
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LASER: ATTENTION WITH EXPONENTIAL TRANS-
FORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have had tremendous impact for several sequence related tasks. The
Transformer’s ability to retrieve from any part of the sequence via a parameterized
query-key-value mechanism - Softmax based dot-product attention The Softmax
based dot-product attention mechanism plays a key role in t. However, the soft-
max operation can backpropagate small gradients thus inhibiting learning. In this
paper, we fix this by introducing a new attention mechanism called LASER At-
tention, which admits a log-sum-exp structure and propagates a larger gradient
signal. We show that LASER Attention can be implemented by making small
modifications to existing attention implementations. We conduct experiments on
large language models (LLMs) with upto 2.2 billion parameters where we show
improvements of upto 3.38% and ∼1% on an average compared to standard atten-
tion on downstream one-shot evaluations. We also evaluate on transformers span-
ning different modalities (vision, speech and text): Vision Transformer (ViT) on
Imagenet (1.2% improvement in accuracy), Conformer on the Librispeech speech-
to-text task (2.25% relative improvement) and encoder-only BERT Transformer
with 2.2 billion parameters (0.93% relative improvement).

Figure 1: Backpropagating gradients through the softmax operation in attention mechanism requires
scaling with Jacobian of softmax. We show that this Jacobian is proportional to the magnitude of
attention weights, which are typically small in large language models (LLMs) with about 80% of
the weights less than 10−3 and about 20% less than 10−7. We implement a fix called LASER
attention that involves conducting Dot-Product Attention with an exp(·)-transformed value matrix
V , i.e., conducting attention on exp(V). We show that LASER admits a larger Jacobian, easy to
implement and does not require any change to the underlying attention function, which may have
a more nuanced implementation (e.g., FlashAttention (Dao et al., 2022)). In the image, exp(.) and
log(.) are element-wise transformations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

In recent years, the transformer architecture and its associated attention mechanisms have gained
prominence over traditional models like LSTMs for various sequence-based tasks due to their ability
to better capture long-range dependencies without suffering from the vanishing gradient problem.
The key component of Transformer, Attention mechanism, assigns different weights to previous
tokens in a sequence, indicating their relative importance, and these weights are computed via a
softmax function (Vaswani et al., 2017). The transformer architecture consists of multiple stacked
layers, where each layer operates on the output of the previous one, forming the transformer encoder
or decoder. Learning within the transformer is performed via gradient backpropagation, wherein
gradients propagate backward through the network layer by layer using the chain rule (LeCun et al.,
2002). However, as gradients backpropagate through multiple layers, their magnitude tends to di-
minish, resulting in weaker gradients reaching the bottom layers. This phenomenon can hinder
effective learning in deeper layers. Residual connections (He et al., 2016) are used in Transformers
to bypass the layers via skip connections to avoid this issue. However, it behooves us to develop
layers which backpropagate gradients effectively.

In this paper we identify a similar gradient vanishing issue in attention mechanism of Transformer.
We show that the softmax operation backpropagate small gradients in large language models. Based
on this observation, we propose a small modification to attention mechanism - LASER attention
(LogArithm of Summed Exponentials of Representations). LASER is equivalent to conducting
attention on exponentially transformed inputs and takes a log-sum-exp structure. We analytically
show that gradients propagated via LASER attention are typically large. Since exp(·) transformation
in LASER can lead to overflows during implementation, we develop a novel implementation - Log-
Weighted-Sum-Exp trick, inspired from Log-Sum-Exp trick (Blanchard et al., 2019). This technique
allows LASER to scale to large models with upto 2.2 billion parameter models. We show that our
implementation requires small modifications, and doesn’t need any changes to underlying attention
mechanisms which may or may not admit more nuanced implementation (for e.g., FlashAttention).

We conduct thorough empirical verification across a variety of transformer models, including Con-
former for Librispeech speech-to-text (Gulati et al., 2020), Vision Transformer(Dosovitskiy et al.,
2021) for ImageNet classification (Deng et al., 2009), decoder-only text transformer (Brown et al.,
2020) on C4 dataset (Raffel et al., 2020) and encoder-only BERT ((Devlin et al., 2018)). We conduct
experiments on decoder-only causal language models from 234 million parameters to 2.2 billion pa-
rameter models, where we demonstate improvements of up to 1.7% relative improvement in test loss
over standard attention function. We conduct one-shot evaluation on 17 downstream tasks and show
that LASER outperforms Standard attention on 14 tasks with upto 3.38% difference in accuracy
and an average of 1% accuracy difference. On BERT with 2.2 billion parameter we show a relative
improvement of 0.93% on masked language modeling prediction error rate. We also show a 4.67%
relative improvement in validation error rate in Vision Transformer and 1.2% absolute improvement
in accuracy, and a 2.25% relative improvement in validation word error rate in the Conformer bench-
mark. Furthermore, LASER attention can be implemented with small modifications to the inputs of
traditional attention mechanism, making it a feasible and effective enhancement for a wide range of
Transformer architectures.

