
A Flexible Multi-Task Model for BERT Serving

Anonymous ACL submission

Abstract

We present an efficient BERT-based multi-task001
(MT) framework that is particularly suitable002
for iterative and incremental development of003
the tasks. The proposed framework is based004
on the idea of partial fine-tuning, i.e. only fine-005
tune some top layers of BERT while keep the006
other layers frozen. For each task, we train007
independently a single-task (ST) model using008
partial fine-tuning. Then we compress the task-009
specific layers in each ST model using knowl-010
edge distillation. Those compressed ST mod-011
els are finally merged into one MT model so012
that the frozen layers of the former are shared013
across the tasks. We exemplify our approach014
on eight GLUE tasks, demonstrating that it is015
able to achieve 99.6% of the performance of016
the full fine-tuning method, while reducing up017
to two thirds of its overhead.018

1 Introduction019

In this work we explore the strategies of BERT020

(Devlin et al., 2019) serving for multiple tasks un-021

der the following two constraints: 1) Memory and022

computational resources are limited. On edge de-023

vices such as mobile phones, this is usually a hard024

constraint. On local GPU stations and Cloud-based025

servers, this constraint is not as hard but it is still026

desirable to reduce the computation overhead to cut027

the serving cost. 2) The tasks are expected to be028

modular and are subject to frequent updates. When029

one task is updated, the system should to be able030

to quickly adapt to the task modification such that031

the other tasks are not affected. This is a typical032

situation for applications (e.g. AI assistant) under033

iterative and incremental development.034

In principle, there are two strategies of BERT035

serving: single-task serving and multi-task serving.036

In single-task serving, one independent single-task037

model is trained and deployed for each task. Typ-038

ically, those models are obtained by fine-tuning a039

copy of the pre-trained BERT and are completely040

different from each other. Single-task serving has 041

the advantage of being flexible and modular as 042

there is no dependency between the task models. 043

The downside is its inefficiency in terms of both 044

memory usage and computation, as neither parame- 045

ters nor computation are shared or reused across the 046

tasks. In multi-task serving, one single multi-task 047

model is trained and deployed for all tasks. This 048

model is typically trained with multi-task learn- 049

ing (MTL) (Caruana, 1997; Ruder, 2017). Com- 050

pared to its single-task counterpart, multi-task serv- 051

ing is much more computationally efficient and 052

incurs much less memory usage thanks to its shar- 053

ing mechanism. However, it has the disadvantage 054

in that any modification made to one task usually 055

affect the other tasks. 056

The main contribution of this work is the propo- 057

sition of a framework for BERT serving that si- 058

multaneously achieves the flexibility of single-task 059

serving and the efficiency of multi-task serving. 060

Our method is based on the idea of partial fine- 061

tuning, i.e. only fine-tuning some topmost layers 062

of BERT depending on the task and keeping the 063

remaining bottom layers frozen. The fine-tuned 064

layers are task-specific, which can be updated on 065

a per-task basis. The frozen layers at the bottom, 066

which plays the role of a feature extractor, can be 067

shared across the tasks. 068

2 Related Work 069

The standard practice of using BERT is fine-tuning, 070

i.e. the entirety of the model parameters is ad- 071

justed on the training corpus of the downstream 072

task, so that the model is adapted to that specific 073

task (Devlin et al., 2019). There is also an alterna- 074

tive feature-based approach, used by ELMo (Peters 075

et al., 2018). In the latter approach, the pre-trained 076

model is regarded as a feature extractor with frozen 077

parameters. During the learning of a downstream 078

task, one feeds a fixed or learnable combination of 079

the model’s intermediate representations as input to 080

1



L QNLI RTE QQP MNLI SST-2 MRPC CoLA STS-B

1 85.9 60.3 86.1 77.1 91.6 77.2 38.7 84.8
2 88.3 63.5 88.3 80.8 91.9 80.6 40.0 86.1
3 89.9 65.3 89.0 82.5 91.2 84.6 45.3 87.3
4 90.7 69.0 89.7 83.3 92.0 84.3 48.6 88.2
5 91.0 71.5 90.1 84.0 92.2 89.7 51.3 88.3
6 91.2 71.1 90.3 84.2 93.1 86.8 53.1 86.4
7 91.3 70.0 90.5 83.9 93.0 87.5 51.5 88.6
8 91.5 70.8 90.6 84.5 92.8 88.0 55.2 88.9
9 91.6 70.8 90.7 84.0 92.5 87.7 54.7 88.8
10 91.7 69.7 91.1 84.5 93.0 87.3 55.0 88.7
11 91.7 70.4 91.1 84.5 93.1 88.2 54.7 89.1
12 91.6 69.7 91.1 84.6 93.4 88.2 54.7 88.8

