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Abstract

Fact-verification tasks involving sequences001
of claims remain challenging due to high002
claim density, low accuracy in open-domain003
evidence retrieval, and multi-hop reasoning004
requirements, which are difficult to address005
using traditional methods. In this paper,006
we propose DIVER (Dynamic and It-007
erative fact VERification), a fact veri-008
fication framework that decomposes para-009
graphs into context-independent sentences010
and applies a dynamic and iterative claim011
extraction and evidence retrieval strat-012
egy. Unlike prior one-shot or list-style ap-013
proaches, DIVER introduces a fine-grained014
iterative claim extraction mechanism, al-015
lowing the system to better capture ver-016
ifiable atomic claims, and incorporates a017
novel evidence-filtering and query recom-018
mendation module to robustly handle insuf-019
ficient or ambiguous evidence, significantly020
enhancing multi-hop reasoning capabilities.021
Additionally, we propose a heuristic-driven022
revision step to detect long-distance con-023
textual errors overlooked by previous ap-024
proaches. These mechanisms collectively025
improve the model’s calibration, ensuring026
the verifier fires only when supported by suf-027
ficient evidence—an essential property for028
dependable fact checking. Experimental re-029
sults on three widely-used challenging fact-030
checking benchmarks (FEVEROUS, LIAR,031
and AVeriTeC) demonstrate that DIVER032
substantially outperforms existing LLM-033
based approaches and pipelines.034

1 Introduction035

Automated fact verification is an essential compo-036
nent of natural language processing, playing a criti-037
cal role in combating misinformation and ensuring038
information quality across various applications such039
as news media, social networks, and automated con-040
tent moderation systems (Guo et al., 2022). Among041
different scenarios, verifying claims embedded in042
contextually rich, semantically dense paragraphs043
presents unique challenges due to high claim density,044
ambiguous contexts, and requirements for multi-045
hop reasoning over large-scale, open-domain evi-046

Figure 1: An real example in um, actually illus-
trating the three challenges current method faces:
(1) claim density, (2) multi-hop evidence, and (3)
long-distance context.

dence sources (Jiang et al., 2020). 047

Benefiting from advanced semantic understand- 048
ing and reasoning abilities of Large Language Mod- 049
els(LLMs), current mainstream fact-checking meth- 050
ods leverage LLMs to conduct decomposing, ques- 051
tioning and reasoning progressively, known as LLM- 052
based methods (Vykopal et al., 2024). Despite their 053
impressive contribution, these methods still face 054
several limitations in practice, particularly with 055
regard to claim extraction integrity, open-domain 056
evidence retrieval accuracy and multi-hop reason- 057
ing (Deng et al., 2024; Zheng et al., 2024). First, 058
existing methods typically adopt a static claim 059
extraction strategy, where an LLM attempts to 060
extract all verifiable claims from a sentence in a 061
single pass. This approach often suffers from in- 062
completeness, especially when dealing with com- 063
plex sentences that contain multiple intertwined 064
facts (Metropolitansky and Larson, 2025). As a 065
result, some verifiable claims may be overlooked 066
or under-specified (Metropolitansky and Larson, 067
2025). Second, open-domain evidence retrieval re- 068
mains a significant bottleneck. Current methods 069
often struggle with low retrieval accuracy, which 070
limits the relevance and usefulness of the collected 071
evidence (Zheng et al., 2024). Moreover, when 072
multi-hop reasoning is required, these systems lack 073
the ability to dynamically retrieve supporting evi- 074
dence for subsequent reasoning steps (Zhuang et al., 075
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2024). For instance, even if the first-hop informa-076
tion is successfully retrieved, the system may fail077
to formulate effective follow-up queries to obtain078
second-hop evidence.079

To overcome these limitations, we intro-080
duce DIVER (Dynamic and Iterative fact081
VERification), a verification framework specifi-082
cally designed for context-rich, high-density para-083
graphs. DIVER first decomposes each paragraph084
into context-independent sentences and then per-085
forms dynamic, fine-grained claim extraction in086
an iterative loop: at each step, the model ex-087
tracts exactly one verifiable atomic claim, gener-088
ates a tailored query, and retrieves evidence from089
open-domain sources. A novel evidence-filtering +090
query-recommendation module evaluates the ade-091
quacy of retrieved documents and, when evidence092
is insufficient, autonomously formulates follow-up093
queries—enabling effective multi-hop reasoning. Fi-094
nally, a heuristic-driven revision stage revisits the095
entire paragraph together with already-verified096
claims to surface long-distance contextual errors097
that single-sentence processing might miss.098

