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ABSTRACT

Auxiliary objectives, supplementary learning signals that are introduced to help
aid learning on data-starved or highly complex end-tasks, are commonplace in
machine learning. Whilst much work has been done to formulate useful auxiliary
objectives, their construction is still an art which proceeds by slow and tedious hand-
design. Intuition for how and when these objectives improve end-task performance
has also had limited theoretical backing. In this work, we present an approach
for automatically generating a suite of auxiliary objectives. We achieve this by
deconstructing existing objectives within a novel unified taxonomy, identifying
connections between them, and generating new ones based on the uncovered
structure. Next, we theoretically formalize widely-held intuitions about how
auxiliary learning improves generalization on the end-task. This leads us to a
principled and efficient algorithm for searching the space of generated objectives
to find those most useful to a specified end-task. With natural language processing
(NLP) as our domain of study, we demonstrate that our automated auxiliary learning
pipeline leads to strong improvements over competitive baselines across continued
training experiments on a pre-trained model on 5 NLP tasks 1.

1 INTRODUCTION

ICML Experiments
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Objective Data (D) Transform (T ) Representation (R) Output (O)

BERT Out-of-domain BERT-Op Bidirectional Denoise Token

TAPT Task data BERT-Op Bidirectional Denoise Token

DAPT In-domain BERT-Op Bidirectional Denoise Token

ELMO Out-of-domain No-Op Left-to-Right Next Token
and Right-to-Left

GPT Out-of-domain No-Op Left-To-Right Next Token

XLNet Out-of-domain No-Op Random factorized Next Token

Electra Neural LM Data Replace Bidirectional Real / Synthetic

. . . . . . . . . . . . . . .
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Figure 1: We present the decomposition of some auxiliary
objectives in NLP within our framework.

The auxiliary learning paradigm,
where we augment a primary
objective with extra learning
signals to boost end-task
performance, is a staple of
many machine learning (ML)
domains. In natural language
processing (NLP), well known
models like SpanBERT (Joshi
et al., 2020) and RoBERTa (Liu
et al., 2019b) are trained on
masked language modelling
(MLM) auxiliary objectives (Devlin et al., 2018) before fine-tuning on the end-task. And for speech
processing and reinforcement learning (RL), Oord et al. (2018) introduced the popular contrastive
predictive coding objective which achieved state of the art performance in many settings when
multi-tasked with the end-task. Despite these successes and many more, research into devising such
objectives has progressed in a very local, objective-by-objective manner (Raffel et al., 2019; Clark
et al., 2020; Grill et al., 2020; Chen et al., 2020). Auxiliary objectives are constructed by hand-design
and without much overarching structure, relying on the experience and intuition of a select group
of researchers versed at making appropriate design choices. Unfortunately, this status-quo not only
creates a technical barrier of entry for exploring auxiliary objectives in new domains but also, by
virtue of its incremental nature, limits the rate at which new objectives are discovered and investigated.

To address the above challenges, this paper presents a framework for automatically generating and
utilizing a large set of candidate auxiliary objectives. Our framework is seeded by the following key
observation: leading auxiliary objectives across multiple domains can be viewed as making different
design decisions within a 4 stage pipeline: Input Data (D) → Input Transformation (T ) →

∗Correspondence to : ldery@andrew.cmu.edu
1Code available at : https://github.com/ldery/Automating-Auxiliary-Learning.
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Model Representation (R) → Output (O). For instance, in RL, a common auxiliary objective is to
predict the environment’s forward dynamics (Agrawal et al., 2016; Hafner et al., 2019). To construct
this objective, the current task state-action pair (D) is corrupted (T ) and then passed through the
model to produce a latent representation (R) which is finally used to predict the next state (O).
Similarly, in NLP, the XLNet (Yang et al., 2019) objective—which performs language modelling
on a randomly factorized permutation of the input—can be written within our taxonomy as {D =
Out-of-Domain, T = No-op,R = Random-Factorized,O = Next Token}. These two examples (along
with others listed in Figure 1) fall within a class we term named objectives: objectives that have
been previously proposed in the auxiliary learning literature.

Data (D) Transform (T ) Representation (R) Output (O)

Out-of-domain No-Op Bidirectional Next Token
In-domain Replace Left-to-Right Real / Synth
Task data ⇥ Mask ⇥ Right-to-Left ⇥ Denoise Token

Neural LM Data Noising embeds Rand. factorized TF-IDF
. . . . . . . . . . . .

#
TAPT = {Task data ! BERT-Op ! Bidirectional ! Denoise Token}
GPT = {Out-of-domain ! No-Op ! Left-to-Right ! Next Token}

New-Obj1 = {Task data ! BERT-Op ! Left-to-Right ! Denoise Token}
New-Obj2 = {In-domain ! No-Op ! Random Factorized ! TF-IDF}

. . .
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Figure 2: Our framework in the context of NLP. We
decompose named objectives within our four staged taxonomy :
{D, T ,R,O}. By taking the cartesian product of choices across
stages, we reproduce named objectives and discover new ones.

Decomposing named objectives
within our taxonomy provides
a unified view of the auxiliary
learning landscape. From this
vantage point, it becomes clear
that there are many unexplored
combinations of the various
primitives used across named
objectives. This presents a
simple formula for automatically
generating a large set of candidate
objectives: take the cartesian
product of the design decisions
across given stages (Figure 2).
Using this compositional process,
not only can we reconstruct existing named objectives, we can also generate new combinations. This
overcomes the tedium of implementing each objective independently since we can just reuse a small
set of simple stage-wise primitives.

Generating a large set of objectives raises the natural question of how to efficiently select the most
helpful ones for a given end task. Instead of leaving this to practitioner intuition, we develop principled
guidelines to address this question by theoretically studying the impact of auxiliary learning on a
particular end-task. Specifically, using arguments based on algorithmic stability (Hardt et al., 2016;
Bousquet & Elisseeff, 2002), we derive end-task generalization error bounds that are dependent on
the choice of auxiliary task. This contributes to existing theory (Saunshi et al., 2020; Xie et al., 2021)
on how auxiliary learning impacts the end-task by suggesting a new candidate mechanism: auxiliary
learning results in more stable optimization end-points in the sense of Bousquet & Elisseeff (2002),
which in theory improves generalization of the final model.

Guided by our theory, we introduce AANG (Automating Auxiliary LearniNG), an efficient, structure-
aware algorithm for adaptively combining a set of related objectives to improve generalization on a
specific end-task. AANG incorporates the following prescriptions from our theory: (i) auxiliary tasks
that are more similar to the end-task are desirable. Given a set of objectives, AANG learns adaptive
weights to bring the composite objective closer to the end-task; (ii) in general, more auxiliary data is
better. AANG maximizes the effective amount of data used in training by using all the generated
objectives instead of taking task-specific subsets.

To empirically validate our method for automatically generating and utilizing auxiliary objectives,
we experiment on five NLP tasks. We do so in the widely-used setting of continued pre-
training (Gururangan et al., 2020; Aghajanyan et al., 2021; Dery et al., 2021b; Zhang et al., 2022),
where a model trained with a single auxiliary objective on large-scale data is further trained on
end-task related data. Without introducing any external data or architectural modifications, variants
of AANG outperform strong and widely used baselines in 4 out of 5 tasks. AANG achieves an
average improvement of 4.2% over standard fine-tuning of RoBERTa across our chosen tasks. We
believe our results will spur further research into exploring automating auxiliary learning across a
variety of settings. Notably, while we focus on NLP when discussing the space of auxiliary objectives
(Section 3) and in our empirical evaluation (Section 6), our theoretical results (Section 4) and AANG
itself are domain-agnostic2.

2Our ideas could be applied to domains like RL or computer vision (CV), where a similar dissection of
existing objectives can be performed.

