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Abstract: Learning from expert demonstrations is a promising approach for
training robotic manipulation policies from limited data. However, imitation
learning algorithms require a number of design choices ranging from the input
modality, training objective, and 6-DoF end-effector pose representation. Diffusion-
based methods have gained popularity as they enable predicting long-horizon
trajectories and handle multimodal action distributions. Recently, Conditional
Flow Matching (CFM) (or Rectified Flow) has been proposed as a more flexible
generalization of diffusion models. In this paper, we investigate the application of
CFM in the context of robotic policy learning and specifically study the interplay
with the other design choices required to build an imitation learning algorithm.
We show that CFM gives the best performance when combined with point cloud
input observations. Additionally, we study the feasibility of a CFM formulation
on the SO(3) manifold and evaluate its suitability with a simplified example. We
perform extensive experiments on RLBench which demonstrate that our proposed
PointFlowMatch approach achieves a state-of-the-art average success rate of 67.8%
over eight tasks, double the performance of the next best method.
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1 Introduction

Imitation learning (IL) is the widely studied problem of training policies from a given set of expert
demonstrations [1, 2, 3]. In recent years, imitation learning has gained popularity in the robot learning
community, as leveraging the prior knowledge of the expert demonstrator allows training complex
behaviors with small amounts of data. The primary approach to learning an IL policy is Behavior
Cloning (BC) [4, 5], where a deterministic mapping from state to actions is learned in a supervised
manner from the available data. While BC has achieved significant success for different tasks, robot
policy learning remains a challenging problem, given the requirement of high precision, the sequential
correlation (i.e. not i.i.d.) of data, and the multimodality of the action distribution, which all add
complexity compared to other supervised learning problems.

Recently, generative models have been demonstrated to be effective at tackling some of these
challenges. Most prominently, Diffusion Policy [6] adopts a score-matching formulation of generative
diffusion models. The forward diffusion process starts with expert robot trajectories and gradually
adds Gaussian noise until the signal approximates pure noise. The denoising process reverts these
steps and it is used as a training signal for the model. This is a stochastic process that results in
Gaussian conditional probability paths mapping Gaussian noise to data, with specific choices of mean
and standard deviation [7, 8]. The authors show that diffusion policies can handle multimodal action
distributions and to directly predict long sequences of actions.

Diffusion policies sparked strong interest from the community and led to many exciting results in
robotic manipulation applications [9, 10]. Nevertheless, relying on diffusion models also has some
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disadvantages: diffusion models need to explicitly define an iterative forward diffusion process,
which inherently defines the final noisy distribution and the probability path the model learns to
denoise along. In the typical case of Gaussians, a closed-form solution is available, enabling us to
directly generate fully noised and intermediate, partially noised, samples. In turn, in the cases where
no closed-form solution for the forward diffusion process is available, training time will increase [11].
To overcome these limitations, Conditional Flow Matching (CFM) has been proposed as an efficient
generalization of diffusion models [12, 13, 11]. CFM is a simulation-free approach, i.e. it starts
directly from noise without requiring a forward diffusion process. It is, therefore, more general, since
it allows transporting any starting probability distribution into the data distribution.

Inspired by recent flow-based generative models, we propose PointFlowMatch, a novel imitation
learning algorithm for robotic manipulation. PointFlowMatch uses point cloud observations that
prove to be more effective than images [9, 10] and builds upon a CFM formulation to learn the
distribution of the expert robot trajectories. As CFM is able to model arbitrary probability paths, it
also allows formulating the regression on the R3 × SO(3) manifold. We evaluate the performance
of our proposed method on the popular RLBench benchmark [14] and compare it against strong
recent baselines with both image and point cloud observations: Diffusion Policy [6], 3D Diffusion
Policy [9], ChainedDiffuser [10], and AdaFlow [15]. In summary, this paper makes the following
main contributions:
• PointFlowMatch, a novel method based on the recent conditional flow matching framework to

train robotic imitation learning policies from point clouds.
• An investigation of two different approaches to handle 3D rotations in the context of CFM for

policy learning.
• Extensive evaluations against recent state-of-the-art baselines and an ablation study of our main

design choices.
• We make the code, models, and videos publicly available at http://pointflowmatch.cs.
uni-freiburg.de.

