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Abstract
Building dense retrievers requires a series of stan-
dard procedures, including training and validating
neural models and creating indexes for efficient
search. However, these procedures are often mis-
aligned in that training objectives do not exactly
reflect the retrieval scenario at inference time. In
this paper, we explore how the gap between train-
ing and inference in dense retrieval can be re-
duced, focusing on dense phrase retrieval (Lee
et al., 2021a) where billions of representations
are indexed at inference. Since validating every
dense retriever with a large-scale index is prac-
tically infeasible, we propose an efficient way
of validating dense retrievers using a small sub-
set of the entire corpus. This allows us to vali-
date various training strategies including unifying
contrastive loss terms and using hard negatives
for phrase retrieval, which largely reduces the
training-inference discrepancy. As a result, we im-
prove phrase retrieval by 2-3% in top-1 accuracy
and passage retrieval by 2-4% in top-20 accuracy
for open-domain question answering. Our work
urges modeling dense retrievers with careful con-
sideration of training and inference via efficient
validation while advancing phrase retrieval as a
general solution for dense retrieval.

1. Introduction
Dense retrieval aims to learn effective representations of
queries and documents by making representations of rel-
evant query-document pairs to be similar (Chopra et al.,
2005; Van den Oord et al., 2018). With the success of
dense passage retrieval for open-domain question answer-
ing (QA) (Lee et al., 2019; Karpukhin et al., 2020), recent
studies build an index for a finer granularity such as dense
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phrase retrieval (Lee et al., 2021a), which largely improves
the computational efficiency of open-domain QA by replac-
ing the retriever-reader model (Chen et al., 2017) with a
retriever-only model (Seo et al., 2019; Lewis et al., 2021).

Building a dense retrieval system involves multiple steps
(Figure 1) including training a dual encoder (§3), select-
ing the best model with validation (§2), and constructing an
index (often with filtering (§A)) for an efficient search. How-
ever, these components are somewhat loosely connected to
each other. For example, model training is not directly op-
timizing the retrieval performance on the full corpus on
which models should be evaluated. In this paper, we aim to
minimize the gap between training and inference of dense
retrievers to achieve better retrieval performance.

However, developing a better dense retriever requires val-
idation, which requires building large indexes from a full
corpus (e.g., the entire Wikipedia for open-domain QA) for
inference with a huge amount of computational resources
and time. To tackle this problem, we first propose an ef-
ficient way of validating dense retrievers without building
large-scale indexes. Analysis of using a smaller random
corpus with different sizes for the validation reveals that
the accuracy from small indexes does not necessarily cor-
relate well with the retrieval accuracy on the full index.
As an alternative, we construct a compact corpus using a
pre-trained dense retriever so that validation on this corpus
better correlates well with the retrieval on the full scale
while keeping the size of the corpus as small as possible to
perform efficient validation.

With our efficient validation, we revisit the training method
of dense phrase retrieval (Lee et al., 2021a;b), a general
framework for retrieving different granularities of texts
such as phrases, passages, and documents. We reduce
the training-inference discrepancy by unifying previous
loss terms to discriminate a gold answer phrase from other
negative phrases altogether instead of applying in-passage
negatives (Lee et al., 2021b) and in-batch negatives sep-
arately. To better approximate the retrieval at inference
where the number of negatives is extremely large, we use
all available negative phrases from training passages and
put more weights on negative phrases. We also leverage
model-based hard negatives (Xiong et al., 2020) for phrase
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Figure 1: Comparison of the (a) original (Lee et al., 2021a) and (b) proposed procedure for DensePhrases training (top) and
validation (bottom). We unify training loss terms Linp and Linb that enforce the representation of a question (q) similar to the
representation of a positive phrase (p+) while contrasting from representations of in-passage negative phrases (p-

inp) and
in-batch negative phrases (p-

inb) respectively into a single term Ltrain and expand negatives in number and difficulty with hard
negatives (p-

hard). Also, we use a retrieval accuracy on the development set Qdev using a smaller corpus instead of the full
corpus as an efficient validation metric for selecting the best checkpoint.

retrieval, which hasn’t been explored in previous studies.
This enables our dense retrievers correct mistakes made at
inference time.