2 RELATED WORK

Attention mechanism was used in Bahdanau et al. (2015) to drastically improve machine translation
performance compared to encoder-decoder recurrent neural networks (RNNs) (Cho, 2014). This was
later adopted in Transformers (Vaswani et al., 2017), which introduced self-attention to improve the
performance in machine translation even further. Efficient attention mechanisms have been an ac-
tive area of research due to the quadratic complexity in sequence length of Attention, which prevents
long-context language modeling. One notable contribution is Linear Attention (Katharopoulos et al.,
2020), which reduces the quadratic complexity of self-attention to linear by approximating the soft-
max function. Similarly, the Performer (Choromanski et al., 2021) uses kernel methods to achieve
linear complexity in transformers, making them more scalable for large-scale applications while
retaining competitive performance in various tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The Mamba architecture, particularly Mamba-2, introduces state-space models (SSMs) as a re-
placement for traditional attention. Models like SSD from Mamba-2 (Dao & Gu, 2024) and S6
(S4+selection+scan) (Gu & Dao, 2023) showcase an efficient way to model long-range dependen-
cies without the use of attention, leading to faster computation. However, despite these innovations,
attention-based models like LLaMA 3 (Dubey et al., 2024) continue to dominate large-scale appli-
cations, particularly through advancements in context parallelism, which ensures scalability while
maintaining the strengths of attention mechanisms in transformer models.

Efficient attention mechanisms have become critical in handling large-scale data and long sequences,
especially in transformer-based architectures. FlashAttention (Dao et al., 2022; 2024), is a recent
advancement that optimizes memory and computational speed by improving memory bandwidth
utilization during attention computation, making it both fast and memory-efficient. This mechanism
is used for faster inference and training, particularly when scaling up to large sequence lengths.
Routing Transformers take a different approach by introducing a mechanism that sparsifies attention
through dynamic routing, where only the most relevant tokens are attended to during each attention
step (Roy et al., 2021) with subquadratic computational complexity in sequence length. Similarly,
Longformer (Beltagy et al., 2020) modifies the standard self-attention mechanism to handle long
documents by combining local attention with selected global attention tokens. Sparse Transformers
(Child et al., 2019) use fixed sparse attention patterns, enabling them to efficiently handle very long
sequences by reducing the quadratic complexity of standard attention to linear or sub-quadratic in
practice. By focusing only on a sparse subset of the tokens in each layer. LASER Attention can
be thought of as complementing these approaches, as it conducts attention using the exponential
transformation of inputs, without any change to underlying attention function.

3 LASER ATTENTION- LOGARITHM OF SUMMED EXPONENTIALS OF
REPRESENTATIONS

We first formally introduce the standard softmax dot-product attention used in Transform-
ers (Vaswani et al., 2017) in Section 3.1. In Section 3.2, we introduce LASER Attention by first
deriving the gradients of standard attention by considering a simple case of sequence length 2.

3.1 TRANSFORMERS AND SOFTMAX DOT-PRODUCT ATTENTION

Let X ∈ RN×d be the input representing the sequence with N tokens where the rows are represen-
tations of the tokens. Let A : RN×d → RN×d denote the attention function. Attention function
is the only operation in the transformer which is applied across the sequence axis. We describe the
transformer layer Tl : RN×d → RN×d similar to Katharopoulos et al. (2020) as follows:

Tl(X) = fl(X +Al(X)WO).

Here fl : RN×d → RN×d is usually implemented using a 2-layer feed-forward neural network
which acts on each token representation independently and WO ∈ Rd×d is a tunable parameter
matrix. A single head attention mechanism (Vaswani et al., 2017) can be described as follows:

K = XW
(l)
K ∈ RN×d, Q = XW

(l)
Q ∈ RN×d, V = XW

(l)
V ∈ RN×d,

Al(X) = softmax(QK⊤)V.