2 Related Work

Generative models for imitation learning in robotic manipulation have attracted significant interest.
In the following, we highlight recent advances in this topic.
Generative Models for Policy Learning: One interesting class of generative models explored for
robotic policies is the Action Chunking Transformer (ACT) [16]. It adopts a CVAE [17] structure,
where the encoder predicts a latent variable z and the decoder outputs the action sequence. A
different approach is taken by Florence et al. [18], who propose Implicit Behavior Cloning (IBC).
IBC defines the distribution over action as an Energy-Based Model (EBM) [19]. This approach
inherently handles multimodal distributions but is unstable to train due to the need for negative
sampling when computing the loss. An early attempt to apply diffusion models to robotic applications
is presented in Diffuser [20], where the authors investigate the use of diffusion models from the
perspective of planning. Refining this idea, Chi et al. [6] propose the seminal work Diffusion Policy
(DP). DP inherits the advantages of IBC (handling multimodal action distributions) while avoiding its
downsides. Instead of learning an energy function, DP learns the gradient of the action distribution,
which exhibits better training stability.
Diffusion Policy from Point Clouds: The success of DP inspired numerous follow-up works. A
key characteristic common to many of them is the choice of point cloud observation representations,
instead of RGB images, as used in the original DP method. ACT3D [21] is a transformer model that
predicts the next best waypoint, instead of a full trajectory. 3D-DP [9] learns to predict full trajectories,
and it also adopts a modified MLP as an efficient point cloud backbone. ChainedDiffuser [10]
proposes a hierarchical model where high-level key points are predicted via ACT3D and low-level
trajectories connecting these points are generated via the standard trajectory diffusion. Another
hierarchical model is HDP [22], which builds on PerAct [23] as a waypoint predictor and combines
both joint and end-effector pose predictions. While hierarchical models achieve strong results, we
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specifically investigate the performance of the underlying trajectory diffusion models and therefore
focus our analysis on non-hierarchical single-task policies.
Conditional Flow Matching: Conditional Flow Matching (CFM), also called Rectified Flow (RF), is
a recent generative model training technique that connects noise to data via straight paths [12, 13, 11].
The more established diffusion models can be seen as a special case of the CFM framework, which
is more general and conceptually simpler. Very recently, CFM was demonstrated to be superior to
diffusion models in various applications, ranging from image synthesis [24] to protein backbone
generation [25]. In the context of robotics, AdaFlow [15] is an image-based policy trained with CFM,
which also includes a variance estimation network to predict the variance of the current state and
adjust the number of integration steps dynamically in order to reduce inference time. Concurrently to
our work, Braun et al. [26] investigate the application of CFM to Riemannian manifolds, but do not
provide a direct comparison with the standard Euclidean approach, while Rouxel et al. [27] show the
application of CFM for shared autonomy teleoperation of a humanoid robot.

3 Technical Approach

We consider an imitation learning problem: given a dataset of n expert demonstrations
D =

{(
s(i), a(i)

)}n

i=1
, the goal is to train a policy π : S → A that maps the observed states s

to the optimal actions a. Given the widespread accessibility of depth cameras, we assume that both
RGB and depth observations are available to the policy. In the following sections, we detail our
choices of observation and action spaces, training formulation, and model architecture.

3.1 Observation and Action Spaces

It has been demonstrated that, for robot policy learning, point cloud observations yield better results
compared to RGB images [9]. These findings are supported by the fact that most recent state-of-
the-art approaches [21, 22, 10] building upon DP adopt point clouds as their visual observation
representations. Point cloud observations are effective as they directly encode the three-dimensional
structure of a scene, and clearly separate geometric and semantic features, which are instead blended
together in raw RGB images. This separation is especially helpful in the low data regimes common
in robot policy learning. Therefore, in our approach PointFlowMatch we also adopt point clouds as
the visual observation representation.
The input to our policy consists of the Tobs last observations, which include both the robot state
and processed point cloud, where Tobs is a tuning hyperparameter. Point clouds are processed in
the following manner. For each available camera, we use the intrinsics and extrinsics to project the
observed depth values in a common 3D space, and we merge all observations into a single point
cloud. Last, the final point cloud is computed by applying voxel-downsampling to attain uniform
density, and by cropping all points outside the relevant workspace around the robot.
The action space of our model is 10-dimensional, consisting of end-effector position (3-dimensional),
end-effector orientation (6-dimensional), and gripper open/close action (1-dimensional). We choose
absolute position control following Chi et al. [6], which showed it to be more suited to action-sequence
prediction compared to velocity control. We represent the gripper orientation as the 6D vector formed
by truncating and flattening the relative rotation matrix, as proposed by Zhou et al. [28]. At test time,
we employ a closed-loop receding horizon control strategy, i.e. we predict Tpred horizon steps into the
future, command only the first predicted step to the robot, and then repeat the prediction.