The iterative loop in DIVER echoes the incre-099
mental question-answering paradigm of Quiz Bowl,100
where systems must decide when to answer as clues101
accrue rather than after reading the entire ques-102
tion. Prior work shows that making predictions103
only once sufficient evidence is accumulated im-104
proves both accuracy and model calibration (Boyd-105
Graber et al., 2012; He et al., 2016; Rodriguez106
et al., 2019). Analogously, DIVER refrains from107
issuing a Supported/Refuted verdict until its108
evidence-retrieval loop has gathered enough sup-109
port, yielding a more cautious—and ultimately110
more reliable—fact-checking system.111

Our main contributions are:112

• Iterative claim extraction. DIVER ex-113
tracts one atomic claim at a time, yielding114
a complete and precise claim set.115

• Evidence-aware multi-hop retrieval.116
A query-and-filter loop prunes noise and117
auto-generates follow-up queries, enabling118
accurate multi-hop verification.119

• Paragraph-level revision. A final heuris-120
tic pass over the full paragraph surfaces121
long-distance errors missed at sentence level.122

2 Related Work123

Complex-claim fact verification. Early large-124
scale benchmarks such as FEVER (Thorne et al.,125
2018) and LIAR (Wang, 2017) sparked considerable126
interest in automatic fact checking, yet their claims127
are typically short and syntactically simple (Eisen-128
schlos et al., 2021). Subsequent datasets have pro-129
gressively raised the bar: FEVEROUS (Aly et al.,130
2021b) augments FEVER with tables, lists, and131

longer passages; AVeriTeC (Schlichtkrull et al., 132
2023) introduces paragraph-level claims that require 133
multi-hop reasoning across open-domain sources; 134
and SCIFACT (Wadden et al., 2020) focuses on 135
scientific abstracts with domain shift. To cope with 136
the resulting complexity, researchers have explored 137
sentence decomposition (Liu et al., 2020), claim 138
segmentation (Chen et al., 2022), and evidence 139
graph construction (Chen et al., 2021). Nonethe- 140
less, most pipelines still treat decomposition as a 141
one-shot preprocessing step, leaving them vulnera- 142
ble to missing or underspecified atomic claims—a 143
gap DIVER addresses with its fine-grained iterative 144
extraction loop. 145

LLM-based verification methods. The rise 146
of instruction-tuned large language models (LLMs) 147
has turned fact-checking pipelines toward prompt- 148
driven reasoning. Early work combines retrieval- 149
augmented generation (RAG) (Lewis et al., 2020) 150
with chain-of-thought prompting (Wei et al., 2022) 151
or self-ask-with-search (Press et al., 2023) to guide 152
LLMs through a coarse “ask–search–verify” loop. 153
Subsequent systems such as UL2R (Tay et al., 154
2023) and RARR (Gao et al., 2023) integrate ex- 155
ternal retrievers but still rely on a static set of 156
claims and fixed query plans, leaving them vulner- 157
able when initial evidence is noisy or when multi- 158
hop queries are required. More recently, a line of 159
work relies on carefully designed prompt chains 160
to decompose problems and guide evidence search: 161
HISS (Zhang and Gao, 2023) introduces a hierarchi- 162
cal, step-wise set of prompts that first reformulate 163
news claims and then iteratively retrieve and vali- 164
date evidence; FactCheck-GPT (Wang et al., 2024) 165
employs a multi-stage “ask-search-verify” prompt- 166
ing template to evaluate generation fidelity; and 167
BiDeV (Liu et al., 2024) alternates “vagueness- 168
defusing” and “redundancy-defusing” prompts to 169
rewrite claims and filter noisy evidence before final 170
judgment. Although these approaches may trigger 171
multiple retrieval queries, one for each fragment of 172
the claim—they still perform claim extraction in 173
a single shot; and each query is handled in a sin- 174
gle round, without being revised in light of newly 175
found evidence, a design that often yields shallow 176
or broken multi-hop evidence chains. 177

3 Method 178

We present DIVER (Dynamic and Iterative fact 179
VERification), a modular framework inspired by 180
professional fact-checking workflows while remain- 181
ing fully automatable with LLMs and standard IR 182
components. 183