The softmax (Bridle, 1990) operation is applied row-wise. Layer normalizations (Ba et al., 2016)
are applied before fl(.), and Al(.), but we omit this for brevity. A transformer comprises of stacking
functions Tl(X), l ∈ {1, . . . , L} sandwiched by embedding layer E : RN×V → RN×d and softmax
layer S : RN×d → RN×V as follows:

T (X) = S ◦ TL ◦ · · · ◦ T1 ◦ E (X) ∈ RN×V ,

where the inputs X ∈ RN×V . Let ℓ(T (X), Y) be the loss function used to learn the parameters
of the transformer T , where Y represents label information. Autoregressive language modeling
(Radford et al., 2018; Brown et al., 2020) involves using a causal mask M which is lower triangular

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

and is multiplied before the softmax operation as follows:

Al(X) = softmax(M ⊙QK⊤)V,

Mij = 1 if i ≤ j,

= 0 else,

where ⊙ denotes element-wise multiplication. During training, gradients ∂ℓ
∂WK

, ∂ℓ
∂WQ

, ∂ℓ
∂WV

are
computed via backpropagation in a layer-by-layer fashion from layer-L to layer-1 and are used to
update the parameters. In the next section we analyze the gradients for a simple case of sequence
length N = 2 and similarly analyze LASER attention.

3.2 GRADIENT ANALYSIS OF ATTENTION

For simplicity, let the sequence length N = 2 with attention weights A = softmax(KQ⊤) and
attention logits as Ã = KQ⊤. If we expand the matrices A and Ã, we get the following:(

a11 a12
a21 a22

)
= softmax

(
ã11 ã12
ã21 ã22

)
=

(
exp(ã11)

exp(ã11)+exp(ã12)
exp(ã12)

exp(ã11)+exp(ã12)
exp(ã21)

exp(ã21)+exp(ã22)
exp(ã22)

exp(ã21)+exp(ã22)

)

=

(
σ(ã11 − ã12) 1− σ(ã11 − ã12)
σ(ã21 − ã22) 1− σ(ã21 − ã22)

)
, (1)

where σ denotes the sigmoid operation σ(x) = 1/(1+ exp(−x)). Let the representation dimension
d = 1, then the attention result will be as follows:

Attention output: Al(X) =

(
o1
o2

)
=

(
σ(ã11 − ã12)v1 + (1− σ(ã11 − ã12))v2
σ(ã21 − ã22)v1 + (1− σ(ã21 − ã22))v2,

)
(2)

where V =

(
v1
v2

)
. To compute the gradient with respect to Ã, we can use chain rule:

∂ℓ

∂Ã︸︷︷︸
gradient backpropagated

=
∂ℓ

∂Al(X)
· ∂Al(X)

∂Ã︸ ︷︷ ︸
Jacobian

If the Jacobian is small in magnitude then the gradient backpropagated will also be small. We now
analyze an element of the Jacobian:

Attention Jacobian:
∂o1
∂ã11

= v1σ(ã11 − ã12)(1− σ(ã11 − ã12))− v2σ(ã11 − ã12)(1− σ(ã11 − ã12))

= (v1 − v2)σ(ã11 − ã12)(1− σ(ã11 − ã12))︸ ︷︷ ︸
possible saturation

(3)

The sigmoid function value, σ(ã11 − ã12) saturates to 1 when ã11 − ã12 becomes sufficiently large.
Conversely, when ã11 − ã12 is large and negative, the function value saturates to 0. In both cases,
saturation leads to vanishing gradients, where the gradient becomes very small. This phenomenon
is a well-documented limitation of the sigmoid function (LeCun et al., 2002).

We extend this observation to sequence length of size N as follows:
Lemma 3.1 (Gradient saturation in softmax). Let a ∈ RN be a row in attention weights/probabili-
ties A and similarly let ã be a row in attention logits Ã, then:

a = softmax(ã)

∂ℓ

∂ã
= (diag(a)− aa⊤)

∂ℓ

∂a

We give a proof of this lemma in Section A.2

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Key Observation. From Lemma 3.1, it can be seen that the Jacobian of softmax operation is
proportional to attention probabilities. For a 2.2 billion parameter autoregressive language
model, we observe (see Figure 1) that about 80% of attention probabilities are less than
10−3 and about 20% are less than 10−7, during pretraining. Thus gradient backpropagated
through softmax operation is scaled by very small values.