3.2 Conditional Flow Matching for Policy Learning

In CFM, for arbitrary samples z, the prediction problem is formulated as an ordinary differential
equation (ODE) of the form

d

dt
z(t) = v(z(t), t), z(t = 0) ∼ p0, (1)

where p0 is the arbitrary start distribution, commonly chosen as random Gaussian noise with zero
mean and unit variance, and v : Rd × [0, 1] → Rd is the velocity vector field that induces the
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probability path from the start to the target distribution. The goal is to learn the appropriate vector
field that transports the chosen probability distribution to the data distribution in unit time. The vector
field vθ can be learned by supervision via the loss function

min
v

Ez0∼p0,z1∼p1

[∫ 1

0

∥vgt(z1, z0)− vθ (zt, t)∥22 dt

]
, (2)

where vgt is the choice of ground truth vector field we regress against. While this choice is not
unique, CFM adopts the time-independent, straight line vector field vgt = z1 − z0, which has the
desirable property of producing straight probability paths [12, 11]. In practice, the vector field vθ is
parametrized by a neural network and the loss in Eq. (2) can be minimized via mini-batch gradient
descent. In the context of policy learning, the target samples z1 are the robot trajectories from the
expert demonstration dataset. Once the model is trained, we can sample z0 from the start distribution
p0 and numerically integrate the ODE from Eq. (1) up to time t = 1 to generate new robot trajectories
that follow our expert data distribution. An overview of the implementation of CFM for policy
learning is shown in Algorithm 1.

Algorithm 1 CFM for Policy Learning (Euclidean)

1 def train_step(batch):
2 obs, target_traj = batch
3 cond = obs_encoder(obs)
4 t = rand() # uniform
5 z0 = randn() # normal
6 z1 = target_traj
7 target_vel = z1 - z0
8 zt = z0 + t * target_vel
9 pred_vel = net(zt, t, cond)

10 loss = mse(pred_vel, target_vel)
11 return loss
12

13 def inference_step(obs):
14 cond = obs_encoder(obs)
15 z = randn() # normal
16 for k in k_steps:
17 t = k / k_steps
18 dt = 1 / k_steps
19 pred_vel = net(z, t, cond)
20 z = z + pred_vel * dt
21 return z

Algorithm 2 CFM for Policy Learning (SO(3))

1 def train_step(batch):
2 obs, target_traj = batch
3 cond = obs_encoder(obs)
4 t = rand() # uniform
5 z0 = randn_SO3() # IGSO(3)
6 z1 = target_traj
7 target_vel = Log(Inv(z0) @ z1)
8 zt = z0 @ Exp(t * target_vel)
9 pred_vel = net(zt, t, cond)

10 loss = mse(pred_vel, target_vel)
11 return loss
12

13 def inference_step(obs):
14 cond = obs_encoder(obs)
15 z = randn_SO3() # IGSO(3)
16 for k in k_steps:
17 t = k / k_steps
18 dt = 1 / k_steps
19 pred_vel = net(z, t, cond)
20 z = z @ Exp(pred_vel * dt)
21 return z

3.3 Conditional Flow Matching for Data in SO(3)

Our robot state representation includes the end-effector 3D orientation. Since 3D orientations live on
the SO(3) group’s manifold, we need to pay particular attention to how we handle the orientation’s
prediction. There are two strategies we can employ to tackle this challenge.
Euclidean Formulation: The first strategy is to follow the standard CFM formulation in Euclidean
space for both training and inference and project the resulting vector to the SO(3) group’s manifold
only at the end of the inference process, to output a valid rotation matrix. This projection can be
implemented as a Grahm–Schmidt process in the case of a 6D representation of rotations or as the
SVD-based orthogonal Procrustes in the case of a 9D representation of rotations [29].
SO(3) Formulation: The second strategy is to define the starting random distribution and target
vector field directly on the 3D rotation manifold so that the entire resulting probability path lives
on SO(3). In particular, the random initial state is sampled as z(t = 0) ∼ IGSO(3), where IGSO(3)

is the isotropic Gaussian distribution on SO(3). Since the 3D rotation group is a smooth manifold,
its velocity at a specific point is expressed in the tangent space, denoted as so(3). The mapping
from the tangent vector space to the manifold is defined by the exponential map Exp(•), while the
inverse mapping from the manifold to the tangent space is defined by the logarithm map Log(•). For
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Figure 1: Diffusion and CFM are repeatedly applied to a noisy trajectory, thereby iteratively yielding a clean
trajectory that can be executed on the robot. The generative models also take as input encoded observations.

