
Under review as a conference paper at ICLR 2022

AUTOCOG: A UNIFIED DATA-MODAL CO-SEARCH
FRAMEWORK FOR GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural architecture search (NAS) has demonstrated success in discovering
promising architectures for vision or language modeling tasks, and it has recently
been introduced to searching for graph neural networks (GNNs) as well. Despite
the preliminary success, we argue that for GNNs, NAS has to be customized fur-
ther, due to the topological complicacy of GNN input data (graph) as well as the
notorious training instability. Besides optimizing the GNN model architecture, we
propose to simultaneously optimize the input graph topology, via a set of parame-
terized data augmentation operators. That yields AutoCoG, the first unified data-
model co-search NAS framework for GNNs. By defining a highly flexible data-
model co-search space, AutoCoG is gracefully formulated as a principled bi-level
optimization, that can be end-to-end solved by the differentiable search methods.
Experiments demonstrate that AutoCoG produces state-of-the-art performance at
standard benchmarks including Cora, PubMed, and Citeseer, outperforming both
state-of-the-art hand-crafted GNNs as well as recent GNN NAS methods. Au-
toCoG can also scale to searching deeper GCNs in larger-scale datasets. Our
method consistently achieves state-of-the-art (SOTA) results on Cora, Citeseer,
Pubmed, and ogbn-arxiv. Specifically, we achieve gain of up to 2.04% for Cora,
2.54% for Citeseer, 2.08% for Pubmed, and finally 0.83% for ogbn-arxiv on our
benchmarks.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as promising tools to analyze networked data in vari-
ous real-world scenarios, such as social media (Grover & Leskovec (2016)) and biochemical graph
analytics (Zitnik & Leskovec (2017)). Specifically, GNNs apply recursive message passing to learn
the embedding representation of each node via aggregating the representations of its neighbors and
itself. Motivated by the significant success of node embedding learning, plenty of GNN variants have
been explored for the diverse downstream graph analysis tasks, including GCN (Kipf & Welling
(2016)), GraphSAGE (Hamilton et al. (2018)), and GCNII (Chen et al. (2020a)).

However, training GNNs is notoriously challenging, especially for noisy graphs and deep GNNs
(Chen et al. (2020a)). First, since graphs abstract diverse data sources and present tremendous het-
erogeneity, the success of GNNs is often accompanied by extensive tuning of model architectural
hyperparameters to characterize specific graph data. For example, it was reported that graph at-
tention networks (GAT (Veličković et al. (2018b))) are sensitive to the number of attention heads,
which has to be carefully searched for the citation networks and the protein-protein interaction data,
respectively. Second, the real-world graphs are inevitably noisy due to the error-prone and incom-
plete data collection, where GNNs tend to suffer from overfitting and generalize poorly to the unseen
testing data. Third, despite the potential of deep GNNs in learning the informative high-order neigh-
borhood, the training of deep GNNs is widely known to be limited by the issues of over-smoothing,
gradient vanishing, and over-squashing (Chen et al. (2020a)).

Recently, the automated graph neural architecture search (NAS), graph augmentation tricks, and
deeper architectures have been independently proposed to tackle the above GNN training challenges
partially. Expressly, most of the existing automated efforts are limited to neural architecture tuning,
while graph augmentation is often overlooked and untouched despite often being effective to gain
performance (Li & King (2020); Zhou et al. (2019b)). This is primarily because changes to the

1

Under review as a conference paper at ICLR 2022

existing graph structure can have a cascading effect on the process of information aggregation, which
adds a new layer of complexity above the already complex architecture tuning problem. Another
limitation of existing GNN NAS works lies in their scalability to deeper architectures. Because the
options are many, the search complex and (perhaps most importantly) the training unstable, previous
NAS efforts have limited themselves in searching the shallow GNNs with less than 3 layers. Thus
it remains as a daunting task to comprehensively optimize the design philosophy of deep GNNs,
which has been shown to deliver superior generalization performance for any given graph data.

To bridge the gaps, we propose AutoCoG, the first NAS framework towards unified data-model
co-search for GNNs. Besides automatically optimizing the GNN model architecture, we propose
to simultaneously optimize the input graph topology, via a set of parameterized and searchable data
augmentation operators that modify graph structures. By defining the highly flexible data-model
co-search space, AutoCoG is formulated as a principled bi-level optimization that can be end-to-
end solved by the differentiable search methods. To scale up our core framework to searching
deep GNN architectures, we curb an explosive search space as the number of layers increased by
performing multiple searching stages with increasing depth, as inspired by (Chen et al. (2019c)).
Our framework is further stabilized by (i) injecting identity mappings (Chen et al., 2020a) to combat
the over-smoothing/over-squashing issues; and (ii) adding uniform noise to perturbing architecture
parameters to smoothen the search landscape (Chen & Hsieh, 2021).

Together, our framework ensures a reliable way to discover powerful architectures, a stable model
training environment, and state-of-the-art results. AutoCoG searches for and trains on deep or shal-
low graph neural networks to successfully achieve state-of-the-art results in Cora, Citeseer, Pubmed,
and ogbn-arxiv. In summary, our three contributing novelties are:

• We propose AutoCoG, the first differentiable NAS framework towards unified data-model
co-search for GNN. Our novel bi-level optimization formulation uniquely enables the end-
to-end discovery of state-of-the-art GNN model and graph augmentation policy altogether.

• To strengthen the co-search framework, we organically integrate several techniques to di-
rectly combat issues of searching unreliability, training instability, and scalability, that have
previously plagued NAS approaches for searching deeper GNNs.