Figure 2 gives a schematic view, and Algorithm 1 184
lists the high-level procedure. 185
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Figure 2: Illustration of the DIVER workflow. Given an input paragraph, the Sentence Decomposer
rewrites each sentence so that it no longer relies on surrounding context (blue boxes, top). Each
reformulated sentence enters the dashed iterative loop: a Claim Extractor selects one atomic claim, a
Query Generator creates a search query, the Evidence Retriever returns passages, and a Filter removes
noise while proposing a follow-up query. The Fact Checker labels the claim as Supported, Refuted,
or NEI. If the label is NEI, the recommended query is issued and the loop repeats; otherwise the next
claim is extracted. After all sentences have been processed, a Revision Stage (left column) revisits the
full paragraph plus previously-verified claims to discover long-distance errors that may have been missed.
Finally, DIVER aggregates all verdicts to produce a paragraph-level decision.

3.1 Sentence Decomposer186

The Sentence Decomposer converts a discourse-level187
paragraph P = {s1, . . . , sm} into a set of context-188
independent sentences U = {u1, . . . , um} through189
three guided edits:190

1. Coreference grounding. The model resolves191
personal pronouns (he, she), demonstratives192
(this, those), and zero anaphora occurring at193
sentence boundaries, replacing them with their194
nearest explicit referents.195

2. Implicit-argument recovery. Temporal or196
locative modifiers that are implicit from pre-197
vious context (“last month”, “the capital”) are198
made explicit (“in March 2024”, “the capital of199
France”). This removes hidden dependencies200
that would otherwise leak information between201
sentences.202

3. Minimal-edit rewriting. Finally, the sen-203
tence is re-serialised while keeping its token204
order and wording as intact as possible, thereby205
preserving the original claim surface form for206
later alignment with retrieved evidence.207

The following example illustrates the three edits208
step-by-step.209

Raw sentence: “He became president in 1999210
and moved to the capital the following year.” t1.211
Coreference grounding:212
“Nelson Mandela became president in 1999 and213
moved to the capital the following year.” 2.214

Implicit-argument recovery: 215
“Nelson Mandela became president of South Africa 216
in 1999 and moved to the capital, Pretoria, the 217
following year.” 218

3. Minimal-edit rewrite: 219
“Nelson Mandela became president of South Africa 220
in 1999 and moved to Pretoria in 2000.” 221

We perform all three edits with a single LLM 222
call per sentence, adding only 8–10 ms latency. In 223
our pilot study on 200 randomly sampled para- 224
graphs from FEVEROUS, the normalised sentences 225
boost downstream claim-extraction recall by 4–6 226
pp compared with leaving the original discourse 227
unchanged. 228

3.2 Iterative and Incremental Claim 229
Verification Loop 230

For every u ∈ U we launch an iterative loop (lines 231
2–14 in Algorithm 1). 232

Claim Extractor (Mc). The LLM executes a 233
step–by–step reasoning routine to surface the next 234
verifiable unit of knowledge under two guiding prin- 235
ciples: (1) a proposition is deemed atomic when 236
it cannot be further decomposed without altering 237
its truth-conditional content; (2) a proposition is 238
considered novel when it is not subsumed by the 239
set of claims already extracted in earlier iterations. 240
Formally, the i-th claim is given by 241

ci = Mc

(︁
u, {c1, . . . , ci−1}

)︁
, (1) 242
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where Mc is the claim-extraction module. Equa-243
tion (1) enumerates the sentence’s full slate of fac-244
tual commitments while preventing any conflation245
of distinct propositions.246

Query Generator (Mq). Starting from the247
freshly distilled claim ci, the LLM crafts a retrieval248
query by (i) isolating salient lexical cues—named en-249
tities, temporal anchors, relational predicates—and250
(ii) composing them into a canonical search string251
enriched with discriminative domain keywords. The252
resulting query is253

qi = Mq(ci), (2)254

where Mq maps a claim to its search query. Equa-255
tion (2) aims to maximise the chance of retrieving256
evidence that is both topically relevant and diag-257
nostic for the claim’s truth value.258

Search Module (R). The query qi is sent to an259
open-domain retriever R, which returns a ranked260
list of passages,261

Di = R(qi), (3)262

forming a candidate evidence pool that is both263
topically aligned with and potentially diagnostic264
for the claim.265

Filter & Query Recommendation (Mf).266
Given the candidate set Di and the claim ci, the267
evidence-filter module Mf executes two comple-268
mentary actions: (i) it prunes off-topic or redun-269
dant passages to distil a concise evidence bundle Ei;270
and (ii) it composes a follow-up query qreci for any271
still-missing links, such that272