Table 1: Dev results on GLUE datasets obtained with
partial fine-tuning. The parameter L indicates the num-
ber of fine-tuned transformer layers. For each dataset
and for each value of L, we always run the experiment
5 times with different initializations and report the max-
imum dev result obtained. The best result in each col-
umn is highlighted in bold face. Shaded numbers indi-
cate that they attain 99% of the best result of the col-
umn. It can be seen that although fine-tuning more lay-
ers generally leads to better performance, the benefit
of doing so suffers diminishing returns. Perhaps sur-
prisingly, for RTE, MRPC and CoLA it is the partial
fine-tuning with roughly half of the layers frozen that
gives the best results.

the task-specific module, and only the parameters081

of the latter will be updated. It has been shown that082

the fine-tuning approach is generally superior to083

the feature-based approach for BERT in terms of084

task performance (Devlin et al., 2019; Peters et al.,085

2019).086

A natural middle ground between these two ap-087

proaches is partial fine-tuning, i.e. only fine-tuning088

some topmost layers of BERT while keeping the089

remaining bottom layers frozen. This approach has090

been studied in (Houlsby et al., 2019; Merchant091

et al., 2020), where the authors observed that fine-092

tuning only the top layers can almost achieve the093

performance of full fine-tuning on several GLUE094

tasks. The approach of partial fine-tuning essen-095

tially regards the bottom layers of BERT as a fea-096

ture extractor. Freezing weights from bottom layers097

is a sensible idea as previous studies show that the098

mid layer representations produced by BERT are099

most transferrable, whereas the top layers represen-100

tations are more task-oriented (Wang et al., 2019;101

Tenney et al., 2019b,a; Liu et al., 2019a; Merchant102

et al., 2020).103

3 Method104

In what follows, we denote by T the set of all target105

tasks. We always use the 12-layer version of BERT106

as the pre-trained language model. The proposed 107

framework features a pipeline (Fig. 1) that consists 108

of three steps: 1) Single task partial fine-tuning; 109

2) Single task knowledge distillation; 3) Model 110

merging. We give details of these steps below. 111

3.1 Single Task Partial Fine-Tuning 112

In the first step, we partial fine-tune for each task 113

an independent copy of BERT. The exact number 114

of layers L to fine-tune is a hyper-parameter and 115

may vary across the tasks. We propose to experi- 116

ment for each task with different value of L within 117

range Nmin 6 L 6 Nmax, and select the one that 118

gives the best validation performance. The purpose 119

of imposing the search range [Nmin, Nmax] is to 120

guarantee a minimum degree of parameter sharing. 121

In the subsequent experiments on GLUE tasks (see 122

Section 4.3), we set Nmin = 4 and Nmax = 10. 123

This step produces a collection of single-task 124

models as depicted in Fig. 1(a). We shall refer to 125

them single-task teacher models, as they are to be 126

knowledge distilled to further reduce the memory 127

and computation overhead. 128

3.2 Single Task Knowledge Distillation 129

As there is no interaction between the tasks, the 130

process of knowledge distillation (KD) can be car- 131

ried out separately for each task. In principle any 132

of the existing KD methods for BERT (Wang et al., 133

2020; Aguilar et al., 2020; Sun et al., 2019a; Jiao 134

et al., 2020; Xu et al., 2020a) suits our needs. In 135

preliminary experiments we found out that as long 136

as the student model is properly initialized, the 137

vanilla knowledge distillation (Hinton et al., 2015) 138

can be as performant as those more sophisticated 139

methods. 140

Assume that the teacher model for task τ ∈ T 141

contains L(τ) fine-tuned layers at the top and 142

12− L(τ) frozen layers at the bottom. Our goal is 143

to compress the former into a smaller l(τ)-layer 144

module. The proposed initialization scheme is 145

very simple: we initialize the student model with 146

the weights from the corresponding layers of the 147

teacher. More precisely, let Ns denote the number 148

of layers (including both frozen and task-specific 149

layers) in the student, where Ns < 12. We propose 150

to initialize the student from the bottommost Ns 151

layers of the teacher. The value of l(τ), i.e. the 152

number of task-specific layers in the student model 153

for task τ , determines the final memory and com- 154

putation overhead for that task. 155

2



Layer 1

Layer 2

Layer 3

Layer 4

f.t. Layer 5

f.t. Layer 6

f.t. Layer 7

f.t. Layer 8

f.t. Layer 9