• Our method consistently achieves state-of-the-art (SOTA) results on Cora, Citeseer,
Pubmed, and ogbn-arxiv. Specifically, we achieve gains of up to 2.04% for Cora, 2.54%
for Citeseer, 2.08% for Pubmed, and finally 0.83% for ogbn-arxiv.

2 RELATED WORKS

Graph neural networks. Motivated by the state-of-the-art results of GNNs in graph analytics,
there have been numerous GNN variants (Bruna et al., 2013; Hamilton et al., 2017; Xu et al., 2019;
Chen et al., 2020a; Wu et al., 2019). Most of these existing approaches fit within the category of
spatial GNNs. Namely, following the spatial message passing strategy, the core idea of GNNs is
to learn the embedding representation of a node by aggregating the embeddings of its neighbors
and node itself recursively. The previous empirical studies show that GNNs often achieve the best
performance with less than 3 layers (Kipf & Welling, 2016; Veličković et al., 2018).

A key limitation of GNNs is their performances decrease significantly with the increasing of model
depth. As the graph convolutional layer increases, the node representations will converge to indistin-
guishable vectors due to the recursive neighborhood aggregation and non-linear activation (Li et al.,
2018; Oono & Suzuki, 2020), which is well recognized as over-smoothing issue (NT & Maehara,
2019; Chen et al., 2019a; Alon & Yahav, 2020; Chien et al., 2021; Huang et al., 2020). Such limita-
tion prevents the developments of deep GNNs to model the dependencies of high-order neighbors.
Recently, a series of techniques have been leveraged to tackle the over-smoothing, including skip
connection (Li et al., 2019; Klicpera et al., 2018; Xu et al., 2018), random dropping (Rong et al.,
2020b), and graph normalization (Zhao & Akoglu, 2019; Zhou et al., 2020). Based on these tricks,
deep GNNs with more than 16 layers deliver the superior performances in the scientific citation
network and biochemical graph analytics (Le et al., 2015; Liu et al., 2020).

Graph augmentation. Data augmentation methods has been widely applied to improve the gen-
eralization performances of deep neural networks, such as convolutional and recurrent neural net-

2

Under review as a conference paper at ICLR 2022

works Shorten & Khoshgoftaar (2019); Antoniou et al. (2017); Feng et al. (2021). They aim to craft
the out-of-distribution training data to avoid overfitting with the customized augmentation policies.
In the graph analytics, GNNs are prone to overfit the naturally noisy training graphs, which may miss
the ground-truth nodes/edges or contain the erroneous information Zügner et al. (2018). Different
from the grid-like image data, the graph augmentation is often operated on the adjacency structure
or node features. The existing graph augmentations could be catagorized into the following two
classes. (i) The random augmentation either drops/adds edges to modify the graph, or masks parts
of the node features Rong et al. (2020b); You et al. (2020b); Feng et al. (2020). (ii) The differen-
tiable augmentation learns to optimize the adjacency affinity matrix by minimizing the concerned
task loss. Based upon the computed affinity matrix, the differentiable augmentation either contin-
uously combines it into the original adjacency matrix Zhao et al. (2020b); Chen et al. (2020b), or
samples the discrete edges to formulate new graph Chen et al. (2019b).

Neural architecture search. Targeting at alleviating the laborious hyperparameter tuning, NAS
automates the designing of good neural architectures for any a given application. It is shockingly
reported that the searched neural architectures could outperform the human-designed ones in many
real-world scenarios, such as image classification Zoph & Le (2016); Zoph et al. (2018) and genera-
tion Wang & Huan (2019); Gong et al. (2019). Most of NAS frameworks apply one of the following
search algorithms: reinforcement learning (RL) Pham et al. (2018); Baker et al. (2016), evolution
algorithm (EA) Liu et al. (2017); Miikkulainen et al. (2019); Xie & Yuille (2017), and one-shot dif-
ferentiable search Liu et al. (2018); Zela et al. (2020). There are several recent efforts to conjoin the
researches of GNNs and NAS Gao et al. (2019); Zhou et al. (2019a); You et al. (2020a); Ding et al.
(2020); Zhao et al. (2020a). However, all of them are limited in exploring the shallow GNNs, and
fail to denoise the underlying graph to further ameliorate the model performance. In this work, we
aim to simultaneously search the deep GNN models and graph structure to optimize the downstream
graph analytics.

3 METHODOLOGY

3.1 UNIFIED DATA-MODAL CO-SEARCH SPACE

3.1.1 MODEL SEARCH SPACE: ATTENTION, ACTIVATION, AND SKIP CONNECTION

Preliminary. We briefly review the basic of a message-passing based graph convolution network
(GCN). In a general form, its k-th layer could be written as:

h
(k)
i = AGGR({a(k)ij W

(k)x
(k−1)
j : j ∈ N (i)})

x
(k)
i = σ(COMB(W (k)x

(k−1)
i , h

(k)
i))

(1)

x
(k)
i denotes the node embedding of element i at k-th layer. W (k) ∈ RD×D represents the learnable

layer-wise weights for all {xi : i ∈ |V |}, where |V | is our total number of nodes and D our
number of hidden features. a

(k)
ij dictates the attention coefficient between i and j derived from

some Attention function. N (i) denotes the neighboring nodes of node i from a graph G. h
(k)
i

is the resulting embeddings after applying an AGGR function to aggregate a set of neighboring
embeddings from the previous k − 1 layers. In addition, function COMB incorporates information
from itself with its neighboring embeddings h(k)i , and σ provides the nonlinear activation.

