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ABSTRACT

Recently, mixture of experts (MoE) has become a popular paradigm for achieving
the trade-off between modal capacity and efficiency of multimodal large language
models (MLLMs). Different from previous efforts, we are dedicated to exploring
the dynamic experts in existing MLLMs and showing that a standard MLLM can
also be a mixture of experts. However, achieving this target is still notoriously
challenging. The well-trained MLLMs are more accustomed to the fixed pathway
and a drastic change in its inference manner also greatly impedes its performance.
To address these issues, we propose a novel dynamic expert routing method for
existing MLLMs, termed Routing Experts (RoE), which can achieve example-
dependent optimal path routing without obvious structure tweaks. Meanwhile, a
new structure sparsity regularization is also introduced to force the well-trained
MLLMs to learn more short-cut pathways. In addition, we also address the align-
ment of the training and inference of MLLMs in terms of network routing. To
validate RoE, we apply it to a set of existing MLLMs, including LLaVA-1.5,
LLaVA-HR and VILA, and conduct extensive experiments on a bunch of VL
benchmarks. The experiment results not only show the effectiveness of our RoE
in improving MLLMs’ efficiency, but also yield obvious advantages over MoE-
LLaVA in both performance and speed, e.g., an average performance gain of 3.3%
on 5 benchmarks while being 1.61 times faster. Our code is anonymously released
at https://github.com/DoubtedSteam/RoE

1 INTRODUCTION

Recently, the great success of large language models (LLMs) Radford et al. (2018); Zhang et al.
(2022); Bai et al. (2023a); Touvron et al. (2023) attracts an influx of interest in extending them to
more modalities, e.g., vision and language (VL) Jiang et al. (2020); Luo et al. (2023b); Tong et al.
(2024); Zhou et al. (2019). Despite great progress, multi-modal large language models (MLLMs) Li
et al. (2023b); Dai et al. (2023); Rose et al. (2023); Wang et al. (2024); Koh et al. (2024) also suffer
from excessive computation due to the introduction of more modality tokens. For instance, LLaVA
Liu et al. (2023b) requires 6.15 times more computation than its unimodal inference on ScienceQA
Lu et al. (2022). Inspired by the progress of LLMs Radford et al. (2018); Zhang et al. (2022);
Touvron et al. (2023), recent efforts Bai et al. (2023a); Ainslie et al. (2023); Jiang et al. (2024);
Raposo et al. (2024) are also devoted to exploring new MLLMs with a Mixture-of-Experts (MoE)
structure, thereby archiving a good trade-off between model capacity and inference efficiency.

Different from these pioneers Gou et al. (2023); Shen et al. (2023); Lin et al. (2024), we focus on
exploring the dynamic experts in MLLMs that already exist and show that a well-trained common
MLLM can also be a mixture of experts. The motivation is akin to MoE, that is, LLMs or MLLMs
need enough parameter capacity to meet scaling law Kaplan et al. (2020), but it is evident that the
entire model is often redundant for specific tasks, especially the easy ones Wu et al. (2024). For
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Figure 1: The visualization of the l1-distances between the input and output features of each layer
of LLaVA-7B Liu et al. (2023b). A lower l1-distance1 indicates that this layer has less impact on
the feature update of this example, which also suggests that it is not that important during inference.
For two examples, the contributions of different layers are also different.

instance, the advanced MLLMs like LLaVA-1.5 Liu et al. (2023a) exhibit much stronger generaliza-
tion capability than previous vision-language (VL) models Li et al. (2019); Kim et al. (2021); Dou
et al. (2022); Gao et al. (2023), but is still on par with the bespoke ones Lu et al. (2019); Kim et al.
(2021) with much smaller parameter sizes on the benchmarks like VQAv2 Goyal et al. (2017).

However, in terms of methodology, we are keen to explore the dynamic and sparse structures of
MLLMs that already exist, rather than building a new sparse model like previous MoE methods
Shen et al. (2023); Lin et al. (2024). We observe that the activations of MLLMs’ different layers for
the examples are distinct. As shown in Fig. 1, some layers barely contribute to the transformation
and reasoning of a given example. This finding implies that the inherent knowledge of common
MLLMs is likely to be distributed as in MoE models Eigen et al. (2013), indicating the feasibility of
routing the expert subnetworks in an already existing MLLM.

However, achieving this target is still intractable. In particular, we aim to adaptively skip the less
important layers of MLLMs for each example, thereby achieving better efficiency, as shown in
Fig. 2. Although intuitive, this attempt at MLLMs still suffers from several challenges. The first
one is the feature gap that occurs in dynamic inference. Unlike previous dynamic models Lin et al.
(2024); Jiang et al. (2024); Sun et al. (2024); Shen et al. (2024); Luo et al. (2024b), which are
mostly trained from scratch and well accommodate dynamic inference, this layer-wise skipping will
make MLLMs encounter a drastic change in feature space during inference, greatly limiting its
performance upper-bound. Meanwhile, how to make MLLMs choose a short-cut pathway is also
difficult. Since MLLMs are already end-to-end well trained, they usually prefer not to skip under
the default training objectives. In addition, existing MLLMs Dai et al. (2023); Liu et al. (2023a); Lin
et al. (2023); Liu et al. (2023b); Zhou et al. (2024) often organize multiple examples as a multi-turn
conversation for efficient training, which however contradicts the dynamic routing of each example.
Overall, these ingredients greatly hinder the achievement of dynamic routing in existing MLLMs.