a detailed overview of the topic, we refer the readers to [30]. For our CFM setting, the natural choice
of target vector field is given by the tangent on the manifold that forms the geodesic interpolation
between the start and target samples

zt = z0 Exp (t vgt(z1, z0)) , where vgt(z1, z0) = Log
(
z0

−1z1

)
. (3)

At test time, we can integrate the predicted velocity vectors in tangent space along the manifold
geodesic to solve the ODE in Eq. (1) and generate end-effector orientations that directly lie in SO(3).
The implementation of the SO(3) formulation of CFM for policy learning is shown in Algorithm 2.
While the latter approach has been studied in recent works such as Riemannian Flow Matching [31]
and FoldFlow [25], a comparison of the two strategies in the context of policy learning is still lacking.
In our evaluation (Appendix A.1), we investigate both strategies and provide the counter-intuitive
insights that the first, simpler approach might be preferable for policy learning in robotics.

3.4 Model Architecture and Training Setup

To encode the point cloud observation into low-dimensional features, we use a modified version of
PointNet [32]. Compared to the original architecture, we remove both T-nets used for input and
feature transformation, see [33]. These are used to improve rotation and translation invariance, which
is desirable for classification and segmentation but not for robotics tasks. The model used to de-noise
trajectories is a conditional 1D U-Net, similar to [6]. This model takes as input the random noise
samples and the condition information and returns the sample velocity in the case of CFM and the
noise ϵ in the case of diffusion. For an overview, see Fig. 1. The condition information consists of
the concatenation of the robot’s proprioceptive state (i.e. end-effector poses) as well as the encoded
visual observation, and it is added to the bottleneck state of the U-Net model.
We train our model with the AdamW optimizer and a learning rate of 3e−5 and weight decay of 1e−6.
We apply cosine annealing of the learning rate and linear warmup of 5000 steps. We use a batch size
of 128 and apply EMA on the weights. The input point clouds are downsampled to 4096 points and
the target robot trajectories are subsampled with a factor of 3.

4 Experimental Evaluation

We evaluate our proposed PointFlowMatch on RLBench [14], a popular robot learning benchmark.
Each environment consists of the 7-DoF Franka Emika robot arm to execute actions and a set of five
cameras around the workspace. We use RLBench’s automatic expert demonstration execution to
collect 100 trajectories for each task, which consists of all robot states and camera observations. For
evaluation, we rollout the policy on each task for 100 episodes and report the average task success rate
across all episodes. Following RLBench’s test protocol, for each episode the task setup is randomized.
We further perform three evaluation runs with three random seeds and average over all runs. As a
result, all models are evaluated on the same set of 300 random episodes. Following ChainedDif-
fuser [10], we consider a set of eight tasks that require continuous interaction with the environment,
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unplug close open open frame open books shoes
charger door box fridge hanger oven shelf box

Figure 2: Example images of the eight RLBench tasks.

Table 1: Performance comparison of PointFlowMatch with different baseline methods on the RLBench set of
tasks. We report the success rate (SR) (↑) as well as the delta to our method. On average, our method performs
considerably better. For OL-ChainedDiffuser we report the results from the original publication, which do not
include the standard deviation.

Method unplug
charger

close
door

open
box

open
fridge

frame
hanger

open
oven

books
shelf

shoes
box

Mean
SR

Delta
SR

Dif. Policy [6] 38.0±3.6 19.3±2.5 75.7±4.2 0.0±0.0 16.0±2.6 0.0±0.0 0.3±0.6 0.0±0.0 18.7±2.3 49.1
AdaFlow [15] 46.3±1.5 13.3±3.1 77.3±3.8 2.0±0.0 12.7±3.8 0.0±0.0 0.3±0.6 0.0±0.0 19.0±2.3 48.8
3D-DP [9] 33.3±4.7 76.0±1.7 98.3±1.5 4.3±2.1 12.3±2.5 0.3±0.6 3.7±0.6 0.0±0.0 28.5±2.2 39.3
OL-ChDif [10] 65.0±N/A 21.0±N/A 46.0±N/A 37.0±N/A 43.0±N/A 16.0±N/A 40.0±N/A 9.0±N/A 34.6±N/A 33.2

