww∗ be the optimal weight vector under γ-EL.

Step 1. we show that one of the following holds,

L0(www
∗)− L1(www

∗) = γ (18)
L0(www

∗)− L1(www
∗) = −γ (19)

Proof by contradiction. Assume −γ < L0(www
∗) − L1(www

∗) < γ. This implies that www∗ is an inte-
rior point of the feasible set of optimization problem (3). Since www∗ 6= www∗O, then ∇L(www∗) 6= 0.
As a result, object function of (3) can be improved at www∗ by moving toward −∇L(www∗). This a
contradiction. Therefore, |L0(www

∗)− L1(www
∗)| = γ.

Step 2. Function wwwγ = ELminimizer(wwwG0
,wwwG0

, ε, γ) is the solution to the following optimiza-
tion problem,

min
www

Pr{A = 0}L0(www) + Pr{A = 1}L1(www), s.t., L0(www
∗)− L1(www

∗) = γ (20)

To show the above claim, notice that the solution to optimization problem (20) is the same as the
following,

min
www

Pr{A = 0}L0(www) + Pr{A = 1}L̃1(www), s.t., L0(www
∗)− L̃1(www

∗) = 0, (21)

where L̃1(www) = L1(www) + γ. Since L0(wwwG0
) − L̃1(wwwG0

) < 0 and L0(wwwG1
) − L̃1(wwwG1

) > 0, by
Theorem 3, we know thatwwwγ = ELminimizer(wwwG0

,wwwG0
, ε, γ) find the solution to (21).

13
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Lastly, because |L0(www
∗)− L1(www

∗)| = γ, we have,

www∗ =

{
wwwγ if L(wwwγ) ≤ L(www−γ)
www−γ o.w. (22)

Thus, Algorithm 2 finds the solution to (3).

Proof [Theorem 5]

1. Under Assumption 2, g(1) < 0. Moreover, g(0) ≥ 0. Therefore, by the intermediate value
theorem, there exists β0 ∈ [0, 1] such that g(β0) = 0.

2. Since wwwO is the minimizer of L(www), h′(0) = 0. Moreover, since L(www) is strictly convex,
h′′(0) > 0. As a result, h′(β) > 0 for β > 0.

3. SincewwwGâ
is the minimizer ofLâ(www), andLâ(www) is strictly convex, Lâ((1−β)wwwO+βwwwGâ

)
is strictly decreasing function.
Note that since h(β) = Pr{A = â}Lâ((1− β)wwwO + βwwwGâ

) +Pr{A = 1− â}L1−â((1−
β)wwwO + βwwwGâ

) is strictly increasing and Lâ((1 − β)wwwO + βwwwGâ
) is strictly decreasing,

we conclude that L1−â((1− β)wwwO + βwwwGâ
) is strictly increasing. As a result, g should be

strictly decreasing.

Proof [Theorem 6] First, we show that if gγ(0) ≤ 0, thenwwwO satisfies γ-EL.

gγ(0) ≤ 0 =⇒ g(β)− γ ≤ 0 =⇒ Lâ(wwwO)− L1−â(wwwO) ≤ γ

Moreover, Lâ(wwwO)−L1−â(wwwO) ≥ 0 because â = argmaxa La(wwwO). Therefore, γ-EL is satisfied.

Secondly, assume that gγ(0) > 0. Under Assumption 1, gγ(1) = Lâ(wwwGâ
)−L1−â(wwwGâ

)− γ < 0.
Therefore, by the intermediate value there exists β0 such that gγ(β0) = 0. Moreover, gγ is a
strictly decreasing function. Therefore, the binary search proposed in Algorithm 3 converges to root
of gγ(β). As a result, (1 − β(∞)

mid)wwwO + β
(∞)
midwwwGâ

satisfies satisfies γ-EL. Moreover, Lâ(wwwO) −
L1−â(wwwO) ≥ 0 because â = argmaxa La(wwwO). Note that since g(β) is decreasing, β(∞)

mid is the
smallest possible β under which (1 − β)wwwO + βwwwGâ

γ-EL. Since h is increasing, the smallest
possible β gives us a better accuracy.

Proof [Theorem 7]

By the triangle inequality, the following holds,

sup
fwww∈F

||L0(www)−L1(www)| − |L̂0(www)− L̂1(www)|| ≤ sup
fwww∈F

|L0(www)− L̂0(www)|+ sup
fwww∈F

|L1(www)− L̂1(www)|.

(23)
Therefore, with probability at least 1− 2δ we have,

sup
fwww∈F

||L0(www)− L1(www)| − |L̂0(www)− L̂1(www)|| ≤ B(δ, n0,F) +B(δ, n1,F) (24)

As a result, with probability 1− 2δ holds,

{www|fwww ∈ F , |L0(www)− L1(www)| ≤ γ} ⊆ {www|fwww ∈ F , |L̂0(www)− L̂1(www)| ≤ γ̂} (25)

Now consider the following,

L(ŵ̂ŵw)− L(www∗) = L(ŵ̂ŵw)− L̂(ŵ̂ŵw) + L̂(ŵ̂ŵw)− L̂(www∗) + L̂(www∗)− L(www∗) (26)

By (25), L̂(ŵ̂ŵw)− L̂(www∗) ≤ 0 with probability 1−2δ. Thus, with probability at least 1−2δ, we have,

L(ŵ̂ŵw)− L(www∗) ≤ L(ŵ̂ŵw)− L̂(ŵ̂ŵw) + L̂(www∗)− L(www∗). (27)
Therefore, under assumption 3, we can conclude with probability at least 1− 6δ, L(ŵ̂ŵw)− L(www∗) ≤
2B(δ, n,F). In addition, by (24), with probability at least 1− 2δ, we have,

14



Under review as a conference paper at ICLR 2022

|L0(ŵ̂ŵw)− L1(ŵ̂ŵw)| ≤ B(δ, n0,F) +B(δ, n1,F) + |L̂0(www)− L̂1(www)|
≤ γ̂ +B(δ, n0,F) +B(δ, n1,F) = γ + 2B(δ, n0,F) + 2B(δ, n1,F)
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