To address these issues, we propose an innovative dynamic routing method for MLLMs, termed
Routing Experts (RoE). RoE regards each layer of MLLMs as an independent expert, and its ob-
jective is to find out and connect the important ones as an optimal routing path for each example.
In practice, RoE uses path routers to decide whether to skip layers. To compensate the issue of the
feature gap, we introduce the adapter-based connections to replace the less important layers, which
are easy to deploy and can well serve feature transformations Wu et al. (2024). To optimize RoE, we
also propose a novel sparsity regularization to encourage the learning of sparse and diverse pathway
routing. Combined with this objective, the simple yet effective routing tokens are further proposed
to facilitate the optimization of RoE in multi-turn conversations, addressing the issue of misalign-
ment between training and inference. With these innovative designs, RoE shows that a standard and
well-trained MLLM can also be a mixture of experts.

To validate RoE, we apply it to a set of advanced MLLMs, including LLaVA-1.5 Liu et al. (2023a),
LLaVA-HR Luo et al. (2024c) and VILA Lin et al. (2023), on 10 competitive VL benchmarks,
including VQA2.0 Goyal et al. (2017), GQA Hudson & Manning (2019), TextVQA Singh et al.
(2019), POPE Li et al. (2023c), MME Fu et al. (2023), and MM-Vet Yu et al. (2023). The experi-
mental results show that our RoE can greatly speed up the inference of common MLLMs, while still
maintaining their competitive performance on various benchmarks. For instance, our RoE improves
the inference speed of LLaVA-1.5 by 21.3% without performance drops on most benchmarks. Com-
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pared with the previous MoE-based method, e.g., MoE-LLaVA Lin et al. (2024), RoE not only has
better performance on all benchmarks, but also exhibits faster inference speed, e.g., 6.77 v.s. 4.95
examples per second for traditional VL benchmarks on average.

Overall, our contributions are three-fold:

• We present a novel attempt of dynamic routing in existing MLLMs, termed Routing
Experts (RoE), which aims to transform existing MLLMs into a mixture of experts without
obvious structure tweaks.

• To achieve effective and efficient RoE for the well-trained MLLMs, we introduce adapter-
based skip connection to alleviate the feature gap problem and a novel sparsity regulariza-
tion to help MLLMs learn dynamic and sparse inference. Besides, the routing token design
also aligns the training and inference of RoE-MLLMs.

• On ten highly-competitive benchmarks, RoE can significantly improve the efficiency of
three advanced MLLMs while retaining similar or even better performance.

2 RELATED WORK

2.1 MIXTURE-OF-EXPERTS

Mixture-of-Experts (MoE) Eigen et al. (2013); Jain et al. (2024); Zhao et al. (2024) is a dynamic and
sparse paradigm that can achieve a good trade-off between model capability and efficiency. Its main
property is that MoE models can dynamically select the most appropriate experts from several can-
didates for different inputs, thereby improving model efficiency. In terms of methodology, existing
MoE models can be categorized into the soft and the hard ones, respectively. In soft MoE Lepikhin
et al. (2020); Fedus et al. (2022); Lin et al. (2024), the model output is a weighted aggregation of the
experts with high confidence. For example, MoE-LLaVA Lin et al. (2024) combines outputs from
multiple feedforward networks (FFNs) to enhance the model capabilities. Mistral-MoE Jiang et al.
(2024) uses the outputs of top-two experts for different examples. Although effective, soft MoE is
often hard to achieve real speed acceleration as expected, since the inference of all experts needs
to be computed. In contrast, hard MoE models Kudugunta et al. (2021); Bao et al. (2022); Zhu
et al. (2022); Satar et al. (2022); Wang et al. (2022b); Shen et al. (2023); Li et al. (2023d); Ma et al.
(2023); Long et al. (2023) dynamically activate the experts, introducing less additional calculation
overhead. For instance, VLMo Bao et al. (2022) and VL-MoE Shen et al. (2023) activate the expert
with the highest confidence. PaCE Li et al. (2023d) activates experts according to the predefined
token given by the input. Although MoE can select appropriate experts to deal with different inputs,
it still uses the same complexity for tasks of different difficulties. In the latest developments, some
methods Ainslie et al. (2023); Dotzel et al. (2024); Jaiswal et al. (2024); Raposo et al. (2024); Luo
et al. (2024a) introduce experts with different computational overhead to improve the efficiency.
For instance, CoLT5 Ainslie et al. (2023) proposes a heavy and light option for each module in a
transformer layer. DLO Zhen et al. (2024) expands the Transformer layers vertically and selectively
activates some ones from them. However, these MoE models often need to re-design the network
structure and train the model from scratch, lacking the effective use of existing MLLMs. Recently,
some works introduce dynamic inference. SkipBERT Wang et al. (2022a) improves shallow layers’
efficiency in BERT by combining words through n-grams. SmartBERT Hu et al. (2023) combines
layer-skipping and early-exit using the [cls] token. MoD Raposo et al. (2024) focuses tokens to take
shortcuts according to a certain ratio in each layer. Orthogonal to these works, we focus on exploring
the inherent expert structure in MLLMs that already exist.