(Ei, qreci ) = Mf

(︁
Di, ci

)︁
. (4)273

Equation (4) therefore encapsulates both evidence274
selection and query recommendation in a single275
step.276

The filtered evidence Ei is passed to the Fact277
Checker, whereas qreci is only executed if the checker278
later returns Not Enough Information, en-279
abling graceful multi-hop escalation without su-280
perfluous retrieval calls.281

Fact Checker (Mch). The pair282
⟨ci, Ei⟩ is fed into a fact-checking LLM283
prompt, which returns a verdict vi ∈284
{Supported,Refuted,Not Enough Information}285
together with a concise rationale ρi, such that286

(vi, ρi) = Mch

(︁
ci, Ei

)︁
. (5)287

Equation (5) formalises the final entailment step288
that maps each claim-evidence pair to a label and289
justification.290

Should vi be Not Enough Information, the291
system immediately re-enters retrieval with the292
follow-up query qreci ; otherwise the triple ⟨ci, vi, ρi⟩293
is persisted as a verified claim.294

Algorithm 1 DIVER Framework
Require: Paragraph P
Ensure: Label y ∈ {Supported,Refuted}, ex-

planation ξ
1: U ← SentenceDecomposer(P )
2: for each u ∈ U do
3: while true do
4: c← ClaimExtractor(u)
5: q ← QueryGenerator(c)
6: D ← Retrieve(q)
7: E , qrec ← Filter(D, c)
8: v, ρ← FactChecker(c, E)
9: if v = NEI then

10: q ← qrec; continue
11: else
12: store (c, v, ρ); break
13: end if
14: end while
15: end for
16: for t = 1 to rmax do
17: crev ← RevisionExtractor(P, C)
18: if crev = ∅ then break
19: end if
20: verify crev via lines 2–14
21: end for
22: y, ξ ← Aggregate(C)
23: return y, ξ

3.3 Revision Stage 295

After all sentences finish their loops, a Revision 296
stage revisits the entire paragraph. The LLM 297
sees P and the set of already-verified claims C, 298
then proposes an additional claim crev if it sus- 299
pects a long-range inconsistency. The same ex- 300
tract–search–filter–check cycle operates during the 301
revision stage. At iteration t, the revision module 302
Mr proposes an additional claim 303

crevt = Mr

(︁
P, Ct−1

)︁
, t = 1, . . . , rmax, (6) 304

where the default cap is rmax = 3. The loop termi- 305
nates once the marginal gain in uncovered errors 306
falls below a preset threshold or when t = rmax. 307

3.4 Decision Aggregation 308

A final aggregation module Ma maps the set of 309
verified claims C to a paragraph-level verdict y and 310
a composite explanation ξ: 311

(y, ξ) = Ma

(︁
C
)︁
. (7) 312

The paragraph is labelled Supported iff all claims 313
in C are Supported; otherwise it is Refuted. 314
When refuted, ξ concatenates the rationales re- 315
turned by the fact-checker for every non-supported 316
claim. 317
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4 Experiments318

Evaluation overview. Our empirical study ad-319
dresses three questions: (Q1) How does DIVER320
compare with state-of-the-art LLM-based pipelines321
on standard fact-checking benchmarks of differ-322
ing density and reasoning depth? (Q2) Which323
components—iterative extraction, evidence-aware324
multi-hop retrieval, and paragraph-level revi-325
sion—contribute most to its effectiveness? (Q3)326
Can the framework generalise to real-world, noisy327
inputs beyond curated datasets?328

To this end we evaluate DIVER and a suite of329
strong baselines on three public benchmarks330
(FEVEROUS, LIAR, AVeriTeC), plus a case-study331
set from the live quiz show Um, Actually. All332
systems share the same open-web retrieval back-333
end (Google Custom Search) and are run on two334
backbone models—GPT-4o-mini and the weaker335
GPT-3.5-turbo—so that improvements stem solely336
from pipeline design. Following prior work, we re-337
port paragraph-level Accuracy; additional break-338
downs (Macro-F1, error taxonomy, cost) appear in339
later sections.340

Section 4 first details datasets, baselines, and341
implementation choices. We then present overall re-342
sults (Table 1), component ablations, policy studies,343
multi-hop evaluation on HoVer, and a qualitative344
error analysis that pinpoints the remaining failure345
modes.346