In summary, we introduce an efficient way of validation
for dense retrievers to confirm and accelerate better model-
ing of dense retrievers and improve dense phrase retrieval
models with modified training objectives and hard nega-
tives based on our efficient validation. Consequently, we
achieve 44.0% exact match score and 83.8% top-20 passage
retrieval accuracy on Natural Questions (Kwiatkowski et al.,
2019) and 55.5% exact match score and 82.7% top-20 pas-
sage retrieval accuracy on TriviaQA (Joshi et al., 2017), the
state-of-the-art retrieval-only open-domain QA accuracy.

2. Efficient Validation of Phrase Retrieval
Our goal is to train a dense retriever M that can accu-
rately find a correct answer in the entire corpus C (in our
case, Wikipedia). Careful validation is necessary to con-
firm whether new training methods are truly effective. It
also helps finding optimal configurations induced by those
techniques. However, building a large-scale index for ev-
ery model makes the model development process slow and
also requires huge memory. Thus, an efficient validation
method could expedite modeling innovations in the correct
directions. It could also allow frequent comparison of differ-
ent checkpoints when updating a full index simultaneously
during the training is computationally infeasible.1

Measuring the retrieval accuracy on an index

1Although some works (Guu et al., 2020; Xiong et al., 2020)
do asynchronous updates per specific number of training steps and
use the intermediate index for better modeling, it requires a huge
amount of computational resource.

from a smaller subset of the full corpus (denoted
as C⋆) for model validation would be a practi-
cal choice, hoping argmaxM∈Ω acc(D|M, C⋆) ≈
argmaxM∈Ω acc(D|M, C) where Ω is a set of model
candidates and acc means the retrieval accuracy on a
QA dataset D. We first examine how a relative order of
accuracy between modeling approaches may change with
varying sizes of the random subcorpus (§2.1) and then
develop a clever way to construct a compact subcorpus that
maintains reasonable correlation with the retrieval accuracy
in the full scale (§2.2).

2.1. Random Subcorpus

Reading comprehension (RC) can be regarded a special case
of open-domain QA, where a corpus contains only a single
gold passage (i.e., Cq = {c}) for each question. Here, the
subcorpus is question-dependent. We first gather all gold
passages from the development set as a small corpus C0,
a minimal set that contains answers to all development set
questions. We consider a corpus Rr whose size is r times
the size of the full corpus by simply appending C0 with
random passages by sampling from the full corpus C, i.e.,
C0 ⊂ Rr ⊂ C and |Rr| = r|C|. We first gather all gold
passages from the development set as a small corpus C0,
a minimal set that contains answers to all development set
questions. We consider a corpus Cr whose size is r times
the size of the full corpus by simply appending C0 with
random passages by sampling from the full corpus C, i.e.,
C0 ⊂ Cr ⊂ C and |Cr| = r|C|. We specifically use
r = 1/100, 1/10 in our experiments. As the corpus size
increases, finding the correct answer from a larger number of
possible candidates becomes more difficult, so the retrieval
accuracy generally decreases (Reimers & Gurevych, 2021).
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DensePhrases (Lee et al., 2021a) simply choose the best
checkpoint with the highest RC accuracy assuming that a
model with better RC accuracy leads to a better retrieval
accuracy, or use the last checkpoint at the end of the train-
ing. It is problematic since our preliminary experiments
demonstrate that the RC accuracy and the retrieval accuracy
on different sizes of corpus including the full corpus, do not
necessarily correlate well with each other. Using a large
subcorpus is better for accurate validation not to deviate
much from the trends of retrieval accuracy of a full corpus.
However, a smaller subcorpus would be better in terms of
validation efficiency. This trade-off drives us to design a
better way of constructing a validation corpus.

2.2. Hard Subcorpus

The retrieval accuracy given a subcorpus C⋆ should have a
high correlation with the retrieval accuracy over the full cor-
pus and the size of corpus |C⋆| should be small enough (or
as small as possible) for efficient validation. For a reason-
ably accurate dense retriever, it is relatively easy to discrim-
inate a gold phrase from other phrases in random passages.
Therefore, it is better to collect a subcorpus with hard pas-
sages to test dense retrievers on a similar condition to a full
corpus which includes many difficult phrases to discrimi-
nate if the corpus can have a limited number of negative
passages.