2.2 MULTI-MODAL LARGE LANGUAGE MODEL

Driven by the success of large language models (LLMs) Radford et al. (2018); Touvron et al. (2023);
Chen et al. (2023c); Bai et al. (2023a); Jiang et al. (2024); Zhang et al. (2024), the research of
multimodal large language models (MLLMs) Alayrac et al. (2022); Zhu et al. (2023); Bai et al.
(2023b); Chen et al. (2023a;b); Li et al. (2023b); Liu et al. (2023b;c); Peng et al. (2023); Luo et al.
(2023a; 2024c); Zhou et al. (2024); Zhu et al. (2024) also gains increasing attention recently. The
main paradigm of MLLMs is to directly connect the visual encoder and LLM with an additional
network. For instance, BLIP-2 Li et al. (2023b) introduces QFormer to bridge the gap between
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Figure 2: Illustration of the proposed Routing Experts (RoE). Existing MoE models (a) often build a
new sparse structure with multiple FFNs as experts, and each pathway takes the same computation
for all examples. Our RoE (b) aims to explore the expert pathways within the model itself via
adapter-based skip connections, realizing dynamic computation for different examples. (c) Routing
tokens are used to decide layer-wise path selection, i.e., the adapter-based skip connection or the
default Transformer layer. It also serves to align the training and testing of MLLMs.

vision and language modalities, integrating visual tokens into LLMs. Similarly, MINI-GPT4 Zhu
et al. (2023) uses a projection layer to map visual features into the semantic space of the LLM.
LLaVA Liu et al. (2023b) shares the same paradigm with MINI-GPT, and also proposes a carefully
designed training strategy. In terms of network design, MLLMs often use a stack of Transformer
decoding layers Bai et al. (2023a); Touvron et al. (2023) for multi-modal inference following LLMs.
However, with the introduction of visual tokens, the already high computation of this dense structure
is further exacerbated. To address this issue, recent MLLMs like MoE-LLaVA Lin et al. (2024) resort
to sparse and dynamic design of MLLMs. However, as mentioned, the computation of multiple
paralleled experts still limits the efficiency improvement. Different from these efforts, we aim to
explore the dynamic inference of MLLMs to improve efficiency while retaining performance.

3 PRELIMINARY

In this section, we first recap the principle of Mixture of Experts (MoE) for MLLMs. As shown in
Fig. 2(a), existing MoE-MLLMs like MoE-LLaVA Lin et al. (2024) often build multiple FFNs as the
experts of each layer. During inference, only one or several experts are activated in each layer. In
this case, an MoE layer in MLLM G(·) can be defined by

xi+1 = xi +

K∑
j=1

Gij(xi) ·Rij(xi), (1)

where Gij(·) denotes the j-th expert in the i-th layer, and Rij(·) are routing weights predicted by
the router Ri. xi ∈ Rn×d represents the inputs for i-th layer, where n and d denote the length
and dimension. In practice, MoE models only activate a subset of experts according to the input
features. Despite effectiveness, each inference still has the same computation for all tasks, which is
also redundant for some examples.

Like LLMs Ainslie et al. (2023); Raposo et al. (2024), existing MLLMs are also obviously redundant
in many cases. As aforementioned, not all layers equally contribute to the final prediction. In this
case, we focus on exploring the dynamic experts in MLLMs that already exist.

Concretely, we regard each layer of an MLLM as an expert, and skip the less important ones to form
the routing path G(x)′:

G′ = G1 ◦G2 ◦ ... ◦Gn, (2)
where G′(x) is the activated subnetwork, and {G1, G2, ..., Gn} are layers chosen by the router. Its
number is smaller than the default length n.

However, the absence of some layers in Eq.2 inevitably impedes the feature transformation during
inference, especially for the well-trained MLLMs. This issue also makes MLLMs prefer not to skip
layers during the training of dynamic routing.
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4 ROUTING EXPERTS

4.1 METHOD

In this paper, we propose an innovative Routing Experts (RoE) scheme for the dynamic routing in
the existing MLLMs. The objective of RoE is

argmin
θ′

L
(
G(I, T |[θ′])

)
+ |θ′|, (3)

where θ′ ⊆ θ is a subset of MLLM, and |θ′| represents the activated parameters.

As discussed above, a direct skipping is prone to hindering feature transformation, i.e., the feature
gap between layers. In this case, we introduce an adapter-based skip connection for MLLMs, and
the dynamic expert pathway G(x)′ is obtained by

G′ = M1 ◦M2 ◦ ... ◦Mn,

where Mi =

{
Gi, Ri(xi)0 > Ri(xi)1,
Ai, Ri(xi)0 ≤ Ri(xi)1.

(4)

Here, Mi is the expert of the i-th layer, Ai is a lightweight adapter Sung et al. (2022). Ri is a binary
routing function to decide whether the i-th layer need to be skipped:

R(xi) = Softmax(riWr), (5)
where ri ∈ R1×d is a router token and will be introduced in Sec.4.3.

In terms of the adpater Ai(·), its low-rank network can be defined by
x′ = ReLU(xWd)Wu, (6)

where Wd ∈ Rd×c and Wu ∈ Rc×d are two weight matrices, and c << d.