2



Published as a conference paper at ICLR 2023

2 RELATED WORK

To properly scope this work, we define auxiliary learning as training a model on alternative objectives
with the goal of improving performance on some primary end-task. Auxiliary learning is an
instantiation of transfer learning (Caruana, 1997; Baxter, 2000; Ruder et al., 2019). It covers
the pretrain-then-finetune paradigm (Huh et al., 2016; Devlin et al., 2018; Schneider et al., 2019;
Gururangan et al., 2020) as well as end-task aware multitasking approaches (Lin et al., 2019; Dery
et al., 2021a;b). Whilst auxiliary objectives may be meta-learned (Liu et al., 2019a; Navon et al.,
2020), for simplicity – since incorporating these would require further complication of our design
space – such objectives are out of the scope of this paper.

This work bears many parallels to the area of neural architecture search (NAS) (Stanley &
Miikkulainen, 2002; Zoph & Le, 2016; Roberts et al., 2021). Whilst we seek to automate auxiliary
learning, the objective of NAS is to automate the discovery of the right neural architecture given a
specific end-task. Search spaces of candidate architectures are created by taking the cartesian product
of architecture design choices across the depth of the network. The design of suitable architectural
search spaces for a variety of settings has been an active area of research (Tan & Le, 2019; Howard
et al., 2019; Dao et al., 2020; Roberts et al., 2021). To develop AANG, we borrow ideas from the
NAS literature on efficient algorithms for sifting through spaces of architectures. Mirroring the
popular differentiable NAS method DARTS Liu et al. (2018), we perform a continuous relaxation
over the search space of objectives, allowing for efficient search by gradient descent. We also use a
factored approach to model relationships between objectives that share primitives. This is inspired by
recent work on stochastic-relaxation weight sharing (Dong & Yang, 2019; Li et al., 2020).

As a theoretical contribution, this work derives an end-task aware generalization error bound for
auxiliary learning. Our bound is built on that of Hardt et al. (2016), who derive generalization bounds
for parametric models trained with stochastic gradient descent (SGD). To derive their bounds, they
leverage the concept of algorithmic stability introduced by Bousquet & Elisseeff (2002). Informally, a
randomized algorithm is uniformly stable if changing a single training data point in the given samples
does not change its end-point too much. Said change is characterized as the average difference in
predictions between the two learned models. Stability implies generalization in expectation (Hardt
et al., 2016; Kuzborskij & Lampert, 2018).

3 AUTOMATICALLY GENERATING AUXILIARY OBJECTIVES

To begin, we take a high-level view of the landscape of named objectives. Using running examples
from NLP, we propose the following coarse structure for the sequence of choices made in the
hand-design of auxiliary objectives:

1. Data, D: Auxiliary objective pipelines begin with a choice of input data. Here, options can range
from heterogeneous out-of-domain data (Radford et al., 2019), in-domain data with respect to the
final end-task (Beltagy et al., 2019) or the task data itself (Gururangan et al., 2020). It may even
include data outside the modality of the end-task.

2. Input-Transformation, T : Many auxiliary objectives are self-supervised with respect to their
input data. They corrupt or transform the input and then reconstruct it in whole or part. For
example, input text tokens can be masked, replaced or deleted. Operations can also be aggregated
as in BERT-Op: mask 80% of selected tokens and randomly replace 50% of the remaining Devlin
et al. (2018); Liu et al. (2019b).

3. Representation, R: After transformation, representations of the input data can be computed
from a given model in different ways. A chosen token’s representation can depend on only its
left context (Left-to-Right) (Radford et al., 2018) or its right context (Right-to-Left) (Peters et al.,
2018). It could also depend on the representations of a randomly selected permutation of other
tokens (Random Factorized) Yang et al. (2019).

4. Output, O: Finally, representations obtained from the previous stage are fed into a loss function
producing a final output. The choice of output loss is usually coupled with the choice of
transformation made in stage 2. Choices include but are not restricted to denoising tokens,
predicting the next token or predicting the TF-IDF (Term Frequency-Inverse Document Frequency)
of a token.
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The above taxonomy {D → T → R → O} is expansive enough to cover a range of named auxiliary
objectives of interest in NLP (Figure 1)3. For example, we can write any member of the GPT series
(Radford et al., 2018; 2019; Brown et al., 2020) which perform left-to-right language modelling on
out-of-domain data as {D = Out-of-Domain, T = No-op,R = Left-To-Right,O = Next Token}. We
can summarize the pre-existing choices within each design stage to obtain a unique set of options. For
example, we can reduce the set of model representation types used by the objectives enumerated in
Figure 1 to the unique set R = {Bi-directional, Left-To-Right, Right-To-Left, Random-Factorized}.
Having summarized the list of primitives within each stage, a simple formula for generating a space of
auxiliary objectives becomes apparent: take the cartesian product of the design choices at each stage
(see Figure 2). In general, given an instance of our taxonomy, we can construct a space of objectives
A = D×T ×R×O of size |A| ≤ |D|× |T |× |R|× |O|. Consider New Obj1 from Figure 2. This
previously unexplored objective can be obtained by combining the special masking operation from
BERT (BERT-Op) with computing model representations based on left-to-right causal masking as in
GPT. In fact, this objective proved one of the most useful ones in our experiments below (see Figure 5).

Our framework also allows us to reason about whole families of objectives, F , by thinking in terms
of design stages and choices. For example, given a particular end-task E with input text ED, we
can create a family of objectives based solely on task data by fixing to that option in our input
data stage; we call this family FD=ED . FD=ED not only includes pre-existing TAPT Gururangan
et al. (2020) but also unexplored objectives like task-data dependent variants of XLNET, ELMO
etc. Auxiliary learning with FD=ED can be seen as a relaxed form of data augmentation which we
dub task augmentation. Whilst data augmentation requires applying transformations that preserve
the data-point’s label, task augmentation has no such restriction and thus offers greater flexibility
in terms of specifying {T ,R,O}. We can also reason about expanding particular stages to include
new primitives. Any supervised loss can be added to the output stage, O, allowing us to potentially
explore auxiliary objectives based on supervised signals like NER or POS tagging (Carreras et al.,
2003; Charniak, 1997). A special example is setting O to the end-task supervised output EO. This
leads to FO=EO

D=ED
which is a subset of FD=ED . FO=EO

D=ED
includes many objectives like predicting

the end-task signal from corrupted input data. In Section 6, we will introduce a search space of
objectives that leverages task augmentation.

4 THE IMPACT OF AUXILIARY LEARNING ON END-TASK GENERALIZATION

In this section, we relieve reliance on practitioner intuition by deriving a set of guiding principles
on how to effectively utilize the automatically generated objectives from Section 3.

Auxiliary learning influences the end-task through both training and generalization error. Previous
theory has largely focused on characterizing the impact on end-task training error. Liu et al. (2021),
for example, show that end-task agnostic pre-training can create a performance gap in training error
compared to training with the end-task alone. The size of this gap depends on how dissimilar the
pre-training auxiliary objective is from the end-task. They introduce the following assumption (which
we will borrow) to formalize their notion of task similarity:
Assumption A.1: Let fe represent the end-task objective and fa be the auxiliary objective. There
exists ∆ ≥ 0 such that ∥∇fa(θ)−∇fe(θ)∥ ≤ ∆ ∀ θ.
Note that θ represents all the parameters of the model. Smaller ∆ implies fa is more similar to the
primary task fe. Liu et al. (2021) bound the end-task agnostic training error gap to be logarithmic in ∆.

Unlike training error, end-task generalization error has gone unstudied in the auxiliary learning
setting. Bounding the generalization error not only adds to our theoretical understanding of the impact
of auxiliary learning but also provides insights to guide algorithm design. To arrive at a bound, we
adapt the technique of Hardt et al. (2016) who derive a generalization bound on training with only the
end-task via stochastic gradient descent. We consider the end-task aware setting where the end-task
is multi-tasked with the auxiliary objective. This setting has recently been shown to improve end-task
performance over the pretrain-then-finetune paradigm (Dery et al., 2021a;b; Yao et al., 2021).

Auxiliary learning with Dynamic Sampling: We are given an auxiliary objective fa(·; z) ∈ [0, 1]
with Na samples Sa = (z1, . . . , zNa) from the distribution Da. fa can either be a single objective or

3Although this taxonomy is quite expansive, it obviously does not consider other elements of objective
creation such as choice of model architecture, optimizer settings, etc.
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a weighted linear combination of objectives : fa =
∑

k w
kfk

a . At any iteration of SGD, we sample
a choice of the end-task function fe or the auxiliary objective fa according to the probabilities λe,
λa ∈ [0, 1] | λe + λa = 1. Given the chosen objective, we sample a data-point and perform stochastic
gradient descent based on the sampled data-point. We now present our bound in the setting described.

