
Under review as submission to TMLR

On Lower Bounds for the Number of Queries in Clustering
Algorithms

Anonymous authors
Paper under double-blind review

Abstract

We consider clustering with the help of an oracle when all queries are made at once and
the clusters are determined after all the responses are received. We determine the minimum
number of queries required to completely cluster all items. We also consider active clustering
with the help of an oracle when a number of queries are made in the first round and the
remaining queries are made in the second round based upon the responses to the queries
from the first round. We determine a lower bound for the number of queries required to
completely cluster all items based upon an analysis of the number of queries made in the
first round. Finally, for the two round case, we give results which characterize the problem
of clustering in the second round based upon the number of queries made in the first round.

1 Introduction

We consider the process of classification of a set of items into clusters by an oracle. This classification is
useful, for example, when sets of images such as images of dogs are to be grouped into sets of similar images,
such as breeds of dogs. The algorithms we consider identify the clusters by making queries about pairs of
items that provide information as to whether the two items are in the same cluster or not. In the real world,
this type of classification is presently performed by platforms such as Amazon Mechanical Turk, Zooinverse,
Planet Hunters, etc. Korlakai Vinayak & Hassibi (2016); Yi et al. (2012). A clustering algorithm may be
designed for sending one query at a time and making the next query based upon responses to the queries
already sent out. That method of making queries is called active querying. Active querying may not be
a time efficient way of determining the clusters because of the time involved in waiting for the answers to
come. If a large number of queries are required, it may not be practical to make queries in that manner.

Another method of making queries is called passive querying wherein all the queries are sent out at once
and the clustering is determined when the answers are returned. This approach is not as computationally
efficient as active querying because of the potential redundancy of queries involved when the queries are
made at once and nothing is known about the clusters, especially when there are many items to be classified.

Herein, we examine a third approach which combines elements of active and passive querying which involves
sending out a number of queries at the same time and deciding the next step based upon an analysis of all
the responses received to those queries. We call the process of sending out the queries and analyzing the
responses a “round.” We call the set of queries in a round a “batch.” See Guo & Schuurmans (2007); Gissin
& Shalev-Shwartz (2019) for more on querying in batches.

We determine the minimum number of queries required to complete clustering in one round and two round
algorithms and provide some additional analysis of the two round case based upon the number of queries
made in the first round.

2 Problem Setup

Formally, the problem we consider is the following. Consider a set S of n unique items. Without loss of
generality, we can identify the items with the integers 1, . . . , n. The set is partitioned into k disjoint subsets,

1

Under review as submission to TMLR

which we call clusters C1, . . . , Ck. Without loss of generality, we can assume that the sizes of the clusters
satisfy |C1| ≤ |C2| ≤ . . . ≤ |Ck|. We define li = |Ci| , i = 1, . . . , k.

The objective of an active clustering algorithm is to identify the clusters by making queries about pairs of
items that provide information as to whether the two items are in the same cluster or not. That is, we
study an active clustering mechanism with pairwise similarity queries. We represent a query by an ordered
pair of integers corresponding to the natural numbers assigned to the items. If a query involves items a
and b, then the query is denoted by (a, b) , a < b, a ∈ 1, . . . , n, j ∈ 1, . . . , n. The space of all queries is
A =

{
x = (a, b) : a ∈ 1, . . . , n, b ∈ 1, . . . , n, a < b

}
. The set A consists of

(
n
2
)

= n×(n−1)
2 elements.

For query x = (a, b) ∈ A, we can define a function f that is equal to 1 if the items a and b belong to the
same cluster and 0 if a and b belong to different clusters. The algorithm places the items in the same cluster
if f (x) takes the value 1. One can think of f as an indicator function that indicates whether two elements
of a query are in the same cluster.

f (x) =
{

1, if a ∈ Ci, b ∈ Ci for some i = 1, . . . , k
0, if a ∈ Ci, b ∈ Cj , for some i 6= j.