f.t. Layer 10

f.t. Layer 11

f.t. Layer 12

Task 1

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

f.t. Layer 9

f.t. Layer 10

f.t. Layer 11

f.t. Layer 12

Task 2

Layer 1

Layer 2

Layer 3

Layer 4

Distill. Layer

Distill. Layer

Distill. Layer

Task 1

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Distill. Layer

Distill. Layer

Task 2

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Layer 8

Distill. Layer

Distill. Layer

Distill. Layer

Distill. Layer

Distill. Layer

Task 1 Task 2

K.D. Merge

(a) Teacher models (b) Student models (c) Final multi-task model

Figure 1: Pipeline of the proposed method. (a) For each task we train separately a task-specific model with partial
fine-tuning, i.e. only the weights from some topmost layers (blue and red blocks) of the pre-trained model are
updated while the rest are kept frozen (gray blocks). (b) We perform knowledge distillation independently for each
task on the task-specific layers of the teacher models. (c) The student models are merged into one MT model so
that the frozen layers of the former can be shared.

3.3 Model Merging156

In the final step, we merge the single-task student157

models into one multi-task model (Fig. 1(c)) so158

that the parameters and computations carried out159

in the frozen layers can be shared. To achieve this,160

it suffices to load weights from multiple model161

checkpoints into one computation graph.162

4 Experiments163

In this section, we compare the performance and164

efficiency of our model with various baselines on165

eight GLUE tasks.166

4.1 Metrics167

The performance metrics for GLUE tasks is ac-168

curacy except for CoLA and STS-B. We use169

Matthews correlation for CoLA, and Pearson cor-170

relation for STS-B.171

To measure the parameter and computational172

efficiency, we introduce the total number of trans-173

former layers that are needed to perform inference174

for all eight tasks. For the models studied in our175

experiments, the actual memory usage and the com-176

putational overhead are approximately linear with177

respect to this number. It is named “overhead” in178

the header of Table 2.179

4.2 Baselines180

The baseline models/methods can be divided into181

4 categories:182

Single-task without KD. There is only one183

method in this category, i.e. the standard practice184

of single task full fine-tuning that creates a separate 185

model for each task. 186

Single-task with KD. The methods in this cate- 187

gory create a separate model for each task, but a 188

certain knowledge distillation method is applied to 189

compress each task model into a 6-layer one. The 190

KD methods include (Hinton et al., 2015; Xu et al., 191

2020b; Sanh et al., 2019; Turc et al., 2019; Sun 192

et al., 2019b; Jiao et al., 2020; Wang et al., 2020). 193

Multi-task learning. This category includes two 194

versions of MT-DNN (Liu et al., 2019b, 2020), both 195

of which produce one single multi-task model. 1) 196

MT-DNN (full) is jointly trained for all eight tasks. 197

It corresponds to the idea scenario where all tasks 198

are known in advance. 2) MT-DNN (LOO), where 199

“LOO” stands for “leave-one-out”, corresponds to 200

the scenario where one of the eight tasks is not 201

known in advance. The model is jointly pre-trained 202

on the 7 available tasks. Then an output layer for 203

the “unknown” task is trained with the pre-trained 204

weights frozen. 205

Flexible multi-task. Our models under various 206

efficiency constraints. Ours (w/o KD) means that 207

no knowledge distillation is applied to the task mod- 208

els. The number of fine-tuned layers for each task 209

is selected according to the criterion described in 210

Section 3.1. Ours (KD-n) means that knowledge 211

distillation is applied such that the student model 212

for each task contains exactly n task-specific lay- 213

ers. For Ours (mixed), we determine the number 214

of task-specific layers for each task based on the 215

marginal benefit (in terms of task performance met- 216

3



QNLI RTE QQP MNLI SST-2 MRPC CoLA STS-B Avg. Layers Overhead

Full fine-tuning 91.6 69.7 91.1 84.6 93.4 88.2 54.7 88.8 82.8 12× 8 96 (100%)

DistillBERT[b] 89.2 59.9 88.5 82.2 91.3 87.5 51.3 86.9 79.6 6× 8 48 (50.0%)
Vanilla-KD[c] 88.0 64.9 88.1 80.1 90.5 86.2 45.1 84.9 78.5 6× 8 48 (50.0%)
PD-BERT[d] 89.0 66.7 89.1 83.0 91.1 87.2 - - - 6× 8 48 (50.0%)
BERT-PKD[e] 88.4 66.5 88.4 81.3 91.3 85.7 45.5 86.2 79.2 6× 8 48 (50.0%)
BERT-of-Theseus[f ] 89.5 68.2 89.6 82.3 91.5 89.0 51.1 88.7 81.2 6× 8 48 (50.0%)
TinyBERT[g] 90.5 72.2 90.6 83.5 91.6 88.4 42.8 - - 6× 8 48 (50.0%)
MiniLM[h] 88.4 66.5 88.4 81.3 91.3 85.7 45.5 86.2 79.2 6× 8 48 (50.0%)