Theorem 4.1 (Auxiliary learning with Dynamic Sampling). Assume that fe(; ze), fa(; za) ∈ [0, 1]
are both L-Lipschitz with βe and βa-smooth loss functions respectively. Consider that we have
N ′ = Ne +Na total samples where fe and fa have Ne and Na samples respectively. re = Ne

N ′ is the
fraction of the available data represented by the end-task. Suppose that we run stochastic gradient
descent for T steps with monotonically non-increasing step sizes αt ≤ c

t by dynamically sampling
the tasks according to λe and λa. Then, with respect to fe, the generalization error is bounded by:

ϵgen ⪅
(
∆)

1
1+cλ∗β∗

(
γT

N ′

)1− 1
cλ∗β∗+1

Where γ =
λe

re
(1)

Here β∗ = min{βe, βa} and λ∗ is the weighting of the function with smaller smoothness.

Proof. See Appendix E for full proof and Appendix F for more discussion

As a detailed inspection of the proof will show, we derive Equation 1 by appealing to algorithmic
stability (Bousquet & Elisseeff, 2002; Hardt et al., 2016; Kuzborskij & Lampert, 2018) (Section
2). To our knowledge, ours is the first work to present an algorithmic stability view to formally
explain how auxiliary learning influences end-task performance. Equation 1 surfaces the following
prescriptions about learning with auxiliary tasks :
P1 Smaller ∆ improves ϵgen. This implies that the more similar the auxiliary objective is to the

end-task (under Assumption A.1), the lower the generalization error.
P2 Larger N ′ leads to smaller ϵgen4. Since we usually have a fixed amount of task data Ne, we can

increase N ′ by adding more auxiliary data Na.

5 END-TASK AWARE SEARCH OF STRUCTURED OBJECTIVE SPACES

Algorithm 1 AANG
Input: Search Space - A
Factor vectors - {WAll,W I ,W T ,WR,WO}
End-task - E, End-task weight - λe

Initial Model Params - θ0 ∈ RD

repeat
Sample a batch of n objectives
Kn ∼ A
Weighting of objectives in Kn

Construct wn

for k = 1 to n do
(d, t, r, o) = [Kn

k ].stages
wk ∝ exp

(
WAll

(d, t, r, o)+W I
d +W T

t +WR
r +WO

o

)
wn

k ← wk

end for
Get losses from batches of data
L̂A(Kn,wn) =

∑n
k=1 w

kLk

Ltotal = λeLE + (1− λe)L̂A
Get gradients and update factors
θt+1, {∇wn,λe} ←META-TARTAN

(
θt, E,Ltotal)

Update {WAll,W I ,W T ,WR,WO} using∇wn

Update λe using∇λe

until done
Return : θT

Guided by Section 4, we build a practical
method for exploring a set of objectives, A.

Whilst the dynamic sampling setting
described in Section 4 is amenable to
theoretical consideration, we make a few
practical changes to it. First, instead of
performing alternating gradient descent
by sampling fa, fe according to λe, λa,
we instead use them as multitask weights
and perform joint training. Joint training
has been found to produce superior results
compared to alternating optimization when
leveraging auxiliary objectives (Aghajanyan
et al., 2021). We perform gradient descent
on the following total loss which interpolates
between the end-task and the auxiliary loss
Ltotal = λeLE + (1 − λe)LK. Here, K is
a chosen subset of A.

Second, as indicated in Section 4, given K,
we can write the set as a single objective
fa =

∑
k∈K wkfk

a . By Prescription P1, we
want to choose {wk} such that fa has a
small ∆ with the end-task fe. We would

also like to set λe such that the bound on ϵgen is minimized. Whilst a closed form exists for the
optimal weightings λe, {wk}, it depends on variables like {∆k}, {βk

a}, L that are hard to estimate.

4This holds at fixed γ which we achieve by adjusting λe to account for introducing more auxiliary data.
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We therefore propose to learn λe, {wk} in an online, data-driven way. To do this, we build on
top of the META-TARTAN algorithm proposed by Dery et al. (2021b). META-TARTAN is a
meta-learning algorithm that learns adaptive weights for different auxiliary tasks in a way that
prioritizes end-task generalization. It learns {wk} by minimizing the loss on the end-task validation

set: ∂Lval
E

∂wk ≈ −
(
∇θLfk

a

)T (∇θLval
E

)
. This corresponds to learning {wk} such that

(
∇θfa

)T (∇θfe)
is maximized. This minimizes one of the terms that contributes to ∆ and thus attempts to fulfil
Prescription P1. We can similarly learn λe to minimize the end-task validation loss. For a more
detailed discussion of META-TARTAN, please see Appendix B.

So far, we have introduced independent weights, {wk}, for each objective. This is sufficient in
the case of unrelated objectives. However, the objectives in A share an underlying structure. We
recognize this by using a factored approach to model each wk. We introduce a factor vector for each
of the 4 stages introduced in Section 3: WD ∈ R|D|,W T ∈ R|T |,WR ∈ R|R| and WO ∈ R|O|.
This ties together the weights of objectives that share primitives in common. To capture the fact
that an objective can be more than the sum of it parts, we also introduce an independent weight
for each objective : WAll ∈ R|D|×|T |×|R|×|O|. Consider the objective k which is generated by
the composition of the operations {d ∈ D, t ∈ T , r ∈ R, o ∈ O}, its weighting is computed as
: wk ∝ exp

(
WAll

(d,t,r,o) + W I
d + W T

t + WR
r + WO

o

)
. Our factored approach not only allows us

to share information between objectives but it also allows us to analyze which stages and primitives
are most important to a particular end-task after training is completed (Section 7).

Prescription P2 from Section 4, advocates for introducing as much auxiliary data as possible. As
such, instead of fixing to a specific subset throughout training for a particular end-task, we propose to
utilize all the objectives in A. This also avoids the combinatorial explosion that comes with exploring
subsets of A at a time. |A| can be large and descending on all of A at once can be computationally
prohibitive. As an efficient work around, at each training step, we sample a subset of A for execution
with META-TARTAN. Our samples are drawn from all of A so any objective can get used at any
timestep. Because we model each wk via a factored approach, even if an objective is not sampled
its weight is implicitly updated. Our approach is reminiscent of stochastic-relaxation weight sharing
(Pham et al., 2018; Dong & Yang, 2019; Li et al., 2020) where sampled architectural primitives result
in updates to shared model weights which can be used by other primitives that are not sampled.

We coalesce all the ideas we have introduced so far into Algorithm 1 which we dub
AANG (Automated Auxiliary LearniNG). At a high-level, given an end-task E:

1. We generate a space of auxiliary objectives A by leveraging the taxonomy discussed in Section 3.
A may contain auxiliary tasks that can improve our performance on E.

2. We leverage MAML-style (Finn et al., 2017) meta-learning to adaptively weight the objectives in
A based on measuring each objective’s influence on E’s validation set loss.

3. We make our algorithm scalable by sub-sampling the tasks A. By exploiting the underlying
structure of the objectives in A via a factored approach to modeling task weights, we reduce the
impact of the inexact sub-sampling.

6 EXPERIMENTAL SETTING

Our exploration of auxiliary learning has made the following transitions from the status-quo: manual
to automated, single task to multitask, end-task agnostic to end-task aware. In this section, we set up
experiments to validate these deviations from the standard.