Defining the Model Search Space. The design of model search space should achieve a balanced
trade-off between the diversity and efficiency. Although a large search space subsumes the di-
verse GNN architectures to adapt to the different graph analysis tasks, it would be extremely time-
consuming to explore the optimal design. In the existing search spaces of GNNs Gao et al. (2019);
Zhou et al. (2019b); You et al. (2020a), they often contain the architecture components of hidden
units, attention, aggregation, combination, and activation functions, as well as the skip connections.
To efficiently search the outperforming shallow and deep GNNs, we compare the effectiveness of
each component, and greatly shrink down the search space to focus on three key components: the
Activation function, the Attention module, and the skip connections. They are generally believed

3

Under review as a conference paper at ICLR 2022

Table 1: The set of attention functions, where || denotes the concatenation operation, ā, āi, āj denote
learn-able vectors, WG denotes the trainable matrix.

Attention Choice Expression Form
GCN 1√

|N (i)||N (j)|

COS ā(W (k)x
(k−1)
i ||W (k)x

(k−1)
j)

LINEAR tanh(ālW
(k)x

(k−1)
i ||W (k)x

(k−1)
j)

GERE-LINEAR WGtanh(W (k)x
(k−1)
i +W (k)x

(k−1)
i)

GAT LeakyReLU(ā(W (k)x
(k−1)
i ||W (k)x

(k−1)
j))

GAT-SUM a
(k)
ij + a

(k)
ij based on GAT

CONST 1

to impact GNN’s expressive capability and depth scalability (Chen et al., 2021b). We fix the Ag-
greation function and Combination function to be simple summation, and treat the hidden units as
hyperparameter. Below we lay out our searchable design for them one-by-one:

• Attention Search Space: Attention mechanism has been shown by (Veličković et al., 2018b)
to effectively stabilize training by placing proper neighborhood scaling with attention co-
efficient aij . We list our attention choices in Table 1.

• Activation Search Space: for basic activation functions, we search among these operations
{ReLU,Sigmoid,Tanh,Linear,SoftPlus,LeakyReLU,ReLU6,ELU}.

• Skip Connection Search Space: For an L-Layer GCN, various skip connections can be
applied to overcome the effect of over-smoothing. Previous deep GCN works (Chen et al.,
2020a; Zhang et al., 2020; Chen et al., 2021b) illustrated a significant correlation between
the type of skip-connections to the performance. We include three skip-connection types:

– Dense connection: x(k)i = C({x(l)i : 0 ≤ l ≤ k})
– Initial connection: x(k)i = (1− η) ∗ x(k)i + η ∗ x(0)i
– Jumping connection: x(L)i = C({x(l)i : 0 ≤ l ≤ L}. Note that jumping connection is

a special case of dense connection applying on the last layer.
Our search could choose from each of the three types. Further, η is a learnable hyperpa-
rameter, and C is a set of searchable combination functions {mean,max, concat}.

3.1.2 DATA SEARCH SPACE: GRAPH AUGMENTATIONS

A given graph G(V,E) can be expressed in the form of an adjacent matrix A ∈ R|V |×|V |, where
V is the set of vertices and E is the set of edges. Graph augmentation is the transform of G such
that Ĝ = A

⊙
m, where m ∈ {0, 1}|V |×|V | is a binary matrix derived from some augmentation

policy or operator. Correspondingly, we could rewrite the aggregation step in Eqn (1) as H(k) =

AX(k−1)W (k), where H(k) = {h(k)i : 0 ≤ i ≤ |V |} and X(k−1) = {x(k−1)i : 0 ≤ i ≤ |V |}.
Despite being relatively overlooked by traditional GNN literature, a number of prior works (Srivas-
tava et al., 2014; Zou et al., 2019; Rong et al., 2020a; Chen et al., 2021a; Huang et al., 2021) have
found that graph augmentations, i.e., by (randomly) perturbing a certain number of edges or nodes
from the input graph, can helps decelerate both the over-fitting and over-smoothing issues in training
deep GNNs. Formally, besides searching the GNN model search architecture, we define our jointly
searchable space of graph augmentation operators below:

• DropEdge (Rong et al., 2020a): H(k) = (A
⊙
m)X(k−1)W (k), where m ∈ {0, 1}|V |×|V |

is a binary random matrix, and each element mij ∼ B(1, p) is drawn from Bernoulli
distribution with probability of p.

• AddEdge: H(k) = (A||m)X(k−1)W (k), where m ∈ {0, 1}|V |×|V | is a binary matrix, ||
is the OR function, the new total edges is |E| + p ∗ |E|, and each new edge is randomly
sampled.

4

Under review as a conference paper at ICLR 2022

• DropNode (Huang et al. (2021)): H(k) = (QAdiag(m)QT)X(k−1)W (k) where m ∈
{0, 1}|V | is a binary random matrix, each element mj ∼ B(1, p) is drawn from Bernoulli
distribution with p probability. Q ∈ 0, 1s×|V | our node selection matrix, for our selected
node set {ii : 0 ≤ i ≤ s}, where Qk,m = 1 if m = ik.

• Identity: H(k) = AX(k−1)W (k)

Since most of our data policies are sampled from a Bernoulli distribution with p probability, p is
just as important as the data policies themselves, and hence will be searched as a hyperparameter as
well. Practically, for any policy except Identity, we search p from {0.1, 0.15, 0.2, 0.25, 0.3}.