Compared with Eq.2, Eq.4 introduces the use of adapter-based skip connection. Although the
adapter involves some computation, but it is much more lightweight than a standard MLLM layer.
More importantly, it has been proven to be capable of feature adaption for large models in terms of
parameter efficient tuning Sung et al. (2022); Wu et al. (2024).

4.2 STRUCTURE SPARSITY REGULARIZATION

Although RoE can cope with the issue of feature gap, the MLLM is still likely to use the entire
network to infer examples during and after training, as discussed above.

In this case, we introduce a structure sparsity regularization to facilitate the training of RoE:

Ls = max(t− 1

n

n∑
i=1

Ri(xi)1, 0), (7)

where n denotes the number of layers, and t is a predefined rate of skipped layers. This regularization
term can force the model to meet the target skip rate during training.

However, Eq.7 does not consider the varying difficulties of examples. Intuitively, the more difficult
the example the more complex inference is required. Thus, we weight the regularization based on
the tuning loss of each example. RoE uses the prediction loss value as an indicator of difficulty, and
combines it with the overall optimization objective, defined by

L = Lt + αe−|Lt|Ls, (8)

where Lt is the default objective, and |L(k)
t | demotes the loss value for the example. And α is a

hyper-parameter to balance the performance and efficiency. With Eq. 8, the routing for the simpler
examples will be optimized more by the sparsity regularization.

Although Eq. 8 is well designed, its actual effectiveness is still greatly limited by the training
scheme of existing MLLMs. To explain, existing MLLMs Liu et al. (2023a); Lin et al. (2023);
Luo et al. (2024c) often combine multiple VL examples in one multi-turn conversation as a single
example, thereby speeding up training. Thus, this type of training examples will share a common
routing strategy for parallel computation under the default setting. However, each conversation in
the training example should be encouraged to learn an unique routing path to maximize the benefits
of our sparsity regularization. To address this issue, we further introduce the design of routing token.
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4.3 ROUTING TOKEN AND THE ALIGNMENT OF TRAINING AND TESTING

As discussed above, recent MLLMs like LLaVA Liu et al. (2023a) often combine multiple VL
examples as one multi-turn conversation. During training, the answers of all examples are predicted
and optimized in parallel, which poses a practical issue for the training of dynamic routing, i.e., how
to train and optimize RoE for all examples at the same time?

To overcome this problem, we introduce the design of routing token for RoE-MLLMs. In practice,
we insert the routing tokens ri into the input sequence of each example:

xi = [r
(0)
i , Ii, r

(1)
i ,Q

(1)
i ,A

(1)
i , r

(2)
i ,Q

(2)
i ,A

(2)
i , ..., r

(q)
i ,Q

(q)
i ,A

(q)
i ], (9)

where I ∈ Rnv×d represent the visual tokens. (Q
(k)
i ,A

(k)
i ) is the question-answer pair, where

Q
(k)
i ∈ Rn(k)

q ×d and A
(k)
i ∈ Rn(k)

a ×d are the question and answer tokens. The inserted routing to-
kens are learnable vectors that can aggregate information from the corresponding question Qk

i . And
r
(0)
i is the router token for the image. Then, the routing for j-th question-answer pair is predicted by

Ri(xi)
(j) = Softmax(

1

τ
[r

(0)
i , r

(j)
i ]Wr), j > 0, (10)

where [·, ·] denotes concatenation, Wr ∈ R2d×2 is a weight matrix, and τ is the temperature that
decreases as training progresses. For the image sequence, its routing weights are computed by

Ri(xi)
(0) = Softmax(

1

qτ

q∑
k=1

[r
(0)
i , r

(k)
i ]Wr), (11)

where q is the number of questions.

This design allows each question to engage in the prediction of its specific expert pathway while
maintaining training efficiency. In this case, we can align the training and inference of MLLMs for
dynamic routing.

4.4 THE TRAINING SCHEME OF ROE

In this paper, we also carefully design the training scheme of RoE consisting of three main stages.

Stage 1: Adapter warmup. We first optimize the adapter-based skip connections, thereby making
them be capable of feature transformation. In particular, we will randomly select the default layers
and some adapter connections as the expert network according to a predefined sparsity target. To
reduce the difficulty of optimization, we will freeze the entire MLLMs and only update the adapters.

Stage 2: Router warmup. When the adapter connections are well trained, we begin to optimize the
routers for path routing. At this stage, the MLLM is still frozen, and both adapters and routers are
trained. Meanwhile, the structure sparsity regularization of RoE begins to be used during training.

Stage 3: Instruction tuning. Lastly, we updated the entire RoE and MLLM for the instruction
tuning, and the training objectives include the sparsity regularization and the default ones.

Although RoE involves three training stages, the actual expenditure is cost-effective. Above all,
RoE does not require the expensive VL alignment pertaining. Meanwhile, the learnable parameter
spaces of the adapters and routers are small, so they can be quickly optimized by a few SFT steps.
Similarly, the final instruction tuning can also converge quickly since the MLLM is already well-
trained. For instance, under the setting of LLaVA Liu et al. (2023a), the full training process of RoE
only takes about half the number of its default SFT tuning steps.

