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Abstract

Fact-verification tasks involving sequences
of claims remain challenging due to high
claim density, low accuracy in open-domain
evidence retrieval, and multi-hop reasoning
requirements, which are difficult to address
using traditional methods. In this paper,
we propose DIVER (Dynamic and It-
erative fact VERification), a fact veri-
fication framework that decomposes para-
graphs into context-independent sentences
and applies a dynamic and iterative claim
extraction and evidence retrieval strat-
egy. Unlike prior one-shot or list-style ap-
proaches, DIVER introduces a fine-grained
iterative claim extraction mechanism, al-
lowing the system to better capture ver-
ifiable atomic claims, and incorporates a
novel evidence-filtering and query recom-
mendation module to robustly handle insuf-
ficient or ambiguous evidence, significantly
enhancing multi-hop reasoning capabilities.
Additionally, we propose a heuristic-driven
revision step to detect long-distance con-
textual errors overlooked by previous ap-
proaches. These mechanisms collectively
improve the model’s calibration, ensuring
the verifier fires only when supported by suf-
ficient evidence—an essential property for
dependable fact checking. Experimental re-
sults on three widely-used challenging fact-
checking benchmarks (FEVEROUS, LIAR,
and AVeriTeC) demonstrate that DIVER
substantially outperforms existing LLM-
based approaches and pipelines.

1 Introduction

Automated fact verification is an essential compo-
nent of natural language processing, playing a criti-
cal role in combating misinformation and ensuring
information quality across various applications such
as news media, social networks, and automated con-
tent moderation systems (Guo et al., 2022). Among
different scenarios, verifying claims embedded in
contextually rich, semantically dense paragraphs
presents unique challenges due to high claim density,
ambiguous contexts, and requirements for multi-
hop reasoning over large-scale, open-domain evi-

The BBC series Doctor Who has bent many of its own rules over the
years, most recently allowing two Doctors to exist at once. The 15th
Doctor, played Ncuti Gatwa, split off from the 10th Doctor, played
by David Tennant, in a process the show called bi-generation.
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Figure 1: An real example in um, actually illus-
trating the three challenges current method faces:
(1) claim density, (2) multi-hop evidence, and (3)
long-distance context.

There are too many sub-claims in this
statement — I might easily overlook a few!

Retrieving information about the Doctor and
their actor requires multi-hop reasoning —
one round of retrieval isn't enough.

rThere are many long distance dependencies.
z I can't tell whether this statement is true or not.

dence sources (Jiang et al., 2020).

Benefiting from advanced semantic understand-
ing and reasoning abilities of Large Language Mod-
els(LLMs), current mainstream fact-checking meth-
ods leverage LLMs to conduct decomposing, ques-
tioning and reasoning progressively, known as LLM-
based methods (Vykopal et al., 2024). Despite their
impressive contribution, these methods still face
several limitations in practice, particularly with
regard to claim extraction integrity, open-domain
evidence retrieval accuracy and multi-hop reason-
ing (Deng et al., 2024; Zheng et al., 2024). First,
existing methods typically adopt a static claim
extraction strategy, where an LLM attempts to
extract all verifiable claims from a sentence in a
single pass. This approach often suffers from in-
completeness, especially when dealing with com-
plex sentences that contain multiple intertwined
facts (Metropolitansky and Larson, 2025). As a
result, some verifiable claims may be overlooked
or under-specified (Metropolitansky and Larson,
2025). Second, open-domain evidence retrieval re-
mains a significant bottleneck. Current methods
often struggle with low retrieval accuracy, which
limits the relevance and usefulness of the collected
evidence (Zheng et al., 2024). Moreover, when
multi-hop reasoning is required, these systems lack
the ability to dynamically retrieve supporting evi-
dence for subsequent reasoning steps (Zhuang et al.,



2024). For instance, even if the first-hop informa-
tion is successfully retrieved, the system may fail
to formulate effective follow-up queries to obtain
second-hop evidence.

