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ABSTRACT

In this paper, we highlight a critical yet often overlooked factor in most 3D hu-
man tasks, namely modeling humans with complex garments. It is known that
the parameterized formulation of SMPL is able to fit human skin; while com-
plex garments, e.g., hand-held objects and loose-fitting garments, are difficult to
get modeled within the unified framework, since their movements are usually de-
coupled with the human body. To enhance the capability of SMPL skeleton in
response to this situation, we propose a modular growth strategy that enables the
joint tree of the skeleton to expand adaptively. Specifically, our method, called
ToMiE, consists of parent joints localization and external joints optimization. For
parent joints localization, we employ a gradient-based approach guided by both
LBS blending weights and motion kernels. Once the external joints are obtained,
we proceed to optimize their transformations in SE(3) across different frames,
enabling rendering and explicit animation. ToMiE manages to outperform other
methods across various cases with garments, not only in rendering quality but
also by offering free animation of grown joints, thereby enhancing the expressive
ability of SMPL skeleton for a broader range of applications.

1 INTRODUCTION

3D human reconstruction endeavors to model high-fidelity digital avatars based on real-world char-
acters for virtual rendering and animating, which has been of long-term research value in areas
such as gaming, virtual reality (VR), and beyond. Traditional methods, such as SMPL (Loper et al.,
2015)), achieve human body parameterization by performing principal component analysis (PCA) on
large sets of 3D scanned meshes, allowing for the fitting of a specified identity. Recent neural ren-
dering techniques have enabled implicit digital human modeling guided by Linear Blend Skinning
(LBS) and SMPL skeleton, realizing lifelike rendering and animating from video inputs.

The neural-based 3D human rendering has been empowered by the cutting-edge technique, 3D
Gaussian Splatting (3DGS) (Kerbl et al., |2023)), for its real-time and high-quality novel view syn-
thesis performance. By representing 3D gaussians under the canonical T-pose and utilizing the
pre-extracted SMPL skeleton in the observation space, 3D human rendering results can be obtained
from novel views in any frame. This stream of approaches proves high quality in rendering 3D hu-
mans that conform to the SMPL paradigm (e.g., avatars in tight-fitting clothing). However, we raise
concerns regarding its ability to handle human modeling involving daily garments, such as skirts or
hand-held objects.

In Fig. [T} we show two cases to illustrate the limitations of current 3D human methods in modeling
daily garments. On the one hand, characters shot in-the-wild are dressed in garments with high
complexity in dynamics, rather than the tight-fitting garments configured under strict experimental
conditions. These loose-fitting garments break the existing methods’ paradigm by assuming that
garments should be bounded to the motion warping of SMPL skeleton in the same way as the human
body is. On the other hand, the movements of hand-held objects, e.g., mobile phones, are highly
decoupled from the human body and thus cannot be represented by the current SMPL. Rooted in the
aforementioned scenarios, SMPL is observed to suffer from appearance ambiguity when attempting
to fit such 3D human models.
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Figure 1: We show two common types of complex garments in everyday life: hand-held objects
and loose-fitting garments, which cannot be accurately represented by the standard SMPL model.
Our ToMiE can realize adaptive growth to enhance the representation capability of SMPL without
needing for time-consuming case-specific customization, achieving state-of-the-art results in both
rendering and human (including complex garments) animation.

Human Avatar Collection

To this end, we break through the limitations of modeling 3D human gaussians with complex gar-
ments by maintaining an extended joint tree from SMPL skeleton. Although existing SMPL model
has the potential capability to manually customize additional skeleton information, time-consuming
and case-by-case adjustments are necessary in this case. To overcome this issue, we extend the
SMPL skeleton with additional joints for each individual case adaptively. The growth is performed
in an explicit and modular manner, and enables the fitting of complex garments, offering high-
quality rendering of more complex cases compared to other methods (e.g., novel view synthesis
results in Fig. [T)).

The main challenge of extending the SMPL skeleton is to determine where and how to grow ad-
ditional joints. To avoid the unnecessary memory consumption and potential overfitting caused by
an arbitrary growth, we first determine which of the joints are supposed to serve as parent joints by
a localization strategy. We have empirically observed that parent joints requiring growth wittness
larger backpropagation gradients in their associated gaussians due to underfitting. However, deter-
mining the association of gaussians with different joints is non-trivial, as the SMPL’s LBS blending
weights may not work with the human with garments. To more precisely define such association,
we introduce the concept of Motion Kernels based on rigid body priors and combine them with LBS
weights, resulting in more accurate gradient-based localization. After growth, we adaptively main-
tain an extended modular joint tree and update the extra joints by optimizing two MLP decoders for
joints positions and rotations. The proposed method, termed as ToMiE, allows for explicit animation
of complex garments represented by external joints.