(1)

We assume that the responses to the queries are not subject to error, which is sometimes expressed by
saying that the workers are perfect. The algorithms that we consider in this paper produce the clusters by
processing the queries and grouping items into “preclusters" based upon the responses to the queries that are
available until all clusters have been determined. A precluster is a group of items that has been determined
to belong to the same cluster at some stage of the process of determining the clusters. It is important to
note that the preclusters may not be complete clusters. For query x = (a, b), if a and b are found to be in
the same cluster, then we place the two items in the same precluster. An item that has not been found to
be in the same precluster as any other item is a precluster of size 1.

A key observation we use in our proofs is that the number of preclusters decreases by at most 1 with each
query that is processed. We envision the process of determining the clusters as starting with a collection of n
one-element preclusters, corresponding to the n items of the set. Every time a response to a query indicates
that the elements of the query that are in different preclusters are in the same cluster, i.e., f (x) = 1, a
new precluster is created by combining the two preclusters containing the elements of the query into one
precluster. For example, if we start with n preclusters, the first time we come across a query x for which
f (x) = 1, we combine the two one-element clusters that contain the elements of the query into a new
precluster, so we now have n− 1 preclusters.

An active querying algorithm may be designed for sending one query at a time and making the next query
based upon responses to the queries already sent out. That method of making queries is called active
querying. Active querying may not be an efficient way of determining the clusters because of the time
involved in waiting for the answers to come. If a large number of queries is required, it may not be practical
to make queries in that manner. To remedy the lack of time effectiveness of active querying, another approach
is to send out a number of queries at the same time and decide the next step based upon an analysis of all
the responses received to those queries. We call the process of sending out the queries and analyzing the
responses a “round". We call the set of queries in a round a “batch." A one-round algorithm is an algorithm
designed to complete the determination of the clusters in one round. That is, we need to send out enough
queries so that the responses will be sufficient to determine all the clusters. In this paper, we consider the
question of how many queries are required by algorithms with varying numbers of rounds.

3 Related Work

The work of Mazumdar & Saha (2017b) provides information-theoretic lower and upper bounds on the
number of queries needed to cluster a set of n iterms into k clusters. They note that O(nk) is an upper
bound on the query complexity and that O(nk) is also a lower bound for randomized algorithms (Davidson
et al., 2015). They obtain asymptotic upper and lower bounds on the number of queries required to recover
the clusters when side information is provided in the form of certain similarity values between each pair

2

Under review as submission to TMLR

of elements. The work of Mazumdar & Saha (2017a) provides information-theoretic lower bounds for the
number of queries for clustering with noisy queries, which can be made interactively (adaptive queries) or
up-front (non-adaptive). Of particular interest in the context of the present work is their result for the case
when the number of clusters, k, is k≥ 3, stating that if the minimum cluster size is r, then any deterministic
algorithm must make Ω

(
n2

r

)
queries even when query answers are not subject to error, to recover the

clusters exactly. (Mazumdar & Saha, 2017a) mentions that this shows that adaptive algorithms are much
more powerful than their nonadaptive counterparts, but that comment does not take into account the fact
that adaptive algorithms in practice may require much more time to run, which could make them impractical.
The previous asymptotic result is consistent with Theorem 1 of the present work but our result provides a
tighter lower bound and is not asymptotic.

We remark that a framework for active clustering by an oracle has been considered since at least 2004 (Basu
et al., 2004), when a method for selecting queries was provided with all the queries made at once. The
numbers of queries required to completely cluster the items were not provided. The authors of Balcan &
Blum (2008) analyze an adaptive querying setting where the clustering is not unique and needs only satisfy
several relations with respect to the data. Additionally, in each iteration, the worker is presented with a set
of queries and the worker is given a proposed clustering wherein the worker selects a cluster in the proposed
clustering to split into two clusters or selects two clusters to merge. Information theoretic bounds on the
number of queries are provided. The authors of Awasthi et al. (2017) extend the work of Balcan & Blum
(2008) with a similar problem formulation which examines the scenario of clustering iteratively beginning
with any initial clustering and split/merge requests of the clusters at each iteration. They note that this
form of clustering is easy for untrained workers since the split/merge requests only require a high-level
understanding of the clusters. The work of Korlakai Vinayak & Hassibi (2016) demonstrates lower bounds
for adaptive querying algorithms. The work considers the setting of a unique underlying clustering and
uses Hoeffding’s inequality and a version of the law of iterative logarithm to get bounds on probabilities
of successfully recovering clusters. Another line of work that is similar to active clustering is explored by
Vempaty et al. (2014), which looks at M -ary classification wherein queries are made to classify an object
into one of M fine-grained categories. These categories are used to determine which of the clusters an object
belongs in.