MT-DNN (full)[j] 91.1 80.9 87.6 84.4 93.5 87.4 51.3 86.8 82.9 12× 1 12 (12.5%)
MT-DNN (LOO)[k] 69.7 60.6 66.5 56.7 79.2 74.2 10.2 72.9 - - -

Ours (KD-1) 86.4 66.1 91.0 77.5 90.7 85.1 36.4 88.3 77.4 7 + 1×8 15 (15.6%)
Ours (KD-2) 88.6 64.6 91.3 81.7 92.7 86.3 44.0 88.6 79.7 7 + 2×8 23 (24.0%)
Ours (KD-3) 90.2 66.8 91.2 82.9 92.7 88.0 50.0 88.9 81.3 7 + 3×8 31 (32.3%)

Ours (w/o KD) 91.7 71.5 91.1 84.5 93.1 89.7 55.2 88.9 83.2 7 + 60 67 (69.8%)
(2,10) (7,5) (2,10) (4,8) (6,6) (7,5) (4,8) (4,8)

Ours (mixed) 90.2 71.5 91.0 82.9 92.7 88.0 55.2 88.3 82.5 7 + 26 33 (34.3%)
(2,3) (7,5) (2,1) (4,3) (6,2) (7,3) (4,8) (4,1)

Table 2: A comparison of performance and overhead between our approach and various baselines (see §4.2 for
more details). The best result in each column is highlighted in bold face. Shaded numbers indicate that they
attain 99% of the Full fine-tuning baseline. Results of [b] are from (Sanh et al., 2019); [c]-[f ] are from (Xu et al.,
2020b); [g]-[h] are from (Wang et al., 2020); [j]-[k] are reproduced by us with the toolkit from (Liu et al., 2020).
Round bracket (x, y) indicates that the underlying task model before merging consists of x frozen layers and y
task-specific layers (fine-tuned or knowledge-distilled). In the “Layers” column, notation 7+ 2× 8 implies that in
the final multi-task model there are 7 shared frozen layers and 2 task-specific layers for each of the 8 task.