4.1 Experimental Setup347

Datasets. We evaluate DIVER on three348
widely–used, challenging fact-checking benchmarks349
to evaluate the fact-checking performance of the350
baselines and DIVER: (i) FEVEROUS (Aly351
et al., 2021a), (ii) LIAR (Wang, 2017), and (iii)352
AVeriTeC (Schlichtkrull et al., 2023).353

Baselines. To demonstrate the effectiveness of354
our approach, we compare against four categories355
of baselines: (i) Zero-retrieval LLM : Vanilla GPT356
model without external evidence; (ii) LLM+web357
search: GPT model with Google web search; (iii)358
Retrieval-plugged pipelines : UL2R (Tay et al., 2022)359
and RARR (Gao et al., 2023), which insert ex-360
ternal retrievers into fixed prompt templates; (iv)361
Step-by-step prompting methods (our direct com-362
petitors): HISS (Zhang and Gao, 2023), FactCheck-363
GPT (Wang et al., 2024), and BiDeV (Liu et al.,364
2024). All baselines share the same GPT model365
backend and web retrieval to ensure fairness.366

Evaluation Metrics. We report paragraph-level367
Accuracy for the labels Supported, Refuted,368
and NEI.369

Implementation Details. All methods, includ-370
ing our own and every baseline, rely on the same371

open-web retrieval backend: the Serper.dev API,1 372
which returns live Google Search result pages 373
(SERP) in JSON format. For each query we re- 374
quest the top–10 hits, cache the returned URLs, and 375
download the corresponding pages with requests 376
plus Readability parsing; only the main textual 377
content is retained to comply with the API’s 378
Terms of Service. Every LLM call—Extractor, 379
Query Generator, Filter, Fact Checker, and baseline 380
pipelines—uses the identical gpt-4o model (tem- 381
perature 0.3, top-p 0.95). Prompts and other hyper- 382
parameters are tuned on the development split of 383
each dataset; the complete prompt list and caching 384
script are provided in Appendix A and our public 385
code repository. 386

4.2 Overall Performance 387

The evaluation of DIVER and the baselines is con- 388
ducted on three benchmarks, based on two back- 389
bone models: GPT-4o-mini and GPT-3.5-turbo. 390
The experimental results are presented in Table 1, 391
from which we can draw the following analysis. 392

4.3 Main Results Analysis 393

4.3.1 Main Results Analysis 394

As shown in Table 1, DIVER consistently achieves 395
the best performance across all three benchmarks 396
and both backbone LLMs. Compared with the 397
strongest step-wise baseline, BiDeV, DIVER gains 398
+5.7 / +7.2 points on FEVEROUS, +0.0 / +2.7 399
on LIAR, and +3.6 / +10.8 on AVeriTeC when us- 400
ing GPT-4o-mini and GPT-3.5-turbo respectively. 401
These improvements correlate with task complexity: 402
FEVEROUS and AVeriTeC involve densely packed 403
claims and multi-hop reasoning, offering more op- 404
portunities for DIVER’s dynamic claim decomposi- 405
tion and revision to take effect. In contrast, LIAR 406
mainly contains short, single-hop claims, where 407
DIVER’s iterative mechanism is underutilized. 408

DIVER’s relative advantage is even more pro- 409
nounced on the weaker backbone (GPT-3.5-turbo), 410
averaging +6.0 points over BiDeV compared to 411
+3.3 on GPT-4o-mini. This suggests that DIVER’s 412
structured control—especially its adaptive retrieval 413
and revision loop—can effectively compensate for 414
the limited reasoning and instruction-following abil- 415
ity of smaller models. On stronger models like 416
GPT-4o-mini, DIVER still yields substantial gains, 417
indicating that even advanced LLMs benefit from 418
guided decomposition and targeted evidence align- 419
ment. 420

A breakdown across baselines reveals a clear 421
performance hierarchy: HISS < FactCheck-GPT 422
< BiDeV < DIVER. This reflects the cumu- 423
lative benefits of modular design: each added 424
component—fine-grained claim extraction, evidence 425

1https://serper.dev, accessed July 2025
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filtering, query recommendation, and paragraph-426
level revision—yields incremental yet complemen-427
tary improvements. While BiDeV integrates basic428
query planning, DIVER distinguishes itself by en-429
abling query adaptation conditioned on retrieved430
evidence and revisiting claims at the paragraph431
level.432