We focus on continued pre-training (Gururangan et al., 2020; Aghajanyan et al., 2021). In this
setting, we perform further auxiliary learning on an already pre-trained model. We favor this setting
over pre-training from scratch (Liu et al., 2019b; Yang et al., 2019) not only because it is a more
computationally feasible arena for experimentation but also because it is more relevant to modern
ML systems where building upon pre-trained models is the norm (Qiu et al., 2020; Du et al., 2020).
Model Details and Datasets: We use a pre-trained RoBERTabase (Liu et al., 2019b) as the shared
model base. We implement each auxiliary objective as a separate head on top of this shared base.
For classification based objectives, the output head is a 2-layer multi-layer perceptron (MLP)
that receives representations for the special classification token [CLS] (Devlin et al., 2018) from
RoBERTabase. For sequence generation objectives, we make a copy of the pre-trained output layer
of RoBERTabase for each task. Table 4 in Appendix C provides details of the 5 datasets used.
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All datasets are low-resource classification tasks. Not only are these datasets more amenable to
meta-learning from a computational standpoint, but low-resource tasks also benefit the most from
auxiliary learning. We also choose these tasks because they feature in previous work which we use
as baselines (Gururangan et al., 2020; Dery et al., 2021b)
Baselines and Search Spaces: The following methods are end-task agnostic baselines. By end-task
agnostic, we mean that these do not multitask with the end-task. Finetuning on the end-task occurs
after training on the auxiliary objective.
1. RoBERTa (Liu et al., 2019b): We simply finetune a pre-trained RoBERTabase on the end-task.
2. TAPT (Gururangan et al., 2020): Continue training RoBERTabase on masked language

modelling on end-task data itself before finetuning on the end-task.
The following named objectives are end-task aware baselines that use META-TARTAN (Dery et al.,
2021b) but utilize only 1 auxiliary task. Each auxiliary objective is multi-tasked with the end-task.
1. GPT-style: We perform end-task aware training with a denoising auxiliary objective based on

left-to-right causal masking for computing representations. {I = End-task data, T = No-op, R =
Left-To-Right, O = Denoise Token }.

2. XLNET-style: This is a denoising auxiliary objective that uses randomized masking for computing
representations. {I = End-task data, T = No-op, R = Random-factorized, O = Denoise Token}.

3. BERT-style / TAPT: Denoising inputs corrupted via BERT-Op: 80% masking and 10% random
replacement. {I = End-task data, T = BERT-Op, R = Bi-directional, O = Denoise Token}. Please
note that this baseline is equivalent to META-TARTAN as introduced in Dery et al. (2021b).

Table 1: AANG-TD (task data) has 24 objectives and is based on
only end-task data. AANG-TD+ED (task data + external data)
has 40 objectives and uses both end-task and in-domain data.

I T R O
TD End-task BERT-op Bi-directional Denoise Token

Mask Left-to-Right End-task

TD+ED End-task Replace Right-to-Left
In-Domain data No-op Random-Factorized

Table 1 details the search spaces
that we evaluate against the above
baselines. This is by no means the
most encompassing search space
but we leave more expansive
space design to future work.
Please note that all tasks within
AANG-TD, and those with {I =
End-task} in AANG-TD+ED, are
instantiations of task augmentation as introduced in Section 3.
Training Details : Please see Appendix D for more details about hyper-parameter configurations.

7 RESULTS AND DISCUSSION

In this section, we experimentally validate our case for automating the creation of auxiliary objectives
and using them in an end-task aware multitask fashion.

7.1 GOING A LONG WAY WITHOUT EXTERNAL DATA

We first consider the setting where we rely solely on end-task data (task augmentation), and work with
the AANG-TD search space. This search space has 24 objectives. Table 2 shows that automatically
generating auxiliary objectives from only task data and using them appropriately is productive.
End-task awareness is key: From Table 2, methods that are end-task aware result in over 1.12%
average improvement over those that are end-task agnostic even under the most generous comparison
(GPT-style 79.84% vs task-agnostic TAPT 78.72%). Knowing the end-task means that at each
iteration, AANG can make informed gradient updates by adapting task weights so the resulting
auxiliary task better aligns with the end-task (Prescription P1). Amongst the single task objectives,
BERT-style performs best. We posit that this is because RoBERTa was trained from scratch on a
similar objective and so this objective represents minimal shift in training distributions.
Adaptive multi-task auxiliary learning improves performance: We compare single-task end-task

aware auxiliary learning to its multitask variant. Table 2 shows that multitasking our 3 different
types of language modelling tasks results in improved average performance over using the tasks
individually (81.12% for the BERT-style and 81.55% for combining the three single task objectives).
We get our best performance when we multitask 24 auxiliary objectives automatically generated with
our framework using AANG-TD. Boosting the number of objectives from 3 to 24 resulted in a 0.66%
improvement in average performance across tasks. This is in line with Prescription P2 from Section
4 since we are increasing the effective amount of auxiliary data. We further posit that introducing
more auxiliary objectives also serves to implicitly regularize the end-task during training.
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Table 2: Our framework and AANG on tasks using only task data. Without using any external data,
we are able to get significant average performance improvement over baselines. Superscripts are
p-values from paired t-tests (best multitask versus best single-task).

Task Adaptive Method # CS BIOMED NEWS STANCE

ACL-ARC SCIERC CHEMPROT H.PARTISAN SE-2016-6 AVG

No RoBERTa 1 66.033.55 77.962.96 82.100.98 93.392.26 70.371.51 77.97
TAPT 1 67.743.68 79.531.93 82.170.65 93.422.87 70.741.21 78.72

[OURS] Static Multitask-TD 24 69.603.80 83.370.58 83.420.26 97.950.73 71.020.43 81.07

Yes X. GPT-style 1 67.220.44 81.620.84 83.291.21 96.410.73 70.671.46 79.84
Y. XLNET-style 1 69.762.42 81.810.42 83.390.31 96.411.92 71.180.58 80.51

Z. BERT-style (Dery et al., 2021b) 1 70.084.70 81.480.82 84.49
(0.09)
0.50 96.841.72 72.700.60 81.12

[OURS] AANG-[X+Y+Z] 3 71.513.19 82.890.78 83.680.45 96.921.26 72.75
(0.94)
0.82 81.55

[OURS] AANG-TD 24 73.26
(0.28)
1.32 82.98

(0.27)
1.52 83.910.32 98.46

(0.14)
0.0 72.461.65 82.21

7.2 INTRODUCING EXTERNAL DATA

Figure 3: AANG effectively leverages
out-of-task data. P-values (in brackets)
are comparisons to (Dery et al., 2021b)

For the ACL-ARC task, we experiment with introducing
auxiliary tasks based on external data. AANG-TD+ED
has 40 tasks, 16 of which are based on domain data. We
introduce CS domain data (from the S2ORC dataset (Lo
et al., 2019)) that is n = 10× the size of the task data. From
Figure 3 we see that AANG-TD+ED makes better use of
domain-data than doing end-task aware training using only
BERT-style objective with task (TAPT) and domain-data
(DAPT) jointly as in Dery et al. (2021b). However,
AANG-TD+ED (73.70) does not significantly improve over
AANG-TD (73.26) on the ACL-ARC task (Figure 3). This
might seem at odds with Prescription P2 since the TD+ED
search space introduces more data. However, note that the
AANG search algorithm is approximate and as such, with a
larger search space, it can be harder to find composite tasks
with a small ∆ as suggested by Prescription P1. We posit
that we need more external data than n = 10× in order to
see marked improvements to offset our inexact search of
the space of composite functions. However, such scales are outside our computational budget.