5 EXPERIMENT

5.1 DATASETS AND METRICS

The benchmarks used in this paper are five common vision-language and five recently proposed
MLLM benchmarks. The common VL benchmarks include VQAv2 Goyal et al. (2017), GQA Hud-
son & Manning (2019), ScienceQA Lu et al. (2022), VizWiz Gurari et al. (2018) and TextVQA Singh
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Table 1: Results of RoE with different skip rates on three MLLMs. “Acc.”, “Speed” and “Skip”
denote accuracy, samples per second and the actual skip rate, respectively.

Method SQAI GQA MMB SEED Average
Acc. Speed Skip Acc. Speed Skip Acc. Speed Skip Acc. Speed Skip Acc. Speed Skip

LLaVA Liu et al. (2023a) 66.8 7.55 0.00% 62.0 6.99 0.00% 64.3 8.37 0.00% 58.6 8.33 0.00% 62.9 7.81 0.00%

RoE-LLaVA10% 68.4 7.65 10.26% 61.4 7.07 4.59% 64.3 9.62 20.55% 58.2 8.41 9.04% 63.5 8.19 7.77%
RoE-LLaVA20% 68.7 9.15 20.55% 61.3 7.52 7.86% 64.6 9.88 23.64% 57.8 9.85 24.52% 63.1 9.10 19.15%
RoE-LLaVA30% 68.4 9.67 23.03% 61.4 7.65 8.81% 64.8 10.14 28.94% 58.2 10.43 30.43% 63.1 9.47 22.80%

VILA Lin et al. (2023) 68.2 8.27 0.00% 62.3 8.03 0.00% 68.9 8.51 0.00% 8.36 8.36 0.00% 65.1 8.29 0.00%

RoE-VILA10% 69.5 8.39 9.19% 62.2 8.01 4.83% 67.6 8.63 10.59% 61.3 8.50 11.41% 65.2 8.38 11.94%
RoE-VILA20% 68.4 10.49 23.93% 61.1 8.20 12.02% 67.8 10.37 19.57% 61.2 9.85 22.34% 64.6 9.73 19.45%
RoE-VILA30% 69.4 10.67 25.12% 60.3 8.21 13.41% 66.8 11.66 27.56% 60.2 10.73 27.66% 64.2 10.32 23.44%

LLaVA-HR Luo et al. (2024c) 65.1 4.82 0.00% 64.2 4.87 0.00% 64.9 4.76 0.00% 64.2 3.74 0.00% 64.6 4.55 0.00%

RoE-LLaVA-HR10% 67.4 4.96 7.96% 62.5 5.01 7.65% 64.6 4.82 6.96% 62.2 3.86 8.43% 64.2 4.66 7.68%
RoE-LLaVA-HR20% 56.1 4.97 12.77% 60.8 5.09 11.07% 52.9 4.89 10.63% 58.8 3.92 13.62% 57.2 4.72 12.02%

Table 2: Ablation study of RoE. “Acc.”, “Speed” and “Skip” denote accuracy, samples per second
and actual skip rate, respectively. Here, “+Reg20%” refers to the use of the sparse regularization.

Method SQAI GQA MMB SEED Average
Acc. Speed Skip Acc. Speed Skip Acc. Speed Skip Acc. Speed Skip Acc. Speed Skip

LLaVA 66.8 7.55 0.00% 62.0 6.99 0.00% 64.3 8.37 0.00% 58.6 8.33 0.00% 62.9 7.81 0.00%

+ Router 69.0 7.37 3.23% 61.2 6.29 0.01% 65.5 7.64 0.03% 58.4 7.67 1.13% 63.5 7.24 1.10%
+ Reg20% 64.3 8.63 15.48% 59.6 7.57 7.00% 63.8 9.32 17.89% 56.6 9.18 18.49% 61.1 8.59 14.72%
+ Adapter 68.7 9.15 20.55% 61.3 7.52 7.86% 64.6 9.88 23.64% 57.8 9.85 24.52% 63.1 9.10 19.15%

Table 3: The training costs of RoE on three MLLMs. “Adapter” and “Router” denote the adapter
warmup and router warmup of RoE. We use the GPU hour of A800 to measure the training time
(Time). The values of “Data” are the number of examples for training. The base MLLMs only
involve pretraining and SFT tuning (“Finetune”).

Method Pretraining Adapter Router Finetune Total
Time Data Time Data Time Data Time Data Time Data

VILA 6326.5 50M 0.0 0 0.0 0 120.9 1M 6447.4 51M
RoE-VILA 0.0 0 25.3 100k 18.7 67k 49.6 166k 93.6 333k

LLaVA 55.4 558k 0.0 0 0.0 0 82.6 665k 138.0 1.2M
RoE-LLaVA 0.0 0 25.3 100k 18.7 67k 49.6 166k 93.6 333k

LLaVA-HR 37.2 558k 0.0 0 0.0 0 128.4 665k 165.6 1.2M
RoE-LLaVA-HR 0.0 0 39.1 100k 29.0 67k 76.7 166k 144.8 333k

et al. (2019). During testing, we use the data splits organized in the instruction format of LLaVA-1.5
Liu et al. (2023a). And we report the accuracy of these datasets. The MLLM-specific benchmarks
are POPE Li et al. (2023c), MME Fu et al. (2023), MMB Liu et al. (2023d), SEED Li et al. (2023a)
and MM-Vet Yu et al. (2023). Compared to common VL evaluations, these benchmarks aim to
evaluate MLLMs from various aspects, such as fine-grained reasoning and visual hallucination.

