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ABSTRACT

Training an overparameterized neural network can yield minimizers of the same
level of training loss and yet different generalization capabilities. With evidence
that indicates a correlation between sharpness of minima and their generalization
errors, increasing efforts have been made to develop an optimization method to
explicitly find flat minima as more generalizable solutions. This sharpness-aware
minimization (SAM) strategy, however, has not been studied much yet as to how
overparameterization can actually affect its behavior. In this work, we analyze
SAM under varying degrees of overparameterization and present both empirical and
theoretical results that suggest a critical influence of overparameterization on SAM.
Specifically, we first use standard techniques in optimization to prove that SAM
can achieve a linear convergence rate under overparameterization in a stochastic
setting. We also show based on a stability analysis that the solutions found by SAM
are indeed flatter and have more uniformly distributed Hessian moments compared
to those of SGD. These results are corroborated with our experiments that reveal a
consistent trend that the generalization improvement made by SAM continues to
increase as the model becomes more overparameterized. We further present that
sparsity can open up an avenue for effective overparameterization in practice.

1 INTRODUCTION

The success of deep learning in recent years can be attributed to large neural networks of growing size:
the deeper and wider they become, it tends to produce state-of-the-art results for various applications
(Kaplan et al., 2020; Dehghani et al., 2023). Why do such large, potentially overparameterized, neural
networks work well?

While a complete understanding remains elusive, research suggests that overparameterization can
help multiple aspects of the learning process including even generalization (Neyshabur et al., 2017;
Du & Lee, 2018). In particular, overparameterized neural networks show convexity-like behavior
during optimization, making all local minima globally optimal, and thereby, enabling one to rely on
local optimization methods such as gradient descent (Kawaguchi, 2016; Ma et al., 2018; Sagun et al.,
2018).

However, not all local minima are necessarily equal as it turns out; for example, converging to
different minima can yield a large disparity of generalization capabilities, despite their same level
of training loss reaching almost zero (Keskar et al., 2017). One plausible explanation for such an
implicit phenomenon is that generalization is somewhat negatively correlated with sharpness of the
loss landscape, i.e., flat minima tend to generalize better than sharp ones (Chaudhari et al., 2017;
Jiang et al., 2020). This calls for new ways to guide the optimization process to converge to flat
minima, and various strategies have been suggested to this end (Izmailov et al., 2018; Foret et al.,
2021; Orvieto et al., 2022). Indeed, it has been observed in many cases that minimizing sharpness
improves generalization performance (Bahri et al., 2022; Chen et al., 2022b; Qu et al., 2022).

Nevertheless, the sharpness minimization scheme has not been studied much under overparameteriza-
tion as of yet, despite their contemporary relevance. Hence, we analyze the effects of overparam-
eterization on sharpness-aware minimization, or SAM (Foret et al., 2021), in this work. Precisely,
we develop convergence properties of SAM under overparameterization and characterize the linear

1



Under review as a conference paper at ICLR 2024

stability of the minima attained. We conduct a wide range of experiments to measure the effects of
overparameterization to various extents. We also look into how sparsification, a model compression
technique with increasing significance in the recent scaling trend, can alleviate the computational and
memory overhead introduced by overparameterization.

Our key findings are summarized as follows: (i) SAM achieves a linear rate of convergence under
overparameterization; (ii) the solutions found by SAM are flatter in shape and have a more uniformly
distributed sharpness spectrum compared to SGD; (iii) the effectiveness of SAM on improving
generalization performance increases as per increasing number of parameters; (iv) sparsity can be an
effective strategy to restore the benefit of overparameterization for SAM without downscaling.

2 BACKGROUND

Consider the general unconstrained optimization problem:

min
x

f(x) (1)

where f : Rd → R is the objective function to minimize, and x ∈ Rd is the optimization variable. In
the context of deep learning, f is usually an empirical risk and nonconvex, and x is the parameters
of a neural network which is often overparameterized. The standard approach to (1) is to run an
iterative first-order method until it converges to a stationary point x⋆. Precisely, it has the following
generalized form

xt+1 = xt − ηtG(xt; ξt) (2)

where ηt denotes a step size, and G denotes a stochastic gradient estimate at the current iterate xt

with ξt referring to randomness. It is well known that for smooth and strongly convex functions
GD converges linearly, whereas stochastic gradient descent (SGD) can only converge sublinearly
(Ghadimi & Lan, 2013; Karimi et al., 2016; Bottou et al., 2018).

2.1 SHARPNESS-AWARE MINIMIZATION

Based on recent observations that indicate a correlation between the sharpness of f at a minimum
and its generalization error (Keskar et al., 2017; Jiang et al., 2020), Foret et al. (2021) suggest to turn
(1) into a min-max problem of the following form

min
x

max
∥ϵ∥2≤ρ

f(x+ ϵ) (3)

where ϵ and ρ denote some perturbation added to x and its bound, respectively; thus, the goal is now
to seek x that minimizes f in its entire ϵ-neighborhood, such that the objective landscape becomes flat.
Taking the first-order Talyor approximation of f at x and solving for optimal ϵ⋆ gives the following
update rule for SAM:

xt+1 = xt − η∇f

(
xt + ρ

∇f(xt)

∥∇f(xt)∥2

)
. (4)

There is considerable evidence, albeit still debatable, that supports the effectiveness of SAM and its
variants on improving generalization performance (Chen et al., 2022b; Kaddour et al., 2022; Bahri
et al., 2022). Recently, it is proved that a stochastic version of SAM converges at a sublinear rate as
with SGD (Andriushchenko & Flammarion, 2022).

2.2 OVERPARAMETERIZATION OF NEURAL NETWORKS

Here we introduce two concepts that are important for analyzing overparameterized neural networks.