To overcome these limitations, we intro-
duce DIVER (Dynamic and Iterative fact
VERIification), a verification framework specifi-
cally designed for context-rich, high-density para-
graphs. DIVER first decomposes each paragraph
into context-independent sentences and then per-
forms dynamic, fine-grained claim extraction in
an iterative loop: at each step, the model ex-
tracts exactly one verifiable atomic claim, gener-
ates a tailored query, and retrieves evidence from
open-domain sources. A novel evidence-filtering +
query-recommendation module evaluates the ade-
quacy of retrieved documents and, when evidence
is insufficient, autonomously formulates follow-up
queries—enabling effective multi-hop reasoning. Fi-
nally, a heuristic-driven revision stage revisits the
entire paragraph together with already-verified
claims to surface long-distance contextual errors
that single-sentence processing might miss.

The iterative loop in DIVER echoes the incre-
mental question-answering paradigm of Quiz Bowl,
where systems must decide when to answer as clues
accrue rather than after reading the entire ques-
tion. Prior work shows that making predictions
only once sufficient evidence is accumulated im-
proves both accuracy and model calibration (Boyd-
Graber et al., 2012; He et al., 2016; Rodriguez
et al., 2019). Analogously, DIVER refrains from
issuing a SUPPORTED/REFUTED verdict until its
evidence-retrieval loop has gathered enough sup-
port, yielding a more cautious—and ultimately
more reliable—fact-checking system.

Our main contributions are:

e Iterative claim extraction. DIVER ex-
tracts one atomic claim at a time, yielding
a complete and precise claim set.

e Evidence-aware multi-hop retrieval.
A query-and-filter loop prunes noise and
auto-generates follow-up queries, enabling
accurate multi-hop verification.

e Paragraph-level revision. A final heuris-
tic pass over the full paragraph surfaces
long-distance errors missed at sentence level.

2 Related Work

Complex-claim fact verification. Early large-
scale benchmarks such as FEVER (Thorne et al.,
2018) and LTAR (Wang, 2017) sparked considerable
interest in automatic fact checking, yet their claims
are typically short and syntactically simple (Eisen-
schlos et al., 2021). Subsequent datasets have pro-
gressively raised the bar: FEVEROUS (Aly et al.,
2021b) augments FEVER with tables, lists, and

longer passages; AVeriTeC (Schlichtkrull et al.,
2023) introduces paragraph-level claims that require
multi-hop reasoning across open-domain sources;
and SCIFACT (Wadden et al., 2020) focuses on
scientific abstracts with domain shift. To cope with
the resulting complexity, researchers have explored
sentence decomposition (Liu et al., 2020), claim
segmentation (Chen et al., 2022), and evidence
graph construction (Chen et al., 2021). Nonethe-
less, most pipelines still treat decomposition as a
one-shot preprocessing step, leaving them vulnera-
ble to missing or underspecified atomic claims—a
gap DIVER addresses with its fine-grained iterative
extraction loop.

LLM-based verification methods. The rise
of instruction-tuned large language models (LLMs)
has turned fact-checking pipelines toward prompt-
driven reasoning. Early work combines retrieval-
augmented generation (RAG) (Lewis et al., 2020)
with chain-of-thought prompting (Wei et al., 2022)
or self-ask-with-search (Press et al., 2023) to guide
LLMs through a coarse “ask—search—verify” loop.
Subsequent systems such as UL2R (Tay et al.,
2023) and RARR (Gao et al., 2023) integrate ex-
ternal retrievers but still rely on a static set of
claims and fixed query plans, leaving them vulner-
able when initial evidence is noisy or when multi-
hop queries are required. More recently, a line of
work relies on carefully designed prompt chains
to decompose problems and guide evidence search:
HISS (Zhang and Gao, 2023) introduces a hierarchi-
cal, step-wise set of prompts that first reformulate
news claims and then iteratively retrieve and vali-
date evidence; FactCheck-GPT (Wang et al., 2024)
employs a multi-stage “ask-search-verify” prompt-
ing template to evaluate generation fidelity; and
BiDeV (Liu et al., 2024) alternates “vagueness-
defusing” and ‘redundancy-defusing” prompts to
rewrite claims and filter noisy evidence before final
judgment. Although these approaches may trigger
multiple retrieval queries, one for each fragment of
the claim—they still perform claim extraction in
a single shot; and each query is handled in a sin-
gle round, without being revised in light of newly
found evidence, a design that often yields shallow
or broken multi-hop evidence chains.

3 Method

We present DIVER (Dynamic and Iterative fact
VERification), a modular framework inspired by
professional fact-checking workflows while remain-
ing fully automatable with LLMs and standard IR
components.

Figure 2 gives a schematic view, and Algorithm 1
lists the high-level procedure.