5.2 IMPLEMENTATION DETAILS

We apply RoE to three popular MLLMs, namely LLaVA-1.5 Liu et al. (2023a), LLaVA-HR Luo
et al. (2024c) and VILA Lin et al. (2023), and term the new models as RoE-LLaVA, RoE-LLaVA-HR
and RoE-VILA, respectively. For all MLLMs, the hidden dimension of RoE’s adapter connections is
set to 1,024. The hyper-parameter α is set to 0.5 to control the impact of sparsity regularization. We
randomly sample 15%, 10% and 25% of the 665k instruction data of LLaVA-1.5 Liu et al. (2023a)
for our three-stage training, respectively. During training, MLLMs are optimized with a learning rate
of 2× 10−6, while the routers and adapter connections are updated with a learning rate of 4× 10−4.
The training epoch is set to 1, and early stop is applied. The rest settings are kept the same with the
original MLLMs. More details can refer to our code project.
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Table 4: Comparison with existing MLLMs on 5 MLLM Benchmarks. “Param.”, “Res.”, “Acc.”
and “Speed” denote parameter scale, input image resolution, accuracy and sample per second,
respectively. The best and second best results are marked in bold and underline, respectively.

Method LLM Param. Res. POPE MME MMB SEED MM-Vet
Acc. Speed Score Speed Acc. Speed Acc. Speed Score Speed

Dense MLLMs
Qwen-VL Bai et al. (2023b) Qwen-7B 9.6B 448 - - - - 38.2 7.40 56.3 2.42 - -
Qwen-VL-Chat Bai et al. (2023b) Qwen-7B 9.6B 448 - - 1487.5 3.96 60.6 7.55 58.2 2.59 - -
LLaVA Liu et al. (2023b) Vicuna-7B 7.2B 336 85.9 8.90 1510.7 8.61 64.3 8.37 58.6 8.33 30.5 0.51
VILA Lin et al. (2023) Vicuna-7B 7.2B 336 85.5 9.21 1533.0 8.64 68.9 8.51 61.1 8.36 34.9 0.48
LLaVA-HR Luo et al. (2024c) Vicuna-7B 7.4B 1024 85.9 4.70 1554.9 4.77 64.9 4.48 64.2 3.46 31.2 0.76
Sparse MLLMs
MoE-LLaVA-1.6B×4 Lin et al. (2024) StableLM-1.6B 2.9B 336 85.7 7.65 1318.2 8.06 60.2 9.90 - - 26.9 0.43
MoE-LLaVA-2.7B×4 Lin et al. (2024) Phi-2.7B 5.3B 336 86.3 5.95 1423.0 5.83 65.2 5.27 - - 34.3 0.25
RoE-LLaVA Vicuna-7B 7.3B 336 86.1 9.38 1522.7 9.03 64.3 9.62 58.2 8.41 31.9 0.42
RoE-VILA Vicuna-7B 7.3B 336 86.8 9.25 1446.0 8.95 67.6 8.63 61.3 8.50 36.7 0.43
RoE-LLaVA-HR Vicuna-7B 7.5B 1024 88.1 4.75 1558.2 4.82 64.6 4.82 62.2 3.86 30.0 0.68

Table 5: Comparison with existing MLLMs on 5 traditional VL benchmarks. “Param.”, “Res.”,
“Acc.” and “Speed” denote parameter scale, input image resolution, accuracy and sample per
second, respectively. The best and second best results are marked in bold and underline, respectively.

Method LLM Param. Res. VQAv2 GQA VizWiz SQAI VQAT Average
Acc. Speed Acc. Speed Acc. Speed Acc. Speed Acc. Speed Acc. Speed

Dense MLLMs
Qwen-VL Bai et al. (2023b) Qwen-7B 9.6B 448 78.8 5.23 59.3 3.48 35.2 3.92 67.1 6.97 63.8 3.77 60.8 4.67
Qwen-VL-Chat Bai et al. (2023b) Qwen-7B 9.6B 448 78.2 5.30 57.5 3.63 38.9 3.22s 68.2 6.10 61.5 5.21 60.9 4.69
LLaVA Liu et al. (2023b) Vicuna-7B 7.2B 336 78.5 6.97 62.0 6.99 50.0 6.44 66.8 7.55 58.2 5.84 63.1 6.76
VILA Lin et al. (2023) Vicuna-7B 7.2B 336 79.9 8.01 62.3 8.03 57.8 5.75 68.2 8.27 64.4 5.70 65.5 7.15
LLaVA-HR Luo et al. (2024c) Vicuna-7B 7.4B 1024 81.9 4.42 64.2 4.55 48.7 4.06 65.1 4.71 67.1 3.81 65.4 4.31

Sparse MLLMs
MoE-LLaVA-1.6B×4 Lin et al. (2024) StableLM-1.6B 2.9B 336 76.7 7.79 60.3 7.43 36.2 6.27 62.6 8.09 50.1 4.48 57.2 6.81
MoE-LLaVA-2.7B×4 Lin et al. (2024) Phi-2.7B 5.3B 336 77.6 6.01 61.4 5.23 43.9 3.95 68.5 5.80 51.4 3.76 60.6 4.95
RoE-LLaVA Vicuna-7B 7.3B 336 80.3 7.02 61.4 7.07 52.5 6.52 68.4 7.65 56.8 5.59 63.8 6.77
RoE-VILA Vicuna-7B 7.3B 336 78.8 8.25 62.2 8.01 53.7 6.28 69.5 8.39 59.3 5.75 64.7 7.34
RoE-LLaVA-HR Vicuna-7B 7.5B 1024 80.9 4.79 62.5 5.01 47.6 4.12 67.4 4.96 64.6 4.02 64.6 4.58