Firstly, a neural network can be called overparameterized if it has a sufficient number of parameters to
interpolate the whole training data, i.e., it achieves zero training loss. From a stochastic optimization
perspective, this means that a minimizer for the empirical risk f also minimizes the risk for individual
data point fi. We formalize these observations as follows:

Definition 1. (Interpolation) If f(x⋆) = 0 and ∇f(x⋆) = 0 , then fi(x
⋆) = 0 and ∇fi(x

⋆) = 0
for i = 1, . . . , n, where n is the number of training data points.
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Next, a minimizer x⋆ is called linearly stable once arrived at a fixed point if it does not deviate far
from x⋆. We formally define the linear stability as follows:
Definition 2. (Linear stability) A minimizer x⋆ is linearly stable if there exists a constant C such
that E[∥x̃t − x⋆∥2] ≤ C∥x̃0 − x⋆∥2 for all t > 0 under x̃t+1 = x̃t −∇G(x⋆)(x̃t − x⋆).

Several work have been put forward in the literature to analyze convergence properties of SGD under
different overparameterized regimes, including most notably Ma et al. (2018); Bassily et al. (2018),
which have proved that SGD can converge much faster at a linear rate. Also, it has been shown that
SGD can converge to flatter minima than GD under a linear stability analysis (Wu et al., 2022).

3 CONVERGENCE ANALYSIS OF SAM UNDER OVERPARAMETERIZATION

In this section, we show that a stochastic SAM converges linearly for an overparameterized model.
We first provide a formal definition of relevant assumptions:
Definition 3. (Smoothness) f is β-smooth if there exists β > 0 s.t. ∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥
for all x, y ∈ Rd.
Definition 4. (Polyak-Lojasiewicz) f is α-PL if there exists α > 0 s.t. ∥∇f(x)∥2 ≥ α(f(x)−f(x⋆))
for all x ∈ Rd.

The smoothness assumption is standard in optimization literature and any neural network with smooth
activation and loss function satisfies this. Also, the Polyak-Lojasiewicz (PL) condition is satisfied
when the model is overparameterized (Belkin, 2021; Liu et al., 2022).

Next, we provide the following lemmas that are integral to proving the main theorem.
Lemma 5. Suppose that fi is β-smooth. Then

⟨∇fi(x+ ρ∇fi(x)),∇f(x)⟩ ≥ ⟨∇fi(x),∇f(x)⟩ − βρ

2
∥∇fi(x)∥2 −

βρ

2
∥∇f(x)∥2.

Lemma 6. Suppose that fi is β-smooth. Then

∥∇fi(xt + ρ∇fi(xt))∥2 ≤ (βρ+ 1)2∥∇fi(xt)∥2.

These two lemmas essentially show that the stochastic SAM gradient, i.e., ∇fi(x+ ρ∇fi(x)), aligns
well with and scales to the standard stochastic gradient, i.e., how similar SAM is to SGD. In fact,
these results become tight as β and ρ decrease, which makes SAM reduce to SGD and matches our
intuition. With these lemmas, we are ready to give the convergence result in the following theorem.
Theorem 7. Suppose that fi is β-smooth, f is λ-smooth and α-PL, and interpolation holds. For any

ρ ≤ 1
(β/α+1/2)β , a stochastic SAM that runs for t iterations with step size η⋆

def
= α−(β+α/2)βρ

2λβ(βρ+1)2 gives
the following convergence guarantee:

E
xt

[f(xt)] ≤
(
1− α− (β + α/2)βρ

2
η⋆
)t

f(x0).

This result shows that a stochastic SAM converges at a linear rate under overparameterization. We
provide the full proof for this theorem in Appendix D. We leave several remarks:

• When the perturbation bound is set to be zero, i.e., ρ = 0, SAM reduces to SGD, and we obtain the
well-known convergence rate for SGD in interpolated regime from Bassily et al. (2018).

• We provide in the full proof a convergence result for the more general case of a mini-batch SAM,
from which a stochastic SAM is derived simply as a special case with the batch size of 1.

• The proof does not require the bounded gradient assumption, since the interpolation provides
necessary guarantees. This suggests that overparameterization can ease the convergence of SAM.

• While the convergence of SAM has been studied in the literature under different settings, no previous
work has developed a linear convergence rate of a stochastic SAM in an overparameterized regime.

To corroborate our result, we conduct experiments on three different empirical risk minimization
tasks, i.e., matrix factorization, MNIST classification, and CIFAR10 classification, and measure how
training proceeds under varying parameterizations. The results are reported in Figure 1.
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Figure 1: Empirical evaluation of convergence properties for SAM. When model is overparameterized,
SAM converges much faster and closely to a linear rate. The convergence and training losses are
consistent over several seeds, and by extension, consistent over minimizers. See Appendix A for the
experiment details.

4 LINEAR STABILITY ANALYSIS OF SAM UNDER OVERPARAMETERIZATION

It has been observed in Woodworth et al. (2020); Xie et al. (2021) that SGD converges to certain types
of minima among many others in an overparameterized regime. This raises the following question:
which minima does SAM select and how do they differ from the minima found by SGD? We address
this question from the perspective of linear stability (Wu et al., 2018; 2022) in this section.

We first define a linearized stochastic SAM, which is derived from applying first-order Taylor
approximation on a stochastic SAM update given as follows:

Definition 8. (Linearized stochastic SAM) We define a linearized stochastic SAM as

x̃t+1 = x̃t − ηHξt(x̃t+1/2 − x⋆), (5)

where x̃t+1/2 = x̃t + ρHξt(x̃t − x⋆) is the linearized ascent step and Hξt is the Hessian estimation
at step t.

This actually corresponds to using SAM for the quadratic approximation of f near x⋆, and we use
this fact in the experiment setup. With this definition, we provide the following theorem for a linearly
stable minima for a stochastic SAM.

Theorem 9. Let us assume x⋆ = 0 without loss of generality. If the following condition holds, the
global minimum x⋆ is linearly stable for an unnormalized stochastic SAM.

λmax
(
(I − ηH − ηρH2)2

+η(η − 2ρ)(M2 −H2) + 2η2ρ(M3 −H3) + η2ρ2(M4 −H4)
)
≤ 1

(6)

where H = 1
n

∑n
i=1 Hi and Mk = 1

n

∑n
i=1 H

k
i are the average Hessian and the k-th moment of the

Hessian at x⋆.

The detailed proof of the theorem is provided in Appendix E.