By experiments on complex cases with garments of the DNA-Rendering dataset (Cheng et al.,|2023),
ToMiE exhibits state-of-the-art rendering quality while maintaining the animatability that is signifi-
cant for downstream productions. To summarize, our contributions are three-fold as follows:

1) ToMiE, a method for creating an enhanced SMPL joint tree via a modular growth strategy,
which is able to decouple complex garments from the human body, thereby achieving state-
of-the-art results in both rendering and explicit animation on target cases;

2) ahybrid assignment strategy for gaussians utilizing LBS weights and Motion Kernels, com-
bined with gradient-driven parent joints localization, to guide the growth of external joints;

3) a joints optimization approach fitting local rotations across different frames while sharing
joints positions.

2 RELATED WORK

2.1 SMPL-BASED HUMAN MESH AVATARS

Most of the recent success in digital human modeling can be attributed to the contributions of the
SMPL (Loper et al.,[2015) series, which parameterizes the human body as individual shape compo-
nents and motion-related human poses through 3D mesh scanning and PCA. The pose blend shapes
in SMPL describe human body deformations as a linear weighted blending of different joint poses,
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significantly improving the efficiency of editing and animating digital humans. Furthermore, it has
been widely adopted for human body animation, thanks to the methods (Dong et al., |2021} |Shuai
et al., [2022) of estimating SMPL parameters from 2D inputs. Despite their wide range of applica-
tions, SMPL and its family still suffer from inherent limitations. Since the originally scanned 3D
meshes are skin-tight, according to which the pose blend shapes are learned, the model is unable to
handle significantly outlying meshes, such as human with garments like skirts and hand-held objects.

2.2 NEURAL REPRESENTATION FOR 3D HUMAN

Methods based on neural representations, such as NeRF (Mildenhall et al.,[2020) and 3DGS (Kerbl
et al.} 2023), have also been playing an important part in digital human reconstruction for their high-
quality rendering capabilities. Early NeRF-based methods (Weng et al., 2022; |Peng et al.| [2021b;
Kwon et al.,[2021; Chen et al., [2024; /Goel et al.l 2023 (Chen et al.,|2021a};2023; 2021b; |Gafni et al.,
20215 |Gao et al., 2023} |Geng et al., [2023) aim to reconstruct human avatars by inputting monocular
or multi-view synchronized videos. [Wang et al.|(2022) enforce smooth priors based on neural Signed
Distance Function (SDF) to obtain more accurate human geometry. Recent breakthroughs (Li et al.,
2024b; |Liu et al., |2023; Zielonka et al., 2023} |Li et al.} 2023} |Hu et al.,[2024b; |Qian et al., 2024} |[Le1
et al.,|2024; Hu et al., 2024c; Pang et al., 2024} Jung et al.,|2023; Hu et al., 2024a; L1 et al., |2024a;
Liu et al.l [2024; Zheng et al.| [2024a}; Kocabas et al., [2024; [Moreau et al., 2024; [Jena et al., 2023}
Zheng et al.||2024b) rely on 3DGS, enabling faster and more accurate rendering. All these methods
register the T-pose in a canonical space and use LBS weights to guide the rigid transformations.
The animation of human body can be achieved by warping points in the canonical space into the
observation space that is controlled by per-frame human poses.

2.3  GARMENTS RENDERING AND EDITING IN DIGITAL HUMAN

We revisit the methods that consider implicitly improving garment topology. Animatable
NeRF (Peng et al., 2021a)) defines a per-frame latent code to capture appearance variations across
each frame. |Lei et al.| (2024); |Guo et al.|(2024) additionally register global latent bones to com-
pensate for the limitations in garments rendering. They fail to explicitly decouple the garments
from human body, making precise control infeasible. Another stream (Chen et al.,|2024; Hu et al.,
2024c) leverages a human poses sequence as contexts to resolve appearance ambiguities. But cor-
respondingly, they require a sequence of human poses for animation, adding to the challenges of
editing. Moreover, these methods struggle to fit the object-level pose independent of the human
poses sequence, such as hand-held items. We also note that some works (Hu, 2024; Men et al.,
2024) introduce diffusion-based generative methods to enhance the realism of garment rendering,
but these methods are restricted by the traditional SMPL and overlook the editing of complex gar-
ments. Our approach enables explicit decoupling of garments and the human body by extending the
SMPL joint tree, allowing for high-quality rendering and explicit animating of garments, including
hand-held objects.