7.3 WHY DOES AANG WORK ?

To better understand why our auxiliary learning pipeline improves end-task performance, we perform
multiple ablations under AANG-TD.
Static versus Dynamic Weighting: We ablate the impact of using static task weights throughout
training, as against adaptive task weights. Just as with AANG, we sub-sample n tasks from the
search space at every iteration (n is cross-validated exactly as AANG is – Table D ). Each sampled
tasks weight is initialized to 1

n and this remains unchanged throughout training. This is the Static
Multitask-TD baseline in Table2. AANG-TD improves upon the static multitask baseline by over
1.1% on average. With adaptive weighting, AANG down-weights objectives that are harmful to the
end-task whilst up-weighting relevant ones (Prescription P1). However, using static weightings is
more compute friendly since we do not have to calculate task-weight meta-gradients. This compute-
vs-performance trade-off is left for practitioners to resolve based on their available resources.
Impact of number of sampled objectives: Due to computational constraints, AANG sub-samples
the set of generated objectives. Whilst this sampling can result in approximation error when inferring
task weightings, it can also introduce stochasticity which can help regularize the learned model. From
Table 3 (Appendix A) we find that for some tasks (ACL-ARC and SCIERC) sampling a larger number
of tasks helps. SE-2016-6 and CHEMPROT on the other hand benefit from smaller number of sampled
tasks. Our recommendation is that the number of sampled tasks be cross-validated on a per-task basis.
Learned task weight trajectories: AANG learns interesting trajectories for weighting design stage
primitives. From Table 2, the fact that AANG-TD roughly matches the best single task performance
(72.461.65 versus 72.700.60 for BERT-style) on the SE-2016-6 task suggests that it may be learning
to mostly up-weight this task. Figure 4 provides evidence of this. For the SE-2016-6 task (row 1),
composing the highest weighted primitive from each stage [BERT ◦ None ◦ DENOISE] results in
BERT-style, the best single task objective. Figure 4 also shows that AANG can adapt to overfitting.
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Figure 4: Learned trajectories for AANG-TD for run instances of SE-2016-6 and SCIERC tasks.

The vertical black lines indicate the point of best validation set performance. AANG responds to
over-fitting by down-weighting objectives based on the output loss being over-fit to. Thus, after
several iterations, the objective that dominates when the validation performance is at its highest (black
vertical line) gets down-weighted in response to it becoming saturated.
What tasks are important and when they are important? We study which tasks are most highly
weighted early in training (first 10% of learning trajectory) and later in training (last 50%). We
aggregate statistics across 3 datasets. Note that early in training, objectives based on the self-
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Figure 5: Top ranked objectives (averaged weight) early in training (left) and later in training (right)
supervised output O = {DENOISE} are highly weighted but later, objectives based on supervised
signal, O = {Task} play a larger role. AANG rediscovers the common practice of training on
self-supervised objectives before introducing supervised ones. It is also interesting to note that
many newly generated objectives (outside of the 3 named single task baselines in Table 2) such as
simple input reconstruction were discovered to have relevant impact on the end-tasks. This means
AANG can automatically surface new, previously unexplored objectives relevant to the end-task.

8 LIMITATIONS AND CONCLUSION

Our work has some limitations that we leave for future work. First, because AANG relies on
meta-learning, it presents extra compute burden over simple multitasking. This is because, we have to
independently compute meta-gradients for each auxiliary task thus requiring O(n) forward-backward
operations for n sampled tasks compared to O(1) for static multitasking. In Table 2, we show that
our static Multitask-TD method outperforms all other non-task-adaptive methods by ≈ 2.4% and
is thus a viable alternative when runtime is a signficant constraint. Secondly, AANG as presented
is an approximate algorithm – primarily due to sub-sampling the space of tasks. Thus as mentioned
in Section 7.2, we do not get as much gain as desired when our search space becomes larger. We
leave finding an efficient exact search algorithm for future exploration.

This paper presents a procedure for automating the creation of auxiliary objectives. We showed,
theoretically, how auxiliary learning impacts end-task generalization. This resulted in prescriptions
that informed the design of AANG, an algorithm to search the space of generated objectives in an
end-task aware multitask fashion. Our experiments show that AANG is a promising first step in
automating auxiliary learning.
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Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International Conference on Machine Learning, pp. 1225–1234. PMLR, 2016.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324,
2019.

Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. What makes imagenet good for transfer
learning? arXiv preprint arXiv:1608.08614, 2016.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy. Spanbert:
Improving pre-training by representing and predicting spans. Transactions of the Association for
Computational Linguistics, 8:64–77, 2020.

David Jurgens, Srijan Kumar, Raine Hoover, Dan McFarland, and Dan Jurafsky. Measuring
the evolution of a scientific field through citation frames. Transactions of the Association for
Computational Linguistics, 6:391–406, 2018.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Emmanuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. SemEval-2019 task 4: Hyperpartisan news detection. In
Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 829–839, Minneapolis,
Minnesota, USA, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/
S19-2145. URL https://aclanthology.org/S19-2145.

Jens Kringelum, Sonny Kim Kjaerulff, Søren Brunak, Ole Lund, Tudor I Oprea, and Olivier
Taboureau. Chemprot-3.0: a global chemical biology diseases mapping. Database, 2016, 2016.

Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic gradient descent. In
International Conference on Machine Learning, pp. 2815–2824. PMLR, 2018.

Liam Li, Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Geometry-aware gradient
algorithms for neural architecture search. arXiv preprint arXiv:2004.07802, 2020.

Xingyu Lin, Harjatin Baweja, George Kantor, and David Held. Adaptive auxiliary task weighting for
reinforcement learning. Advances in neural information processing systems, 32, 2019.

11

https://arxiv.org/abs/1703.03400
https://aclanthology.org/S19-2145


Published as a conference paper at ICLR 2023

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Shikun Liu, Andrew J Davison, and Edward Johns. Self-supervised generalisation with meta auxiliary
learning. arXiv preprint arXiv:1901.08933, 2019a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

Ziquan Liu, Yi Xu, Yuanhong Xu, Qi Qian, Hao Li, Antoni B. Chan, and Rong Jin. Improved
fine-tuning by leveraging pre-training data: Theory and practice. CoRR, abs/2111.12292, 2021.
URL https://arxiv.org/abs/2111.12292.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Dan S Weld. S2orc: The semantic
scholar open research corpus. arXiv preprint arXiv:1911.02782, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2017. URL https:
//arxiv.org/abs/1711.05101.

Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. Multi-task identification of
entities, relations, and coreference for scientific knowledge graph construction. arXiv preprint
arXiv:1808.09602, 2018.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sobhani, Xiaodan Zhu, and Colin Cherry. SemEval-
2016 task 6: Detecting stance in tweets. In Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016), pp. 31–41, San Diego, California, June 2016. Association
for Computational Linguistics. doi: 10.18653/v1/S16-1003. URL https://aclanthology.
org/S16-1003.

Aviv Navon, Idan Achituve, Haggai Maron, Gal Chechik, and Ethan Fetaya. Auxiliary learning by
implicit differentiation. arXiv preprint arXiv:2007.02693, 2020.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. CoRR, abs/1802.05365, 2018. URL
http://arxiv.org/abs/1802.05365.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In International Conference on Machine Learning, pp. 4095–4104. PMLR,
2018.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. Pre-trained
models for natural language processing: A survey. Science China Technological Sciences, pp.
1–26, 2020.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Nicholas Roberts, Mikhail Khodak, Tri Dao, Liam Li, Christopher Ré, and Ameet Talwalkar.
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A MORE ABLATION TABLES

Table 3: Varying number of sampled objectives per-iteration.
Task 3

24
tasks 6

24
tasks

ACL-ARC 72.112.12 73.261.32

SCIERC 82.351.76 82.981.52

SE-2016-6 72.461.65 72.460.90

CHEMPROT 83.910.32 83.690.98
H.PARTISAN 98.460.0 97.950.73

B DISCUSSION OF META-TARTAN (DERY ET AL., 2021B)

META-TARTAN (Dery et al., 2021b) is a MAML style (Finn et al., 2017) meta-learning algorithm
that learns to adaptively weight a given set of tasks based on their influence on the end-task validation
performance. META-TARTAN achieves this by formulating the following bi-level optimization
problem :

θ∗,w∗ = argmin{θ ∈ g(θ0), w} LE(θ) (2)

where

θ0 = argminθ Ltotal(θ,w) = argminθ

(
w∗LE(θ) +

∑
Ti∈A

wiLTi
(θ)

)
(3)

Note that E is the end-task and A is the set of auxiliary tasks.