Figure 1: An overview of AutoCoG data-model co-search architecture and pipeline. On the left, we
deconstruct a layer into its components denoted in Eqn. (1). Yellow indicates searchable components
in the model search space, while light-blue functions are fixed. The data (graph augmentation) search
space is illustrated as a series of mathematical signs: (+) edge add, (-) edge permutation, (÷) node
drop and (=) identity. The search is conducted in a differentiable and depth-progressive fashion.

la
ye
r-
2

la
ye
r-
3

la
ye
r-
1

la
ye
r-
2

la
ye
r-
3

la
ye
r-
1

la
ye
r-
2

la
ye
r-
2

la
ye
r-
3

la
ye
r-
1 .. L

la
ye
r-
4

Attention

Aggregate

Combine

Activation

Skip

layer-k

3.2 OPTIMIZATION FORMULATION AND ALGORITHM

3.2.1 A PRINCIPLED BI-LEVEL OPTIMIZATION FORMULATION

For the sake of conciseness, we use α as the model space architecture parameters, and meanwhile
denote β as the set of data space architecture parameters, consisting of the choice graph augmenta-
tion policy parameters and p. Both α and β are categorical variables, and together they characterize
a joint search outcome. Now, let us denote our Lobj the objective loss function given α and β. Given
β, we can write our augmented graph Ĝ as Â = A

⊙
mβ where mβ ∈ {0, 1}|V |×|V |. Similarly,

given α, we denote Ŵ = W
⊙
mα as the pruned sub-model from the supernet derived from α

description, where Ŵ ,mα ∈ RL×D×D. Then, let Z represents our output vector for a hypothetical
2-layer AutoCoG:

Z = Softmax((Âσ(ÂXŴ (0))Ŵ (1))) (2)

Thus the objective loss function Lobj for a transductive semi-supervised node classification tasks is
formally denoted as:

Lobj(Ĝ, Ŵ) = − 1

|Ylabel|
∑

yi∈Ylabel

yi log(zi) (3)

Extending from (Dong & Yang, 2019), we formulate our data-model co-search as a joint bi-level
optimization, to solve α, β concurrently with the weights W and data space parameters:

min
α,β

Lvalid
obj (Ŵ , Ĝ, β, α)

s.t. Ŵ , Ĝ = arg min
W,G

Ltrain
obj (W,G, β, α)

(4)

5

Under review as a conference paper at ICLR 2022

Note that α, β are optimized using the objective loss function on the validation set, while Ŵ , Ĝ are
optimized under training set. We adopt the same hard-Gumbel-softmax trick (Jang et al., 2017) to
differentially optimize all categorical variables.

3.2.2 SCALING AND STABILIZING THE SEARCH

The bi-level optimization (4) can be solved by differential search methods, and we adopt the GDAS
approach in (Dong & Yang, 2019) by default. However, when exploring GCN deep architectures
and larger graphs, the data/model search spaces grow exponentially with the layer depth/graph size,
and they can be entangled to cause even more serious scalability challenge. That is further amplified
by the training difficulty and instability of deep GNNs (Chen et al., 2021b). Indeed, we observe that
naively applying GDAS is prone to over-smoothening and search collapse, only yielding very poor
architectures when searching for more than three layers. Besides, it is not uncommon for the derived
graph and model to have considerable performance variations across repeated experiments, due the
stochastic initialization and training.

We investigate and incorporate the following three “tricks” into our differential search process. They
are found to contribute remarkably to the scalability, stability and consistency of AutoCoG.

Progressive search space. We follow the idea proposed by Chen et al. (2019c) (also illustrated in
Figure 1), to divide search into N progressive stages, with each consecutive stage having a larger or
equal number of layers than those previously. At each stage, we greedily remove the least selected
options (by taking the mean of Soft-Max across L layers and removing the option with the smallest
value) from the data or model space, and pass on the shrunk co-search space to the next stage.

Identity mapping. To relieve the over-smoothing and over-fitting issues, the Identity Mapping
was first proposed by Chen et al. (2020a) to fashion deep GCN. It is formally denoted as:

X(k) = σ(AX(k−1)(BkW
(k) + (1−Bk)I)) (5)

Where Bk = log(γk + 1) and γ is a positive hype-parameter.

Architecture parameter perturbation. We add small perturbations δ ∼ U[−ε,ε] to both model
space and data space architecture parameters. Such an addition was first proposed by Chen & Hsieh
(2021) to more effectively sample the search space while preventing saddle points from hindering
architecture progress. We find it to be a helpful stabilizer too. We scale ε linearly between 0.01 to 3.
During evaluation, no perturbation is added. With this trick, we partially rewrite Eqn (4) as:

Ŵ , Ĝ = arg min
W,G

Ltrain
obj (W,G, β + δ, α+ δ) (6)

Eventually after search, we use the α and β parameters that resulted in the highest validation accu-
racy to derive the architecture, which will be re-trained. For re-training, we perform 100 separate
runs, each with a maximum of 1000 epochs, and report the average accuracy plus standard deviation.

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETTINGS.

Datasets. Following the previous efforts, we evaluate AutoCoG on four popular node classifica-
tion datasets (i) Cora, (ii) Citeseer, (iii) Pubmed (Sen et al. (2008)) and (iv) ogbn-arxiv (ogbn-arxiv)
(Hu et al. (2020)). The maximum diameters of the strongly connected components on Cora, Cite-
seer, Pubmed, ogbn-arxiv are 19, 28, 18, and 23, respectively, where the high-order neighborhood
modeling is a challenging task to boost the node classification results. They are widely adopted
to compare the effectiveness of NAS approaches, graph augmentation methods, shallow and deep
GNNs. In these citation graphs, nodes and edges correspond to the scientific documents and their ci-
tation relationships, respectively. The node embedding features are the bag-of-words representation
of documents (Cora, Citeseer or Pubmed) or the average embeddings of words in title and abstract
(ogbn-arxiv). Table 2 details the statistic of each dataset.