The above theorem tells us that the minima found by SAM will have an upper bound on the maximum
eigenvalue of the Hessian related terms. To provide a more intuitive version of the theorem, we
develop a necessary condition of (6). We obtain this by bounding each term in (6) to satisfy the
stability condition:

0 ≤ a(1 + ρa) ≤ 2

η
, 0 ≤ s22 ≤ 1

η(η − 2ρ)
, 0 ≤ s33 ≤ 1

2η2ρ
, 0 ≤ s44 ≤ 1

η2ρ2
, (7)

where a = λmax(H), sk = λmax((Mk −Hk)1/k) are the sharpness and the non-uniformity of the
Hessian measured with the k-th moment, respectively.
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Figure 2: (a, b) Loss landscape along the direction of dominant eigenvectors and the corresponding
sharpness a = λmax(H) between SAM and SGD. SAM converges to flatter minima with lower
sharpness. (c) Non-uniformity of Hessian (s2) between SAM and SGD. SAM indeed converges to
minima with a smaller value of s2.

The condition on a indicates that SAM selects minima with bounded sharpness, in which the sharpness
decreases as ρ increases. Comparing with the necessary condition for SGD in Wu et al. (2018), i.e.,
0 ≤ a ≤ 2/η, this result indicates that SAM selects flatter minima than SGD in the overparameterized
regime. Next, the conditions on s2, s3, s4 upper-bound the non-uniformity of Hessian at the minima
found by SAM. We find that SAM puts additional constraints on s3 and s4 whereas SGD only upper
bounds s2, which may result in more uniform Hessian of the minima found by SAM compared to the
case of SGD. We also remark that a larger ρ makes the bounds on s3 and s4 smaller, which may lead
to a more uniform Hessian spectrum.

To corroborate our result, we conduct experiments to evaluate empirical sharpness and non-uniformity
of Hessian. Specifically, we set up an overparameterized MLP network for MNIST with squared loss,
so that the local quadratic approximation becomes precise. We use 1, 000 random samples to calculate
the non-uniformity, and all models are trained to reach near zero loss. The results are reported in
Figure 2. We observe that SAM converges to flatter minima with lower sharpness compared to SGD.
Also, the minima of SAM have a more uniformly distributed Hessian spectrum, which continues to
decrease as ρ increases. All these results align quite well with the necessary conditions (7).

5 EMPIRICAL EVALUATIONS OF SAM UNDER OVERPARAMETERIZATION

In this section, we evaluate the effect of overparameterization on SAM for various workloads of
classification tasks, and empirically verify that the improvement in generalization performance by
SAM over SGD consistently increases as with an increasing degree of overparameterization.

5.1 EXPERIMENT SETUP

We experiment with four different workloads: 3-layer MLP for MNIST, ResNet18 and Vision
Transformers (ViTs) for CIFAR10, and ResNet50 for ImageNet. We scale the number of neurons,
convolutional filters, or the dimension of hidden states to overparameterize MLP, ResNet, and ViTs
respectively. We report results of the average over three random seeds and perform a hyperparameter
search to select the optimal perturbation bound ρ⋆ (see Appendix A for the full details).

5.2 RESULTS

We first evaluate the effect of overparameterization on the generalization improvement of SAM, i.e.,
the gap of validation accuracy between SAM and SGD. Interestingly, we find that the generalization
benefit of SAM increases with an increasing number of parameters across all settings; in other words,
SAM outperforms SGD with a larger margin in overparameterized regimes as seen in Figure 3.
Specifically for Cifar-10 with ResNet18, the accuracy gap between SAM and SGD increases from
around 0.3% for networks with 45 thousand parameters to 1.0% for those with more than 11 million
parameters (see Section 5.2). We additionally observe that for this case the region with increased
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Figure 3: Effect of overparameterization on the generalization benefit of SAM for different settings.
The top row represents the difference in validation accuracy between SAM and SGD while the
middle and bottom rows represent the corresponding accuracy and loss values. The gap of validation
accuracy between SAM and SGD tends to increase as with increasing number of parameters.
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(b) Cifar-10 / ResNet18 (w/o weight decay)

Figure 4: Effect of overparameterization on SAM for the ViT (a) and ResNet without weight decay
(b) for Cifar-10. For each setting, we present the difference in validation accuracy, the corresponding
accuracy values, and the loss values. The generalization benefit of SAM does not always increase
with an increasing number of parameters in these cases where the networks can be easily overfitted
from overparameterization.

generalization benefit of SAM has approximately zero training loss (see Figure 3b). We remark
that the increased benefit of SAM is not attributed to linearization; it is due to the increased number
of parameters as we discuss in more detail in Appendix C. Overall, the increased generalization
performance of SAM with more parameters renders a promising avenue since modern neural network
models are often heavily overparameterized (Zhang et al., 2022; Dehghani et al., 2023).

While the generalization benefit of SAM tends to increase as with more parameters for the previous
cases, we observe it is not always the case for vision transformers. Specifically, the gap between
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Figure 5: Optimal perturbation bound ρ⋆ for three workloads with varying number of parameters
found by a hyperparameter search. ρ⋆ tends to increase as with increasing number of parameters.
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Figure 6: Validation accuracy versus ρ for ResNet18 of different sizes trained on Cifar-10. All trends
are rather continuous, validating the direct influence of ρ on validation accuracy.

SAM and SGD gets smaller after exceeding 209k parameters (see Figure 4a). We suspect that
this is because vision transformers are prone to overfitting small datasets without being pretrained
on a massive dataset (Lee et al., 2021; Chen et al., 2022a), and thus, overparameterizing models
without pretraining as in our setting may decrease the overall performance. Indeed, we find that the
validation accuracy starts to decrease for both SAM and SGD after exceeding 3.2m parameters as
seen in Figure 4a. Similar results of the non-increased generalization benefit of SAM with more
parameters are also observed on ResNets without weight decay where the models can easily overfit,
and validation accuracy drops after 11.2m parameters (see Figure 4b).

Moreover, we present the results of a hyperparameter search for optimal perturbation bound ρ⋆ in
Figure 5. It is observed that ρ⋆ tends to increase as the model becomes more overparameterized; on
Cifar-10 with ResNet18, for example, the smallest model has ρ⋆ = 0.01 while the largest three have
ρ⋆ = 0.2. This result is quite intuitive in the following sense: the scale of perturbation ϵ controlled
by ρ needs to increase relatively proportionally with respect to the increase in model dimensionality,
so as to preserve a similar level of perturbation effect; an extreme case is when the model grows
infinitely large, ρ should grow together, otherwise no perturbation can be made, i.e., ∥ϵ∥ → ∞ as
d → ∞. We also plot the generalization performance corresponding to the search result in Figure 6,
in which we find that the impact of different ρ is directly reflected on validation performance as a
continuous trend.