We construct a hard corpus Hk with a compact size using
a pre-trained retriever M̄ to extract all context passages of
top-k retrieved phrases for all query q in the development
set Qdev, and C0 is merged to always include an answer, i.e.,
Hk = C0∪

⋃
(q,a)∈Qdev

M̄k(q|C) where Mk(q|C) denotes
the top-k passage retrieval results for a query q from the
model M. If M̄ is reasonably accurate, negative examples
retrieved by M̄ will make our new model M difficult to
find a correct answer. We expect the retrieval accuracy from
Hk quickly drops as k increases and reaches close to the
retrieval accuracy on the full corpus C with a manageable k
so that we can use retrieval accuracy on a hard subcorpus
for efficient validation.

3. Optimized Training of DensePhrases
3.1. Background: Training of DensePhrases

The question encoder and the phrase encoder are jointly
trained using reading comprehension datasets. A phrase p is
represented as a concatenation of start and end token vectors

from the contextualized representations of a context passage
c using a phrase encoder. A question q is represented as a
concatenation of vectors using two different encoders for
the start and the end.

The main training objective is a sum of the two sepa-
rate contrastive loss terms weighted by the λ coefficient
as formally defined in Equation 1.2 One is for contrast-
ing a phrase token of positive start/end position (p+) to
that of other positions in the context passage (Ninp =
{(p; c) ̸= (p+; c)|p ∈ c}). Another is for contrasting the
same token to other positive tokens in a current (Ninb =
{(p′; c′) ̸= (p+; c)|(q′, p′; c′) ∈ B}) or previous T mini-
batches (Nprb = {(p′; c′)|(q′, p′; c′) ∈ Bpre}). The numbers
of negatives are |Ninp| = L − 1, |Ninb| = B − 1, and
|Nprb| = B × T where L is the sequence length of context
passages and B (= |B|) is the batch size. Additional training
techniques for DensePhrases are described in Appendix B.

3.2. Unified Loss

The original training objective of DensePhrases (Equation 1)
has separate terms for finding a relevant passage (in/pre-
batch negatives) and finding the exact phrase position in
the passage (in-passage negatives). However, we should
find an answer phrase among all possible candidates at once
during the test time. Therefore, we modify the loss term
as a unified version (Equation 2) by putting all negatives
together into the contrastive targets.

We also introduce the λ coefficient to the unified loss to give
weights to negatives. It opens a new question of how we
should set the value of λ. The role of λ can be interpreted in
two ways. First, multiplying λ to an exponential of a score
is equivalent to adding a positive value to the score (λes =
es+log λ), and then the loss term becomes the soft version of
margin-based loss. Second, using λ can mimic the inference
time where the number of negative tokens is much larger by
duplicating a negative λ times (λes = es + es + ... + es)
to close the gap between training and test. Based on the
second interpretation, we set different value of λ depending
on where negative phrase p- is from: λ(p-) = λinpδ(p

- ∈
Ninp) + λinbδ(p

- ∈ Ninb ∪Nprb) + λhardδ(p
- ∈ Nhard).

We extend to use all tokens in context passages with a similar

2We denote the similarity score between a question q and a
phrase p as s(q, p; c). While the score and the loss term of start
and end tokens are separately calculated in practice, we abbreviate
it in the equation for simplicity.
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intuition that contrasting with as many tokens as possible
could be helpful instead of using only start/end position
tokens to in/pre-batch negatives. It changes in/pre-batch
negatives to Ninb = {(p; c′) ̸= (p+; c)|p ∈ c′, (q′, p′; c′) ∈
B} and Nprb = {(p; c′)|p ∈ c′, (q′, p′; c′) ∈ Bpre}) and their
sizes |Ninb| = B × L − 1 and |Nprb| = B × T × L. This
change also increases the number of negatives hundreds of
times and turns out empirically advantageous.

3.3. Hard Negatives for Phrase Retrieval

We exploit hard negatives to benefit phrase retrieval, a
widely used technique for passage retrieval3 but never fully
examined for phrase retrieval. We use a encoder model and
phrase index from the first round to extract model-based
hard negatives from top-k phrase retrieval results for ques-
tions in the training set. We exclude examples when a
context passage of a retrieved phrase contains an answer.4

A context passage corresponding to a retrieved phrase can
be restored using information stored along with the index.
It helps to focus more on topically different documents and
shares the intuition from the analysis in Lee et al. (2021b)
that DensePhrases less rely on the topical relevance than
DPR. Using high-quality hard negatives by removing false
negatives is important to train a better model. We left fil-
tering based on a cross encoder (Qu et al., 2021; Ren et al.,
2021) to future work due to the convenience of automatic
filtering.