3 PRELIMINARIES

3.1 SMPL(-X) REVISITED

Pre-trained on scanned meshes, the SMPL(-X) family (Loper et al.| 2015} |Pavlakos et al., [2019)
employs a parameterized model to fit human bodies of different shapes and under different poses.
The human mesh in each frame evolves from a canonical human mesh and is controlled by shape
and pose parameters. Specifically, a 3D point . on the canonical mesh will be warped to obtain
point in the observation space as

K

Lo = Zwk(wc)(Rk(ro)mc+tk(j07/8))’ (1)

k=1

where K is the total number of joints, Ry, is per-joint global rotation controlled by local joint rota-
tions 7, and t;, is per-joint translation controlled by joint positions 5% and human shape 3. Notice
that linear blending weight wy, is a function of x., which is regressed from large human assets.
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The main issue with this LBS-based prior model is that it can only fit tight-fitting avatars conforming
to the SMPL(-X) paradigm, making it unsuitable for modeling complex human clothing in more
generic cases. It is even more challenging is its inability to handle hand-held objects that are fully
decoupled from the human pose. To leverage SMPL(-X) prior without being constrained by garment
types, we highlight its extension to complex garment modeling.

3.2 HUMAN GAUSSIANS REVISITED

Human gaussians achieve high-quality real-time human rendering by combining the SMPL prior
with 3DGS as the representation. The SMPL model naturally obtains the T-pose (i.e., all human
poses are identity transformations) mesh in the canonical space and then mesh vertices are used to
initialize the canonical gaussian units. Each gaussian is defined as

1
G) = —5o7
(2m)2 (%2
where p is the 3D gaussian center, and 3 is the 3D covariance matrix, which will be further decom-
posed into learnable rotation R and scale S. Now we have ¥ = RSS TR, which is performed
by optimizing a quaternion 7, for rotation and a 3D vector s, for scaling . Each gaussian is further
assigned with color ¢ and opacity «.

6_%(:‘3_101“271(11’_l—")7 (2)

Once the 3D gaussians in the canonical space are obtained, each position p will be warped to the
observation space according to Eq. (I)). Next, the 3D gaussians of each frame are projected into 2D
gaussians, followed by tile-based rasterization. Color of each pixel can be calculated by blending N

ordered gaussians following
i—1

C=> co [J(1— ). (3)

ieN j=1

The 3D gaussians can be optimized and updated by adaptive density control, which primarily in-
cludes cloning, splitting, and pruning. Cloning and splitting are guided by gradients to control the
number of gaussians, while pruning removes empty gaussians based on current opacity . The
supervision upon human gaussians is derived from multi-view or monocular videos, enabling high-
quality rendering and avatar animation.

4 METHODS

Figure [2] illustrates ToMiE’s modular joint growth and gaussian training strategy. Our goal is to
extend the SMPL skeleton to handle complex human garments. However, the abuse of growth can
lead to unnecessary computational and memory overheads. For an efficient adaptive growth, we first
propose a localization strategy of parent joints to ensure that only necessary joints are grown. Fur-
thermore, we explicitly define the hand-held joints in the S FE/(3) space and optimize them end-to-end
through an MLP, ensuring alignment with the original skeleton of SMPL. The extended skeleton can
thus support rendering and explicit animation. To address the limitation of LBS in guiding gaussian
attributes apart from the positions, we further fine-tune the rotation and scale during training with a
deformation field to achieve better non-rigid warping. Next, we will elaborate on these modules and
the training strategy in detail.

4.1 MOTION KERNELS-GUIDED JOINT GRADIENT ACCUMULATION

A quantitative metric needs to be identified to determine whether a joint requires growth. We notice
that, due to the poor fitting ability of existing SMPL-based human gaussian, it will leave larger
gradients in human regions with complex garments (e.g., the hand-held object in Fig.[2]®). In other
words, identifying joints with larger accumulated gradients can help to indicate which parent joints
are more likely to require growth. Bounded with each gaussian, the accumulated gradients will be
first assigned to their corresponding joints. Let ¢ = ||(¢x, 9y, g-)||2 represent the L2 norm of the
gradient at each gaussian position. The gradients accumulation g; for the k-th joint can then be

computed according to
97 = ZieN Wk (:Bc)g @)
. Eie]v wi ()

4
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Figure 2: The pipeline of TOMIiE. @ We initialize the gaussians in the canonical space with a standard
SMPL vertices. @ (Sec. We apply Linear Blend Skinning (LBS) to the gaussian position and
utilize a network for rotation and scale correction. During the warmup phase, Adaptive LBS only
utilizes the original SMPL skeleton. After adaptive growth, it further includes the newly grown
external skeleton. @ Gaussian rasterization and gradients backpropagation. @ (Sec. Sec.
We employ a gradient-based parent joints localization method, and a motion kernel to optimize
the gradient assignment process. ® (Sec. [d.3) We maintain an extra joint book with MLPs, which
generates explicit human pose, enabling the decoupling and explicit animating of complex garments.