6 SPARSE OVERPARAMETERIZATION FOR SAM

So far, we have observed how various aspects of SAM can be enhanced with overparameterization.
While this result holds promise for the use of SAM given the recent trend of model scaling (Zhang
et al., 2022; Dehghani et al., 2023), overparameterization can impose additional computational and
memory burden during training and inference. In this section, we attempt to alleviate this problem via
sparsification, a model compression technique that is widely used among others (Hoefler et al., 2021).

Specifically, we introduce a certain level of sparsity to an overparameterized model, such that the
number of parameters matches to the original model; here, we try two sparsification methods that do
not require pretraining, Random and SNIP (Lee et al., 2019). Then, we train several models of varying
sparsity levels from scratch using SGD and SAM and compare their generalization performances.
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Figure 7: Effect of sparsification on the generalization benefit of SAM (on Cifar-10 and ResNet18).
The improvement tends to increase in large sparse models compared to their small dense counterparts.
See the Appendix B for more results.
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Figure 8: Effect of sparsification on ρ⋆ (on Cifar-10 and ResNet18). The sparsity pattern appears to
be another factor to determine ρ⋆ alongside the parameter count. See Appendix B for more results.

As a result, we first observe that the generalization improvement of SAM from SGD tends to increase
as the model becomes more sparsely overparameterized (see Figure 7). For example, with random
pruning, the accuracy gap between SAM and SGD is around 0.4% in small dense models, which
increases to around 0.9% in the overparameterized model at the extreme sparsity level of 94%; the
trend seems more evident with SNIP which preserves the trainability of sparse models better than
the naive random sparsity. While the fact that a large spare model outperforms the small dense
counterpart has been observed before (Kalchbrenner et al., 2018; Lee et al., 2020), our result further
suggests that one can consider taking sparsification more actively when using SAM.

Meanwhile, we find that ρ⋆ is sometimes different between small dense and large sparse models
despite having a similar number of parameters; for the ResNet of 45k parameters on Cifar-10, ρ⋆
changes over different sparsity levels and sparsification methods, but this does not generalize to the
model of 701k parameters (see Figure 8). This indicates that it is not just the parameter count that
affects the behavior of SAM, but some other factors such as the pattern of parameterization.

7 RELATED WORK

Overparameterization advances the state of art in modern deep learning (Kaplan et al., 2020; Dehghani
et al., 2023), benefits both optimization (Kawaguchi, 2016; Ma et al., 2018; Sagun et al., 2018) and
generalization (Neyshabur et al., 2017; Du & Lee, 2018), and spurs many others toward understanding
its fundamental nature. Belkin (2021); Liu et al. (2022) argue that overparameterized models possess
Polyak-Lojasiewicz (PL) loss function (Lojasiewicz, 1963; Polyak, 1964). Ma et al. (2018); Bassily
et al. (2018); Allen-Zhu et al. (2019) shows that it improves convergence rate from sublinear rate
(Ghadimi & Lan, 2013; Karimi et al., 2016; Bottou et al., 2018) to linear rate by alleviating randomness
around minima. For generalization, researchers point to implicit bias as the primary factor (Neyshabur,
2017; Zhang et al., 2021; Vardi, 2023). Wu et al. (2018; 2022) shows that SGD arrives at flat minima
in this regime using linear stability. Cohen et al. (2021); Arora et al. (2022) draw similar conclusions
for gradient descent with large learning rates, namely as edge of stability.
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Many studies report a strong correlation between the flatness of minima and the generalization
(Hochreiter & Schmidhuber, 1997; Keskar et al., 2017; Dziugaite & Roy, 2017; Neyshabur et al.,
2017; Wei & Ma, 2019; Jiang et al., 2020), although there is a considerable debate (Dinh et al., 2017;
Li et al., 2018; Andriushchenko et al., 2023). Inspired by this, Foret et al. (2021) proposes SAM to
explicitly regularize sharpness and effectively improves generalization (Chen et al., 2022b; Kaddour
et al., 2022; Bahri et al., 2022). Subsequently many work analyze various aspects of SAM and its
variants such as convergence rate (Andriushchenko & Flammarion, 2022; Zhuang et al., 2022; Mi
et al., 2022; Si & Yun, 2023), and implicit bias (Andriushchenko & Flammarion, 2022; Agarwala &
Dauphin, 2023; Compagnoni et al., 2023; Wen et al., 2023).

8 DISCUSSION

In Section 3 we develop a linear convergence rate for a stochastic unnormalized version of SAM. This
is partly to simplify analysis and based on the empirical findings in previous work that suggest no
practical difference from the normalized version (Andriushchenko & Flammarion, 2022; Agarwala &
Dauphin, 2023). Some recent work, however, reports that a normalization step can make a difference
in theory (Si & Yun, 2023; Compagnoni et al., 2023). We also believe that it would be valuable to
analyze various other sharpness minimization schemes (Izmailov et al., 2018; Orvieto et al., 2022).

In Section 4 we show that the minima attained using SAM are flatter and more stable compared to
those of SGD. This result must not be confused with the generalization capability of SAM, and in
fact, there is still a debate over whether sharpness can be considered as a generalization measure
(Andriushchenko et al., 2023). While it may not suffice to uphold the benefit of SAM with respect to
generalization, we are somewhat inclined to draw a positive link based on our consistent empirical
findings throughout this work.

In Section 5 we present that the improvement by SAM over SGD increases as a model becomes
more overparameterized. Considering the recent scaling trend (Zhang et al., 2022; Scao et al., 2022;
Dehghani et al., 2023), it would be interesting to see whether our findings generalize to extremely
overparameterized regimes. We note however that scaling to such degrees, while preserving the
model architecture, is nontrivial due to limited computational resources. In addition, recent work
reports that SAM can also be useful for finetuning pretrained models (Bahri et al., 2022; Chen et al.,
2022b). We plan to extend our work to such scenarios.