After the hard negative mining, we fine-tune a dual encoder
with the hard negatives. We sample h hard negatives for
each training step and append them to negative targets for
the loss calculation. We expect that hard negatives give a
better training signal than random in/pre-batch negatives
(Xiong et al., 2020) because those are examples difficult
to discriminate for the previous model. Moreover, hard
negatives extracted from the larger corpus could expose a
model to other diverse documents than the original training
dataset. This is similar to query-side fine-tuning but differs
in that both the question encoder and phrase encoder are
updated.

Similar to §3.2, we include all tokens in the context passage
of all hard negatives in a mini-batch for Nhard. Using all
available tokens is generally better because they potentially
belong to the final negative phrase candidates in inference.
Training with larger numbers of negatives is beneficial to

3Karpukhin et al. (2020) use one hard negative obtained from
BM25 per example in addition to in-batch negatives for training
a dual encoder. Xiong et al. (2020) globally select hard negatives
from the entire corpus with asynchronously index updates for faster
convergence. RocketQA (Qu et al., 2021) denoises hard negatives
using cross encoder.

4Compared to more strict condition based on exact match, it
reduces about 20% of negative pairs, hopefully reducing false
negatives and achieving higher accuracy gain.
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Figure 2: Validation results on open-domain QA. We plot
retrieval accuracy (EM@1) on indexes with different sizes
(log-scale) from random and hard subcorpora. Random sub-
corpora () include C0, R1/100, and R1/10. Hard subcorpora
(•) include Hk for k ∈ {1, 2, 4, 8, 10, 16, 32, 64}. We also
plot reading comprehension (RC) accuracy and retrieval
accuracy on the full index with filtering. We compare five
representative models with and without our proposed train-
ing methods and query-side fine-tuning. All models are
trained and evaluated on Natural Questions. UL, HN, and
♭ indicate a model trained with the unified loss, a model
trained with hard negatives, and a model before query-side
fine-tuning.

reduce the gap between training and inference. Including
all of them does not induce significant additional memory
overhead since we should encode the same number (h) of
passages regardless of different options. Therefore, we
use Nhard =

⋃
(p̂;ĉ)∈H(q,p+;c),(q,p+;c)∈B{(p; ĉ)|p ∈ ĉ} as all

tokens from all hard negatives in a mini-batch where H is a
set of the sampled h hard negatives and |Nhard| = B×L×h.

3.4. Token Filter

We modify to train a token filter which is used to reduce the
index size separately rather than joint training with the dual
encoder. Appendix A contains a more detailed explanation
and interesting analysis of the filter threshold.

4. Experiments
To show the effectiveness of our proposed method, we evalu-
ate DensePhrases models on open-domain QA benchmarks
following the experimental setup of Lee et al. (2021a;b).5

Datasets We measure phrase retrieval accuracy and pas-
sage retrieval accuracy on two open-domain QA datasets:
Natural Questions (Kwiatkowski et al., 2019) and TriviaQA
(Joshi et al., 2017). We train our phrase retrieval models with

5https://github.com/princeton-nlp/DensePhrases

https://github.com/princeton-nlp/DensePhrases
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Table 1: Open-domain QA phrase retrieval and passage retrieval results on the test set. We report the exact match score
(EM@1) for phrase retrieval. We report top-k passage retrieval accuracy (Top-k, for k ∈ {1, 5, 20}), mean reciprocal rank
at 20 (MRR@20), and precision at 20 (P@20) for passsage retrieval. ♢: trained on each dataset independently. ♠: trained
on multiple datasets. ♡: trained on Natural Questions datasets.