6

Under review as a conference paper at ICLR 2022

Experimental settings. We extend the default settings used in Chen et al. (2020a), while adding
some of our own. For example, we use the Adam optimizer (Kingma & Ba (2017)) for both model
and architecture weights with a learning rate of 0.01, and 0.001 respectively. L2 regularization for
the model’s weight is set to be 0.0005 as standard for Cora/Citeseer/Pubmed, and zero for ogbn-
arxiv. We set dropout rates to be 0.6 for Cora and Citeseer; 0.5 for Pubmed; and 0.1 for ogbn-arxiv.
For Identity-Mapping, γ is chosen to be 0.5 for Cora/Pubmed/ogbn-arxiv, and 0.6 for Citeseer.
Following best practices, we set the hidden dimension to be 256 for Citeseer/Arvix, and 64 for
Pubmed/Cora. Number of head is one for all. In addition, we set the η, ratio between initial connec-
tion and current features, to be 0.1. For P-DARTS, we set N to be seven with an increment of two
layers per stage. Finally, we allow our search and train to reach a maximum of 1000 epochs, while
setting our patience to be 400, and 200 respectively.

Table 2: Dataset Statistic
dataset classes nodes edges features
Cora 7 2,708 5,429 1,433

Citeseer 6 3,327 4,732 3,703
Pubmed 3 19,717 44,338 500

ogbn-arxiv 40 169,343 1,666,243 128

4.2 RESULTS

Baselines. To better realize AutoCoG’s potential, we compare it with extensive baselines at
2/16/32 layers configuration:

• Standard GNNs: (i) GCN (Kipf & Welling (2016)), (ii) SGC (Wu et al. (2019)), (iii) GAT
(Veličković et al. (2018a)). We also try to apply graph augmentations on GCN and SGC.

• Deeper GNNs: (i)GCNII (Chen et al. (2020a)), (ii) JKNet (Xu et al. (2018)), (iii) DAGNN
(Liu et al. (2020)), (iv) APPNP (Klicpera et al. (2018)), (v) GPRGNN (Chien et al. (2021)).

• NAS-based GNNs:(i) AGNN (Zhou et al. (2019b)), (ii) GraphNAS (Gao et al. (2019)).

Note that we put (*) next to AutoCoG’s 32-layers results for it is actually a 25 layers model. This is
done to avoid OOM error; nevertheless, it still achieves SOTA results.

Results. We report our results under Table (3). Compare to standard GNNs, we are clearly a
cut above with gains over the next best of 2.04%/ 9.31%/ 16.84% for 2/ 16/ 32 layers for Cora,
and similar gains repeated in Citeseer (-1.08%/ 2.54%/ 12.22%), Pubmed (2.08%/ 11.64%/ 14.01%)
and ogbn-arxiv (1.02%/ 6.55%/ 30.73%). With the most notable exceptions being 2-layer Citeseer,
where we perform worst than both GCN and SGC by 0.13% and 1.08% respectively. Compare
to deeper GNNs, we achieve better results across the board too, with gains over the next best
approach being (1.60%/ 0.6%/ 0.0%) for Cora, (-0.44%/ 0.52%/ 0.9%) Citeseer, (0.98%/ 0.52%/
0.03%) Pubmed and (0.83%/ 0.08%/ 0.09%) ogbn-arxiv. Notable exceptions being a tie with GCNN
for 32-layer Cora and being worst than APPNP for 2-layer Citeseer. Against other NAS-based
approaches, we achieve gains of (0.53%/ 53.39%/ 53.39%) for Cora, (-2.57%/ 46.39%/ 46.65%)
for Citeseer, (0.74%/ 41.01%/ 37.44%) for Pubmed. With notable exception being 2-layer Cite-
seer, where we scored on average worst than previous NAS works by 2.4% and where Auto-GNN
achieved the best performance overall for shallow network.

4.3 ABLATION STUDIES

4.3.1 A CASE FOR CO-ADAPTATION

To demonstrate the necessity of co-adaption, we compare results of random-search, model/data
only search, simple augmentation of standard GNNs, and our co-adaptation on the Cora dataset.
For Data-only search, we fix the attention to be GCN, disable any skip connections, and set our
activation function as ReLU. We report our findings of random-search and model/data-only search
in Table (4), while our co-adaption and simple augmentation results can be find in Table (3).

7

Under review as a conference paper at ICLR 2022

Table 3: Semi-supervised transductive results between AutoCoG and other SOTA approaches. We
report the average best accuracy across 100 runs and the standard deviation. We denote (0.2) as
probability p of graph augmentation policy. Accuracy is in percent (%), and best results are in bold.