Input Sentence Decomposer
Six Flags might have parks all over the country now, but it's named after its Texas roots. Its name Six Flags might have parks all over the Remaining
refers to the flags of the six nations that have governed Texas: France, Spain, England, Mexico, country now, but it's named after its Mod lesE
The Republic of Texas, and the United States of America. Texas roots. u

Sentence Decomposer

N/

Six Flags refers to the flags of the six nafions that have governed
Texas: France, Spain, England, Mexico, The Republic of Texas, |::> There are six nations that have governed Texas.
Query Generator

Claim Extractor

and the United States of America.

Find another elai nations that have governed Texas

Not Erough Information v Evidence Retriever
The Republic of Texas, or simply
Texas, was...

Revision Stage
"Most of the claims have already been venified in the previous
steps, but there may still be some claims that span long contexts <‘]
and were missed. Let me list and examine them now..”

7

Six different nations have

Output SUPPORTED/REFUTED/NEI <::I soverned Texas:
REFUTED. The Confederate States of America is one of the Fact Checker Filter (give: recomendation of
flage—not England. next query)

Figure 2: Illustration of the DIVER workflow. Given an input paragraph, the Sentence Decomposer
rewrites each sentence so that it no longer relies on surrounding context (blue boxes, top). Each
reformulated sentence enters the dashed iterative loop: a Claim Extractor selects one atomic claim, a
Query Generator creates a search query, the Fvidence Retriever returns passages, and a Filter removes
noise while proposing a follow-up query. The Fact Checker labels the claim as SUPPORTED, REFUTED,
or NEI. If the label is NEI, the recommended query is issued and the loop repeats; otherwise the next
claim is extracted. After all sentences have been processed, a Revision Stage (left column) revisits the
full paragraph plus previously-verified claims to discover long-distance errors that may have been missed.
Finally, DIVER aggregates all verdicts to produce a paragraph-level decision.

3.1 Sentence Decomposer

The Sentence Decomposer converts a discourse-level
paragraph P = {s1,...,8,,} into a set of context-
independent sentences U = {uq,...,um,} through
three guided edits:

1. Coreference grounding. The model resolves
personal pronouns (he, she), demonstratives
(this, those), and zero anaphora occurring at
sentence boundaries, replacing them with their
nearest explicit referents.

2. Implicit-argument recovery. Temporal or
locative modifiers that are implicit from pre-
vious context (“last month”, “the capital”) are
made explicit (“in March 2024, “the capital of
France”). This removes hidden dependencies
that would otherwise leak information between
sentences.

3. Minimal-edit rewriting. Finally, the sen-
tence is re-serialised while keeping its token
order and wording as intact as possible, thereby
preserving the original claim surface form for
later alignment with retrieved evidence.

The following example illustrates the three edits
step-by-step.

Raw sentence: “He became president in 1999
and moved to the capital the following year.” t1.
Coreference grounding:

“Nelson Mandela became president in 1999 and
moved to the capital the following year.” 2.

Implicit-argument recovery:

“Nelson Mandela became president of South Africa
in 1999 and moved to the capital, Pretoria, the
following year.”

3. Minimal-edit rewrite:

“Nelson Mandela became president of South Africa
in 1999 and moved to Pretoria in 2000.”

We perform all three edits with a single LLM
call per sentence, adding only 8-10 ms latency. In
our pilot study on 200 randomly sampled para-
graphs from FEVEROUS, the normalised sentences
boost downstream claim-extraction recall by 4-6
pp compared with leaving the original discourse
unchanged.

3.2 [Iterative and Incremental Claim
Verification Loop

For every u € U we launch an iterative loop (lines
2-14 in Algorithm 1).

Claim Extractor (M.). The LLM executes a
step—by—step reasoning routine to surface the next
verifiable unit of knowledge under two guiding prin-
ciples: (1) a proposition is deemed atomic when
it cannot be further decomposed without altering
its truth-conditional content; (2) a proposition is
considered novel when it is not subsumed by the
set of claims already extracted in earlier iterations.
Formally, the i-th claim is given by

G, = Mc(uv {Cla"'acifl})v (1)



where M, is the claim-extraction module. Equa-
tion (1) enumerates the sentence’s full slate of fac-
tual commitments while preventing any conflation
of distinct propositions.