Since the above bi-level problem is difficult to solve directly, Dery et al. (2021a) relax the problem and
into an alternating optimization problem where task weights are updated based on 1-step improvement
to the validation performance of the end-task :

∂Lval
E (θt+1(w))

∂wi
≈ −β

(
∇LTi

)T (∇Lval
E (θt)

)
(4)

To prevent the above relaxation from finding the trivial solution of just upweigting solely the end-task,
Dery et al. (2021b) introduce a special dev-head which they use for estimating the meta-gradient :

∂Lval
T∗ (θ∗(w))

∂wi
≈ −β

(
∇θLTi

)T (∇θLval
E ([θbody;ϕ

∗]t)
)

(5)

Where ϕ∗
t is the special dev-head and θbody is the body of the model. For even more details about

META-TARTAN, please see Section 3 of Dery et al. (2021b).
Though we leverage MET-TARTAN, compared to Dery et al. (2021b), we make three distinct
contributions to the field of auxiliary learning. We list them below

1. Novel Problem Formulation: As far as we are aware of, we are the first to formulate
the problem of automated auxiliary learning. Specifically, we presented an approach for
automatically constructing a suite of auxiliary objectives based on existing objectives. Please
note that Dery et al. (2021b) perform auxiliary learning with only the DAPT/TAPT variants
of the BERT objective. They effectively assume that the search space of objectives (the 2
they explore) is given before-hand. Our approach automatically creates the search space.

2. Theoretical Novelty: To the best of our knowledge, we are the first work to provide an
exploration of why auxiliary learning improves primary task performance via algorithmic
stability. Dery et al. (2021b) in introducing META-TARTAN do not attempt to give a
theoretical characterization of why the algorithm improves end-task performance.

3. Algorithm Improvements to META-TARTAN: Please note that META-TARAN as
presented in Dery et al. (2021b) was used with only 2 auxiliary tasks. When scaling to more
tasks, using META-TARTAN naively becomes computationally prohibitive. Specifically,
on a search space of N tasks, META-TARTAN requires O(N) order computation per step.
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We improve upon this by introducing the task sub-sampling of (k ≪ N ) which reduces the
compute overhead to O(k). To account for the impact of sub-sampling as an approximation,
we introduced the factorised modelling of task weights which allows sharing of information
between auxiliary tasks that might themselves be related.

C DATASET DETAILS

Table 4: Specifications of datasets used to evaluate our methods.

Domain Task Label Type Train Size Dev Size Test Size Classes Metric

BIOMED CHEMPROT Kringelum et al. (2016) relation classification 4169 2427 3469 13 Accuracy
CS SCIERC Luan et al. (2018) relation classification 3219 455 974 7 F1
STANCE SE-2016-6 Mohammad et al. (2016) stance detection 2497 417 1249 3 Accuracy
CS ACL-ARC Jurgens et al. (2018) citation intent 1688 114 139 6 F1
NEWS H.PARTISAN Kiesel et al. (2019) partisanship 515 65 65 2 Accuracy

D MORE TRAINING DETAILS

We run each hyper-parameter configuration across 3 seeds {0, 1, 2}. We use a batch size of 128
for all end-tasks tasks except H.PARTISAN where we use a batch size of 64. The auxiliary task
batch-size, aux bsz, is shared across all the n sub-sampled auxiliary objectives according to the
objective’s weight.

We use the AdamW optimizer (Loshchilov & Hutter, 2017), with weight decay of 0.01 for all
experiments.

Table 5: AANG-TD specific Hyper-parameters
Hyper-parameter Values Description

aux lr 1.0, 0.1 Learning rate for factor vectors - {WAll,W I ,W T ,WR,WO}
sopt lr 0.1, 0.01 Learning rate for primary task weighting λe

nconf subsamp 3, 6 Number of sub-sampled auxiliary tasks.
learning rate 1e-3, 1e-4 Learning rate used for further training of RoBERTabase
aux bsz 256 Batch size of for auxiliary objectives

Table 6: AANG-TD+ED specific Hyper-parameters
Hyper-parameter Values Description

aux lr 1.0, 0.5, 0.1 Learning rate for factor vectors - {WAll,W I ,W T ,WR,WO}
sopt lr 0.1 Learning rate for primary task weighting λe

nconf subsamp 6, 12, 24 Number of sub-sampled auxiliary tasks.
learning rate 1e-4 Learning rate used for further training of RoBERTabase
aux bsz 1024 Batch size of for auxiliary objectives

Table 7: META-TARTAN Hyper-parameters for single task auxiliary tasks
Hyper-parameter Values Description

sopt lr 1.0, 0.1, 0.01 Learning rate for primary task weighting λe

learning rate 1e-3, 1e-4, 5e-5 Learning rate used for further training of RoBERTabase

META-TARTAN introduces a dev-head which is trained sporadically during training for estimating
the meta-gradients. We use the following hyper-parameters for training this dev-head : we sample 32
examples (8 examples in the case of H.PARTISAN) and perform full batch gradient descent with
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a learning rate of 1e-2 for 10 iterations. The dev-head is trained with the AdamW optimizer with
weight decay set to 0.1.

We copy the end-task agnostic baseline results from (Dery et al., 2021b) when available. We use the
hyper-parameters specified for TAPT in Gururangan et al. (2020) to train for the SE-2016-6 task.

All models were trained on one of two types of gpus: NVIDIA A100 or NVIDIA A6000. All models
fit within a single gpu. We used gradient accumulation to expand the effective batch sizes used for
our experiments.

E GENERALIZATION ERROR BOUND FOR END-TASK AWARE TRAINING

E.1 DEFINITIONS

Definition E.1. A function, f : Ω → R is L-Lipschitz if ∀u, v ∈ dom(f):

∥f(u)− f(v)∥ ≤ L∥u− v∥
Note that L-Lipschitz implies bounded gradients.

∥∇f(w)∥ ≤ L ∀w
Definition E.2. A function, f : Ω → R is β-smooth if ∀u, v ∈ Ω:

∥∇f(u)−∇f(v)∥ ≤ β∥u− v∥
Definition E.3. An update rule, G is σ-bounded if :

supw∈Ω ∥w −G(w)∥ ≤ σ

Consider the following general setting. There is an unknown distribution De over examples from
some space Z . We receive a sample S = (z1, . . . , zNe

) of Ne examples drawn i.i.d. from De. Our
goal is to find a model w, that parameterizes the function fe, with small population risk defined as:
Definition E.4. Population Risk

R[w] = Ez∼De
fe(w; z)

Definition E.5. Empirical Risk
Since we have a finite number of samples, we can only compute the empirical risk which is :

RS [w] =
1

Ne

∑
i

fe(w; zi),

Let A be a potentially randomized algorithm (such as Stochastic Gradient Descent) that is a function
of the S such that w = A(S).
Definition E.6. Generalization Error ϵgen(A,Ne)

ϵgen(A,Ne) = ES,A

[
RS [A(S)]−R[A(S)]

]
Definition E.7. Uniform Stability
A randomized algorithm A is ϵ-uniformly stable if for all data sets S, S′ ∈ Z, |S| = |S′| = Ne such
that S and S′ differ in at most one example, we have

sup
z

EA

[
fe(A(S); z)− fe(A(S′); z)

]
≤ ϵ

Here, the expectation is taken only over the internal randomness of A. We will denote by ϵstab(A,Ne)
the infimum over all ϵ for which the above holds.