Other works also analyze similar settings. The work of Ashtiani et al. (2016) proposes a framework for the
popular k-means clustering where the algorithm utilizes active clustering to speed up k-means clustering
where a dissimilarity function of the items is assumed and can be used to perform k-means clustering. In
their work, the results of a set of answers to pairwise similarity queries are used in conjunction with a k-means
clustering algorithm to cluster the items in polynomial time. They provide bounds on the number of queries
that are required to achieve polynomial time k-means clustering. The work of Ailon et al. (2017) provides
similar results to Ashtiani et al. (2016) for approximate clustering without the additional assumptions upon
the structure of the clusters when responses to a number of queries are given.The work of Chien et al. (2018)
develops approximate center-based algorithms with size information provided by same-cluster queries, but
with constraints upon the size of the smallest cluster and they introduced outliers into the analysis using
different methods of proof. In their work the query complexity is reduced both in the case of noisy and
noiseless responses. Their problem setting is related to the work in Ashtiani et al. (2016) through the
use of query models for improving clustering and the lower bound on the number of queries is provided
asymptotically as a function of the number of queries.

4 Results

Observation 1. Consider a one-round algorithm. We first observe that in general, if nothing is known
about the number of clusters or their sizes, then in order to ensure that all the clusters are determined,

(
n
2
)

queries are needed.

For example, suppose that there are clusters, that is, each item is in its own cluster. In that case, if a single
query x = (a1, a2) is omitted, no algorithm would be able to detect that items a1 and a2 are in the same
cluster without additional information about the number and sizes of clusters. If at least two items (a1 and

3

Under review as submission to TMLR

a2) are in single-item clusters, then if the query x = (a1, a2) is omitted, there would be no way to determine
whether i1 and i2 are in the same cluster.
Observation 2. We obtain a different lower bound for the number of queries if the number of clusters, k,
is known. In this case, at least one query can always be removed, and the clustering can still be completed.
This is because if the number of preclusters has been reduced to k + 1 and one query is remaining, then we
do not need to make that query to complete the determination of clusters because we can deduce that the
response to the last query must be 1. When the number of clusters, k, is known, the lower bound is

(
n
2
)
− 1.

However, if two queries are removed, then in general no algorithm may be able to determine all clusters even
if k is known. For example, if two queries are removed and there are two single-element clusters, say,

{
a1
}

and
{

a2
}
, and one two-element cluster, say

{
a3, a4

}
, then after all

(
n
2
)
− 2 queries have been analyzed we

may still be left with k + 1 preclusters. This is because if the two queries that are removed are (a1, a2) and
(a3, a4), then a1, a2, a3, and a4 would remain as one-element preclusters because there would be no way of
determining if a1 and a2 are in the same cluster or if a3 and a4 are in the same cluster. In other words, at
least one of the queries, (a1, a2) or (a3, a4), are necessary to complete the determination of the clusters and
reduce the number of preclusters to k. The previous example suggests that the number of queries required
to determine all the clusters depends upon the size of the two smallest clusters. For a given active querying
algorithm, let B ⊂ A be the set of all queries that are utilized by the algorithm. We seek bounds upon the
size |B| of the set B.

Our main result for one-round algorithms is the following:
Theorem 1. Let l1 and l2 be the sizes of the smallest cluster and the second smallest cluster, respectively,
and C1 and C2 be the smallest cluster and the second smallest cluster, respectively. Any active clustering
algorithm with perfect workers that determines all the clusters with one round requires more than (n−(l1+l2))×n

2
queries.