We use . to stand for gaussian position in canonical space and x,, in the observation space.

It is worth emphasizing that wj, here is a weight term determining the assignment of a gaussian to
the k-th joint. Under the paradigm of SMPL representation, this weight corresponds to the LBS
weight wypg0, and guides the rigid transformation of vertices on the SMPL mesh according to the
human pose. To account for the differences between the human mesh with garments and the vanilla
SMPL mesh, Hu et al.| (2024b) calculate wy,s by keeping using the LBS weight prior wy,s and
adding an extra learnable network @y, for fine-tuning. This formulation (with index & omitted) can
be summarized as

Wips () = Wibso (NN (¢, V) + Pos (), ®)

where NN; stands for top-1 nearest-neighbor search algorithm and V' represents the canonical stan-
dard SMPL vertices. It will be, however, clarified by us, that this nearest neighbor-based assigning
method will no longer be feasible in cases with complex garments.

In Fig. [3] we present an example of misclassification by the nearest-neighbor search algorithm
in Eq. % Due to the lack of human topology constraints in the canonical space, incorrect clas-
sification of hand-held objects can occur, as shown in Fig. 3] (a). This part, following the naive
nearest-neighbor search, would be assigned to the leg by mistake. Fig. 3] (b) shows the points be-
longing to the hand joint (the correct parent joint where the handheld object should grow). Yet being
solely guided by LBS weights results in the voids by misclassification.

To mitigate this issue, we propose a more robust assignment method based on motion priors, which
we call Motion Kernels. Specifically, in the observation space, the motion kernel of each point x,,
with respect to the k-th joint position jj is defined based on the changes in their pairwise Euclidean
distances through all input /V frames, following

N

. 1 .
MK(wca]k) = NZ(”:EOZ'_JM”Q _/1’)27 (6)
i=1
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Figure 3: Principle of the Motion Kernel. Relying solely on LBS weights will bring the misclassi-
fication in the canonical space shown in (a) to the observation space in (b), resulting in voids. Our
proposed motion kernel focuses on motion-dependent priors in the observation space, offering better
robustness and being less sensitive to misclassifications in the canonical space. This aids for point
assignment process in parent joints localization.

and

1 N
n= N ; l€o; — jki||2' (7

Our motion kernel (MK) reflects the relative motion between each gaussian and joint. A smaller
MK indicates that the pair of gaussian and joint is relatively stationary to each other, signifying
a stronger association, while a larger MK suggests a higher degree of relative motion, indicat-
ing a weaker association. We further represent the assignment weight reflected by the MK as
wwk(x.) = Normalize, (MK *(x., j1)), and the final assignment weight in Eq. (4) (with index
k omitted) becomes

w(xe) = Awmk () + (1 — XN)wips(c), ®)

where A is a hyperparameter to balance the MK weight and LBS weight. Note that we do not
completely abandon the LBS weight, because in practice, the MK cannot differentiate the association
of points on either side of a joint, requiring the LBS weight to compensate.

4.2 GRADIENT-BASED PARENT JOINT LOCALIZATION

By combining Eq. @) and Eq. (8), the parent joints J, C J that require growth can be located.
Basically, we have g5 = (94,,9J,,---,9J, ) to represent the gradient accumulation of total K
human joints. As mentioned in Sec. the joints with larger gradients accumulated are more likely

to require the growth of child joints. This is achieved by sorting g; in descending order 7 to get

sorted __
gJ - (gJ,(l)agJﬂ.(g)a'"agJ.,r(K))'

We set a gradient threshold € to identify the J € J; that requires growth, following
Js = (Jr), Jn@)s - Jn(v)) St Gui oy 2 €gandgy ) < €g, )
where we can safely assume N < K.

For each joint in J, we designate it as a parent joint requiring growth and proceed with the initial-
ization of its child joint. In order to explicitly model each child joint and ensure the consistency with
the SMPL paradigm for ease of animation, we maintain an extra joint book B¢ = (parent, j¢, 7€),
that includes the indices of parent joints, the extra joint positions 7€ in canonical space and the extra
rotations 7€ in its parent joint coordinate. We initialize the joint position to its parent joint’s posi-
tion and set the rotation to the identity rotation. The entire parent joint localization and child joint
initialization process is guided by the gradients, effectively preventing unnecessary overgrowth and
ensuring a dense distribution of the extra joints.