Dataset Type Method layers
2 16 32

Cora

Standard
GCN 80.68±0.13 28.56±2.77 29.36±2.76
SGC 79.31±0.37 75.98±1.06 68.45±3.10
GAT 82.09±0.56 15.67±8.32 13.55±3.74

Graph-
augmentation

GCN+DropNode(0.2) 77.10±1.04 27.61±4.34 27.65±5.07
GCN+DropEdge(0.2) 79.16±0.73 28.00±3.36 27.87±3.04
SGC+DropNode(0.2) 77.89±0.23 75.22±0.22 69.51±0.40
SGC+DropEdge(0.2) 78.16±0.24 70.65±0.80 44.00±0.90

Deeper

JKNet 79.06±0.11 72.91±3.94 73.23±3.59
GCNII 82.19±0.77 84.69±0.51 85.29±0.47
DAGNN 80.30±0.78 84.14±0.59 83.39±0.59
APPNP 82.06±0.46 83.64±0.48 83.68±0.48
GPRGNN 82.53±0.49 83.69±0.55 83.13±0.60

NAS
Auto-GNN 83.60±0.30 22.34±6.55 31.90±0.00
GraphNAS 82.70±0.40 31.90±0.00 31.90±0.00
AutoCoG 84.13±0.58 85.29±0.25 85.29± 0.48

Citeseer

Standard
GCN 71.36±0.18 23.19±1.47 23.03±1.13
SGC 72.31±0.38 71.03±1.18 61.92±3.48
GAT 71.07±0.49 21.44±4.50 8.16±2.63

Graph-
augmentation

GCN+DropNode(0.2) 69.38±0.89 21.83±3.07 22.18±3.06
GCN+DropEdge(0.2) 70.26±0.70 22.92±1.95 22.92±2.12
SGC+DropNode(0.2) 71.87±0.27 72.50±0.20 70.60±0.11
SGC+DropEdge(0.2) 71.94±0.32 69.43±0.57 45.13±0.93

Deeper

JKNet 66.98±1.82 54.33±7.74 50.68±8.73
GCNII 67.81±0.89 72.97±0.71 73.24±0.78
DAGNN 18.22±3.48 73.05±0.62 72.59±0.54
APPNP 71.67±0.78 72.13±0.53 72.13±0.59
GPRGNN 70.49±0.95 71.39±0.73 71.01±0.79

NAS
Auto-GNN 73.80±0.70 22.95±4.57 26.78±0.85
GraphNAS 73.50±1.00 27.18±1.64 27.49±0.62
AutoCoG 71.23±0.75 73.57±0.34 74.14±0.48

Pubmed

Standard
GCN 77.39±0.98 40.18±1.18 39.88±2.54
SGC 78.06±0.31 69.18±0.58 66.61±0.56
GAT 78.36±0.73 24.45±10.42 18.00±0.00

Graph-
augmentation

GCN+DropNode(0.2) 77.39±0.98 40.18±1.18 39.88±2.54
GCN+DropEdge(0.2) 78.26±0.32 68.39±0.26 52.08±0.79
SGC+DropNode(0.2) 77.63±0.32 70.28±0.21 68.16±0.33
SGC+DropEdge(0.2) 79.16±0.73 28.00±3.36 27.87±3.04

Deeper

JKNet 77.24±0.92 64.37±8.80 63.77±9.21
GCNII 78.05±1.53 80.03±0.50 79.91±0.27
DAGNN 77.74±0.57 80.32±0.38 80.58±0.51
APPNP 79.46±0.47 80.30±0.30 80.24±0.33
GPRGNN 78.73±0.63 78.78±1.02 78.46±1.03

NAS
Auto-GNN 79.70±0.40 38.76±5.66 41.26±1.59
GraphNAS 78.80±0.50 39.81±1.65 43.17±1.54
AutoCoG 80.44±0.21 80.82±0.17 80.61±0.20

ogbn-
arxiv

Standard
GCN 69.53±0.19 66.14±0.73 41.96±9.01
SGC 61.98±0.08 41.58±0.27 34.22±0.04
GAT 71.05±0.18 40.59±15.17 22.09±4.03

Graph-
augmentation

GCN+DropNode(0.2) 66.67±0.16 67.17±0.47 43.81±9.62
GCN+DropEdge(0.2) 68.67±0.17 66.38±0.60 45.74±5.65
SGC+DropNode(0.2) 61.21±0.08 40.52±0.11 34.64±0.05
SGC+DropEdge(0.2) 62.06±0.05 41.03±0.23 33.61±0.06

Deeper

JKNet 63.73±0.38 66.41±0.56 66.31±0.63
GCNII 71.24±0.17 72.61±0.29 72.60±0.25
DAGNN 67.65±0.52 71.82±0.28 71.46±0.27
APPNP 65.31±0.23 66.95±0.24 66.94±0.26
GPRGNN 69.31±0.09 70.30±0.15 70.18±0.16

NAS
Auto-GNN OOM OOM OOM
GraphNAS OOM OOM OOM
AutoCoG 72.07±0.12 72.69±0.10 72.69±0.06*

Herein, we see a strong performance deficit between Data-only and AutoCoG at (0.72%/ 53.26%/
53.2%) for 2/16/32 layers, respectively. While model-only search fairs somewhat better with only a

8

Under review as a conference paper at ICLR 2022

deficit of (0.61%/ 1.06%/ 0.38%). In addition, we also observe an interesting performance difference
between Data-only search and GCN-DropNorm/GCN-DropEdge at p = 0.2 with gains of (4.25%/
4.03%/ 4.22%).

These observations validate three aspects of our methodology: (i) we get far better results than ran-
dom, which indicates that our search space is non-trivial and our methodology effective. (ii) we
perform better together than as individual components, validating our co-adaptation aim (iii) We
show that naive application of graph augmentation has detrimental effects on performance, while
searched policy enjoys far better accuracy. Thus the experiment empirically demonstrates the valid-
ity of our proposed methodology.

Table 4: To understand the important of co-search, we isolate each components of our framework to
study their individual effectiveness. Data-only search is based on the GCN framework.