PointFlowMatch 83.6±3.3 68.3±6.6 99.4±0.7 31.9±2.9 38.6±2.7 75.9±4.0 68.8±5.8 76.0±3.5 67.8±4.1 -

where point-to-point motion planning approaches typically struggle: unplug charger, close door,
open box, open fridge, take frame off hanger, open oven, put books on bookshelf, and
take shoes out of box (some names abbreviated in figures and tables).

4.1 Benchmarking Results

In this section, we compare the performance of PointFlowMatch with recent state-of-the-art methods
for imitation learning based on generative models. For a fair comparison, we keep the number of
denosining and/or integration steps k constant to 50 for all methods.
For image-based methods, we compare against the original Diffusion Policy [6] as well as
AdaFlow [15] which also uses the CFM learning objective. For the scope of this analysis, we
do not implement the adaptive step feature in AdaFlow, since we mainly focus on the quality of
prediction and not on inference speed. For both methods, we follow the original Diffusion Policy [6]
approach and fuse images from all five viewpoints after the backbone feature extraction. As point
cloud-based baselines, we consider Chained Diffuser [10] as well as 3D-DP [9]. In this work, we
specifically investigate the performance of non-hierarchical, single-task policies. For this reason, we
consider the Open loop trajectory diffusion baseline presented in ChainedDiffuser [10], which is the
underlying diffusion model without the higher level waypoint policy forming the hierarchy.
We report the results in Tab. 1. This evaluation highlights the strong performance of PointFlowMatch,
which achieves a success rate 34 percentage points higher than the second-best model. This result
demonstrates that the combination of our choices of observation type, encoder architecture, and
training objective leads to a highly effective imitation learning algorithm. In line with the findings of
our ablation study in Sec. 4.2, we also highlight how the point cloud based policies outperform the
image-based policies.

4.2 Ablation Study

In this section, we aim to compare the key design choices of our method and answer the following
research questions:
• Are point clouds a more effective observation representation compared to raw RGB images?
• Is Conditional Flow Matching a more effective training objective compared to the more established

diffusion models?
• Is the SO(3) formulation of CFM more effective at learning to match the data distribution on the

3D rotation manifold, compared to CFM in Euclidean space followed by a projection on SO(3)?
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Table 2: Ablation of observation type (images vs point clouds), vector field formulation (R6 vs SO(3)), and
training objective (DDIM vs CFM) for our method, evaluated on RLBench tasks showing the mean success rate
(SR) (↑) as well as the delta to the proposed model. All models are evaluated with k = 50 inference steps. Given
the similar performance of the three point cloud-based baselines, we report the average across 3 training seeds,
each tested on the same 3 evaluation seeds, for a total of 9 evaluation runs.

Obs.
type

Rot.
formul.

Training
objective

unplug
charger

close
door

open
box

open
fridge

frame
hanger

open
oven

books
shelf

shoes
box

Mean
SR

Delta
SR

Img. R6 CFM 51.0±2.0 54.3±3.2 97.3±1.2 10.0±3.6 21.3±3.2 41.0±2.0 19.7±4.7 26.3±4.9 40.1±3.3 −27.7
Pcd. R6 DDIM 84.8±2.1 74.9±5.3 99.3±0.9 30.8±3.7 39.1±3.8 75.2±3.7 67.8±5.6 71.9±6.3 68.0±4.3 0.2
Pcd. SO(3) CFM 82.3±3.1 68.8±4.8 99.4±0.6 34.0±7.6 38.4±4.0 74.9±2.0 68.0±6.4 73.2±1.2 67.4±4.4 −0.4
Pcd. R6 CFM 83.6±3.3 68.3±6.6 99.4±0.7 31.9±2.9 38.6±2.7 75.9±4.0 68.8±5.8 76.0±3.5 67.8±4.1 −
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k-steps 1 2 4 8 16 50

Inference
Time [ms]

DDIM 30 50 89 149 190 362
CFM 29 49 85 149 189 354

Succes
Rate

DDIM 19.4 13.5 66.3 66.9 66.3 68.0
CFM 36.8 61.9 66.0 68.8 69.3 67.8

Figure 3: Comparison of CFM and DDIM for varying values of the number of inference steps k. We compare
the inference time (↓) measured in [ms] as well as the inference FPS (↑) in [Hz] against overall success rate (↑)
for both formulations.