To address this issue, we now introduce LASER Attention which applies attention on exp(V), ele-
mentwise exponentials of value matrix V as follows:

exp(Al(X)) = softmax(QK⊤) exp(V)

Al(X) = log(softmax(QK⊤) exp(V)) → LASER Attention (4)

where log(.) is applied elementwise. Expanding (4) for N = 2 and d = 1 as done for standard
attention in (2) gives:

LASER output:
(
o1
o2

)
=

(
log(σ(ã11 − ã12) exp(v1) + (1− σ(ã11 − ã12)) exp(v2))
log(σ(ã21 − ã22) exp(v1) + (1− σ(ã21 − ã22)) exp(v2)),

)
(5)

Low gradient saturation. Computing an element in the Jacobian ∂Al(X)
∂X as done in (3) will give

the following:

LASER Jacobian:
∂o1
∂ã11

=
(exp(v1)− exp(v2))σ(ã11 − ã12)(1− σ(ã11 − ã12))

σ(ã11 − ã12) exp(v1) + (1− σ(ã11 − ã12)) exp(v2)

=
(exp(v1)− exp(v2))σ(ã11 − ã12)(1− σ(ã11 − ã12))

σ(ã11 − ã12)(exp(v1)− exp(v2)) + exp(v2)
(6)

Without loss of generality, if v1 ≫ v2, then

LASER Jacobian:
∂o1
∂ã11

=
σ(ã11 − ã12)(1− σ(ã11 − ã12))

σ(ã11 − ã12) + exp(v2)/(exp(v1)− exp(v2))

≈ (1− σ(ã11 − ã12))︸ ︷︷ ︸
low saturation

The approximation is due to exp(v2)/(exp(v1)− exp(v2) ≈ 0.

Relation between LASER attention and max function. From 1 and (5), LASER output can be
written in a log-sum-exp form (Blanchard et al., 2019) as follows:

o1 = log(a11 exp(v1) + a12 exp(v2))

= log(exp(v1 + log(a11) + exp(v2 + log(a12)) (7)

Log-exp-sum function can be thought of as a differentiable approximation of max function:

Lemma 3.2 (Boyd & Vandenberghe (2004)). The function f(x1, . . . , xn) = log (ex1 + · · ·+ exn)
is convex on Rn. This function can be interpreted as a differentiable approximation of the max
function, since

max{x1, . . . , xn} ≤ f(x1, . . . , xn) ≤ max{x1, . . . , xn}+ log n

for all x ∈ Rn. (The second inequality is tight when all components of x are equal.)

Given that max(x1, . . . , xn) function is not differentiable at points where two or more elements take
the same value, log-sum-exp can serve as a differentiable approximation. Using Lemma 3.2, we can
relate LASER (7) to max(·) operation as follows:

max(v1 + log(a11), v2 + log(a12)) ≤ o1 ≤ max(v1 + log(a11), v2 + log(a12)) + log(2)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 LASER IMPLEMENTATION VIA LOG-WEIGHTED-SUM-EXP TRICK

In this section we explore implementing LASER and provide a pseudocode. Given the log-sum-exp
structure from (7):

o1 = log(σ(ã11 − ã12) exp(v1) + (1− σ(ã11 − ã12)) exp(v2)),

one can notice that exp(.) operations can lead to overflow. This problem has been recognized in
Blanchard et al. (2019) and “Log-sum-exp trick” is used to avoid overflows. However, the log-
sum-exp trick cannot be applied directly as it would be difficult to implement without changing
the underlying attention function. We propose a “Log-weighted-sum trick”, where we subtract the
maximum value m = max(v1, v2) from v1 and v2 and rewrite the above equation as follows:

o1 = log((σ(ã11 − ã12) exp(v1 −m) + (1− σ(ã11 − ã12)) exp(v2 −m)) ∗ exp(m))

= log(σ(ã11 − ã12) exp(v1 −m) + (1− σ(ã11 − ã12)) exp(v2 −m)) +m

Now conducting exp(.) operation on v1 −m and v2 −m will not lead to overflows. We can extend
this to matrix-version (4) by conducting column-wise maximum of value matrix V ∈ RN×d as
follows:

mj = max
i∈{1,...,N}

Vij , j ∈ {1, . . . , d}

Define V̂ ∈ RN×d such that V̂ij = (Vij −mj)

The above operations helps us conduct exp(.) operation without overflows. Then the final LASER
attention operation would be as follows:

Define O ∈ RN×d as: O = log(softmax(QK⊤) exp(V̂) diag(exp(m)))

Oij = (log(softmax(QK⊤) exp(V̂)))ij +mj ,

Here, m = (m1, . . . ,md) and diag(m) is a diagonal matrix with elements of m as diagonals.
The main use of our Log-weighted-sum-exp trick is, it allows us to implement LASER attention
via merely modifying inputs and outputs of standard attention, without changing the underlying
attention function. We show this in the following JAX (Bradbury et al., 2018) code, where we can
implement LASER attention using standard attention functions.