Query Generator (M,). Starting from the
freshly distilled claim ¢;, the LLM crafts a retrieval
query by (i) isolating salient lexical cues—named en-
tities, temporal anchors, relational predicates—and
(ii) composing them into a canonical search string
enriched with discriminative domain keywords. The
resulting query is

q; = Mq(ci)7 (2)

where M, maps a claim to its search query. Equa-
tion (2) aims to maximise the chance of retrieving
evidence that is both topically relevant and diag-
nostic for the claim’s truth value.

Search Module (R). The query g; is sent to an
open-domain retriever R, which returns a ranked
list of passages,

D; = R(qi)’ (3)

forming a candidate evidence pool that is both
topically aligned with and potentially diagnostic
for the claim.

Filter & Query Recommendation (1y).
Given the candidate set D; and the claim ¢;, the
evidence-filter module M/ executes two comple-
mentary actions: (i) it prunes off-topic or redun-
dant passages to distil a concise evidence bundle &;;
and (ii) it composes a follow-up query ¢/°¢ for any
still-missing links, such that

(&, 4;°) = My (Di, i) (4)

3

Equation (4) therefore encapsulates both evidence
selection and query recommendation in a single
step.

The filtered evidence &; is passed to the Fact
Checker, whereas ¢;°° is only executed if the checker
later returns NOT ENOUGH INFORMATION, en-
abling graceful multi-hop escalation without su-
perfluous retrieval calls.

Fact Checker (M.p). The pair
(¢i, &) is fed into a fact-checking LLM
prompt, which returns a verdict wv; €

Algorithm 1 DIVER Framework
Require: Paragraph P
Ensure: Label y € {SUPPORTED, REFUTED}, ex-
planation &
1: U < SENTENCEDECOMPOSER(P)
2: for each v € U do

3 while true do
4: ¢ <~ CLAIMEXTRACTOR(u)
5: ¢ + QUERYGENERATOR(c)
6: D < RETRIEVE(q)
7 &, ¢**° «+ FILTER(D, ¢)
8: v, p < FACTCHECKER(c, &)
9: if v = NEI then

10: q < ¢"°¢; continue

11: else

12: store (¢, v, p); break

13: end if

14: end while

15: end for

16: for t = 1 to rya do

17: 'Y < REVISIONEXTRACTOR(P, C)
18: if ¢V = @ then break

19: end if

20: verify ¢V via lines 2-14

21: end for

22: y,& + AGGREGATE(C)
23: return y, &

3.3 Revision Stage

After all sentences finish their loops, a Revision
stage revisits the entire paragraph. The LLM
sees P and the set of already-verified claims C,
then proposes an additional claim ¢**V if it sus-
pects a long-range inconsistency. The same ex-
tract—search—filter—check cycle operates during the
revision stage. At iteration ¢, the revision module
M,. proposes an additional claim

s =M, (P, Ct_l), t=1,...,"max, (6)
where the default cap is rmax = 3. The loop termi-

nates once the marginal gain in uncovered errors
falls below a preset threshold or when ¢t = r ..

3.4 Decision Aggregation

{SuPPORTED, REFUTED, NOT ENOUGH INFORMATIONA final aggregation module M, maps the set of

together with a concise rationale p;, such that
(vi, pi) = Mep(ci, &). (5)

Equation (5) formalises the final entailment step
that maps each claim-evidence pair to a label and
justification.

Should v; be NOT ENOUGH INFORMATION, the
system immediately re-enters retrieval with the
follow-up query ¢}°¢; otherwise the triple (c¢;, v;, p;)

is persisted as a verified claim.

verified claims C to a paragraph-level verdict y and
a composite explanation &:

(y, §) = Ma(C). (7)

The paragraph is labelled SUPPORTED iff all claims
in C are SUPPORTED; otherwise it is REFUTED.
When refuted, ¢ concatenates the rationales re-
turned by the fact-checker for every non-supported
claim.



4 Experiments

Evaluation overview. Our empirical study ad-
dresses three questions: (Q1) How does DIVER
compare with state-of-the-art LLM-based pipelines
on standard fact-checking benchmarks of differ-
ing density and reasoning depth? (Q2) Which
components—iterative extraction, evidence-aware
multi-hop retrieval, and paragraph-level revi-
sion—contribute most to its effectiveness? (Q3)
Can the framework generalise to real-world, noisy
inputs beyond curated datasets?