To further understand these performance trends,433
we conduct a detailed error analysis in Section 4.6.434
The results show that DIVER significantly reduces435
sub-claim omissions and retriever failures, especially436
on complex datasets. However, challenges remain437
in fine-grained entailment recognition, which we438
analyze in detail later.439

4.4 Iteration–Policy Ablation440

Both the claim–extraction loop (i iterations per441
sentence) and the revision loop (j iterations per442
paragraph) can be governed by a variety of stopping443
policies. We experiment with four alternatives for444
i and three for j:445

• CE-1 Self-termination. The extractor outputs446
a special stop token once it believes no novel447
atomic claim remains.once it believes no novel448
atomic claim remains.449

• CE-2 Fixed budget n. Grid-search on dev450
shows n=5 gives best performance.451

• CE-3 Length-based. i = ⌈|u|/n⌉ with n=4452
tokens; longer sentences receive proportionally453
more extraction steps.454

• CE-4 Entity-based. i = n ×455
(number of named entities) with n=3, lever-456
aging the intuition that each entity typically457
anchors at least one fact.458

• REV-1 Fixed budget n (n=4).459

• REV-2 Slack budget. j = max
(︁
n−|C|, 0

)︁
with460

n=15.461

• REV-3 Length–entity hybrid. j =462
max

(︁
⌈|P |/n⌉ − i |C|, 0

)︁
where n=4 and per-463

claim discount i=1.464

Discussion. (i) Allowing the LLM to self-465
terminate (CE-1) yields the best overall accuracy,466
verifying that the model can reliably decide when467
its coverage is complete. Both the constant-budget468
rule (CE-2) and the entity-triggered rule (CE-4)469
trail by roughly one point, while length-based CE-3470
under-extracts on terse sentences and over-extracts471
on long, list-like sentences (numbers omitted for472
space). (ii) For revision, a simple fixed budget of473
four passes (REV-1) performs on par with the slack474
heuristic REV-2 but avoids maintaining a global475
claim counter and is therefore retained as our de-476
fault. The hybrid rule REV-3, which ties the budget477

to paragraph length, proves too aggressive and often 478
flips otherwise correct paragraphs into Refuted. 479
Overall, the CE-1 + REV-1 pair (highlighted in 480
Table 2) offers the best balance between recall and 481
precision without incurring excessive cost. 482

4.5 Ablation Study 483

To quantify the impact of each component in 484
DIVER, we conduct a leave-one-out ablation study 485
on the same three benchmarks. Table 3 reports 486
paragraph-level Accuracy) when individual modules 487
are removed or simplified while all other settings 488
remain unchanged. 489

Iterative extraction vs. one-shot. Removing 490
the step-wise claim extractor (–Iterative Extrac- 491
tion) causes a drop of 6.3% on FEVEROUS and 492
7.9% on AVeriTeC, confirming that fine-grained, 493
incremental extraction is critical for high-density 494
paragraphs. 495

Evidence filtering and query recommen- 496
dation. Without the filter/recommend module 497
(–Filter / Recommend), performance degrades most 498
severely on multihop datasets (−10.4 on FEVER- 499
OUS, −7.2 on AVeriTeC), showing that adaptive 500
follow-up queries are indispensable when initial re- 501
trieval is noisy or incomplete. 502

Revision stage. Skipping the paragraph-level 503
revision (–Revision) impact on FEVEROUS(−3.3) 504
and AVeriTeC(−4.2), indicating that revision is 505
mainly useful for long-distance contextual errors. 506

Overall, each module contributes complementary 507
gains, and their combination is required to achieve 508
the best results reported in Section 4. 509

4.5.1 Effectiveness of Iterative Claim 510
Extraction 511

To isolate the benefit of our iterative 512
claim–by–claim extraction paradigm, we sampled 513
150 paragraph–length items from the refuted 514
split of AVeriTeC. All samples contain a high 515
density of sub-claims (avg. 6.4 per paragraph). For 516
each paragraph we applied either (i) a standard 517
one-shot extractor that outputs all claims in a 518
single pass, or (ii) our iterative extractor that 519
selects exactly one atomic claim per step until no 520
new information can be found. Two annotators 521
then judged whether the extracted set of claims 522
contains at least one erroneous sub-claim—the 523
necessary pre-condition for a downstream fact 524
checker to recover the paragraph’s refuted label. 525