In Section 6 we explore sparsification as a potential remedy for the overhead of overparameterization.
While our results render some promises, there is a lot of room for improvement for it to be practical.
To this end, we believe that some advanced compression techniques such as structured sparsity (Zhou
et al., 2021) or even quantization (Gholami et al., 2022) can help realize the benefit of SAM in
overparameterized settings.

9 CONCLUSION

In this work, we have analyzed the effects of overparameterization on several theoretical and empirical
aspects of SAM including convergence properties, linear stability, and generalization improvement.
We have also explored sparsification as a tool to compress overparameterized models and make
them more practical. With exceptions, all our results indicate that SAM can indeed benefit from
overparameterization, which is verified extensively through computational experiments. Nonetheless,
there remain several limitations in our analysis, and we are planning to address them in future work.
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A EXPERIMENTAL DETAILS

For all the experiments, we run the experiments with the same configurations over 3 differ-
ent random seeds. For the experiments with SAM, we search the perturbation size ρ over
[0.01, 0.02, 0.05, 0.1, 0.2].

Matrix factorization For this experiment, we solve the following non-convex regression problem:
minW1,W2 Ex∼N (0,I)∥W2W1x−Ax∥2 which satisfies the PL-condition (Loizou et al., 2021). We
choose A ∈ R10×6 and generate 1000 training samples, which are used for training a rank k linear
network with two matrix factors W1 ∈ Rk×6 and W2 ∈ R10×k. Here, interpolation is satisfied when
rank k = 10. We train two linear networks k ∈ {4, 10} for 100 epochs with a constant learning rate
of 0.0005 and compare the convergence speed.

MNIST / 3-layer MLP We train the models for 100 epochs with batch size 128. Learning rate
is set to 0.1 initially and decays by 0.1 after 50% and 75% of the total epochs. We use momentum
of 0.9 and weight decay of 0.0001. To investigate the effect of overparameterization on SAM, we
scale the width of the hidden layers from 0.25× to 10× compared to LeNet-300-100 whil the relative
proportions of the widths are preserved to 3 : 1. For the experiments of Figure 2, we use the hidden
layer size of [3000, 1000] and train the networks with constant learning rate of 0.1 without weight
decay or momentum. We also use squared loss for this setup.

Cifar-10 / ResNet18 We follow the similar procedure as in Andriushchenko & Flammarion (2022).
We train the models for 200 epochs with batch size 128. Learning rate is set to 0.1 initially and
decays by 0.1 after 50% and 75% of the total epochs. We use momentum of 0.9 and weight decay
of 0.0005 unless stated otherwise. We use basic data augmentation of random horizontal flip and
random cropping. To investigate the effect of overparameterization on SAM, we use the model width
factor, i.e., the number of convolutional filters in the first block, of [4, 8, 16, 32, 64, 128, 256].

Cifar-10 / ViT We use the similar setup as in Cifar-10 / ResNet18 case with a slight difference. We
use cosine learning rate scheduling and the weight decay of 0.0001. We also fix the number of layers
as 6 and use the patch size of 4× 4, resulting in 64 patches for Cifar-10. To investigate the effect of
overparameterization on SAM, we use the hidden dimension of [32, 64, 128, 256, 512, 1024]. We fix
the dimension of MLP to be 2× of the hidden dimension and number of attention heads to be 1/32×
of the hidden dimension.

ImageNet / ResNet50 We follow the similar procedure as in Du et al. (2022). Learning rate is
set to 0.1 initially and the cosine scheduling is used with linear warmup of 5000 steps. We train the
models for 90 epochs with batch size 512 with basic data augmentation. We use momentum of 0.9
and weight decay of 0.0001. To investigate the effect of overparameterization on SAM, we use the
model width factor, i.e., the number of convolutional filters in the first block, of [16, 32, 48, 64, 80].
We also experiment with ρ = 0.0005 for the models having 16 or 32 convolutional filters in the first
block.
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B ADDITIONAL EXPERIMENTAL RESULTS

We plot the effect of overparameterization on the training and test loss of SAM and SGD in Figure 9,
where we find that the difference between the test loss of SAM and SGD gets larger with increasing
parameters. We also present the loss plots for Figure 4 in Figure 10. We plot the test accuracy of
SAM over different values of ρ for different setups in Figures 11 to 13. Additional results on the
effect of sparsification on generalization benefit of SAM is plotted in Figures 14 and 15 and the effect
on ρ⋆ in Figure 16 respectively.
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Figure 9: Effect of overparameterization on training and test loss of SAM and SGD.
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Figure 10: Effect of overparameterization on training and test loss of SAM and SGD for the ViT (a)
and ResNet without weight decay (b).
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Figure 11: Test accuracy of SAM over different values of ρ (for MNIST and 3-layer MLP).
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Figure 12: Test accuracy of SAM over different values of ρ (for Cifar-10 and ResNet18).
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Figure 13: Test accuracy of SAM over different values of ρ (for ImageNet and ResNet50).
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Figure 14: Effect of sparsification on generalization benefit of SAM on Cifar-10 and ResNet18 with
45k parameters.
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Figure 15: Effect of sparsification on generalization benefit of SAM on MNIST and 3-layer MLP
with 61k parameters.
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Figure 16: Effect of sparsification on ρ⋆. ρ⋆ can be sometimes different across different sparsity
patterns despite having a similar number of parameters. We here plot the results with MNIST and
3-layer MLP.
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(b) α vs. stability of activations

Figure 17: Effect of linearization on the performance of SGD and SAM.

It has been observed in the literature that highly overparameterized models can behave like linearized
networks (Jacot et al., 2018) while the phenomenon not being specific to the overparameterized
models (Chizat et al., 2019). One can thus wonder if the increased effectiveness of SAM observed in
Section 5 directly comes from the overparameterization itself or is rather related to the linearization
of the networks. In this section, we test how SAM works in the linearized regimes while fixing the
number of parameters to be constant.