To this end we evaluate DIVER and a suite of
strong baselines on three public benchmarks
(FEVEROUS, LIAR, AVeriTeC), plus a case-study
set from the live quiz show Um, Actually. All
systems share the same open-web retrieval back-
end (Google Custom Search) and are run on two
backbone models—GPT-jo0-mini and the weaker
GPT-3.5-turbo—so that improvements stem solely
from pipeline design. Following prior work, we re-
port paragraph-level Accuracy; additional break-
downs (Macro-F1, error taxonomy, cost) appear in
later sections.

Section 4 first details datasets, baselines, and
implementation choices. We then present overall re-
sults (Table 1), component ablations, policy studies,
multi-hop evaluation on HoVer, and a qualitative
error analysis that pinpoints the remaining failure
modes.

4.1 Experimental Setup

Datasets. We evaluate DIVER on three
widely—used, challenging fact-checking benchmarks
to evaluate the fact-checking performance of the
baselines and DIVER: (i) FEVEROUS (Aly
et al., 2021a), (4) LIAR (Wang, 2017), and (%)
AVeriTeC' (Schlichtkrull et al., 2023).

Baselines. To demonstrate the effectiveness of
our approach, we compare against four categories
of baselines: (i) Zero-retrieval LLM: Vanilla GPT
model without external evidence; (i) LLM+web
search: GPT model with Google web search; (7ii)
Retrieval-plugged pipelines: UL2R (Tay et al., 2022)
and RARR (Gao et al., 2023), which insert ex-
ternal retrievers into fixed prompt templates; (iv)
Step-by-step prompting methods (our direct com-
petitors): HISS (Zhang and Gao, 2023), FactCheck-
GPT (Wang et al., 2024), and BiDeV (Liu et al.,
2024). All baselines share the same GPT model
backend and web retrieval to ensure fairness.

Evaluation Metrics. We report paragraph-level
Accuracy for the labels SUPPORTED, REFUTED,
and NEI.

Implementation Details. All methods, includ-
ing our own and every baseline, rely on the same

open-web retrieval backend: the Serper.dev API!
which returns live Google Search result pages
(SERP) in JSON format. For each query we re-
quest the top—10 hits, cache the returned URLs, and
download the corresponding pages with requests
plus Readability parsing; only the main textual
content is retained to comply with the API’s
Terms of Service. Every LLM call—FEztractor,
Query Generator, Filter, Fact Checker, and baseline
pipelines—uses the identical gpt-4o0 model (tem-
perature 0.3, top-p 0.95). Prompts and other hyper-
parameters are tuned on the development split of
each dataset; the complete prompt list and caching
script are provided in Appendix A and our public
code repository.

4.2 Overall Performance

The evaluation of DIVER and the baselines is con-
ducted on three benchmarks, based on two back-
bone models: GPT-40-mini and GPT-3.5-turbo.
The experimental results are presented in Table 1,
from which we can draw the following analysis.

4.3 Main Results Analysis
4.3.1 Main Results Analysis

As shown in Table 1, DIVER consistently achieves
the best performance across all three benchmarks
and both backbone LLMs. Compared with the
strongest step-wise baseline, BiDeV, DIVER gains
+5.7 / +7.2 points on FEVEROUS, 40.0 / 2.7
on LIAR, and +3.6 / +10.8 on AVeriTeC when us-
ing GPT-40-mini and GPT-3.5-turbo respectively.
These improvements correlate with task complexity:
FEVEROUS and AVeriTeC involve densely packed
claims and multi-hop reasoning, offering more op-
portunities for DIVER’s dynamic claim decomposi-
tion and revision to take effect. In contrast, LIAR
mainly contains short, single-hop claims, where
DIVER’s iterative mechanism is underutilized.

DIVER’s relative advantage is even more pro-
nounced on the weaker backbone (GPT-3.5-turbo),
averaging +6.0 points over BiDeV compared to
+3.3 on GPT-40-mini. This suggests that DIVER’s
structured control—especially its adaptive retrieval
and revision loop—can effectively compensate for
the limited reasoning and instruction-following abil-
ity of smaller models. On stronger models like
GPT-40-mini, DIVER still yields substantial gains,
indicating that even advanced LLMs benefit from
guided decomposition and targeted evidence align-
ment.