Model
Phrase Retrieval Passage Retrieval

NaturalQ TriviaQA NaturalQ TriviaQA
EM@1 EM@1 Top-1 Top-5 Top-20 MRR@20 P@20 Top-1 Top-5 Top-20 MRR@20 P@20

DPR♢ (+ BERT reader) 41.5 56.8 46.0 68.1 79.8 55.7 16.5 54.4 - 79.4 - -
DPR♠ (+ BERT reader) 41.5 56.8 44.2 66.8 79.2 54.2 17.7 54.6 70.8 79.5 61.7 30.3
RePAQ♢ (retrieval-only) 41.2 38.8 - - - - - - - - - -
RePAQ♠ (retrieval-only) 41.7 41.3 - - - - - - - - - -
DensePhrases♡ 40.9 50.7 50.1 69.5 79.8 58.7 20.5 - - - - -
DensePhrases♠ 41.3 53.5 51.1 69.9 78.7 59.3 22.7 62.7 75.0 80.9 68.2 38.4

DensePhrases♡-UL 43.5 51.3 57.1 75.7 83.7 65.2 22.0 62.0 74.6 80.6 67.6 33.3
DensePhrases♡-UL-HN 44.0 47.0 58.6 75.7 83.4 66.1 21.9 60.3 73.3 79.6 66.1 32.3
DensePhrases♠-UL 42.4 55.5 56.7 75.9 83.8 65.2 23.7 65.0 76.6 82.7 70.2 39.0

two different datasets followed by query-side fine-tuning
on a target dataset: DensePhrases♡ with Natural Questions
reading comprehension dataset and DensePhrases♠ with a
combination of multiple reading comprehension datasets.6

Training details are described in Appendix C. We build the
phrase index using the 2018-12-20 Wikipedia snapshot (C)
and its different smaller subsets C⋆.

Model Validation In our preliminary experiments, we
observe that the best checkpoint among training epochs
differs depending on the corpus size (especially for small
scale). Figure 2 shows validation retrieval accuracy of the
DensePhrases models with different training methods on
various sizes of random and hard subcorpora. The retrieval
accuracy on the hard subcorpus rapidly drops and reaches
close to the retrieval accuracy on the full corpus as k in-
creases with moderately increasing the index size. On the
other hand, retrieval accuracy on a random subcorpus is
higher than on a hard subcorpus with similar index size. For
instance, retrieval accuracies on H8 (5.1M) are lower than
those on R1/100 (24.2M) with 4 times smaller index, and
retrieval accuracies on H16 (8.7M) are lower than those on
R1/10 (266.4M) with 30 times smaller index. It indicates
that a hard subcorpus can effectively imitate inference with
a full corpus where correct retrieval is the most difficult.

The relative order of accuracy between models on hard sub-
corpus converges quickly at around H10 (6.1M). Contrarily,
the order changes from R1/100 to R1/10, meaning that it
is difficult to be certain about the superiority of a model
over another one based on a random subcorpus with an even
larger index. Therefore, we can use retrieval accuracy on a
hard subcorpus as an efficient validation metric.

6Natural Questions, WebQuestions (Berant et al., 2013), Cu-
ratedTREC (Baudiš & Šedivỳ, 2015), TriviaQA, and SQuAD (Ra-
jpurkar et al., 2016)

Validation results on any subcorpus clearly demonstrate that
unified loss is helpful. Query-side fine-tuning decreases
RC accuracy and retrieval accuracy in C0 (1.1M) while
improving retrieval accuracy in larger indexes. It proves
that a hasty conclusion with a small corpus size may avoid
modeling development.

Open-domain QA results Table 1 summarizes experi-
mental results on open-domain QA phrase retrieval and
passage retrieval. Both unified loss and hard negatives (Ap-
pendix D) are shown to be effective. With the better training
methods, our best model improves exact match accuracy on
phrase retrieval from the original DensePhrases model by
2.7% in Natural Questions and 2.0% in TriviaQA, achieving
the state-of-the-art retrieval-only performance. Our methods
also improve passage retrieval accuracy significantly. Our
best model improves top-20 accuracy on passage retrieval
from the original DensePhrases model by 4.0% in Natural
Questions and 1.8% in TriviaQA. We may use DensePhrases
as a building block of other tasks and expect to achieve good
phrase retrieval performance with expressive reader models
like FiD (Izacard & Grave, 2021).