E.2 RELEVANT THEOREMS

Theorem E.1 (Uniform Stability implies Generalization in expectation). Let Algorithm A be ϵ-
uniformly stable. Then,

ϵgen(A,Ne) =

∣∣∣∣ES,A

[
RS [A(S)]−R[A(S)]

]∣∣∣∣ ≤ ϵstab(A,Ne)

For full proof see Theorem 2.2 of Hardt et al. (2016).
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Theorem E.2 (Stochastic Gradient Method is stable). Assume that fe(; z) ∈ [0, 1] is an L-Lipschitz
and βe-smooth loss function for every z. Suppose that we run SGM for T steps with monotonically
non-increasing step sizes αt ≤ c

t . Then, SGM has uniform stability with :

ϵsgm ≤
1 + 1

q

Ne − 1

(
2cL2

) 1
q+1T

q
q+1

where q = βec

We can simplify this to only terms involving T and Ne

ϵsgm ⪅
T 1− 1

cβe+1

Ne
(6)

Proof. For the full proof, see Theorem 3.12 of Hardt et al. (2016)

E.3 GROWTH FUNCTIONS

Lemma E.3 (Growth Recursion Under Dynamic Sampling). We consider the Stochastic Gradient
update rule G : Ω → Ω :

Gf (w) = w − α∇f(w)

Fix an arbitrary sequence of updates Gf1 , . . . , GfT and another G′
f1
, . . . , G′

fT
. Let w0 = w′

0 be a
starting point in Ω given that f : Ω → R and define

δt = Ef1...ft∼Pλ

[
∥wt − w′

t∥
]

where wt, w
′
t are defined recursively through :

wt = Gft(wt−1) w′
t = G′

ft(w
′
t−1) t ≥ 0

Then we have the recurrence relation :

δ0 = 0

δt+1 ≤
{

min
{(

1 + αλ1β1

)
δt + αλ2

(
∆+ 2L

)
,
(
1 + α

(
λ1β1 + λ2β2)

)
δt
}

Gft = G′
ft

δt + 2σt Gft , G
′
ft

are σ-bounded

Note that Pf is a distribution over the support {f1, f2} according to probabilities {λ1, λ2 | λ1+λ2 =
1}. {f1, f2} have smoothness β1, β2 respectively.
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Proof. The second bound on δt is taken directly from Lemma 2.5 of Hardt et al. (2016). We now
derive the first-half of the first bound
δt+1 = Ef1...ft+1∼Pλ

[
∥wt+1 − w′

t+1∥
]

= Ef1...ft∼Pλ

[
λ1∥Gf1(wt)−G′

f1(w′
t)∥+ λ2∥Gf2(wt)−G′

f2(w′
t)∥

]
= Ef1...ft∼Pλ

[
λ1∥wt − α∇f1(wt)− w′

t + α∇f1(w′
t)∥+ λ2∥wt − α∇f2(wt)− w′

t + α∇f2(w′
t)∥

]
≤ Ef1...ft∼Pλ

[
∥wt − w′

t∥
]
+ αEf1...ft∼Pλ

(
λ1∥∇f1(w′

t)−∇f1(wt)∥+ λ2∥∇f2(w′
t)−∇f2(wt)∥

)
(Triangle Inequality used for above step)

= δt + αEf1...ft∼Pλ

(
λ1∥∇f1(w′

t)−∇f1(wt)∥+ λ2∥∇f2(w′
t)−∇f2(wt)∥

)
(Without Loss of Generality, let β1 ≤ β2)

≤ δt + αEf1...ft∼Pλ

[
λ1β1∥wt − w′

t∥+ λ2∥∇f2(w′
t)−∇f2(wt)∥

]
(Smoothness)

= δt + αλ1β1δt + αλ2Ef1...ft∼Pλ

[
∥∇f2(w′

t)−∇f2(wt)∥
]

(Triangle Inequality)

=
(
1 + αλ1β1

)
δt + αλ2

∥∥∥∥∇f2(w′
t)−∇f1(w′

t) +∇f1(w′
t)−∇f2(wt)

∥∥∥∥ (add zero)

≤
(
1 + αλ1β1

)
δt + αλ2

(
∥∇f2(w′

t)−∇f1(w′
t)∥+ ∥∇f1(w′

t)−∇f2(wt)∥
)

(Triangle Inequality)

≤
(
1 + αλ1β1

)
δt + αλ2

(
∆+ ∥∇f1(w

′
t)−∇f2(wt)∥

)
Using Assumption A.1

≤
(
1 + αλ1β1

)
δt + αλ2

(
∆+ ∥∇f1(w

′
t)∥+ ∥∇f2(wt)∥

)
Triangle Inequality

≤
(
1 + αλ1β1

)
δt + αλ2

(
∆+ 2L

)
L-Lipschitz function

To obtain the second half of the first bound :
δt+1 = Ef1...ft+1∼Pλ

[
∥wt+1 − w′

t+1∥
]

= Ef1...ft∼Pλ

[
λ1∥Gf1(wt)−G′

f1(w′
t)∥+ λ2∥Gf2(wt)−G′

f2(w′
t)∥

]
= Ef1...ft∼Pλ

[
λ1∥wt − α∇f1(wt)− w′

t + α∇f1(w′
t)∥+ λ2∥wt − α∇f2(wt)− w′

t + α∇f2(w′
t)∥

]
≤ Ef1...ft∼Pλ

[
∥wt − w′

t∥
]
+ αEf1...ft∼Pλ

(
λ1∥∇f1(w′

t)−∇f1(wt)∥+ λ2∥∇f2(w′
t)−∇f2(wt)∥

)
(Triangle Inequality used for above step)

≤ δt + αEf1...ft∼Pλ

[
λ1β1∥wt − w′

t∥+ λ2β2∥wt − w′
t∥
]

(Smoothness)

= δt + αλ1β1Ef1...ft∼Pλ

[
∥wt − w′

t∥
]
+ αλ2β2Ef1...ft∼Pλ

[
∥wt − w′

t∥
]

= δt + α(λ1β1 + λ2β2)δt

= (1 + α(λ1β1 + λ2β2))δt

E.4 STABILITY OF DYNAMIC SAMPLING

We repeat the description of our Auxiliary Learning with Dynamic Sampling Setting here for ease of
access.
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Setting : We are given an auxiliary objective fa(·; z) ∈ [0, 1] with Na samples Sa = (z1, . . . , zNa
)

from the distribution Da. At any iteration of SGD, we sample a choice of either the end-task function
fe or the auxiliary objective fa according to the probabilities λe, λa | λe + λa = 1. Given the
chosen objective, we sample a data-point and perform stochastic gradient descent (SGD) based on
the sampled data-point.

An equivalent way to instantiate this procedure to create SA by drawing N ′ = Ne+Na total samples
from the end-task and auxiliary task according to Pλ. S′

A is then created by replacing 1 end-task
sample in SA. At each step, a sample is drawn from a distribution : zi, z′i ∼ PSA

, PS′
A

and a gradient
step is taken on the function corresponding to the set the sample was drawn from.
Lemma E.4 (Stability of dynamic sampling). We denote the outputs of T steps of SGM on SA and
S′
A with the dynamically sampled functions, as wT and w′

T respectively. Then, for every ze ∈ Ze and
every t0 > 0, under both the random update rule and the random permutation rule, we have :

E
∣∣fe(wT ; z)− fe(w

′
T ; z)

∣∣ ≤ γt0
N ′ sup

w,ze

fe(w; ze) + LE[δT |δt0 = 0]

Where N ′ = Ne +Na and γ = λe·N ′

Ne
= λe

λr .

Proof. Let E = 1[δt0 = 0] denote the event that δt0 = 0. We have
E
∣∣fe(wT ; z)− fe(w

′
T ; z)

∣∣ = P{E}E
[∣∣fe(wT ; z)− fe(w

′
T ; z)

∣∣|E]
+ P{Ec}E

[∣∣fe(wT ; z)− fe(w
′
T ; z)

∣∣|Ec
]

≤ E
[∣∣fe(wT ; z)− fe(w

′
T ; z)

∣∣|E]+ P{Ec} · sup
w,ze

fe(w; ze)

because fe is non-negative

≤ LE
[
∥wT − w′

T ∥|E
]
+ P{Ec} · sup

w,ze

fe(w; ze)

because fe is L-Lipschitz

(7)

We now proceed to bound P{Ec}. Let i∗ ∈ [N ′] denote the position in which SA, S
′
A differ and

consider the random variable I assuming the index of the first time step in which SGM uses the
example zi∗e . Note that when I > t0, then we must have that δt0 = 0 since the two samples are
identical up until this point.

P{Ec} = P{δ0 ̸= 0} ≤ P{I ≤ t0}
Using the selection rule specified above (sample either fe, fa according to the probabilities λe, λa

and then sample uniformly from the selected task data) we have that :

P{I ≤ t0} =

t0∑
t=1

P{I = t0} =

t0∑
t=1

(
λe ·

1

Ne

)
=

λet0
Ne

=
γt0
N ′

Theorem E.5 (Stability Bound on Dynamic Sampling). Assume that fe(; ze), fa(; za) ∈ [0, 1] are
L-Lipschitz and βe and βa-smooth loss functions. Consider that we have N ′ = Ne + Na total
samples where fe and fa have Ne and Na samples respectively. Suppose that we run SGM for T steps
with monotonically non-increasing step sizes αt ≤ c

t by dynamically sampling the tasks according to
λe and λa. Then, with respect to fe, SGM has uniform stability with :

ϵstab ≤
(
1 +

1

cβ̄

)(
2γL2c

N ′ − γ
+ ρLc

) 1
cβ̄+1

(
γT

N ′

) cβ̄
1+cβ̄

Where γ =
λeN

′

Ne

Given that β∗ = min{βe, βa} and λ∗ is the corresponding weighting of the function with smaller
smoothness.