A breakdown across baselines reveals a clear
performance hierarchy: HISS < FactCheck-GPT
< BiDeV < DIVER. This reflects the cumu-
lative benefits of modular design: each added
component—ifine-grained claim extraction, evidence

"https://serper.dev, accessed July 2025
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filtering, query recommendation, and paragraph-
level revision—yields incremental yet complemen-
tary improvements. While BiDeV integrates basic
query planning, DIVER distinguishes itself by en-
abling query adaptation conditioned on retrieved
evidence and revisiting claims at the paragraph
level.

To further understand these performance trends,
we conduct a detailed error analysis in Section 4.6.
The results show that DIVER significantly reduces
sub-claim omissions and retriever failures, especially
on complex datasets. However, challenges remain
in fine-grained entailment recognition, which we
analyze in detail later.

4.4 TIteration—Policy Ablation

Both the claim—extraction loop (i iterations per
sentence) and the revision loop (j iterations per
paragraph) can be governed by a variety of stopping
policies. We experiment with four alternatives for
¢ and three for j:

o CE-1 Self-termination. The extractor outputs
a special STOP token once it believes no novel
atomic claim remains.once it believes no novel
atomic claim remains.

o CE-2 Fized budget n. Grid-search on dev
shows n=>5 gives best performance.

e CE-3 Length-based. i = [|u|/n] with n=4
tokens; longer sentences receive proportionally
more extraction steps.

o CE-4 Entity-based. i = n X
(number of named entities) with n=3, lever-
aging the intuition that each entity typically
anchors at least one fact.

e REV-1 Fized budget n (n=4).

e REV-2 Slack budget. j = max(n—|C|, 0) with
n=15.

e REV-3 Length—entity hybrid. ] =
max([|P|/n] — i|C|, 0) where n=4 and per-
claim discount i=1.

Discussion. (i) Allowing the LLM to self-
terminate (CE-1) yields the best overall accuracy,
verifying that the model can reliably decide when
its coverage is complete. Both the constant-budget
rule (CE-2) and the entity-triggered rule (CE-4)
trail by roughly one point, while length-based CE-3
under-extracts on terse sentences and over-extracts
on long, list-like sentences (numbers omitted for
space). (ii) For revision, a simple fixed budget of
four passes (REV-1) performs on par with the slack
heuristic REV-2 but avoids maintaining a global
claim counter and is therefore retained as our de-
fault. The hybrid rule REV-3, which ties the budget

to paragraph length, proves too aggressive and often
flips otherwise correct paragraphs into REFUTED.
Overall, the CE-1 + REV-1 pair (highlighted in
Table 2) offers the best balance between recall and
precision without incurring excessive cost.

4.5 Ablation Study

To quantify the impact of each component in
DIVER, we conduct a leave-one-out ablation study
on the same three benchmarks. Table 3 reports
paragraph-level Accuracy) when individual modules
are removed or simplified while all other settings
remain unchanged.

Iterative extraction vs. one-shot. Removing
the step-wise claim extractor (—Iterative Extrac-
tion) causes a drop of 6.3% on FEVEROUS and
7.9% on AVeriTeC, confirming that fine-grained,
incremental extraction is critical for high-density
paragraphs.

Evidence filtering and query recommen-
dation. Without the filter/recommend module
(~Filter / Recommend), performance degrades most
severely on multihop datasets (—10.4 on FEVER-
OUS, —7.2 on AVeriTeC), showing that adaptive
follow-up queries are indispensable when initial re-
trieval is noisy or incomplete.

Revision stage. Skipping the paragraph-level
revision (—Rewvision) impact on FEVEROUS(—3.3)
and AVeriTeC(—4.2), indicating that revision is
mainly useful for long-distance contextual errors.

Overall, each module contributes complementary
gains, and their combination is required to achieve
the best results reported in Section 4.

4.5.1 Effectiveness of Iterative Claim
Extraction

To isolate the benefit of our iterative
claim—by—claim extraction paradigm, we sampled
150 paragraph-length items from the REFUTED
split of AVeriTeC. All samples contain a high
density of sub-claims (avg. 6.4 per paragraph). For
each paragraph we applied either (i) a standard
one-shot extractor that outputs all claims in a
single pass, or (ii) our iterative extractor that
selects exactly one atomic claim per step until no
new information can be found. Two annotators
then judged whether the extracted set of claims
contains at least one erroneous sub-claim—the
necessary pre-condition for a downstream fact
checker to recover the paragraph’s REFUTED label.