Dataset Method layers
2 16 32

Cora

Random 63.53±0.25 27.51±0.64 30.69±2.19
Data-only 83.41±0.66 32.03±0.19 32.09±0.15
Model-only 83.52±0.44 84.23±0.20 84.91±0.22
AutoCoG 84.13±0.58 85.29±0.25 85.29± 0.48

4.3.2 EFFECTIVENESS OF STABILIZERS

Similar to how we study the effectiveness of co-adaptation, we compare AutoCoG’s results without
some or all of our stabilizing ”tricks” and discuss their overall effectiveness. We report the our
findings under table 5. Without the small noise added to the architecture parameters, we observe
significant impact to the performance of 2-layer configuration while having minimal effects on 16/32
configurations.

Since AutoCoG searches directly on two layers without using progressive search, it is more vulner-
able to minor variation in initialization. On the other hand, 16/32-layer configurations can mitigate
this instability by relying on P-DART. Meanwhile, we observe a small performance deficit of only
(.17%/ .34%/ .41%), when identity mapping is missing. Nevertheless, when both features are miss-
ing, we can observe a more significant performance gap of (7%/ 1%/ 0.7%) for 2, 16, and 32, re-
spectively. The combined deficit to performance when both features are missing validate our usage
in order to to achieve SOTA performance.

Table 5: To study the effectiveness of our stabilizing ”tricks”, we test each of them individually to
study their effectiveness

Dataset Method layers
2 16 32

Cora

without architecture perturbation 82.50±0.56 84.33±0.58 85.11±0.27
without identity mapping 83.96±0.24 84.95±0.34 84.87±0.33
without both 77.88±1.66 84.42±0.27 84.60±0.23
AutoCoG 84.13±0.58 85.29±0.25 85.29± 0.48

5 CONCLUSION

In this paper, we present AutoCoG the first NAS framework towards unified data-model co-search
for GNNs. We design a highly flexible data-model co-search space aiming to formulated as a
principled bi-level optimization, that can be end-to-end solved by the differentiable search methods.
Our results convincingly demonstrates the benefit of data-graph co-search for both deep and shallow
graph neural networks. We show AutoCoG to be a reliable way to discover powerful architectures,
a stable model training environment, and state-of-the-art results. For future works, (i) we plan to
expand our search space to encompassed all aspects of GNN’s building blocks. (ii) we want consider
more advance techniques in graph-augmentation, beyond the current random base approaches.

9

Under review as a conference paper at ICLR 2022

Reproducibility Statement. As part of the reproducibility effort, we have painstakingly recorded
all derived architectures, random seeds, and trained weights. We shall disclose within the supple-
mentary the details of our derived architectures at all configurations for all datasets. Upon accep-
tance, we will publicly release our code and all associated trained models weights used to achieve
the reported accuracy.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation generative adversarial
networks. arXiv preprint arXiv:1711.04340, 2017.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. arXiv, 2016.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv, 2013.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. arXiv preprint
arXiv:1909.03211, 2019a.

Deli Chen, Xiaoqian Liu, Yankai Lin, Peng Li, Jie Zhou, Qi Su, and Xu Sun. Highwaygraph:
Modelling long-distance node relations for improving general graph neural network, 2019b.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks, 2020a.

Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery
ticket hypothesis for graph neural networks. In International Conference on Machine Learning,
pp. 1695–1706. PMLR, 2021a.

Tianlong Chen, Kaixiong Zhou, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, and Zhangyang
Wang. Bag of tricks for training deeper graph neural networks: A comprehensive benchmark
study. arXiv preprint arXiv:2108.10521, 2021b.

Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via perturbation-
based regularization, 2021.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 1294–1303, 2019c.

Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural net-
works: Better and robust node embeddings. Advances in Neural Information Processing Systems,
33, 2020b.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In International Conference on Learning Representations.
https://openreview. net/forum, 2021.

Yuhui Ding, Quanming Yao, and Tong Zhang. Propagation model search for graph neural networks.
arXiv preprint arXiv:2010.03250, 2020.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours, 2019.

Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mita-
mura, and Eduard Hovy. A survey of data augmentation approaches for nlp. arXiv preprint
arXiv:2105.03075, 2021.

10

Under review as a conference paper at ICLR 2022

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
Advances in Neural Information Processing Systems, 33, 2020.

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graphnas: Graph neural architecture
search with reinforcement learning, 2019.

Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang Wang. Autogan: Neural architecture search
for generative adversarial networks. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 3224–3234, 2019.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In NeuIPS, pp. 1024–1034, 2017.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs, 2018.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Tackling over-
smoothing for general graph convolutional networks. arXiv e-prints, pp. arXiv–2008, 2020.

Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Tackling over-
smoothing for general graph convolutional networks, 2021.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent networks
of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9267–9276, 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Yaoman Li and Irwin King. Autograph: Automated graph neural network. In International Confer-
ence on Neural Information Processing, pp. 189–201. Springer, 2020.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hi-
erarchical representations for efficient architecture search. arXiv, 2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv,
2018.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
338–348, 2020.

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier Francon,
Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving deep neural
networks. In Artificial Intelligence in the Age of Neural Networks and Brain Computing, pp.
293–312. Elsevier, 2019.

11

Under review as a conference paper at ICLR 2022

Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550, 2019.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations, 2020.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv, 2018.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations, 2020a. URL https://openreview.net/forum?id=Hkx1qkrKPr.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations. https://openreview. net/forum, 2020b.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI Magazine, 29(3):93, Sep. 2008. doi:
10.1609/aimag.v29i3.2157. URL https://ojs.aaai.org/index.php/aimagazine/
article/view/2157.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of Big Data, 6(1):1–48, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks, 2018a.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks, 2018b.