Listing 1: JAX implementation of LASER attention requres a small change to existing attention
implementations
given key (B,N,H,S), value (B,N,H,S), query (B,N,H,S)
B - batch size, N - sequence length, H - number of attention heads
S - size of the head
m = jnp.max(value, axis=1, keepdims=True) # max along sequence dimension
m = jax.lax.stop_gradient(m) # stop the gradients along m
exp_value = jnp.exp(value - m) # shifting the values
f = standard_attention # Efficient attention - FlashAttention, etc.
attention_out = f(key, query, exp_value)
out = jnp.log(attention_out) + m # adding back the max values

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 LASER Attention with Log-Weighted-Sum-Exp Trick

1: Input: Values V ∈ RN×d, Queries Q ∈ RN×d, Keys K ∈ RN×d

2: Output: LASER Attention output O ∈ RN×d

3: Compute the column-wise maximum for the value matrix V

mj = max
i∈{1,...,N}

Vij , j ∈ {1, . . . , d}

4: Subtract mj from each element of V

V̂ ∈ RN×d such that V̂ij = (Vij −mj) // Shift values to avoid overflow in exp(.)

5: Apply attention with Queries Q, Keys K and Values V with mj , j ∈ {1, . . . , d} added back to
the output

Define O ∈ RN×d as: (O)ij = (log(softmax(QK⊤) exp(V̂)))ij +mj

6: return LASER attention output O

4 EXPERIMENTAL RESULTS

4.1 AUTOREGRESSIVE LANGUAGE MODELING ON C4

In this section, we compare the performance of LASER Attention with standard attention mecha-
nisms in the context of an autoregressive language modeling task.

(a) Training Loss Comparison (b) Test Loss Comparison

Figure 2: Comparison between LASER and Standard attention mechanism on a 301 million parameter autore-
gressive language model with 32 layers and 2048 hidden dimensions on C4 dataset for training and test loss vs
steps for 167 billion tokens. LASER attention shows consistently lower loss.

Dataset and setup. We use the C4 dataset (Raffel et al., 2020) for our experiments. The training
is conducted using a batch size of 1024 sequences, each with a sequence length of 1024 tokens.
The models are trained for 160,000 iterations, resulting in the utilization of approximately 167.8
billion tokens. Throughout the training process, we monitor both the training and test losses, and
we observe a significant improvement in the test set performance when using LASER Attention
compared to the standard attention mechanism (as illustrated in Figure 2).

Model architecture. The base model architecture consists of 300 million parameters of a decoder-
only Transformer, which is distributed across 32 layers. Each layer uses 8 attention heads, with each
head having a size of 128. The MLP block in this architecture has a hidden dimension of 2048.

In addition to this configuration, we also experiment with a variant where the model retains 32 layers
but increases the MLP block hidden dimension to 4096. In this variant, we increase the hidden
dimension of the MLP block to shift more parameters into the MLP block. This configuration
continues to show improvements in both the training and test loss metrics, demonstrating that the
effectiveness of LASER Attention is maintained even when attention parameters are reduced. The
results of these experiments can be seen in Table 1, where we also include ablation results showing
improvements even with a 16-layer setting.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Number of Layers Hidden Dimension LASER Standard Attention
16 4096 2.673 2.681
32 2048 2.595 2.641
32 4096 2.555 2.575

Table 1: Comparison of test loss between LASER and Standard attention mechanisms across different model
configurations, where we notice upto 1.74% relative improvement in loss.

Figure 3: In this figure, we measure grad norm vs steps for an autoregressive language model with a 301
million parameters model corresponding to Figure 2. Here we can notice that LASER attention has higher
gradients throughout the training as discussed in Section 3.2.

Ablation with optimizers. In Figure 3, we observed that both gradient norms were higher com-
pared to the baseline. An initial hypothesis was that higher gradient norms might lead to more pa-
rameter change, consequently reducing the loss more effectively. To investigate this, we utilized the
LAMB optimizer (You et al., 2019), which normalizes and renormalizes updates using the weight
norm to ensure that the scale of updates matches the scale of the weights, thus voiding the effect of
gradient/update norms on optimization. Interestingly, even with LAMB’s normalization mechanism,
we observed a consistent improvement in training (Standard Attention - 2.749 vs LASER - 2.736)
and test loss (Standard Attention - 2.758 vs LASER - 2.741), suggesting that the performance gains
were not solely driven by larger gradient magnitudes but are intrinsic to the model’s architecture and
the LASER Attention mechanism.