Table 4 shows that iterative extraction raises
coverage by +7.3 pp on GPT-40-mini and +9.2 pp
on GPT-3.5-turbo. The gain is more pronounced
for the weaker backbone, confirming that step-wise
focusing helps lower-capacity models surface subtle
erroneous facts that a one-shot pass often merges
or omits.



FEVEROUS LIAR AVeriTeC
Methods
40-MINI ~ 3.5-TURBO 40-MINI  3.5-TURBO 40-MINI  3.5-TURBO

Vanilla LLM 50.1 29.8 59.6 29.1 70.0 41.5
LLM + Web Search 55.7 42.7 65.2 40.2 74.1 60.6
HISS (Zhang and Gao, 2023) 59.3 48.2 58.6 46.8 68.2 44.9
FactCheck-GPT (Wang et al., 2024) 65.3 56.5 65.2 52.9 75.8 63.0
BiDeV (Liu et al., 2024) 65.9 59.5 67.4 60.3 79.4 64.4
DIVER (ours) 71.6 66.7 67.4 63.0 83.0 75.2

Table 1: Performance (% Accuracy or Macro-F1) of baseline methods and our DIVER on three fact-
checking benchmarks. Each column pair shares the same retrieval backend (Google Search) and differs
only in the underlying LLM. All metrics are computed from a single run.

Claim Extractor

Revision Stage

AVeriTeC FEVEROUS

CE-1 REV-1
CE-1 REV-2
CE-2 REV-1
CE-2 REV-2
CE-4 REV-1
CE-4 REV-2

83.0 71.6
82.3 71.2
80.5 67.8
79.5 70.8
79.1 69.9
78.6 70.2

...other combinations omitted for brevity ...

Table 2: Accuracy on AVeriTeC and FEVEROUS dev for representative iteration-policy pairs. CE-1 +

REV-1 is selected as the default configuration.

Variant FEV. LIAR AVT.
Full DIVER 71.6 67.4 83.0
— Iter. Extr. 65.3 66.8 75.1
— Filter / Rec. 61.2 63.1 75.8
— Revision 68.3 67.2 78.8

Table 3: Ablation results (%). Each row removes
one component from the full system.

Extractor GPT-40-mini GPT-3.5-turbo
One-shot 85.8% 76.3%
Tterative (ours) 93.1% 85.5%

Table 4: Percentage of paragraphs whose extracted
claim set includes at least one erroneous sub-claim.
Higher is better for triggering a correct REFUTED
verdict.

4.5.2 Impact of Dynamic Multi-hop
Retrieval

We next evaluate DIVER on the open-domain splits
of HoVer (Jiang et al., 2020) for two challenging
settings that require chained evidence: hop-3 and
hop-4.2 Table 5 contrasts our results with represen-
tative step-by-step baselines.

Findings DIVER surpasses the strongest base-
line (BiDeV) by +1.9 pp on hop-3 and +2.4 pp
on hop-4. The margin widens as the evidence

2A claim is labelled hop-k if at least k distinct evi-
dence sentences must be concatenated to establish its
truth.

Method
HoVer HoVer
(hop-3) (hop-4)

FactCheck-GPT (Wang et al., 2024) 60.11 59.25
FLAN-T5 (Jiang et al., 2021) 60.23 55.42
BiDeV (Liu et al., 2024) 63.62 60.41
DIVER (ours) 65.48 62.82

Table 5: Accuracy (%) on HoVer hop-3 /
hop-4 (open-domain). All systems use the same
Google-Search retriever and GPT-40-mini back-
bone; DIVER alone employs dynamic follow-up
queries.

chain length grows, suggesting that our Fil-
ter €/ Recommendation loop is particularly effective
when the initial retrieval misses intermediate links.
Compared with single-hop-prompting systems such
as FactCheck-GPT and FLAN-T5, DIVER yields
gains of +5.3—7.4 pp, confirming that adaptive
multi-hop querying is crucial for deep reasoning
tasks.

4.6 Error Breakdown

To understand how DIVER improves over earlier
pipelines, we randomly sampled 100 misclassified
paragraphs from the FEVEROUS test set for both
DIVER and the strongest baseline BiDeV, then
manually assigned each error to one of five mutually
exclusive categories (Table 6).