4.3 EXTRA JOINT OPTIMIZATION

The joint positions and rotations in the extra joint book are set as optimizable, which will be stored
and later decoded by two shallow MLPs. According to the SMPL paradigm, the canonical joint
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position is a time-invariant quantity, therefore the joint position optimization network ®,, is defined
as

dj°(i) = @, (PE.(i)), (10)

where P.E. is a positional encoding function as is in (Mildenhall et al., 2020) and ¢ is the joint index
in B¢. Rotations are also dependent on the timestamp ¢ of each frame, thus the rotation optimization
network ®,. is defined as

r¢(i,t) = ®,(PE.(i), PE.(1)). (11)

Now we have the positions of extra joints 7€ (optimized by the offset dj¢) and the rotations .
Each extra joint position is defined in the canonical space, representing the intrinsic properties of
the extended skeleton, while the extra joint rotation in parent joint coordinate varies frame by frame.

Although both the extra joint positions and rotations are stored in the MLPs, their inputs and outputs
are explicit features with real physical meaning, which allows for both implicit and explicit editing.
For example, we can interpolate over timestamp ¢ based on ®,. or directly use explicit inputs to
take the place of @, during animation. The MLPs here function as decoders, deriving joint-related
values from indices and timestamps, thus effectively circumventing the need for explicit storage of
joint values, as employed in SMPL.

4.4 INFERENCE PROCESS AND TRAINING STRATEGY

In this subsection, we explain how our modular growth method is integrated with the training process
of human gaussians.

First, we initialize the canonical gaussians with standard SMPL vertices. At the beginning of train-
ing, we set up a number of warm-up iterations during which no joint growth occurs, and the gaussian
fitting is performed following the traditional human gaussian methods. This prevents underfitting
due to insufficient training, which could further affect the joint localization in Sec.

During the warm-up iterations, canonical human gaussians will be first warped to the observation
space according to the LBS weight in Eq. (5). To compensate for the inability of the LBS model to
represent gaussians rotation and scale, a deformable network ®, is employed to correct the rotation
and scale during the LBS process. To distinguish it from the joint rotation = of the SMPL human
pose, we denote the rotation of the gaussian with subscript g, and

dry,dsg = <I>d(a:g,r0). (12)

The gaussians rotation r, and scale s, are modified with offsets dr, and ds to get the final gaus-
sians in the observation space. In the observation space, we obtain the rendered images through the
rasterisation of gaussians and compute the image loss to supervise canonical gaussians.

Once the warm-up iterations completes, we begin the modular joint growth. With the MK calculated
during the warm-up phase, we can locate the parent joints J that require growth. Then we add
grown joints to the extra joint book B¢, optimizing its positions j¢ and rotations r° during the
subsequent training. Notably, ®,s needs to extend its output dimensions to include the blending
weights for extra joints, following K = K° + K*°. Since the extra joints do not have prior LBS
weights, their blending weights are entirely learned through ®y.

Both the warm-up stage and the post-growth learning stage adopt adaptive density control to man-
age the updates of the gaussian points. We also dynamically adjust the threshold of gradient for
densification in (Kerbl et al., 2023) based on the number of gaussians, in order to balance memory
consumption. Please check our supplemental material for details of this design.

5 EXPERIMENTS

5.1 DATASET

Our method focuses on complex garments and hand-held objects, so we select datasets for exper-
iments accordingly. We notice that the DNA-Rendering dataset (Cheng et al. [2023), by capturing
complex scenes of the human body, meets our requirements. Specifically, we selected 8 cases that
align with our hypothesis, namely 0041_10, 009006, 017607, 080007 (hand-held objects) and
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Table 1: Quantitative comparison between our method and other runners-up. B and G stand for
human body and complex garments. We color each result as best , second best and third best .

Dataset Animatable DNA-Rendering ZJU-Mocap
Method | Metric B | G PSNR(full) + SSIM 1 LPIPS] PSNR(masked) 1t | PSNR(full) + SSIM 1 LPIPS |
3DGS-Avatar X 27.69 0.948 0.0496 16.96 30.61 0.970 0.0296
GART 29.25 0.958 0.0480 17.12 30.91 0.962 0.0318
Im4D X X 26.28 0.965 0.0308 14.90 28.99 0.973 0.0620
GauHuman X 30.22 0.962 0.0405 18.26 30.82 0.962 0.0326
ToMiE(ours) 31.28 0.966 0.0374 19.75 31.10 0.963 0.0312

0007_04, 0007_04, 005109, 0811_06 (loose-fitting garments). For each case, we use 24 surround-
ing views for training and 6 novel surrounding views for testing. All views are synchronized and
contained 100 frames each.