5. Conclusion
In this study, we aim to bridge the gap between training
and inference of phrase retrieval. We first develop an ef-
ficient validation metric that measures retrieval accuracy
on the index from a small corpus with hard passages using
a pre-trained retriever. Based on this validation, we show
that the improvements in training of dense phrase retrieval
with unified loss and hard negatives are effective. As a
result, we achieve state-of-the-art phrase retrieval and pas-
sage retrieval accuracy in open-domain question answering
among retrieval-only approaches. We describe related work
in Appendix E and potential implications in Appendix F.
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A. Token Filtering
Representation filtering is often applied in practice to reduce
the index size for efficient search (Min et al., 2021). For
phrase retrieval, tokens that are not likely to be a start/end
position of an answer are filtered out using a trained filter
classifier based on a logit score for each token. Only tokens
with a score larger than a specific threshold are kept. Af-
ter the filtering, the index is compressed using optimized
product quantization (Ge et al., 2013).

A.1. Token Filter Threshold

A filter threshold for the token filter determines a trade-off
between the index size (efficiency) and retrieval accuracy
(Figure 3). Interestingly, we find that token filtering can even
improve retrieval accuracy. As we increase a threshold from
a very small value (not filtering), the accuracy fluctuates but
generally increases until a specific threshold because the
filter successfully reduces the number of candidates, making
prediction easier. After that threshold, the accuracy drops
quickly because the filter starts to leave out many correct
tokens.

However, finding the peak retrieval accuracy requires a man-
ual search of different thresholds after indexing and evaluat-
ing. Since using it as a validation metric is expensive, we
first select the best checkpoint based on retrieval accuracy
without performing any token filtering. Especially when the
token filter is in the middle of training, the peak threshold
will vary, and using a specific fixed threshold would not be
fair. Also, the best threshold changes depending on the cor-
pus size, so choosing a threshold for the full corpus based
on a smaller corpus is not straightforward.

A.2. Token Filter Training and Valiation

Lee et al. (2021a) jointly train a token filter classifier with a
dual encoder. It is convenient in that an additional training
process is not required, while we should tune on the weight
for a loss before adding to the overall training loss. Training
pushes phrase vectors into two moving corns toward the start
and end vectors since a logit is a dot product score between
a phrase vector and a start/end vector. It has two potential
disadvantages: (1) phrase representations are concentrated
on the part of the entire feature space, so the expressiveness
of the model is not fully exploited, and (2) optimization is
more difficult because of the moving targets.

To address the issues, we change to train a token filter after
training a phrase encoder. We could expect that the two-
stage training process encourages phrase representations to
be distributed over the space. Moreover, we can validate the
token filter separately due to the separate training process
and pick the best one. We can not decide the threshold
during the filter training, so we use the AUC-PR metric

for filter validation by measuring precision and recall by
sweeping all threshold values.

B. Training Techniques for DensePhrases
To learn better representations, the dual encoder is first pre-
trained with question-answer pairs generated by a question
generation model as a data augmentation mainly for better
reading comprehension capability and then fine-tuned with
original question-answer pairs. Also, knowledge distilla-
tion (Hinton et al., 2015) from a stronger reading compre-
hension model based on a cross encoder to the dual encoder
is performed.

Documents in the reading comprehension dataset used for
the training take only a tiny portion of the entire Wikipedia,
and only a small number of negatives for each question-
phrase pair are contrasted compared to billion-scale possible
phrase candidates in the test time. The query encoder can
be further fine-tuned to reduce this discrepancy between
training and inference while fixing the phrase encoder and
the index by maximizing the likelihood of the gold answer
among retrieved phrases for each question. This process is
called query-side fine-tuning.

C. Training details
We use almost the same training hyperparameters of the
original DensePhrases except for the batch size B = 48.
We use the number of training epochs to 2 with the gen-
erated question-answer pairs and increase the number of
training epochs to 10 with the standard reading comprehen-
sion dataset for more careful validation. We set λ(p-) to
256 for p- ∈ Ninb ∪ Nprb, otherwise to 1. We set k = 10
and h = 1 for the hard negative mining and sampling. Our
token filter achieves a much higher AUC-PR value than the
filter of the original DensePhrases model (e.g., 0.348 vs.
0.307). We use a filter threshold of -3 for the index with the
full corpus.

D. Discussion on Hard Negatives
With hard subcorpora, a model trained with hard negatives
shows higher validation accuracy than a model without hard
negative training before query-side fine-tuning, but the order
changes after query-side fine-tuning (Figure 2). We blame it
on the similarity between the hard corpus construction and
the hard negative mining process. Therefore, we may have
to rely on another metric (including retrieval accuracy on
random subcorpus) only for validating the effectiveness of
hard negatives.