Proof. Noting that B is the set of all queries that are utilized by the algorithm, let Si =
{

j ∈ 1, . . . , n :
(i, j) ∈ B or (j, i) ∈ B

}
, where i ∈ 1, . . . , n. In other words, Si is the set of items for which the algorithm

utilizes queries involving item i. If the algorithm utilizes, for each item i, at least p queries involving item
i, i.e., |Si| ≥ p, i = 1, . . . , n, then

∑n
i=1 |Si| ≥ p × n. For each query, (i, j), we have i ∈ Sj and j ∈ Si. So,∑n

i=1 |Si| = 2 × |B|. If item i is utilized in at least p queries for each i = 1, . . . , n, then 2 × |B| ≥ p × n.
In other words, |B| ≥ p×n

2 . If the number of queries utilized by the algorithm, |B|, is less than or equal to
p×n

2 , then at least 1 item will be involved in fewer than p queries. Take p = n − (l1 + l2). If fewer than
(n−(l1+l2))×n

2 queries are made, then at least one item will be involved in less than n − (l1 + l2) queries. If
that item belongs to C1 or C2, then the algorithm will not be able to determine if the item is in cluster C1
or C2. Thus, in the one-round case, if fewer than (n−(l1+l2))×n

2 queries are made, it is not possible to always
determine the clusters.

The previous result is consistent with Mazumdar & Saha (2017a) but our result provides a tighter lower
bound and is not asymptotic. For more details, see Related Work.
Corollary 1. If there are k clusters, then the lower bound for the number of queries that are required to
determine the clusters in one round is (n− n

k − n−1
k−1)×n

2 . If there are k clusters, then the smallest cluster, l1,
must have at most n

k items. Furthermore, the second smallest cluster, l2, must have at most n−1
k−1 items. We

can prove that l2 ≤ n−1
k−1 .

Assume for contradiction that l2 > n−1
k−1 . Then, every cluster other than the smallest cluster must contain at

least n−1
k−1 items. Using this, we can obtain a bound for n− l1, which is n−1

k−1 × (k − 1) = n− 1. This means
that the size of the smallest cluster is 0, a contradiction.
Corollary 2. Utilizing the inequality n

k ≤
n−1
k−1 , we obtain from the prior corollary the lower bound of the

form (n−2× n
k)×n

2 =
(1

2 −
1
k

)
× n2. This shows that for large n, this bound is asymptotically Ω

(
n2), and for

large k, the coefficient of n2 is close to 1
2 .

4

Under review as submission to TMLR

Our results for one-round algorithms provide a lower bound of the number of queries that are required to
determine the clusters of a set of n items into k clusters when the sizes of the two smallest clusters are
known, which is (n−(l1+l2))×n

2 queries. Our results provide more than an order-wise asymptotic lower bound
since we provide a precise lower bound for the number of queries that are required to determine the clusters
of any number of items that are to be queried, a novelty.

Furthermore, it is easy to see that the lower bound is tight. Regardless of the algorithm, if fewer than
(n−(l1+l2))×n

2 queries are made in the first round, there will always be at least one item that has not been
directly compared against at least `1 + `2 items. Thus, if that item is in either C1 or C2 and the items it has
not been compared against are items in C1 and C2, it is not possible to determine if the item is in C1 or C2,
or if it is in a single item cluster. Furthermore, as proved above, regardless of the algorithm, any time fewer
than (n−(l1+l2))×n

2 queries are made, there exits a clustering where an item in either the smallest cluster or
the second smallest cluster has not been compared with any other item in its cluster. So, any time fewer
than (n−(l1+l2))×n

2 queries are made, it is not possible to determine the clusters of all the items.

Our main result for two-round algorithms is stated in the following theorem.
Theorem 2. For a two-round algorithm, suppose that m queries are made in the first round. Then, if the
size of the largest cluster is ` = lk, then the lower bound for the number of queries that are required to
determine all clusters in two rounds is

(
n− m

n ×`
2

)
.

Proof. We consider a randomly chosen query, X = (a, b), chosen from the set of possible queries A. Then
f (X) is a random variable that takes value 0 if a and b are not in the same cluster, or 1 if a and b are in the
same cluster. We calculate P (f (X) = 1). This is equivalent to the probability that for a fixed query, (a, b),
a and b are in the same cluster when the clustering is randomly chosen from the collection of all possible
clustering for the set S.