Table 4 shows that iterative extraction raises 526
coverage by +7.3 pp on GPT-4o-mini and +9.2 pp 527
on GPT-3.5-turbo. The gain is more pronounced 528
for the weaker backbone, confirming that step-wise 529
focusing helps lower-capacity models surface subtle 530
erroneous facts that a one-shot pass often merges 531
or omits. 532
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Methods FEVEROUS LIAR AVeriTeC

4o-mini 3.5-turbo 4o-mini 3.5-turbo 4o-mini 3.5-turbo

Vanilla LLM 50.1 29.8 59.6 29.1 70.0 41.5
LLM + Web Search 55.7 42.7 65.2 40.2 74.1 60.6
HISS (Zhang and Gao, 2023) 59.3 48.2 58.6 46.8 68.2 44.9
FactCheck-GPT (Wang et al., 2024) 65.3 56.5 65.2 52.9 75.8 63.0
BiDeV (Liu et al., 2024) 65.9 59.5 67.4 60.3 79.4 64.4

DIVER (ours) 71.6 66.7 67.4 63.0 83.0 75.2

Table 1: Performance (% Accuracy or Macro-F1) of baseline methods and our DIVER on three fact-
checking benchmarks. Each column pair shares the same retrieval backend (Google Search) and differs
only in the underlying LLM. All metrics are computed from a single run.

Claim Extractor Revision Stage AVeriTeC FEVEROUS

CE-1 REV-1 83.0 71.6
CE-1 REV-2 82.3 71.2
CE-2 REV-1 80.5 67.8
CE-2 REV-2 79.5 70.8
CE-4 REV-1 79.1 69.9
CE-4 REV-2 78.6 70.2

. . . other combinations omitted for brevity . . .

Table 2: Accuracy on AVeriTeC and FEVEROUS dev for representative iteration-policy pairs. CE-1 +
REV-1 is selected as the default configuration.

Variant FEV. LIAR AVT.

Full DIVER 71.6 67.4 83.0
– Iter. Extr. 65.3 66.8 75.1
– Filter / Rec. 61.2 63.1 75.8
– Revision 68.3 67.2 78.8

Table 3: Ablation results (%). Each row removes
one component from the full system.

Extractor GPT-4o-mini GPT-3.5-turbo

One-shot 85.8% 76.3%
Iterative (ours) 93.1% 85.5%

Table 4: Percentage of paragraphs whose extracted
claim set includes at least one erroneous sub-claim.
Higher is better for triggering a correct refuted
verdict.

4.5.2 Impact of Dynamic Multi-hop533
Retrieval534

We next evaluate DIVER on the open-domain splits535
of HoVer (Jiang et al., 2020) for two challenging536
settings that require chained evidence: hop-3 and537
hop-4.2 Table 5 contrasts our results with represen-538
tative step-by-step baselines.539

Findings DIVER surpasses the strongest base-540
line (BiDeV) by +1.9 pp on hop-3 and +2.4 pp541
on hop-4. The margin widens as the evidence542

2A claim is labelled hop-k if at least k distinct evi-
dence sentences must be concatenated to establish its
truth.

Method
HoVer
(hop-3)

HoVer
(hop-4)

FactCheck-GPT (Wang et al., 2024) 60.11 59.25
FLAN-T5 (Jiang et al., 2021) 60.23 55.42
BiDeV (Liu et al., 2024) 63.62 60.41

DIVER (ours) 65.48 62.82

Table 5: Accuracy (%) on HoVer hop-3 /
hop-4 (open-domain). All systems use the same
Google-Search retriever and GPT-4o-mini back-
bone; DIVER alone employs dynamic follow-up
queries.

chain length grows, suggesting that our Fil- 543
ter&Recommendation loop is particularly effective 544
when the initial retrieval misses intermediate links. 545
Compared with single-hop-prompting systems such 546
as FactCheck-GPT and FLAN-T5, DIVER yields 547
gains of +5.3–7.4 pp, confirming that adaptive 548
multi-hop querying is crucial for deep reasoning 549
tasks. 550

4.6 Error Breakdown 551

To understand how DIVER improves over earlier 552
pipelines, we randomly sampled 100 misclassified 553
paragraphs from the FEVEROUS test set for both 554
DIVER and the strongest baseline BiDeV, then 555
manually assigned each error to one of five mutually 556
exclusive categories (Table 6). 557
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Error Type DIVER BiDeV ∆

Missed sub-claim (MSC) 12 27 −15
Retriever failure (RF) 18 34 −16
Uncaught refutation (UC) 14 17 −3
Spurious refutation (SR) 46 12 +34
Other 10 10 0

Total 100 100

Table 6: Manual taxonomy of 100 erroneous pre-
dictions per system. MSC = the true contradictory
sub-claim never extracted; RF = relevant evidence
not retrieved; UC = evidence contradicts claim but
checker outputs Supported/NEI; SR = evidence
does not contradict claim but checker outputs Re-
futed.