ric) of adding more layers to the task. More pre-217

cisely, for each task we keep adding task-specific218

layers as long as the marginal benefit of doing so is219

no less than a pre-determined threshold c. In Table220

2, we report the result for c = 1.0. Results with221

other values of c can be found in appendices.222

4.3 Results223

The results are summarized in Table 2. From the224

table it can be seen that the proposed method Ours225

(mixed) outperforms all KD methods while be-226

ing more efficient. Compared to the single-task227

full fine-tuning baseline, our method reduces up228

to around two thirds of the total overhead while229

achieves 99.6% of its performance.230

We observe that MT-DNN (full) achieves the231

best average performance with the lowest over-232

head. However, its performance superiority pri-233

marily comes from one big boost on a single task234

(RTE) rather than consistent improvements on all235

tasks. In fact, we see that MT-DNN (full) suffers236

performance degradation on QQP and STS-B due237

to task interference, a known problem for MTL238

(Caruana, 1997; Bingel and Sogaard, 2017; Alonso239

and Plank, 2017; Wu et al., 2020). From our per-240

spective, the biggest disadvantage of MT-DNN is241

that it assumes full knowledge of all target tasks242

in advance. From the results of MT-DNN (LOO),243

we observe that MT-DNN has difficulty in han-244

dling new tasks if the model is not allowed to be 245

retrained. 246

4.4 Discussions 247

One major advantage of the proposed architecture 248

is its flexibility. First, different tasks may be fed 249

with representations from different layers of BERT, 250

which encapsulate different levels of linguistic in- 251

formation (Liu et al., 2019a). On QQP we achieve 252

an accuracy of 91.0, outperforming all KD base- 253

lines with merely one task-specific layer that is 254

connected to the 2nd layer of BERT. Second, our 255

architecture explicitly allows for allocating uneven 256

resources to different tasks. We have redistributed 257

the resources among the tasks in ours (mixed), re- 258

sulting in both greater performance and efficiency. 259

Third, our framework does not compromise the 260

modular design of the system. The model can be 261

straightforwardly updated on on a per-task basis. 262

5 Conclusion 263

We have presented our framework that is designed 264

to provide efficient and flexible BERT-based multi- 265

task serving. We have demonstrated on eight 266

GLUE datasets that the proposed method achieves 267

both strong performance and efficiency. We will re- 268

lease our code and hope that it can facilitate BERT 269

serving in cost-sensitive applications. 270

4



References271

Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin Yao,272
Xing Fan, and Chenlei Guo. 2020. Knowledge273
distillation from internal representations. In The274
Thirty-Fourth AAAI Conference on Artificial Intelli-275
gence, AAAI 2020, The Thirty-Second Innovative Ap-276
plications of Artificial Intelligence Conference, IAAI277
2020, The Tenth AAAI Symposium on Educational278
Advances in Artificial Intelligence, EAAI 2020, New279
York, NY, USA, February 7-12, 2020, pages 7350–280
7357. AAAI Press.281

Héctor Alonso and Barbara Plank. 2017. When is mul-282
titask learning effective? semantic sequence predic-283
tion under varying data conditions. In Proceedings284
of the 15th Conference of the European Chapter of285
the Association for Computational Linguistics: Vol-286
ume 1, Long Papers, pages 44–53, Valencia, Spain.287
Association for Computational Linguistics.288

Joachim Bingel and Anders Sogaard. 2017. Identify-289
ing beneficial task relations for multi-task learning290
in deep neural networks. In Proceedings of the 15th291
Conference of the European Chapter of the Associa-292
tion for Computational Linguistics: Volume 2, Short293
Papers, pages 164–169, Valencia, Spain. Associa-294
tion for Computational Linguistics.295

Rich Caruana. 1997. Multitask Learning. Machine296
Learning, 28(1):41–75. 00000.297

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-298
wal, Christopher D. Manning, and Quoc V. Le. 2019.299
BAM! born-again multi-task networks for natural300
language understanding. In Proceedings of the 57th301
Annual Meeting of the Association for Computa-302
tional Linguistics, pages 5931–5937, Florence, Italy.303
Association for Computational Linguistics.304

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and305
Kristina Toutanova. 2019. BERT: Pre-training of306
deep bidirectional transformers for language under-307
standing. In Proceedings of the 2019 Conference308
of the North American Chapter of the Association309
for Computational Linguistics: Human Language310
Technologies, Volume 1 (Long and Short Papers),311
pages 4171–4186, Minneapolis, Minnesota. Associ-312
ation for Computational Linguistics.313

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean.314
2015. Distilling the knowledge in a neural network.315
In NIPS Deep Learning and Representation Learn-316
ing Workshop.317

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,318
Bruna Morrone, Quentin De Laroussilhe, Andrea319
Gesmundo, Mona Attariyan, and Sylvain Gelly.320
2019. Parameter-efficient transfer learning for NLP.321
In Proceedings of the 36th International Conference322
on Machine Learning, volume 97 of Proceedings323
of Machine Learning Research, pages 2790–2799.324
PMLR.325

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,326
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.327

2020. TinyBERT: Distilling BERT for natural lan- 328
guage understanding. In Findings of the Association 329
for Computational Linguistics: EMNLP 2020, pages 330
4163–4174, Online. Association for Computational 331
Linguistics. 332

Nelson F. Liu, Matt Gardner, Yonatan Belinkov, 333
Matthew E. Peters, and Noah A. Smith. 2019a. Lin- 334
guistic knowledge and transferability of contextual 335
representations. In Proceedings of the 2019 Confer- 336
ence of the North American Chapter of the Associ- 337
ation for Computational Linguistics: Human Lan- 338
guage Technologies, Volume 1 (Long and Short Pa- 339
pers), pages 1073–1094, Minneapolis, Minnesota. 340
Association for Computational Linguistics. 341

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian- 342
feng Gao. 2019b. Multi-task deep neural networks 343
for natural language understanding. In Proceedings 344
of the 57th Annual Meeting of the Association for 345
Computational Linguistics, pages 4487–4496, Flo- 346
rence, Italy. Association for Computational Linguis- 347
tics. 348

Xiaodong Liu, Yu Wang, Jianshu Ji, Hao Cheng, 349
Xueyun Zhu, Emmanuel Awa, Pengcheng He, 350
Weizhu Chen, Hoifung Poon, Guihong Cao, and 351
Jianfeng Gao. 2020. The Microsoft toolkit of multi- 352
task deep neural networks for natural language un- 353
derstanding. In Proceedings of the 58th Annual 354
Meeting of the Association for Computational Lin- 355
guistics: System Demonstrations, pages 118–126, 356
Online. Association for Computational Linguistics. 357