5.3 EXPERIMENTAL RESULTS

5.3.1 QUANTITATIVE ANALYSIS

Results of RoE on different MLLMs. In Table. 1, we first present the results of RoE applying
to LLaVA-1.5 Liu et al. (2023a), LLaVA-HR Luo et al. (2024c) and VILA Lin et al. (2023) with
different skip rates. From this table, we can observe that RoE can help existing MLLMs to reduce a
large number of redundant parameters and computations. For instance, RoE-VILA30% skips 23.44%
of the parameters and speed up inference by about 24.5% on average. Notably, the performance of
RoE-VILA30% only drops by 1.38%. We can also observe that the impact of skip rate is distinct for
different MLLMs. Specifically, for RoE-LLaVA, the performance does not drop obviously as the
skip rate increases, i.e. -0.2% on average with an actual skip rate of 22.80%, while LLaVA-HR is
more sensitive to network skipping. For example, the increase of skip rate from 7.68% to 12.02%
results in about -4.34% performance drop on average. Nevertheless, RoE can further improve the
compactness of LLaVA-HR through its dynamic routing. Another observation from these results is
that the RoE-MLLM always has a higher skip rate on multiple-choice questions than the open-ended
ones, e.g. 23.03% on SQA vs. 8.81% GQA on RoE-LLaVA30%, suggesting its actual skip rate is
related to the task difficulty. Overall, these results well validate the effectiveness of our RoE and
also confirm the redundancy of existing MLLMs.

Ablation Study. In Tab 2, we conduct a set of experiments to ablate the designs of RoE. In this
table, “+Router” means that we directly equip LLaVA-1.5 with path routers as described in Eq.2.
We can first observe that this direct attempt is hard to achieve the expected structure sparsity on
LLaVA. As shown in Tab 2, its average skip rate is only 1.1%, and it is even as low as 0.1% on the
difficult tasks like GQA. This result suggests that the model barely chooses to skip layers during
inference, which well confirms our assumption about the challenges of routing the well-trained
MLLMs. In practice, the additional computation of routers even leads to the latency of +7.29%.
Based on “+Router”, “+Reg20%” further applies the structure sparsity regularization to optimize
the routers. With this regularization term, routers are better trained to evaluate and skip the less
important layers of MLLMs. For instance, RoE-LLaVA can skip up to 10 layers on MMB, greatly
improving the inference speed by +21.98%. Nevertheless, we still observe obvious performance
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RoE-LLaVA (ours): 
This is a train station, 
with a train on the tracks 
and people walking 
around. 

RoE-LLaVA (ours): 
The man in the image is 
Vincent Van Gogh, a 
famous artist known for 
his distinctive style and 
contributions to the world 
of art.

User: Where is there?

User: Who is he?

LLaVA: This is a train 
station, with a train on 
the tracks and a building 
nearby.

LLaVA: The man in the 
image is Vincent Van 
Gogh, a famous artist 
known for his unique 
style and contributions to 
the world of art.

MoE-LLaVA-2.7B4: 
This is a scene at a train 
station, with a train on 
the tracks and a building 
nearby.

MoE-LLaVA-2.7B4: 
The man in the image is a 
famous painter, Vincent 
van Gogh.

User: Can you explain this meme?Input Image:

(b)

(c)

(a)

(d)

User: How many fried chicken? 
RoE-LLaVA: There are ten pieces of 
fried chicken in the image.

User: Is there any fried chicken? 
Please answer Yes or No.
RoE-LLaVA: Yes.

Input Question: How many people are there? Please answer the question with single number.

RoE-LLaVA: 2 RoE-LLaVA: 10

RoE-LLaVA: The image features a pan 
filled with fried chicken pieces, shaped 
to resemble a map of the world. The 
chicken pieces are spread across the pan, 
with some pieces placed closer to the 
edges and others more towards the center. 
The overall presentation is creative and 
unique, as it combines the familiar 
concept of a map with the delicious 
taste of fried chicken.

RoE

LLaVA

MoE 18.92

29.44

33.54

token/s↑

RoE

LLaVA

MoE 18.78

29.24

32.32

token/s↑

0 8 16 24 32

0 8 16 24 32

0 8 16 24 32

0 8 16 24 320 8 16 24 32

Figure 3: Examples of our RoE on LLaVA. Example (a) and (b) show the comparison between RoE-
LLaVA and LLaVA and MoE-LLaVA. Our RoE-LLaVA can answer the questions as accurately and
in detail as LLaVA, while being faster, i.e., more tokens per second (tokens/s↑). Example (c) shows
the predictions of RoE-LLaVA for the same image and different questions. RoE can adjust the
choice and depth of expert pathways according to the question, i.e., the bar charts (the yellow ones
denote the skipped layers). Example (d) shows the predictions for the same question but different
images. RoE can also route different optimal expert pathways according to different visual content.

degradation after layer skipping, e.g., -2.0% on SEED. As we discussed in Sec. 4.1, directly skipping
layers typically leads to dramatic changes in feature space. To compensate for this, the lightweight
adapter-based skip connections are then ablated, i.e., “+Adapter” in Tab 2. It can be seen that
this simple design can greatly improve the average performance by up to +2.0%. Overall, these
ablation results well confirm our motivation for dynamic routing in the well-trained MLLMs, and
also validate the designs of RoE.