We follow the experiment setup of Chizat et al. (2019). Specifically, we train VGG-11 on the Cifar-10
dataset with the same hyperparameters including learning rate schedule, number of epochs, and batch
size. We train the models with the α-scaled squared loss L(x, y) = ∥f(x) − y/α∥2 and use the
centered model whose initial output is set to 0. Here, a large value of α leads to a higher degree of
linearization of the models. We report the stability of activations (see Appendix C.2 of Chizat et al.
(2019) for how to compute), whose values close to 100% imply an effective linearization.

We first observe that SAM underperforms SGD in the linearized regimes; while SGD and SAM with
ρ = 0.001 both achieve effective linearization at α = 1000, SAM underperforms SGD by more than
10% in this case (see blue and orange curves in Figure 17). This suggests that the linearization does
not improve the effect of SAM and implies that overparameterization itself is likely to be the cause of
the improved performance of SAM.

We additionally observe the interesting point where SAM with a high value of ρ does not achieve
effective linearization by naively scaling α (see green and red curves in Figure 17b). We leave
the thorough investigation of achieving effective linearization for SAM or analyzing the related
phenomenon as future work.
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D PROOF OF THEOREM 7

In this section, we show that a stochastic SAM converges linearly under an overparameterized
regime. To put into perspective, this is the rate of convergence of gradient descent for a family of
functions satisfying the PL-condition and smoothness assumptions (Karimi et al., 2016). We prove
the convergence for an unnormalized mini-batch SAM given as

xt+1 = xt − ηgB
t (xt + ρgB

t (xt)),

where gB
t (x) = 1

B

∑
i∈IB

t
∇fi(x) and IBt ⊆ {1, ..., n} is a set of indices for data points in the

mini-batch of size B sampled at step t. This is a more general stochastic variant of SAM where a
stochastic SAM in Section 3 is a particular case of a mini-batch SAM with mini-batch size B = 1.

We first make the following assumptions:

(A1) (β-smothness of fi). There exists β > 0 s.t. ∥∇fi(x)−∇fi(y)∥ ≤ β∥x−y∥ for all x, y ∈ Rd,

(A2) (λ-smothness of f ). There exists λ > 0 such that ∥∇f(x) − ∇f(y)∥ ≤ λ∥x − y∥ for all
x, y ∈ Rd,

(A3) (α-PLness of f ). There exists α > 0 s.t. ∥∇f(x)∥2 ≥ α(f(x)− f(x⋆)) for all w, v ∈ Rd,

(A4) (Interpolation). If f(x⋆) = 0 and ∇f(x⋆) = 0, then fi(x
⋆) = 0 and ∇fi(x

⋆) = 0 for
i = 1, . . . , n, where n is the number of training data points.

Before we prove the main theorem, we first introduce two lemma important to the proof.

Lemma 10. Suppose that Assumption (A1) holds. Then

⟨∇fi(xt+1/2),∇f(xt)⟩ ≥ ⟨∇fi(xt),∇f(xt)⟩ −
βρ

2
∥∇fi(xt)∥2 −

βρ

2
∥∇f(xt)∥2, (8)

where xt+1/2 = xt + ρ∇fi(xt).

This lemma shows how well a stochastic SAM gradient ∇fi(xt+1/2) aligns with the true gradient
∇f(xt). The two gradients become less aligned as β and ρ grow bigger, i.e. for sharper landscape
and larger perturbation size.

Proof. We first add and subtract ∇fi(xt) on the left side of the inner product

⟨∇fi(xt+1/2),∇f(xt)⟩ = ⟨∇fi(xt+1/2)−∇fi(xt),∇f(xt)⟩︸ ︷︷ ︸
τ1

+⟨∇fi(xt),∇f(xt)⟩. (9)

We here bound the term τ1 so that it becomes an equality when ρ = 0. To achieve this, we start with
the following binomial square, which is trivially lower bounded by 0.

0 ≤ 1

2
∥∇fi(xt+1/2)−∇fi(xt) + βρ∇f(xt)∥2

We then expand the above binomial square so that the term containing τ1 appears.

0 ≤ 1

2
∥∇fi(xt+1/2)−∇fi(xt)∥2 + ⟨∇fi(xt+1/2)−∇fi(xt) , βρ∇f(xt)⟩︸ ︷︷ ︸

βρτ1

+
1

2
∥βρ∇f(xt)∥2

We subtract the term βρτ1 on both sides of the inequality which gives

−⟨∇fi(xt+1/2)−∇fi(xt) , βρ∇f(xt)⟩ ≤
1

2
∥∇fi(xt+1/2)−∇fi(xt)∥2 +

β2ρ2

2
∥∇f(xt)∥2.

Then we upper bound the right-hand side using the Assumption (A1):
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−⟨∇fi(xt+1/2)−∇fi(xt) , βρ∇f(xt)⟩ ≤
β2

2
∥xt+1/2 − x∥2 + β2ρ2

2
∥∇f(xt)∥2

=
β2ρ2

2
∥∇fi(xt)∥2 +

β2ρ2

2
∥∇f(xt)∥2.

We divide both sides with βρ, obtaining:

−⟨∇fi(xt+1/2)−∇fi(xt),∇f(xt)⟩ ≤
βρ

2
∥∇fi(xt)∥2 +

βρ

2
∥∇f(xt)∥2.

Applying this to (9) gives the bound in the lemma statement.

Lemma 11. Suppose that Assumption (A1) holds. Then∥∥∇fi(xt+1/2)
∥∥2 ≤ (βρ+ 1)2∥∇fi(xt)∥2, (10)

where xt+1/2 = xt + ρ∇fi(xt).

This second lemma shows that the norm of a stochastic SAM gradient is bounded by the norm of the
stochastic gradient. Similar to the Lemma 10, as β and ρ grow bigger the norm for a stochastic SAM
gradient can become larger than the norm of the true gradient.

Proof. We use the following binomial squares:

∥∇fi(xt+1/2)∥2

= ∥∇fi(xt+1/2)−∇fi(xt)∥2 + 2⟨∇fi(xt+1/2)−∇fi(xt),∇fi(xt)⟩+ ∥∇fi(xt)∥2.

We bound the right-hand side using Cauchy-Schwarz inequality and Assumption (A1), which gives∥∥∇fi(xt+1/2)
∥∥2

= ∥∇fi(xt+1/2)−∇fi(xt)∥2 + 2⟨∇fi(xt+1/2)−∇fi(xt),∇fi(xt)⟩+ ∥∇fi(xt)∥2

≤
C.S.