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick, 358
and Ian Tenney. 2020. What happens to BERT em- 359
beddings during fine-tuning? In Proceedings of the 360
Third BlackboxNLP Workshop on Analyzing and In- 361
terpreting Neural Networks for NLP, pages 33–44, 362
Online. Association for Computational Linguistics. 363

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt 364
Gardner, Christopher Clark, Kenton Lee, and Luke 365
Zettlemoyer. 2018. Deep contextualized word rep- 366
resentations. In Proceedings of the 2018 Confer- 367
ence of the North American Chapter of the Associ- 368
ation for Computational Linguistics: Human Lan- 369
guage Technologies, Volume 1 (Long Papers), pages 370
2227–2237, New Orleans, Louisiana. Association 371
for Computational Linguistics. 372

Matthew E. Peters, Sebastian Ruder, and Noah A. 373
Smith. 2019. To tune or not to tune? adapting pre- 374
trained representations to diverse tasks. In Proceed- 375
ings of the 4th Workshop on Representation Learn- 376
ing for NLP (RepL4NLP-2019), pages 7–14, Flo- 377
rence, Italy. Association for Computational Linguis- 378
tics. 379

Colin Raffel, Noam Shazeer, Adam Roberts, Kather- 380
ine Lee, Sharan Narang, Michael Matena, Yanqi 381
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring 382
the limits of transfer learning with a unified text-to- 383
text transformer. Journal of Machine Learning Re- 384
search, 21(140):1–67. 385

5

https://aaai.org/ojs/index.php/AAAI/article/view/6229
https://aaai.org/ojs/index.php/AAAI/article/view/6229
https://aaai.org/ojs/index.php/AAAI/article/view/6229
https://www.aclweb.org/anthology/E17-1005
https://www.aclweb.org/anthology/E17-1005
https://www.aclweb.org/anthology/E17-1005
https://www.aclweb.org/anthology/E17-1005
https://www.aclweb.org/anthology/E17-1005
https://www.aclweb.org/anthology/E17-2026
https://www.aclweb.org/anthology/E17-2026
https://www.aclweb.org/anthology/E17-2026
https://www.aclweb.org/anthology/E17-2026
https://www.aclweb.org/anthology/E17-2026
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.18653/v1/P19-1595
https://doi.org/10.18653/v1/P19-1595
https://doi.org/10.18653/v1/P19-1595
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1503.02531
http://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/2020.acl-demos.16
https://doi.org/10.18653/v1/2020.acl-demos.16
https://doi.org/10.18653/v1/2020.acl-demos.16
https://doi.org/10.18653/v1/2020.acl-demos.16
https://doi.org/10.18653/v1/2020.acl-demos.16
https://doi.org/10.18653/v1/2020.blackboxnlp-1.4
https://doi.org/10.18653/v1/2020.blackboxnlp-1.4
https://doi.org/10.18653/v1/2020.blackboxnlp-1.4
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html


Sebastian Ruder. 2017. An overview of multi-386
task learning in deep neural networks. CoRR,387
abs/1706.05098.388

Victor Sanh, Lysandre Debut, Julien Chaumond, and389
Thomas Wolf. 2019. Distilbert, a distilled version390
of bert: smaller, faster, cheaper and lighter. CoRR,391
abs/1910.01108.392

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019a.393
Patient knowledge distillation for BERT model com-394
pression. In Proceedings of the 2019 Conference on395
Empirical Methods in Natural Language Processing396
and the 9th International Joint Conference on Natu-397
ral Language Processing (EMNLP-IJCNLP), pages398
4323–4332, Hong Kong, China. Association for399
Computational Linguistics.400

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019b.401
Patient knowledge distillation for BERT model com-402
pression. In Proceedings of the 2019 Conference on403
Empirical Methods in Natural Language Processing404
and the 9th International Joint Conference on Natu-405
ral Language Processing (EMNLP-IJCNLP), pages406
4323–4332, Hong Kong, China. Association for407
Computational Linguistics.408

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.409
BERT rediscovers the classical NLP pipeline. In410
Proceedings of the 57th Annual Meeting of the Asso-411
ciation for Computational Linguistics, pages 4593–412
4601, Florence, Italy. Association for Computational413
Linguistics.414

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,415
Adam Poliak, R Thomas McCoy, Najoung Kim,416
Benjamin Van Durme, Sam Bowman, Dipanjan Das,417
and Ellie Pavlick. 2019b. What do you learn from418
context? probing for sentence structure in contextu-419
alized word representations. In International Con-420
ference on Learning Representations.421