• How does the number of inference steps k affect performance?
In order to answer these questions, we carry out an ablation study where we vary each of the
aforementioned design choices and investigate their impact on overall performance. In particular,
we investigate 1) using images as visual observation, adopting the same ResNet backbone as in
the original DP [6], 2) using the Denoising Diffusion Implicit Model (DDIM) [34] instead of the
CFM training objective, 3) adopting the SO(3) formulation of CFM for the end-effector orientations
to learn probability paths directly on the 3D rotations manifold, 4) testing both the DDIM and
CFM-based models with varying inference steps k, ranging from 1 to 16. We report the results in
Tab. 2 and Fig. 3. From the numerical evaluation, we observe that the largest impact on performance
is determined by the choice of observation type. The policy using raw RGB inputs is 27.7 percentage
points worse than the proposed model, highlighting the strengths of point cloud observations.
First, we consider the two different formulations of the CFM framework that can be used to learn
about the distribution of 3D rotations: euclidean and SO(3). The outcome for this ablation is very
similar, with the score averaged across all tasks showing that the SO(3) formulation achieves a
lower success rate, by 0.4 percentage points. This result is surprising and at first counterintuitive,
as we expected that learning probability paths directly on the target manifold would achieve higher
performance. Given the intriguing result of this ablation, we add further analysis of this comparison
in Appendix A.1.
Regarding the choice of training objective, the results in Tab. 2 show that for k = 50 inference steps,
the CFM objective does not improve over the popular DDIM framework, which achieves a similar
success rate, within the standard deviation. Nevertheless, when considering the two objectives across
a range of value of k inference steps in Fig. 3, we find that CFM demonstrates stronger performance,
especially in the low k regime. This is in line with the results obtained for the image synthesis domain,
where Stable Diffusion 3 [24] shows that CFM achieves similar scores to the diffusion objectives, but
performs better with fewer inference steps, required for faster inference. This characteristic, paired
with the higher flexibility, generality, and ease of implementation, in our opinion, makes the CFM
formulation advantageous compared to established diffusion objectives.
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Figure 4: We demonstrate PointFlowMatch on a real robotic setup. We evaluate on two tasks: open box and
sponge on plate.

4.3 Real Robot Experiments

To demonstrate the application of PointFlowMatch on a real robotic platform, we perform a set of
experiments with a Franka Emika Panda manipulator. We evaluate on two table-top tasks: open
box and sponge on plate, shown in Fig. 4. We use two Realsense RGB-D cameras, the first
mounted on the robot end-effector and the second mounted externally. Similarly to the simulation
setup, we merge the point clouds obtained from both cameras and process it via voxel-subsampling.
To prevent overfitting and improve the model’s robustness to the noisy point clouds, we apply
random transformation and random noise-jitter augmentations during training. PointFlowMatch
achieved a success rate of 72% for open box and 48% for sponge on plate. The main failure
mode we observed in this experiment consisted of the robot reaching correctly for the object to
grasp, but missing it by a small margin. A selection of policy rollouts for both tasks is shown in the
accompanying video.

5 Conclusion

We present PointFlowMatch, a novel method for imitation learning from a fixed set of demonstration
examples. Our method combines the recently developed conditional flow matching framework with a
point cloud observation encoding. In developing our method, we performed an ablation study of the
most important components. Additionally, we study a formulation of CFM on the SO(3) manifold.
Our method achieves state-of-the-art results for single-task non-hierarchical policy learning, with an
average success rate of 68.6 %, double that of the closest baseline method.

Limitations: There are a few limitations to our proposed method. Compared to approaches such
as BC that directly predict an action, diffusion and CFM models both have longer inference times,
given their iterative nature. In addition to this, as usual in the fixed-data imitation learning setting,
CFM cannot extrapolate out of distribution and thus, only learns motion correction behavior when
included in the demonstration set. Our point cloud observation space merges multiple views, this
requires depth cameras with known intrinsic and extrinsic calibration. We also trained single-task
policies and did not investigate generalization capabilities. Finally, implementation on a real robot
requires manually collecting expert demonstrations.
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A Additional Experiments

A.1 Simplified SO(2)-Experiment: No Free Lunch

(a) Vector fields of the Euclidean
(purple) and SO(2) (blue) formula-
tions.
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(b) Euclidean Formulation using Ini-
tial Samples Drawn from the Normal
Distribution.
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(c) Euclidean Formulation using Ini-
tial Samples Drawn Uniformly from
SO(2).
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(d) SO(2) Formulation using Initial Samples
Drawn Uniformly from SO(2).