Interestingly, hard negatives improve in-domain accuracy
but decrease out-of-domain accuracy. Since gathered hard
negative passages are close to the original training data, it
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Figure 3: The trade-off between the index size and validation retrieval accuracy by changing filter thresholds on random
pseudo corpora with different sizes, (a) C0, (b) C1/100, and (c) C1/10. A threshold that gives better accuracy with a smaller
index size exists. EM@1 (blue) accuracy is more unstable than EM@10 (red). Interestingly, the index size of peak EM@1
is smaller than that of peak EM@10.

can improve the performance of questions from the same
domain but could overfit and may lose the generalization
ability. This observation solicits better hard negative mining
methods.

E. Related Work
Dense retrieval Retrieving relevant documents for a
query (Mitra & Craswell, 2018) is crucial in many NLP
applications like open-domain question answering and
knowledge-intensive tasks (Petroni et al., 2021). Dense
retrievers typically build a search index for all documents
by pre-computing the dense representations of documents
using an encoder. Off-the-shelf libraries for a maximum in-
ner product search (MIPS) (Johnson et al., 2019; Guo et al.,
2020) enable model training and indexing to be developed
independently (Lin, 2022). However, both training dense
retrievers and building indexes should take into account the
final retrieval accuracy. In this respect, we aim to close the
gap between training and inference of dense retrievers.

Phrase retrieval Phrase retrieval (Seo et al., 2019) di-
rectly finds an answer with MIPS from an index of con-
textualized phrase vectors. This removes the need to run
an expensive reader for open-domain QA. As a result,
phrase retrieval allows real-time search tens of times faster
than retriever-reader approaches as an alternative for open-
domain QA. DensePhrases (Lee et al., 2021a) removes the
requirement of sparse features and significantly improves
the accuracy from previous phrase retrieval methods (Seo
et al., 2019; Lee et al., 2020). Lee et al. (2021b) show
how retrieving phrases could be translated into retrieving
larger units of texts like a sentence, passage, or document,
making phrase retrieval a general framework for retrieval.
Despite these advantages, phrase retrieval requires building
a large index from billions of representations. In this work,
we focus on improving phrase retrieval with more efficient

validation.

Validation of dense retrieval Careful validation is essen-
tial for developing machine learning models to find a better
configuration (Melis et al., 2018) or avoid falling to a wrong
conclusion. However, many works on dense retrieval do
not clearly state the validation strategy, and most of them
presumably perform validation on the entire corpus. It is
doable but quite expensive7 to perform frequent validation
and comprehensive tuning. Hence, it motivates us to devise
efficient validation for dense retrieval. Like ours, Hofstätter
et al. (2021) construct a small validation set by sampling
queries and using a baseline model for approximate dense
passage retrieval but limited to early stopping.

Hard examples Adversarial data collection by an itera-
tive model (or human) in the loop process aims to evaluate
or reinforce models’ weaknesses, including the robustness
to adversarial attacks (Kaushik et al., 2021; Bartolo et al.,
2021; Nie et al., 2020; Kiela et al., 2021). In this work,
we construct a compact corpus from a pre-trained dense
retriever for efficient validation. Also, we extract hard nega-
tives from retrieval results of the previous model for better
dense representations.

F. Broader Impact
Our work demonstrates that thorough validation is crucial
for the accurate and efficient development of phrase retrieval
with large corpus. Also, it could be especially beneficial in
real applications where the corpus size is much larger than

7For example, dense passage retrieval (DPR) (Karpukhin et al.,
2020) takes 8.8 hours on 8 GPUs to compute 21-million pas-
sage embeddings and 8.5 hours to build a FAISS index. Also,
ColBERT (Khattab & Zaharia, 2020) takes 3 hours to index 9M
passages in the MS MARCO dataset (Nguyen et al., 2016) using 4
GPUs.
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benchmark datasets. Moreover, we prove that modeling and
training methods should be designed closely to retrieval in
inference time. Despite its remarkable efficiency and flexi-
bility, phrase retrieval has been relatively less studied than
passage retrieval. We believe that our work can encourage
more study on phrase retrieval with an efficient development
cycle. Furthermore, we hope that our findings could be ex-
tended to dense retrieval in general to help a wide variety of
applications.
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