∥∇fi(xt+1/2)−∇fi(xt)∥2 + 2∥∇fi(xt+1/2)−∇fi(xt)∥∥∇fi(xt)∥+ ∥∇fi(xt)∥2

≤
(A1)

β2∥xt+1/2 − xt∥2 + 2β∥xt+1/2 − xt∥∥∇fi(xt)∥+ ∥∇fi(xt)∥2

= β2ρ2∥∇fi(xt)∥2 + 2βρ∥∇fi(xt)∥2 + ∥∇fi(xt)∥2

= (βρ+ 1)2∥∇fi(xt)∥2

These two lemmas essentially show how similar a stochastic SAM gradient is to the stochastic
gradient, where the two become more similar as β and ρ decrease, which aligns well with our
intuition. Using Lemma 10 and 11, we provide the convergence result in the following theorem.

Theorem 12. Suppose that Assumptions (A1-4) holds. For any mini-batch size B ∈ N and ρ ≤
1

(β/α+1/2)β , unnormalized mini-batch SAM with step size η⋆B
def
= 1−(κB+1/2)βρ

2λκB(βρ+1)2 gives the following
guarantee at step t:

E
xt

[f(xt)] ≤
(
1− αη⋆B

2

(
1−

(
κB +

1

2

)
βρ

))t

f(x0),

where κB = 1
B

(
B−1
2 + β

α

)
.

This theorem states that mini-batch SAM converges at a linear rate under overparameterization.
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Proof. Proof can be outlined in 3 steps.

step 1. Handle terms containing mini-batch SAM gradient gB
t (xt+ρgB

t (xt)) using bounds
from (A1).

step 2. Take conditional expectation E[ · |xt] and substitute expectation of function of mini-
batch gradient gB

t with terms containing ∥∇f(xt)∥ and E
[
∥∇fi(xt)∥2

∣∣∣ xt

]
.

step 3. Bound the two terms from step 2, one using Assumptions (A2) and (A4) and the
other using Assumption (A3) which results in all the terms to contain f(xt). Then
finally we take total expectations to derive the final runtime bound.

We start from the quadratic upper bound derived from Assumption (A2);

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
λ

2
∥xt+1 − xt∥2.

Applying mini-batch SAM update, we then have

f(xt)− f(xt+1) ≥ η
〈
∇f(xt) , gB

t (xt+1/2)
〉
− η2λ

2

∥∥gB
t (xt+1/2)

∥∥2 ,
where xt+1/2 = xt + ρgB

t (xt).

step 1. We can see that there are two terms that contain a mini-batch SAM gradient gB
t (xt+1/2).

We see that each can be bounded directly using Lemma 10 and 11, which gives

f(xt)− f(xt+1) ≥ η

(
⟨gB

t (xt),∇f(xt)⟩ −
βρ

2
∥gB

t (xt)∥2 −
βρ

2
∥∇f(xt)∥2

)
− η2λ

2
(βρ+ 1)2 ∥gB

t (xt)∥2

= η⟨gB
t (xt),∇f(xt)⟩ −

ηβρ

2
∥∇f(xt)∥2 −

η

2

(
ηλ (βρ+ 1)2 + βρ

)
∥gB

t (xt)∥2.

step 2. Now we apply E[ · |xt] to all the terms.

E
[
f(xt)− f(xt+1)

∣∣ xt

]
= f(xt)− E

[
f(xt+1)

∣∣ xt

]
≥ ηE

[
⟨gB

t (xt),∇f(xt)⟩
∣∣∣ xt

]
− ηβρ

2
E
[
∥∇f(xt)∥2

∣∣ xt

]
− η

2

(
ηλ (βρ+ 1)2 + βρ

)
E
[
∥gB

t (xt)∥2
∣∣∣ xt

]
= η

(
1− βρ

2

)
∥∇f(xt)∥2 −

η

2

(
ηλ (βρ+ 1)2 + βρ

)
E
[
∥gB

t (xt)∥2
∣∣∣ xt

]
.

Here we expand the term E
[
∥gB

t (xt)∥2
∣∣∣ xt

]
by expanding the mini-batched function into individual

function estimators as follows.
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EgB
t

[
∥gB

t (xt)∥2
∣∣∣ xt

]
= EIB

t

〈 1

B

∑
i∈IB

t

∇fi(xt) ,
1

B

∑
j∈IB

t

∇fj(xt)

〉 ∣∣∣∣∣ xt



=
1

B2


∑
i∈IB

t

Efi

[
∥∇fi(xt)∥2

∣∣∣ xt

]
+

∑
i∈IB

t

∑
j∈IB

t
(j ̸=i)

Efi,fj

[
⟨∇fi(xt),∇fj(xt)⟩

∣∣∣ xt

]
=

1

B
E
[
∥∇fi(xt)∥2

∣∣∣ xt

]
+

B − 1

B
∥∇f(xt)∥2 .

(11)

Using (11), we get

f(xt)− E
[
f(xt+1)

∣∣ xt

]
≥ η

(
1− βρ

2

)
∥∇f(xt)∥2

− η

2

(
ηλ (βρ+ 1)2 + βρ

)( 1

B
E
[
∥∇fi(xt)∥2

∣∣∣ xt

]
+

B − 1

B
∥∇f(xt)∥2

)
= η

((
1− βρ

2

)
− B − 1

2B

(
ηλ(βρ+ 1)2 + βρ

))
∥∇f(xt)∥2

− η

2B

(
ηλ(βρ+ 1)2 + βρ

)
E
[
∥∇fi(xt)∥2

∣∣∣ xt

]
. (12)

step 3. In this step, we bound the two terms and take the total expectation to derive the final
runtime bound.

We first derive a bound for E
[
∥∇fi(xt)∥2

∣∣∣ xt

]
. We start from the following bound derived from

Assumption (A1):

∥∇fi(xt)−∇fi(x
⋆)∥2 ≤ 2β(fi(xt)− fi(x

⋆)).

By Assumption (A4), this reduces to

∥∇fi(xt)∥2 ≤ 2βfi(xt).