Depending on which one gives a tighter bound the pair (β̄, ρ) can be :

(β̄, ρ)1 = (λ∗β∗, (1− λ∗)
(
∆+ 2L

)
)

or
(β̄, ρ)2 = (λeβe + λaβa, 0)
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When (β̄, ρ)1 gives the tighter bound, we can simplify to :

ϵgen ⪅
(
∆)

1
1+cλ∗β∗

(
γT

N ′

)1− 1
cλ∗β∗+1

As presented in Section 4.

Proof. Let SA, S
′
A be two sample of size N ′ = Ne +Na as described in lemma E.4. Consider the

gradient updates Gf1 , . . . , GfT and G′
f1
, . . . , G′

fT
induced by running SGM on samples SA and S′

A

respectively. Let wT and w′
T denote the corresponding outputs of SGM. By lemma E.4 we have :

E
∣∣fe(wT ; z)− fe(w

′
T ; z)

∣∣ ≤ γt0
N ′ sup

w,ze

fe(w; ze) + LE[δT |δt0 = 0] (8)

Let ΨT = E[δT |δt0 = 0]. We will bound ΨT as function of t0 and then minimize for t0. Note the
following :

• At any step t, with probability
(
1− γ

N ′

)
, the sample selected is the same in both SA and

S′
A. In this case Gft = G′

ft
and we use the corresponding expansivity rule from lemma E.4.

This gives :

δt+1 ≤ min
{(

1 + αtλ
∗β∗)δt + αt(1− λ∗)

(
∆+ 2L

)
,
(
1 + αt

(
λeβe + λaβa)

)
δt
}

Where β∗ = min{βe, βa} and λ∗ is the corresponding weighting of the function with
smaller smoothness. To avoid deriving the bound independently for each case, we perform a
variable substituation that captures the two cases :

δt+1 ≤
(
1 + αtβ̄

)
δt + αtρ

β̄ =
{
λ∗β∗, λeβe + λaβa

}
and ρ =

{
(1 − λ∗)

(
∆ + 2L

)
, 0
}

. We can present the final
bound in terns of these variables which can be substituted depending on the minimizer.

• With probability γ
N ′ the selected example is different. Note that in this case, we know that

we are evaluating the end-task function fe. We use that both Gft and G′
ft

are (σt = αtL)-
bounded according to lemma E.3 since fe is L-Lipschitz.

Combining the above we have :

Ψt+1 ≤
(
1− γ

N ′

)((
1 + αtβ̄

)
Ψt + αtρ

)
+

γ

N ′

(
Ψt + 2αtL

)
=

(
γ

N ′ +
(
1− γ

N ′

)(
1 + αtβ̄

))
Ψt +

2γαtL

N ′ + αt

(
1− γ

N ′

)
ρ

=

(
1 +

(
1− γ

N ′

)
αtβ̄

)
Ψt +

αt

(
2γL+ (N ′ − γ)ρ

)
N ′

≤
(
1 +

(
1− γ

N ′

)c
t
β̄

)
Ψt +

c
(
2γL+ (N ′ − γ)ρ

)
tN ′

≤ exp

((
1− γ

N ′

)c
t
β̄

)
Ψt +

c
(
2γL+ (N ′ − γ)ρ

)
tN ′

We use 1 + x ≤ exp(x) ∀x

≤ exp

((
1− γ

N ′

)c
t
β̄

)
Ψt +

cρ̄

tN ′

Where ρ̄ =
(
2γL+ (N ′ − γ)ρ

)

(9)
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We can unwind the recurrence until Ψt0 = 0.

ΨT ≤
T∑

t=t0+1

( T∏
k=t+1

exp
(
(1− γ

N ′ )
cβ̄

k

))( cρ̄

tN ′

)

=

T∑
t=t0+1

(
cρ̄

tN ′

)
exp

(
(1− γ

N ′ )cβ̄

T∑
k=t+1

1

k

)

≤
T∑

t=t0+1

(
cρ̄

tN ′

)
exp

(
(1− γ

N ′ )cβ̄ log
(T
t

))

=
cρ̄T cβ̄(1− γ

N′ )

N ′

T∑
t=t0+1

t−cβ̄(1− γ
N′ )−1

We can upper bound the sum over t with an integral + drop negative terms

≤ cρ̄

N ′cβ̄(1− γ
N ′ )

(
T

t0

)cβ̄(1− γ
N′ )

=
ρ̄

β̄(N ′ − γ)

(
T

t0

)cβ̄(1− γ
N′ )

≤ ρ̄

β̄(N ′ − γ)

(
T

t0

)cβ̄

(10)

Plugging this bound back into Equation 8 and using the fact that fe ∈ [0, 1]:

E
∣∣fe(wT ; z)− fe(w

′
T ; z)

∣∣ ≤ γt0
N ′ +

Lρ̄

β̄(N ′ − γ)

(
T

t0

)cβ̄

(11)

We let q∗ = cβ̄, we can minimize the R.H.S by setting :

t0 =

(
N ′Lcρ̄

γ(N ′ − γ)

) 1
q∗+1

T
q∗

q∗+1

Plugging this in gives us :

E
∣∣fe(wT ; z)− fe(w

′
T ; z)

∣∣ ≤ ( (1 + 1
cβ̄
)

N ′

)(
N ′Lc

(
2γL+ (N ′ − γ)ρ

)
(N ′ − γ)

) 1
cβ̄+1 (

γT
) cβ̄

1+cβ̄

=

(
1 +

1

cβ̄

)(
2γL2c

N ′ − γ
+ ρLc

) 1
cβ̄+1

(
γT

N ′

) cβ̄
1+cβ̄

(12)

Recall that :
β̄ =

{
λ∗β∗, λeβe + λaβa

}
ρ =

{
(1− λ∗)

(
∆+ 2L

)
, 0
}

We can choose whichever of the pairs for β̄, ρ that minimizes the bound :

F DISCUSSION OF GENERALIZATION ERROR BOUNDS

F.1 WHAT DOES THEOREM E.5 SAY.

We consider the setting where
β̄ = λ∗β∗

ρ = (1− λ∗)
(
∆+ 2L

)
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Assuming the ρ term dominates Equation 12 in this setting is :

ϵauxdyngen ≤ ϵauxdynstab

∣∣
(β̄,ρ)1

⪅ 1+cβ̄
√
(1− λ∗)(∆ + 2L)

(
γT

N ′

) cβ̄
1+cβ̄

⪅
(
∆)

1
1+cλ∗β∗

(
γT

N ′

)1− 1
cλ∗β∗+1

This is Equation 1 from Section 4

(13)

In going from the first line to the second we consider the setting where ∆ ≫ 2L. This is a case where
the auxiliary task is sufficiently different from the primary task. Some observations about this setting:

1. Smaller ∆ implies auxiliary task is similar to main task and leads to improving the bound.
2. Dependence of the bound on N ′ is a bit more nuanced. Note that increasing N ′ increases

γ unless we reduce λe appropriately. Remember that λe is the rate at which we sample
the primary task. Thus, if we add more auxiliary data but still sample the primary task at the
original rate, then we are effectively ignoring the extra auxiliary data.

3. It might be tempting to assume that we can get arbitrary improvements in this setting by
setting λe = 0. However, note that whilst this might reduce the generalization error, it
means that we are seeing none of the end-task which would result in large increase in the
training error

4. Note that (β̄ = λ∗β∗ ≤ βe) always. So we get improvements on the dependence on T
compared to Theorem E.2.

5. We can optimize λe, λa to minimize ϵauxdynstab .
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