Figure 5: Simplified Example. The left figure shows the edge case when random samples are close to the
opposite pole of the target sample. Here the SO(3) formulation presents a discontinuity which makes learning
more difficult. In the three right figures, we visualize the mean error during inference across different sampling
locations for our different formulations. We mark the target with a red cross. One observes that for the Euclidean
formulation the error is lower for initial sample points along the axis orthogonal to the target. This is expected as
values sampled along the line are naturally mapped to the target when normalized. On the other side in the last
figure, one observes higher errors close to the pole. Additionally, a training data bias is visible as the error is
higher on one side of the discontinuity.

To further investigate the counterintuitive result discussed in Sec. 4.2, we set up a toy task on the unit
circle. Here, the goal is to infer a rotation of 0 degrees, or in other words the coordinate at (1, 0) on
the unit circle. For this experiment, the prediction is not conditioned, and all samples are regressed
against the unique target point (1, 0). As done in Sec. 4.2, we evaluate two formulations, one where
the target vector field is defined in the Euclidean space R2, and one where it follows the geodesics on
the Riemannian manifold SO(2) [30]. In the following, we refer to them as Euclidean formulation
and SO(2) formulation. We provide an overview of the formulations (robotic and toy experiments)
in Tab. 3.
As in the case of SO(3) (see Sec. 3.1), the input to the vector field prediction network is the truncated
version of the full rotation state matrix, i.e. a 2D vector. We train both formulations on batches of
size 1000 for 2000 epochs using the Adam optimizer with cosine annealed learning rate of 1e−3. For
evaluations, we evaluate 10000 noise samples and perform 50 integration steps. Given the final state,
we calculate the absolute angle error to the target (1, 0).
The Euclidean formulation achieves an average angle error of 0.093◦ and the SO(2) formulation
0.216◦. We visualize the mean error across initial sample points in Fig. 5. We conclude that both
formulations can successfully solve the task, but we also observe higher final angle error for the
SO(2) formulation, similar to the ablation study from Sec. 4.2.
As shown in Fig. 5a, when random samples are close to the opposite pole of the target sample, the
SO(2) case presents strong discontinuities, with vector fields of nearby points pointing in opposite
directions. For successful gradient-based learning, however, we need the input-output mapping
to exhibit some notion of continuity. The exponential coordinates used to represent vectors on
the tangent space do not fulfill the pre-images connectivity constraint, which means that a smooth
function to interpolate between input samples is not guaranteed to exist [29, 35]. A discontinuity in
the target mapping results in difficulties in fitting the model via gradient-based learning. Additionally,
if the training data for the network is not equally distributed on both sides of the pole, we introduce a
data bias towards either side.
For the Euclidean formulation on the other hand, the need to project the final output to the manifold
of valid rotations is also a source of error, since the projection is only applied at inference time and it
is not part of the training process. This can be seen in Fig. 5b, where random samples further away
from the x-axis present higher absolute angle errors. As a result, we conclude that both formulations
exhibit different characteristics, each with their drawbacks, and the choice of one option over the
other needs to be evaluated carefully.
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Table 3: Comparison of different state dimensions and their respective velocities, target calculation and pro-
gression formulations. For definitions of the Log(•)- and Exp(•)-maps we refer to Sola et al. [30]. †As for
calculating the final angle only the first column is needed, we omit calculating the second orthonormal vector.
Thus, instead of performing the full Grahm-Schmidt process, we only perform a normalization of the inferred
state variable that maps the vector to the unit circle.

Formulation State z Velocity v Target Velocity vgt State Progression State Conversion

3D-Euclidean R6 R6 z1 − z0 z +∆t v Grahm-Schmidt
SO(3) R3×3 R3 LogSO(3)

(
z−1
0 z1

)
z ExpSO(3) (∆t v) N/A

2D-Euclidean R2 R2 z1 − z0 z +∆t v Grahm-Schmidt†

SO(2) R2×2 R1 LogSO(2)

(
z−1
0 z1

)
z ExpSO(2) (∆t v) N/A
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