Applying this to (12) gives

f(xt)− E
[
f(xt+1)

∣∣ xt

]
≥ η

((
1− βρ

2

)
− B − 1

2B

(
ηλ(βρ+ 1)2 + βρ

))
∥∇f(xt)∥2

− ηβ

B

(
ηλ(βρ+ 1)2 + βρ

)
E[fi(xt)|xt]

= η

((
1− βρ

2

)
− B − 1

2B

(
ηλ(βρ+ 1)2 + βρ

))
︸ ︷︷ ︸

τ2

∥∇f(xt)∥2

− ηβ

B

(
ηλ(βρ+ 1)2 + βρ

)
f(xt). (13)

Next, to bound ∥∇f(xt)∥2, we use the following bound derived from applying f(x∗) = 0 to (A3):

∥∇f(x)∥2 ≥ αf(x). (14)
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Assuming τ2 ≥ 0 which we provide a sufficient condition at the end of the proof, we apply (14) to
(13) which gives

f(xt)− E
[
f(xt+1)

∣∣ xt

]
≥ ηα

((
1− βρ

2

)
− B − 1

2B

(
ηλ(βρ+ 1)2 + βρ

))
f(xt)−

ηβ

B

(
ηλ(βρ+ 1)2 + βρ

)
f(xt)

= η

α− α

(
1

B

(B − 1

2
+

β

α

)
︸ ︷︷ ︸

κB

+
1

2

)
βρ− η(βρ+ 1)2

λ

B

(
α
B − 1

2
+ β

)
︸ ︷︷ ︸

λακB

 f(xt)

= ηα

(
1−

(
κB +

1

2

)
βρ− ηλ(βρ+ 1)2κB

)
f(xt).

Hence, we get

E
[
f(xt+1)

∣∣ xt

]
≤

(
1− ηα

(
1−

(
κB +

1

2

)
βρ

)
+ η2αλ(βρ+ 1)2κB

)
f(xt).

Applying total expectation on both sides gives

E[f(xt+1)] ≤
(
1− ηα

(
1−

(
κB +

1

2

)
βρ

)
+ η2αλ(βρ+ 1)2κB

)
E[f(xt)]. (15)

Optimizing the multiplicative term in (15) with respect to η gives η = 1−(κB+1/2)βρ
2λκB(βρ+1)2 , which is η⋆B in

the theorem statement. With assumption of ρ ≤ 1
(β/α+1/2)β so that we have η⋆B ≥ 0, applying this to

(15) gives

E [f(xt+1)] ≤
(
1− αη⋆B

2

(
1−

(
κB +

1

2

)
βρ

))
E [f(xt)] ,

which provides the desired convergence rate.

Last but not least, we calculate the upper bound for ρ to satisfy the assumption τ2 ≥ 0 by substituting
η for η⋆B in τ2, yielding ρ ≤ 2BκB+2β/α

(2B−1)κB+β/α
1
β . Minimizing this upper bound with respect to B gives

ρ ≤ 1
β , which is a looser bound than ρ ≤ 1

(β/α+1/2)β .

E PROOF OF THEOREM 9

Here, we provide the detailed proof of Theorem 9.

Recall the linearized SAM from Equation (5). For simplicity, we denote x̃t as xt, and we assume
without loss of generality that the fixed point x⋆ = 0. Then, the linearized SAM can be written as

xt+1 = xt − ηHξt(xt + ρHξtxt). (16)

Our goal is to derive a bound of the form E∥xt∥2 ≤ C∥x0∥2. We first apply (16) to E
[
∥xt+1∥2 |xt

]
and continue expanding the terms as follows:
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E
[
∥x2

t+1∥ |xt

]
= E∥xt − ηHξt(xt + ρHξtxt)∥2

= x⊤
t E

[(
I − ηHξt − ηρH2

ξt

)2 ∣∣∣xt

]
xt

= x⊤
t E

[
I − 2η(Hξt + ρH2

ξt) + η2
(
Hξt + ρH2

ξt

)2 ∣∣∣xt

]
xt

= x⊤
t E

[
I − 2η(Hξt + ρH2

ξt) + η2
(
H2

ξt + 2ρH3
ξt + ρ2H4

ξt

) ∣∣∣xt

]
xt

= x⊤
t E

[
I − 2ηHξt + η(η − 2ρ)H2

ξt + 2η2ρH3
ξt + η2ρ2H4

ξt

∣∣∣xt

]
xt

= x⊤
t

(
I − 2ηH + η(η − 2ρ)EH2

ξt + 2η2ρEH3
ξt + η2ρ2EH4

ξt

)
xt

= x⊤
t

(
I − 2ηH + η(η − 2ρ)H2 + 2η2ρH3 + η2ρ2H4

+ η(η − 2ρ)(EH2
ξt −H2) + 2η2ρ(EH3

ξt −H3) + η2ρ2(EH4
ξt −H4)

)
xt

= x⊤
t

( (
I − ηH − ηρH2

)2
+ η(η − 2ρ)(EH2

ξt −H2) + 2η2ρ(EH3
ξt −H3) + η2ρ2(EH4

ξt −H4)
)
xt

Since x⊤Ax ≤ λmax(A)∥x∥2 always holds for any x and any matrix A with the maximum eigenvalue
λmax(A), applying this inequality and taking the total expectation gives the following;

E
[
∥xt+1∥2

]
≤ λmax

((
I − ηH − ηρH2

)2
+ η(η − 2ρ)(EH2

ξ −H2)

+ 2η2ρ(EH3
ξ −H3) + η2ρ2(EH4

ξ −H4)

)
E
[
∥xt∥2

]
.

Recursively applying this bound gives

E∥xt∥2 ≤ λmax

((
I − ηH − ηρH2

)2
+ η(η − 2ρ)(EH2

ξ −H2)

+ 2η2ρ(EH3
ξ −H3) + η2ρ2(EH4

ξ −H4)

)t

∥x0∥2.

Here, we can see that x⋆ is linearly stable if

λmax

(
(I − ηH − ηρH2)2

+ η(η − 2ρ)(EH2
ξ −H2) + 2η2ρ(EH3

ξ −H3) + η2ρ2(EH4
ξ −H4)

)
≤ 1.
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