In addition to tackle complex garments, it is essential to ensure the model’s performance in typical
scenarios involving tight-fitting clothes. Therefore, we additionally test our method on the ZJU-
MoCap (Peng et al., 2021b) dataset. Although the tight-clothing cases are too simple to require joint
extension, our overall framework still achieves optimal results. Since this part of the experiment is
not directly related to modular growth, we refer the readers to the supplemental materials for further
visualizations.

5.2 BASELINES AND METRICS

Given the wide variety of work on the human body, we select only the most cutting-edge and rep-
resentative works from each focus area for a fair comparison. Since 3DGS is currently the lead-
ing representation for novel view synthesis, we compare 3DGS-based methods, including 3DGS-
Avatar (Qian et al., [2024), GART (Lei et al., [2024), and GauHuman (Hu et al., [2024b). Among
them, GART is expected to offer extra animatability for its modeling of implicit global auxiliary
bones. Additionally, there is another category of human modeling without incorporating SMPL-like
pose priors. Although these methods don’t guarantee an animatable human avatar, they can achieve
high-quality rendering, among which, we compare the rendering quality of Im4D (Lin et al., 2023)
with our method.

We conduct a comprehensive qualitative and quantitative comparison of our ToMiE against these
methods. We report three key metrics: peak signal-to-noise ratio (PSNR), structural similarity index
measure (SSIM) (Wang et al.|[2004), and learned perceptual image patch similarity (LPIPS) (Zhang
et al.l 2018)). Per-scene results can be found in the supplemental material. In addition to comparing
the rendering results, we also demonstrate the animatability of the extra garments enabled by our
method. We strongly recommend readers to watch the supplemental video for a more intuitive
understanding of the animating results.

5.3 NOVEL VIEW SYNTHESIS RESULTS

Figure 4] and Tab. [I] present the results of our method compared to other baselines. In the tables,
we showcase two evaluation protocols. The first evaluates the entire image, reflecting the overall
rendering quality. The second uses a binary mask to specifically compare the complex garments
regions, demonstrating how our method outperforms others in these challenging cases. The mask is
shown in Fig. |4} and details for its calculation can be found in the supplemental materials.

5.4 ABLATION STUDIES

A. Modular Growth Ablation. We remove the adaptive growth process to ablate its impact on the
rendering results. Table[2] “w/o A” shows a decline in rendering quality, while the human garments
also become not animatable.

B. Non-rigid Design Ablation. In Sec.[4.4] we apply a non-rigid deformation network ®4 to cor-
rect gaussian rotation and scale. As shown in Tab. 2] “w/o B”, this significantly improves the final
rendering quality.
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Table 2: Ablation studies on DNA-Rendering dataset (Cheng et al.,|2023). We independently ablate
the modular growth strategy and non-rigid design to validate their impact on the overall performance.

| PSNR(ful) T SSIM1 LPIPS | PSNR(masked) t

w/o Modular Growth 30.99 0.964 0.0390 19.21
w/o Non-rigid Design 30.78 0.964 0.0363 19.38
Full 31.28 0.966 0.0374 19.75
Ground Truth Mask ToMiE(ours) GauHuman GART 3DGS-Avatar | Im4D*

4
A

/b—

4

Figure 4: Qualitative comparison on the DNA-Rendering dataset (Cheng et al.,|2023). We show two
cases of hand-held objects (0041_10, 0800-07) and two cases of loose-fitting garments (0007_04,
0811_06) (from top to bottom). 3DGS-Avatar (Qian et al.,|2024) can fit hand-held objects in some
cases (e.g., 0041_10), its pose becomes incorrect due to the lack of proper joint optimization (

are parallel). Im4d* (Lin et al.,2023)) achieves high-quality rendering but cannot be animated.
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5.5 ANIMATING HAND-HELD OBJECTS AND LOOSE-FITTING GARMENTS
Reference Motion ToMIiE (ours) Animating GART Animating

Figure 5: Animating Results of ToMiE and GART (Lei et al., |2024). Our explicit modeling fully
decouples garments from the human body, enabling part-specific animating. However, implicit mod-
eling of garments conditioned on SMPL human poses leads to the failure of animating of GART.

We demonstrate the uniqueness of our method, specifically its ability to explicitly animate complex
garments. Our animating approach can be implemented in two ways. On the one hand, we can
utilize the transformation already recorded in the extra joint book to replay garments motions. The
visualization of this part is shown in Fig.[5] On the other hand, ToMiE also supports bypassing the
decoding process of the extra joint book by directly inputting the transformation explicitly. This
allows us to customize the motion trajectory of external joints. Due to the limitations of the image’s
expressive capabilities, we strongly recommend the readers to watch the supplemental video to
check the animated results under the “spiral” trajectory.