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina422
Toutanova. 2019. Well-read students learn better:423
On the importance of pre-training compact models.424

Alex Wang, Jan Hula, Patrick Xia, Raghavendra Pappa-425
gari, R. Thomas McCoy, Roma Patel, Najoung Kim,426
Ian Tenney, Yinghui Huang, Katherin Yu, Shuning427
Jin, Berlin Chen, Benjamin Van Durme, Edouard428
Grave, Ellie Pavlick, and Samuel R. Bowman. 2019.429
Can you tell me how to get past sesame street?430
sentence-level pretraining beyond language model-431
ing. In Proceedings of the 57th Annual Meeting432
of the Association for Computational Linguistics,433
pages 4465–4476, Florence, Italy. Association for434
Computational Linguistics.435

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan436
Yang, and Ming Zhou. 2020. Minilm: Deep self-437
attention distillation for task-agnostic compression438
of pre-trained transformers. In Advances in Neural439
Information Processing Systems 33: Annual Con-440
ference on Neural Information Processing Systems441
2020, NeurIPS 2020, December 6-12, 2020, virtual.442

Sen Wu, Hongyang R Zhang, and Christopher Ré. 443
2020. Understanding and improving information 444
transfer in multi-task learning. arXiv preprint 445
arXiv:2005.00944. 446

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, 447
and Ming Zhou. 2020a. BERT-of-theseus: Com- 448
pressing BERT by progressive module replacing. In 449
Proceedings of the 2020 Conference on Empirical 450
Methods in Natural Language Processing (EMNLP), 451
pages 7859–7869, Online. Association for Computa- 452
tional Linguistics. 453

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, 454
and Ming Zhou. 2020b. BERT-of-theseus: Com- 455
pressing BERT by progressive module replacing. In 456
Proceedings of the 2020 Conference on Empirical 457
Methods in Natural Language Processing (EMNLP), 458
pages 7859–7869, Online. Association for Computa- 459
tional Linguistics. 460

Supplementary Material 461

Hyper-parameter tuning 462

The approach presented in this work introduces two 463

new hyper-parameters for each task τ ∈ T , namely 464

the number of fine-tuned layers L(τ) for the teacher 465

and the number of knowledge distilled layer l(τ) 466

for the student. If the resources permit, these two 467

hyper-parameters should be tuned separately for 468

each task. As introduced in Section 3.1, we suggest 469

to constrain L within the range 4 ≤ L(τ) ≤ 10. As 470

for l(τ) which determines the eventual task-specific 471

overhead, we impose l(τ) ≤ 3. Since we always 472

determines L(τ) first, we do not need to experiment 473

with every combination of (L(τ), l(τ)). Combin- 474

ing these together, our approach requires approxi- 475

mately 10x (7 for L and 3 for l) more training time 476

compared to conventional full fine-tuning approach. 477

Although 10x more training time is admittedly sig- 478

nificant, in practice the cost is manageable (typi- 479

cally 2 or 3 days per task on a single Nvidia Tesla 480

V100 GPU). 481

Detailed Experiment Results 482

In the box plots of Figure 2 above we report the 483

performance of the student models initialized from 484

pre-trained BERT and from the teacher. It can be 485

clearly seen that the latter initialization scheme 486

generally outperforms the former. Besides, we also 487

observe that although increasing the number of 488

task-specific layers improves the performance, the 489

marginal benefit of doing so varies across tasks. 490

Notably, for QQP and STS-B the student models 491

with only one task-specific layer are able to attain 492

99% of the performance of their teacher. 493

6

http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/P19-1452
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
https://doi.org/10.18653/v1/P19-1439
https://doi.org/10.18653/v1/P19-1439
https://doi.org/10.18653/v1/P19-1439
https://doi.org/10.18653/v1/P19-1439
https://doi.org/10.18653/v1/P19-1439
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2020.emnlp-main.633


Figure 2: A comparison of the task performance between vanilla initialization (initialize from pre-trained BERT)
and teacher initialization as described in Section 3.2 for n ∈ {1, 2, 3}, where n is the number of task-specific layers
in the student model.