P (f (X) = 1) =
k∑

i=1
P (f (X) = 1|a ∈ Ci)× P (a ∈ Ci) (2)

=
k∑

i=1
P (b ∈ Ci|a ∈ Ci)× P (a ∈ Ci) (3)

=
k∑

i=1

|Ci|
n
× |Ci| − 1

n− 1 ≤
k∑

i=1
(Ci

n
)2 ≤ `

n
(4)

We define d := m
n . Consider the expected number of queries where a and b are in the same cluster for d× n

queries in the first round. Let X1, . . . , Xd×n be the queries in the first round. Then the number of queries
for which both elements are in the same cluster is

E

(
d×n∑
i=1

f (Xi)
)

=
d×n∑
i=1

E (f (Xi)) (5)

≤ (d× n) `

n
= d× ` (6)

This is the expected number of queries that result in the elements of the query being in the same cluster.
Recall that each time a query reflects that the elements are in the same cluster, the number of preclusters
is reduced by 1, so n− d× ` is the lower bound on the expected number of preclusters after d× n queries.

We showed that the expected number of queries where (f (X) = 1) in a set of d× n queries that were made
in the first round is bounded by d× `. We can interpret this bound on the expected value as a bound on the
expected number of queries for which both elements are in the same cluster in a given set of d × n queries
made in the first round, where the expected value is taken with respect to all possible clusterings of the set
S. This means that there is some clustering for which the number of queries where both elements of the
query are in the same cluster is less than d× `. Therefore, for a given set of d× n queries in the first round,
there is a clustering of the set S such that the number of queries for which both elements of the query belong

5

Under review as submission to TMLR

to the same cluster is bounded by d× `. Recall that each time we process a query for which both items are
in the same cluster the number of preclusters is reduced by at most 1. Thus, the number of preclusters for
that set of queries is lower bounded by n− d× ` after d× n queries are made in the first round.

We next show that the number of queries required to determine all clusters in two rounds is
(

n−d×`
2
)
. In

other words, if there are (n− d× `) preclusters after the first round, at least
(

n−d×`
2
)
total queries must be

made in the first and second rounds.

After the first round of querying, items that are found to be in the same cluster are indistinguishable, so
we can label items in the same precluster with the same integer. Let L be the set of labels. There are
(n− d× `) different labels. We will show that every query in R =

{
x ∈ (a, b) : a ∈ L, b ∈ L, a < b

}
, must be

made. Let L1 be the set of items that are labeled a1 for some a1 ∈ L. Let L2 be the set of items that are
labeled a2 for some a2 ∈ L, a2 6= a1. Suppose there is no query involving an item in L1 and an item in L2.
Then, if f (x) = 0 for all queries x between items in the set L1 ∪L2 and items in the set of remaining items,
the algorithm will not be able to distinguish whether items in L1 and L2 are in the same cluster.

It is important to note that these
(

n−d×`
2
)
queries are not all made in the second round of querying. Every

time f (x) = 0, whether in the first or second round, two preclusters are compared and determined not to
be in the same cluster.
Corollary 3. Suppose that all the clusters are of equal size. Then, ` = n

k and the number of queries is at
least

(
n− d×n

k
2
)
.

We could also say that if the sizes of clusters are approximately equal, this lower bound holds approximately.
As was the case with the one round algorithms, we note that under the constraint of d ≤ n

` , we have
developed a precise lower bound for the number of queries that are required to cluster a set of n items into
k clusters for any n and k, not just an order-wise lower bound that only holds for large n, as is the case with
many analyses.
Corollary 4. A lower bound for the expected number of queries for any algorithm that are required to cluster
all the items is

(
n−d×`

2
)
. If the expected number of queries for which both elements are in the same cluster

less than d× `, a lower bound for the expected number of preclusters is (n− d× `), and thus a lower bound
for the expected number queries that are required to cluster all the items in two rounds is

(
n−d×`

2
)
, using the

fact that the expected value of a random variable squared is greater than or equal to the square of the expected
value of a random variable.