In Fig.[5] we edit the extra joints of complex garments while keeping the body poses under the SMPL
paradigm stationary. Since the implicit auxiliary bones of GART (Lei et al., 2024)) is controlled by
the traditional SMPL poses, only the identical appearance can be output when SMPL poses are
stationary. In contrast, our method explicitly models the garments, fully decoupling them from the
traditional SMPL poses, enabling free animating.

6 LIMITATIONS AND CONCLUSION

Limitations. Although our method enhances the modeling for rigid and non-rigid garments, it can-
not address scenarios involving drastic changes in the topology. This is because topological changes
disrupt the one-to-one correspondence between frames, making the human modeling centered on the
canonical space become downgraded. We notice that Park et al.| (2021)) address topology issues by
introducing high-dimensional mappings, which could be adapted to build our non-rigid deformation.
However, this is not the main scope of this paper and can be explored as future work.

Conclusion. In this paper, we introduce ToMiE, a modular growth method designed to extend tra-
ditional SMPL skeleton for better modeling of human garments. In the first stage, we assign the
gradient of gaussian points to different joints by combining LBS weights with the motion kernel
based on motion priors. This allows us to accurately locate the parent joints that need to grow,
avoiding redundant growth. In the second stage, we design an extra joint book to achieve explicit
joint modeling and optimize the transformation of the newly grown joints in an end-to-end manner.
With the improved designs mentioned above, our TOMiE stands out among numerous state-of-the-art
methods, achieving the best rendering quality and animatability of garments. We hope the adaptive
growing method will spark a renewed discussion on the current capabilities of digital human mod-
eling. What’s more, it is expected to offer some insights for subsequent works related to topology
and skeleton generation.

10
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A APPENDIX

A.l

PER-SCENE RESULTS ON DNA-RENDERING DATASET

We exhibit our per-scene results on DNA-Rendering dataset (Cheng et al},[2023)) in Tab.[3] To more
clearly demonstrate the results of the growth, we further present the parent joints J € J, for each
case in Tab.[d] as defined in Sec.[d.2]

Table 3: Per-scene quantitative comparisons on DNA-Rendering dataset.

000704 001406 0041_10
Method PSNR(full) *  SSIM1 LPIPS| PSNR(masked) T PSNR(full)+ SSIMt LPIPS| PSNR(masked)? PSNR(full)t SSIM+ LPIPS| PSNR(masked)
3DGS-Avatar 23.42 0928 0.072 13.92 25.40 0926 0.085 16.09 27.00 0934 0.057 1833
GART 28.23 0952 0.057 17.80 26.87 0942 0.075 17.16 28.45 0942 0.060 15.26
Im4D 25.61 0953 0.037 14.86 26.36 0955 0.042 16.41 25.75 0946 0.046 1651
GauHuman 28.03 0.948 0.054 17.85 2745 0.941 0.071 17.84 29.41 0.946 0.052 16.14
ToMiE(ours) 29.12 0.953 0.050 18.88 28.72 0.947 0.064 19.46 3043 0.950 0.048 19.69

005109 009006 017607
Method PSNR(full) SSIM* LPIPS | PSNR(masked)? PSNR(full)t SSIM1 LPIPS| PSNR(masked)? PSNR(full)? SSIMT LPIPS| PSNR(masked)
3DGS-Avatar 25.06 0953 0.041 14.26 32.88 0968  0.031 19.60 27.93 0954 0034 15.99
GART 26.45 0963 0.042 14.92 34.50 0975 0.030 2043 29.87 0963 0.032 1638
Im4D 24.36 0970 0.030 11.99 28.20 0975 0.023 15.05 26.03 0982 0014 13.87
GauHuman 26.24 0.961 0.039 14.75 36.42 0983 0.021 2291 3225 0980 0018 19.86
ToMiE(ours) 27.43 0965 0.037 15.63 36.70 0984 0.020 22.89 32.77 0982 0017 2029

080007 081106 average
Method PSNR(full) *  SSIM1 LPIPS| PSNR(masked)t PSNR(full)t SSIM1 LPIPS| PSNR(masked)? PSNR(full)t SSIM+t LPIPS| PSNR(masked) 1
3DGS-Avatar 31.27 0.962 0.033 18.59 28.60 0.959 0.044 18.89 27.69 0.948 0.050 16.96
GART 31.94 0.968 0.035 17.48 27.68 0.961 0.052 17.52 29.25 0.958 0.048 17.12
Im4D 27.56 0.970 0.023 14.88 26.36 0.966 0.032 15.60 26.28 0.965 0.031 14.90
GauHuman 33.48 0976  0.024 18.87 28.51 0.961 0.046 17.86 30.22 0962 0.041 18.26
ToMiE(ours) 34.44 0977 0.021 21.01 30.62 0967 0.042 20.17 31.28 0966 0.037 19.75

Table 4: Description of human action and index of grown parent joints J for each sequence. Please
refer to the joint positions in Fig. for a better understanding of the grown joints.