7



Performance-Efficiency Trade-off494

In Fig 3, we report the performance of our method495

with various values of c, where c is defined as the496

minimal marginal benefit (in terms of task perfor-497

mance metric) that every task-specific layer should498

bring (see Section 4.2).499

Industrial Application500

We have implemented our framework in the appli-501

cation of utterance understanding of a commercial502

AI assistant. Our flexible multi-task model forms503

the bulk of the utterance understanding system,504

which processes over 100 million user queries per505

day with a peak throughput of nearly 4000 queries-506

per-second (QPS).507

For each user query, the utterance understanding508

system performs various tasks, including emotion509

recognition, incoherence detection, domain classi-510

fication, intent classification, named entity recog-511

nition, slot filling, etc. Due to the large workload,512

these tasks are developed and maintained by a num-513

ber of different teams. As the AI assistant itself514

is under iterative/incremental development, its ut-515

terance understanding system undergoes frequent516

updates1:517

• Update of training corpus, e.g. when new518

training samples become available or some519

mislabeled samples are corrected or removed.520

• Redefinition of existing tasks. For instance,521

when a more fine-grained intent classification522

is needed, we may need to redefine existing523

intent labels or introduce new labels.524

• Introduction of new tasks. This may happen525

when the AI assistant needs to upgrade its526

skillsets so as to perform new tasks (e.g. rec-527

ognize new set of instructions, play verbal528

games with kids, etc).529

• Removal of obsolete tasks. Sometimes a530

task is superseded by another task, or simply531

deprecated due to commercial considerations.532

Those tasks need to be removed from the sys-533

tem.534

One imperative feature for the system is the mod-535

ular design, i.e. the tasks should be independent536

of each other so that any modification made to one537

task should does not affect the other tasks. Clearly,538

1Not necessarily frequent for any particular task, but over-
all frequent if we regard the system as a whole.

a conventional multi-task system does not meet our 539

need as multi-task training breaks modularity. 540

Before the introduction of BERT, our utterance 541

understanding system is based on single-task serv- 542

ing, i.e. a separate model is deployed for each 543

task. As those models are relatively lightweight 544

(TextCNN/LSTM), overhead is not an issue. How- 545

ever, with the introduction of BERT, the cost for 546

single-task serving becomes a valid concern as each 547

task model (a unique 12-layer fine-tuned BERT) 548

requires two Nvidia Tesla V100 GPUs for stable 549

serving that meets the latency requirement. 550

With the primary objective of reducing cost, 551

we have implemented the proposed flexible multi- 552

task model in our utterance understanding system, 553

which provides serving for a total of 21 downstream 554

tasks. Overall, there are 40 transformer layers of 555

which 8 are shared frozen layers (on average 1.5 556

task-specific layers per task). Using only 5 Nvidia 557

Tesla V100 GPUs, we achieve a P99 latency of 32 558

ms under a peak throughput of 4000 QPS. Com- 559

pared with single-task serving for 21 tasks which 560

would require 42 GPUs, we estimate that our sys- 561

tem reduces the total serving cost by up to 88%. 562

8



QNLI RTE QQP MNLI SST-2 MRPC CoLA STS-B Avg. Layers Overhead

Full fine-tuning 91.6 69.7 91.1 84.6 93.4 88.2 54.7 88.8 82.8 12× 8 96 (100%)

Ours (KD-1) 86.4 66.1 91.0 77.5 90.7 85.1 36.4 88.3 77.4 7 + 1×8 15 (15.6%)
Ours (KD-2) 88.6 64.6 91.3 81.7 92.7 86.3 44.0 88.6 79.7 7 + 2×8 23 (24.0%)
Ours (KD-3) 90.2 66.8 91.2 82.9 92.7 88.0 50.0 88.9 81.3 7 + 3×8 31 (32.3%)

Ours (c = 1.0) 90.2 71.5 91.0 82.9 92.7 88.0 55.2 88.3 82.5 7 + 26 33 (34.3%)
(2,3) (7,5) (2,1) (4,3) (6,2) (7,3) (4,8) (4,1)

Ours (c = 2.0) 88.6 66.1 91.0 81.7 92.7 85.1 50.0 88.3 80.4 7 + 13 20 (20.2%)
(2,2) (7,1) (2,1) (4,2) (6,2) (7,1) (4,3) (4,1)

Ours (c = 3.0) 86.4 66.1 91.0 81.7 90.7 85.1 50.0 88.3 79.9 7 + 11 18 (18.8%)
(2,1) (7,1) (2,1) (4,2) (6,1) (7,1) (4,3) (4,1)

Ours (w/o KD) 91.7 71.5 91.1 84.5 93.1 89.7 55.2 88.9 83.2 7 + 60 67 (69.8%)
(2,10) (7,5) (2,10) (4,8) (6,6) (7,5) (4,8) (4,8)

Table 3: Results with various values of c. This parameter controls the performance-efficiency trade-off of the
overall multi-task model, in the sense that we allow the growth of an existing task module by one more task-
specific layer only if that would bring a performance gain greater than c.

9