Hanchao Wang and Jun Huan. Agan: Towards automated design of generative adversarial networks.
arXiv, 2019.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr. au2, Christopher Fifty, Tao Yu, and Kilian Q.
Weinberger. Simplifying graph convolutional networks, 2019.

Lingxi Xie and Alan Yuille. Genetic cnn. In ICCV, pp. 1379–1388, 2017.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances
in Neural Information Processing Systems, 33, 2020a.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems,
33, 2020b.

Arber Zela, Julien Siems, and Frank Hutter. Nas-bench-1shot1: Benchmarking and dissecting one-
shot neural architecture search. arXiv preprint arXiv:2001.10422, 2020.

12

https://openreview.net/forum?id=Hkx1qkrKPr
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

Under review as a conference paper at ICLR 2022

Hongwei Zhang, Tijin Yan, Zenjun Xie, Yuanqing Xia, and Yuan Zhang. Revisiting graph convolu-
tional network on semi-supervised node classification from an optimization perspective, 2020.

Huan Zhao, Lanning Wei, and Quanming Yao. Simplifying architecture search for graph neural
network. In International Conference on Information and Knowledge Management, 2020a. URL
http://ceur-ws.org/Vol-2699/paper08.pdf.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. arXiv preprint
arXiv:1909.12223, 2019.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data aug-
mentation for graph neural networks. arXiv preprint arXiv:2006.06830, 2020b.

Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu. Auto-gnn: Neural architecture search of
graph neural networks. arXiv preprint arXiv:1909.03184, 2019a.

Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu. Auto-gnn: Neural architecture search of
graph neural networks, 2019b.

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards deeper
graph neural networks with differentiable group normalization. Advances in Neural Information
Processing Systems, 33, 2020.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tis-
sue networks. Bioinformatics, 33(14):i190–i198, Jul 2017. ISSN 1460-2059. doi: 10.
1093/bioinformatics/btx252. URL http://dx.doi.org/10.1093/bioinformatics/
btx252.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In CVPR, pp. 8697–8710, 2018.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph convolutional networks, 2019.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2847–2856, 2018.

13

http://ceur-ws.org/Vol-2699/paper08.pdf
http://dx.doi.org/10.1093/bioinformatics/btx252
http://dx.doi.org/10.1093/bioinformatics/btx252

Under review as a conference paper at ICLR 2022

A APPENDIX

In this section, we outline the derived architectures from AutoCoG at all configurations for all
datasets. Below you can find our experimental settings; next to it are the three tables, each outlines
the architecture configurations for two layers, 16 layers, and 32 layers.

Experimental settings. We use the Adam optimizer for both model and architecture weights with
a learning rate of 0.01, and 0.001 respectively. L2 regularization for the model’s weight is set to
be 0.0005 as standard for Cora/Citeseer/Pubmed, and zero for ogbn-arxiv. We set dropout rates to
be 0.6 for Cora and Citeseer; 0.5 for Pubmed; and 0.1 for ogbn-arxiv. For Identity-Mapping, γ is
chosen to be 0.5 for Cora/Pubmed/ogbn-arxiv, and 0.6 for Citeseer. Following best practices, we set
the hidden dimension to be 256 for Citeseer/Arvix, and 64 for Pubmed/Cora. Number of head is one
for all. In addition, we set the η, ratio between initial connection and current features, to be 0.1. For
P-DARTS, we set N to be seven with an increment of two layers per stage. Finally, we allow our
search and train to reach a maximum of 1000 epochs, while setting our patience to be 400, and 200
respectively.

Table 6: architectures derived for our 2 layers settings. the left most setting are for layer 1, while the
right most settings are for layer 2.

dataset data policy (p) attention activation skip
Cora DropNode (0.15) const, gat tanh, tanh None, None

Citeseer DropNode (0.10) cos, gcn relu6, leaky relu None, None
Pubmed Identity gcn, gcn tanh, tanh initial skip, initial skip

ogbn-arxiv DropNode (0.15) gcn, gcn tanh, tanh inital skip, inital skip

Table 7: architectures derived for our 16 layers settings. The same setting is repeated across the
depth of our model

dataset data policy (p) attention activation skip
Cora DropNode (0.2) gcn linear initial skip

Citeseer Identity gcn tanh initial skip
Pubmed AddEdge (0.1) gcn tanh initial skip

ogbn-arxiv DropNode (0.15) gcn tanh inital skip

Table 8: architectures derived for our 32 layers settings. The same setting is repeated across the
depth of our model

dataset data policy (p) attention activation skip
Cora AddEdge (0.15) gcn elu initial skip

Citeseer AddEdge (0.10) gcn tanh initial skip
Pubmed AddEdge (0.10) gcn tanh initial skip

ogbn-arxiv DropNode (0.10) gcn tanh inital skip

14

	Introduction
	Related works
	Methodology
	Unified Data-Modal Co-Search Space
	Model Search Space: Attention, Activation, and Skip Connection
	Data Search Space: Graph Augmentations

	Optimization Formulation and Algorithm
	A Principled Bi-Level Optimization Formulation
	Scaling and Stabilizing the Search

	Experiments
	Datasets and experimental settings.
	Results
	Ablation studies
	A case for co-adaptation
	Effectiveness of stabilizers

	Conclusion
	Appendix