Sequence Description grown parent joints Jg

0007_04 Waving sleeves [18, 19, 20, 10, 21,7, 8,4, 11, 5, 16, 1]
001406 Waving sleeves [10, 20, 18, 16,21,7,4,19, 1, 5,8, 17, 11, 13]
0041_10  Swinging a feather duster [21, 13]

005109 Flowing a dress [8,4,12,5,1,7,11, 10, 2]

0090_06 Tending a bonsai [18, 20, 16, 13]

017607 Using a hairdryer [21]

080007 Watering with a kettle [19, 21, 13, 10]

0811.06 Spinning a dress [4,7,2,1,5,0]

Figure 6: Joints distribution we use in our method. We use the SMPL-X model (Pavlakos et al.,
2019) while removing the MANO (Romero et al.,[2017) joints in hands, as we experimentally find
that the MANO joints in DNA-Rendering data are inaccurately labeled. More empirically, there is

no need to grow extra joints for the fingers.
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A.2 VISUALIZATION ON ZJU-MOCAP DATASET

In Sec. we quantitatively experiment on ZJU-Mocap (Peng et al.,|2021b)) dataset to validate that
our method is also effective in scenarios with tight-fitting garments. In Fig.|/|, we present more
visualization results.

Ground Truth ~ ToMiE(ours) GauHuman Ground Truth  ToMiE(ours) GauHuman

Figure 7: Qualitative results on ZJU-Mocap (Peng et al., 2021b) dataset. Please check the zoom-in
areas to find that our method reconstructs more details compared to GauHuman (Hu et al.| 2024b)),
even in tight-fitting cases where growth of extra joints is not required.

A.3 CALCULATION OF MASKS WITH COMPLEX GARMENTS

Our method focuses primarily on modeling complex garments. In Tab.|l| we further evaluate the
model’s performance in these areas using a binary mask. To generate a mask for each scene that
distinguishes regions containing complex garments, we first segment the potential complex garment
points in 3D space. Specifically, points predominantly controlled by the extra joints and their parent
joints are identified as part of the complex garments. With the pre-trained blending weight, we can
easily locate these points, which are then assigned a white color, while all others are marked in black,
forming a 3D binary mask. Finally, we obtain a 2D binary mask representing complex garments by
applying Gaussian rasterization to the 3D mask. Since we rely solely on this binary mask for metrics
evaluation, this post-processing method for calculating masks is permissible.

A.4 ADJUSTMENT OF THE GRADIENT THRESHOLD FOR DENSIFICATION

In scenarios with complex garments, to prevent excessive gaussian points from causing high memory
consumption, we propose an adaptive suppression strategy to keep the number of gaussian points
within a reasonable range. This is achieved by dynamically adjusting the threshold of the gradient
for densification €4 in (Kerbl et al.|[2023). This threshold €4 represents that points with accumulated
gradients exceeding it will be densified. Therefore, a larger threshold results in fewer split points,
and vice versa.

Let us assume the desired maximum number of gaussian points is N. After each iteration, if the
current number of gaussian points n exceeds [V, we will increase €4 according to

n—N)GdO. (13)

eq = (a+ 2
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In the practical implementation, we set N = 3 x 104, a = 2,b =5 x 103, and ¢4, = 5 x 1074,

A.5 DETAILS OF HYPERPARAMETERS

The A of balancing MK weight and LBS weight in Eq. (8)) is set to 0.4. The gradient threshold
ey to identify the J € J; that requires growth in Eq. is set to 3.5 x 1075, For network
hyperparameters, we detail the number of layers and the width of the MLP network design. P,
has D = 4and W = 128. &, has D = 4and W = 256. ®,. has D = 4 and W = 128. ®; has
D = 2 and W = 128. Specifically, we initialize the weights of the last layer in ®,, and ®,. as a tiny
value 1 x 1072, This provides stability for the initial training phase. Warm-up iterations number
in Sec. [4.4]is set to 8 x 103.

A.6 SUPPLEMENTAL VIDEO

Our supplemental video consists of three parts. First, we present monocular rendering results to
demonstrate that we can accurately render complex garments on the human body, including hand-
held objects. Next, we perform 360-degree rendering of the full video to validate our generalization
capability on novel views. Finally, we fix standard human skeleton still, only animating extra gar-
ments to show our decoupling and explicit animating capability. Since image quality may not fully
demonstrate the effectiveness of human reconstruction, especially for animating results, we recom-
mend that readers refer to this supplemental video for better visualization.
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