Corollary 5. We can use the information above to determine a lower bound for the expected number of
queries that are required to cluster the items when the sizes of the clusters are not known but it is known that
P (a ∈ Ci) = 1

k ∀a ∈ S and ∀i ∈ 1, . . . , k and the cluster that a given item is in does not affect the probability
that any other item is in a given cluster. In this case, the expected number of queries that are required to
cluster the items is at least

(
n− d×n

k
2
)
.

Proof. Clearly, for a fixed query x = (a, b), P (f (x) = 1) =
∑k

i=1 (a ∈ Ci)× P (b ∈ Ci) = 1
k so the expected

number of queries that result in the elements of the query being in the same cluster is E
(∑d×n

i=1 f (xi)
)

=∑d×n
i=1 E (f (xi)) =

∑d×n
i=1 P (f (Xi) = 1) ≤ (d× n) 1

k = d×n
k . This implies that a lower bound for the expected

number of preclusters remaining after the first round of querying is
(
n− d×n

k

)
, so a lower bound for the

expected number of queries that are required to cluster all the items is
(

n− d×n
k

2
)
.

We recognize that our results for the two round case say little about the sizes and number of preclusters
that result after the first round. Information in this regard is potentially useful when the clusters are to
be approximated and the final set of clusters produced by the algorithm is not certain to be the underlying
clustering of the items. We use a corollary of Turan’s theorem (Berge, 1985) to derive information about the
number and sizes of preclusters that remain after the first round. We remark that the work of Mazumdar &
Saha (2017a) also uses Turan’s theorem in their proofs.

6

Under review as submission to TMLR

Theorem 3. If d × n queries are made in the first round, in the worst case there will be a set of at least
n2

n+2×(d×`) items that have not been found to be in the same cluster as any other item after the first round.
In other words, there will be, in the worst case, at least n2

n+2×(d×`) single element preclusters after the first
round of querying.

Proof. We can reformulate the problem as a graph theoretic problem if we identify elements with nodes and
queries x where f (x) = 1 with edges. We call a subset of the nodes of a graph stable if no pair from it is
connected by an arc. We can then obtain a lower bound on the size of the largest independent set in the
graph, which corresponds to a lower bound of the expected number of items in the first round that have not
been found to be in the same cluster as any other item. Let

g = min
{
max

{
h|G contains an independent set of size h

}
|G is a graph with ci nodes and m edges

}
.

According to the corollary of Turan’s theorem, it can be shown that g ≥ ci
2

2×m+ci
(Berge, 1985). In our case,

ci = n as we have n items to cluster, and m = d × `, since in expectation, there are d × ` queries between
items where the two items are found to be in the same cluster, so there must exist a clustering such that
there are d × ` queries between items where the two items are found to be in the same cluster. So, in the
worst case, there are at least n2

n+2×d×` items that have not been found to be in the same cluster as any other
item after the first round of querying.

Corollary 6. If d ≤ n×k−n
2×` , there will always be at least one cluster where none of the items in that cluster

have been compared to any other element in the cluster in the worst case. If d ≤ n×k−n
2×` , n2

n+2×d×` ≥
n
k . So,

since the size of the smallest cluster is always less than or equal to n
k , we know that it is always possible for

at least the items of the smallest cluster not to have been compared with each other.

Theorem 4. If d× n queries are made in the first round, there will always be a set of at least n2

2×d×n+n =
n

2×d+1 items that are not directly compared against each other in the worst case.

Proof. The proof of this is a direct application of the corollary of Turan’s theorem above, where items are
identified with nodes and comparisons with edges in the obvious way.

Corollary 7. If d × n queries are made in the first round and k−1
2 ≥ d, there will always be at least one

cluster where none of the items in the cluster are compared with any of the other items in the cluster in the
worst case. When the set of items where no item has not directly been compared against one another is at
least of size n

2×d+1 , if
k−1

2 ≥ d, simple algebra shows that at least n
k items, the upper bound for the number

of items in the smallest cluster, will not be directly compared against each other.