Findings. DIVER eliminates more than half of558
the Missed sub-claim errors and reduces Retriever559
failures by 47%, confirming that iterative extrac-560
tion and follow-up querying successfully plug the561
two largest gaps of one-shot pipelines. It is also562
slightly better at recognising genuine contradictions563
(UC, −3 errors).564

The price we pay is an increased rate of Spu-565
rious refutation (SR): the fact checker sometimes566
over-trusts a narrow slice of evidence and flags an567
otherwise correct claim as Refuted. We conjecture568
that the stronger recall of our loop delivers more569
borderline passages to the entailment model, ampli-570
fying its susceptibility to false negatives. Mitigating571
this tendency—e.g. via confidence calibration or en-572
semble voting—is left for future work.573

4.7 Efficiency & Cost574

On the Feverous test set, our pipeline executes575
10.2±1.8 serial3 GPT-4o calls and 8.6±1.1576
search-engine queries per paragraph.577

These calls consume on average 8 842±952578
prompt tokens and 595± 101 completion tokens.579

For a full per-stage cost table and the580
token-counter script, see Appendix §A.5.581

4.8 Real–world Case Study: Um, Actually582

Motivation. Standard fact-checking corpora are583
carefully curated but often synthetic. To assess584
DIVER under truly in-the-wild conditions, we col-585
lected a set of multi-sentence corrections from586
the 2024 season of the quiz show Um, Actually.4587
Each item contains a host statement (3–5 sen-588
tences, dense with trivia) and at least one con-589
testant–supplied correction.590

Dataset construction. We extracted automatic591
subtitles, normalised them, and asked two ex-592
pert annotators to label every atomic claim593

3“Serial” = cannot be overlapped with retrieval or
other LLM calls.

4https://www.youtube.com/c/umactually

as Supported, Refuted, or NEI. The re- 594
sulting 210 paragraphs (average 6.8 sub-claims 595
each) are released—subtitles and labels only—at 596
https://github.com/your-repo/umactually-facts for 597
reproducibility, thereby avoiding redistribution of 598
copyrighted footage. 599

Results. Table 7 compares DIVER with two 600
strong baselines that share the same Google-Search 601
retriever and GPT-4o-mini backbone. 602

Method Macro-F1 Acc.

Vanilla GPT-4o 32.3 31.9
BiDeV 74.2 71.8
DIVER (ours) 80.6 79.5

Table 7: Performance on the Um, Actually case-
study set.

DIVER outperforms BiDeV by +6.4 Macro-F1, 603
mirroring the gains observed on HoVer hop-4. Qual- 604
itative inspection shows that our Revision stage fre- 605
quently recovers errors spread across non-adjacent 606
sentences, a pattern typical of live-spoken trivia. 607

Limitations. Because the dataset is derived from 608
entertainment media and lacks third-party guide- 609
lines, we treat these results as indicative rather than 610
conclusive; nevertheless, they highlight DIVER’s 611
robustness to noisy, real-world inputs. 612

5 Conclusion 613

We present DIVER, a fact-checking system that de- 614
composes complex input into atomic claims and dy- 615
namically guides retrieval and verification through 616
an adaptive revision loop. Unlike prior step-wise ap- 617
proaches, DIVER jointly optimizes claim extraction, 618
query planning, and evidence aggregation, enabling 619
more accurate and robust fact verification across 620
challenging open-domain benchmarks. 621

Experiments on FEVEROUS, LIAR, and 622
AVeriTeC demonstrate that DIVER consistently 623
outperforms strong baselines, with the largest gains 624
observed on tasks requiring dense, multi-hop reason- 625
ing. Analysis further reveals that DIVER’s design 626
particularly benefits weaker language models by 627
supplying structured, high-quality evidence through 628
targeted, iterative search. 629

Future work includes enhancing the robustness of 630
entailment prediction, improving system efficiency, 631
and extending DIVER to support real-time fact- 632
checking in dynamic web environments. 633
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