Error Type DIVER BiDevV A
Missed sub-claim (MSC) 12 27 —15
Retriever failure (RF) 18 34 —16
Uncaught refutation (UC) 14 17 -3
Spurious refutation (SR) 46 12 +34
Other 10 10 0
Total 100 100

Table 6: Manual taxonomy of 100 erroneous pre-
dictions per system. MSC = the true contradictory
sub-claim never extracted; RF = relevant evidence
not retrieved; UC = evidence contradicts claim but
checker outputs SUPPORTED /NEI; SR = evidence
does not contradict claim but checker outputs RE-
FUTED.

Findings. DIVER eliminates more than half of
the Missed sub-claim errors and reduces Retriever
failures by 47 %, confirming that iterative extrac-
tion and follow-up querying successfully plug the
two largest gaps of one-shot pipelines. It is also
slightly better at recognising genuine contradictions
(UC, —3 errors).

The price we pay is an increased rate of Spu-
rious refutation (SR): the fact checker sometimes
over-trusts a narrow slice of evidence and flags an
otherwise correct claim as REFUTED. We conjecture
that the stronger recall of our loop delivers more
borderline passages to the entailment model, ampli-
fying its susceptibility to false negatives. Mitigating
this tendency—e.g. via confidence calibration or en-
semble voting—is left for future work.

4.7 Efficiency & Cost

On the FEVEROUS test set, our pipeline executes
10.2 + 1.8 serial®> GPT-40 calls and 8.6 4 1.1
search-engine queries per paragraph.
These calls consume on average 8 842 4 952
prompt tokens and 595 £ 101 completion tokens.
For a full per-stage cost table and the
token-counter script, see Appendix §A.5.

4.8 Real-world Case Study: Um, Actually

Motivation. Standard fact-checking corpora are
carefully curated but often synthetic. To assess
DIVER under truly in-the-wild conditions, we col-
lected a set of multi-sentence corrections from
the 2024 season of the quiz show Um, Actually.?
Each item contains a host statement (3-5 sen-
tences, dense with trivia) and at least one con-
testant—supplied correction.

Dataset construction. We extracted automatic
subtitles, normalised them, and asked two ex-
pert annotators to label every atomic claim

%Serial” = cannot be overlapped with retrieval or
other LLM calls.
‘https://www.youtube.com/c/umactually

as SUPPORTED, REFUTED, or NEI. The re-
sulting 210 paragraphs (average 6.8 sub-claims
each) are released—subtitles and labels only—at
https://github.com/your-repo /umactually-facts for
reproducibility, thereby avoiding redistribution of
copyrighted footage.

Results. Table 7 compares DIVER with two
strong baselines that share the same Google-Search
retriever and GPT-40-mini backbone.

Method Macro-F1 Acc.
Vanilla GPT-40 32.3 31.9
BiDeV 74.2 71.8
DIVER (ours) 80.6 79.5

Table 7: Performance on the Um, Actually case-
study set.

DIVER outperforms BiDeV by +6.4 Macro-F1,
mirroring the gains observed on HoVer hop-4. Qual-
itative inspection shows that our Revision stage fre-
quently recovers errors spread across non-adjacent
sentences, a pattern typical of live-spoken trivia.

Limitations. Because the dataset is derived from
entertainment media and lacks third-party guide-
lines, we treat these results as indicative rather than
conclusive; nevertheless, they highlight DIVER’s
robustness to noisy, real-world inputs.

5 Conclusion

We present DIVER, a fact-checking system that de-
composes complex input into atomic claims and dy-
namically guides retrieval and verification through
an adaptive revision loop. Unlike prior step-wise ap-
proaches, DIVER jointly optimizes claim extraction,
query planning, and evidence aggregation, enabling
more accurate and robust fact verification across
challenging open-domain benchmarks.

Experiments on FEVEROUS, LIAR, and
AVeriTeC demonstrate that DIVER consistently
outperforms strong baselines, with the largest gains
observed on tasks requiring dense, multi-hop reason-
ing. Analysis further reveals that DIVER’s design
particularly benefits weaker language models by
supplying structured, high-quality evidence through
targeted, iterative search.

Future work includes enhancing the robustness of
entailment prediction, improving system efficiency,
and extending DIVER to support real-time fact-
checking in dynamic web environments.
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