5 Conclusion

Sequential querying may be impractical because of the time involved in waiting for the answers to come. A
more realistic approach involves sending out a number of queries at the same time and deciding the next
step based upon an analysis of all the responses received, which is called querying in rounds. In the present
work, we provide lower bounds for the number of queries required to cluster a set of items in one and two
rounds in the worst case and in expectation, given the number of clusters and sizes of the smallest and
second smallest clusters. Additionally, we provide lower bounds for the expected number of queries when
an item is in any given cluster with equal probability. We determine lower bounds for the number of single
element preclusters after the first round of querying, the number of items that are not directly compared
against each other after the first round of querying, and the number of preclusters after the first round of
querying that have not been compared against each other. In the future, we will explore the possibility that
the answers to the query are noisy. We also wish to find lower bounds for crowdsourced clustering in more
than two rounds.

7

Under review as submission to TMLR

References
Nir Ailon, Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Approximate clustering with same-cluster
queries. CoRR, abs/1704.01862, 2017. URL http://arxiv.org/abs/1704.01862.

Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-cluster queries. CoRR,
abs/1606.02404, 2016. URL http://arxiv.org/abs/1606.02404.

Pranjal Awasthi, Maria Florina Balcan, and Konstantin Voevodski. Local algorithms for in-
teractive clustering. Journal of Machine Learning Research, 18(3):1–35, 2017. URL
http://jmlr.org/papers/v18/15-085.html.

Maria-Florina Balcan and Avrim Blum. Clustering with interactive feedback. In Yoav Freund, László
Györfi, György Turán, and Thomas Zeugmann (eds.), Algorithmic Learning Theory, pp. 316–328, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-87987-9.

Sugato Basu, Arindam Banerjee, and Raymond Mooney. Active semi-supervision for pairwise con-
strained clustering. Proceedings of the SIAM International Conference on Data Mining, 06 2004. doi:
10.1137/1.9781611972740.31.

C. Berge. Graphs and Hypergraphs. Elsevier Science Ltd., Oxford, UK, UK, 1985. ISBN 0720404797.

I Chien, Chao Pan, and Olgica Milenkovic. Query k-means clustering and the double dixie cup problem,
2018.

Susan Davidson, Sanjeev Khanna, Tova Milo, and Sudeepa Roy. Top-k and clustering with noisy compar-
isons. ACM Trans. Database Syst., 39(4), December 2015. ISSN 0362-5915. doi: 10.1145/2684066. URL
https://doi.org/10.1145/2684066.

Daniel Gissin and Shai Shalev-Shwartz. Discriminative active learning, 2019.

Yuhong Guo and Dale Schuurmans. Discriminative batch mode active learning. Advances in neural infor-
mation processing systems, 20, 2007.

Ramya Korlakai Vinayak and Babak Hassibi. Crowdsourced clustering: Querying edges vs trian-
gles. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 29, pp. 1316–1324. Curran Associates, Inc., 2016. URL
http://papers.nips.cc/paper/6499-crowdsourced-clustering-querying-edges-vs-triangles.pdf.

Arya Mazumdar and Barna Saha. Clustering with noisy queries. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neu-
ral Information Processing Systems 30, pp. 5788–5799. Curran Associates, Inc., 2017a. URL
http://papers.nips.cc/paper/7161-clustering-with-noisy-queries.pdf.

Arya Mazumdar and Barna Saha. Query complexity of clustering with side information. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances
in Neural Information Processing Systems 30, pp. 4682–4693. Curran Associates, Inc., 2017b. URL
http://papers.nips.cc/paper/7054-query-complexity-of-clustering-with-side-information.pdf.

A. Vempaty, L. R. Varshney, and P. K. Varshney. Reliable crowdsourcing for multi-class labeling using
coding theory. IEEE Journal of Selected Topics in Signal Processing, 8(4):667–679, Aug 2014. ISSN
1932-4553. doi: 10.1109/JSTSP.2014.2316116.

Jinfeng Yi, Rong Jin, Shaili Jain, Tianbao Yang, and Anil Jain. Semi-crowdsourced clus-
tering: Generalizing crowd labeling by robust distance metric learning. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger (eds.), Advances in Neural In-
formation Processing Systems, volume 25. Curran Associates, Inc., 2012. URL
https://proceedings.neurips.cc/paper/2012/file/dd45045f8c68db9f54e70c67048d32e8-Paper.pdf.

8