The training costs of RoE. In Tab.3, we report the training costs of RoE on three base MLLMs.
From this table, we can observe that the implementation of RoE is much cheaper than building a new
MLLM. For instance, training VILA from scratch takes about 6447.4 GPU hours, but its extension
to VILA-RoE is only about 93.6 GPU hours since the pre-training is not required. In addition, the
optimization of RoE is also very efficient. We can see that for all three base MLLMs, our RoE
not only requires fewer SFT examples to train, but also has a shorter total training time than the
SFT tuning of these models. Overall, from these statistics, we can conclude that RoE is also a
training-efficient method for the improvement of existing MLLMs.

Comparison with existing MLLMs. In Tab. 4 and Tab. 5, we compare the performance and ef-
ficiency of RoE-MLLMs with more MLLMs. In Tab. 4, we can first observe the comprehensive
advantages of RoE-MLLMs over the compared sparse MLLMs on four MLLM-specific bench-
marks. In particular, the computation of MoE-LLaVA series is more expensive than our RoE-VILA
although its parameter scale is smaller. For instance, compared with MoE-LLaVA-1.6×4, RoE-
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VILA improves the scores by 9.8% on MM-Vet. And RoE-VILA also improves the inference speed
by 1.11 times on MME. Similar advantages of RoE can also be witnessed in PoPE. Compared to
MoE-LLaVA-2.7B×4, RoE-VILA not only achieves +0.5% performance gains but also speeds up
the inference by 55.5%. When compared to the dense MLLMs, the benefits of RoE-MLLMs are
still obvious. For instance, RoE-LLaVA-HR improves the score by +3.3 on MME, and RoE-VILA
achieves +1.8 performance gains on MM-Vet, while still keeping a faster inference speed. Tab. 5
gives the performance comparison on common VL tasks. Compared to other sparse MLLMs, RoE-
MLLMs still achieve better results on all benchmarks with superior efficiency. For instance, RoE-
LLaVA outperforms MoE-LLaVA-2.7B×4 by +2.7 on VQA, while being +16.8% faster. Compared
to dense MLLMs, the proposed RoE-MLLMs also show distinct advantages in efficiency, which can
speed up the inference by 2.65%-6.26%. In terms of performance, RoE-MLLMs even outperform
the original dense MLLMs on several benchmarks, e.g., +1.6 of RoE-LLaVA against LLaVA on
ScienceQA. Overall, these results further confirm the great effectiveness and efficiency of our RoE.

5.3.2 QUALITATIVE ANALYSIS

To gain insight into the proposed RoE, we visualize its predictions and skipped layers in Fig. 3.
In Fig. 3 (a)-(b), we first compare its predictions with LLaVA and MoE-LLaVA-2.7B×4. We can
observe that the implement of RoE barely impedes the expression compared with the default LLaVA.
As shown in Fig.3 (a), RoE-LLaVA can give accurate and detailed answers for the question like the
default LLaVA. In contrast, the response of the other sparse model MoE-LLaVA is briefer. Besides,
it can be also seen that RoE-LLaVA has a much faster inference speed than the compared models
for the same question. For two examples, RoE-LLaVA can speed up inference by up to 13.9% and
77.3% than LLaVA and MoE-LLaVA, respectively. In Fig. 3 (c)-(d), we examine the behaviors of
RoE in terms of the image and the question, respectively. In Fig. 3 (c), RoE-LLaVA is required to
answer different questions for the same image. From these examples, we can see that RoE skips
fewer layers when answering the first question, which requires a detailed answer. In contrast, for the
other two questions of which answer are simpler, RoE can skip more layers during inference. These
results suggest that the actual skip rate of RoE is related to the answer content, and the more complex
the answer, the fewer layers the RoE skips. In Fig. 3 (d) shows the response of RoE-LLaVA under
the same question but different images. For the first image, of which scene is simpler, RoE can skip
more layers to answer the number of people. Instead, RoE requires more reasoning steps to infer
the answer of the second example, where the classroom scene is more complex. In this case, the
behavior of RoE is also related to the complexity of visual content. Overall, from these examples,
we can conclude that RoE is example-dependent and can route the optimal expert paths for different
examples according to their difficulties, which well confirms our motivation.

6 CONCLUSION

In this paper, we focus on exploring the dynamic experts in existing MLLMs, and propose a novel
and effective modeling scheme called Routing Expert (RoE). To address the challenges for the well-
trained MLLMs, RoE introduces the adapter-based skip connection to mitigate the issue of feature
gap and a novel sparsity regularization to encourage MLLMs to learn sparse inference. Meanwhile,
the routing token design is also proposed to address the training and testing misalignment of existing
MLLMs. Extensive experiments on 3 MLLMs and 10 benchmarks demonstrate that our RoE method
can greatly improve the efficiency of existing MLLMs without obvious structure modification and
with low training cost, while maintaining close or even better performance.
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