Scaling to larger models. To demonstrate scalability of our approach, we conducted experiments
on a 1.1 billion and 2.2 billion parameter model. Without the Log-Weighted-Sum-Exp trick we
introduced in Section 3.3, we noticed that the 2.2 billion model training fails. In Figure 4, we show
that LASER attention outperforms standard-attention in a 2.2 billion parameter model with model
dimension 2048 and hidden dimension 8192 with 32 layers and 8 attention heads (each of size 512).
We observe the same in 1.1 billion model (Figure 4), which has a scaled down hidden dimension
(4096) and attention head size (256).

Evaluation on downstream tasks. We evaluate the performance of our 2.2 billion parameter
model on several downstream tasks and mention in Table 2. Where we evaluate on ARC (Clark
et al., 2018), BoolQ (Clark et al., 2019), CB (Wang et al., 2019), COPA (Wang et al., 2019), Hel-
laSwag (Zellers et al., 2019), MultiRC (Khashabi et al., 2018), OpenBookQA (Mihaylov et al.,
2018), PIQA (Bisk et al., 2020), RACE (Lai et al., 2017), ReCoRD (Zhang et al., 2018), RTE (Wang
et al., 2019), StoryCloze (Mostafazadeh et al., 2016), WiC (Pilehvar & Camacho-Collados, 2019),
Winograd (Levesque et al., 2012), Winogrande (Kocijan et al., 2020), and WSC (Wang et al., 2019).
We found that LASER outperforms in 14 out 17 datasets with upto 3.38% difference and 0.85%
difference on average in accuracy.

Training and evaluation. All experiments are conducted using the PAX framework (Research,
2023), built on JAX (Bradbury et al., 2018), and executed on TPUv5 chips (Cloud, 2023). We use
64 chips for 300 million parameter model, 128 chips for 1.1 billion and 256 chips for 2.2 billion
parameter model. Each training run takes upto 24 hours. We conducted hyperparameter search on
16-layer model mentioned in Table 1 with 15 hyperparameters using search space in Table 4. We
noticed that LASER attention exhibit fewer training curve spikes, which we note in Section A.3.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Part 1
Dataset LASER (mean±std) Standard (mean±std)
WSC 81.12±0.41 79.23±0.41
Winogrande 62.04±0.21 62.26±0.14
Winograd 82.05±0.40 80.22±0.33
WiC 51.38±0.59 51.16±0.45
StoryCloze 77.97±0.10 76.42±0.08
RTE 53.07±0.23 53.29±0.29
ReCoRD 85.28±0.10 85.04±0.08
RaceM 50.56±0.12 49.69±0.10

(b) Part 2
Dataset LASER (mean±std) Standard (mean±std)
RaceH 37.82±0.12 37.58±0.16
PIQA 77.15±0.12 76.75±0.09
OpenBookQA 49.12±0.16 47.40±0.22
MultiRC 57.57±0.12 54.17±0.19
HellaSwag 66.62±0.05 65.46±0.03
COPA 82.00±0.00 80.20±0.40
CB 40.00±0.87 44.64±1.13
BoolQ 63.37±0.14 60.46±0.33

Table 2: Accuracies of one-shot evaluation of a 2.2 billion parameter autoregressive language model
trained via LASER and standard attention. We found that LASER outperforms or performs the same
as standard attention on 14 out of 17 datasets by up to 3.4%. On average, LASER gives an accuracy
of 63.57±0.23% vs standard attention’s 62.75±0.28%.

(a) Train loss - 2.2 billion parameter model. (b) Test loss - 2.2 billion parameter model.

(c) Train loss - 1.1 billion parameter model. (d) Test loss - 1.1 billion parameter model.

Figure 4: Performance comparison for 2.2 billion and 1.1 billion parameter models. The 2.2 billion model has
32 layers, 8 attention heads (head size 512), MLP hidden dimension 8192, and model dimension 2048. The
1.1 billion model has 32 layers, 8 attention heads (head size 256), MLP hidden dimension 4096, and model
dimension 1024. We show that LASER outperforms Standard Attention in large scale settings.

4.2 MASKED LANGUAGE MODELING VIA BERT

In the experiments so far, the focus was mainly on decoder-only models, to diversify our evalua-
tion we now shift to encoder-only model- BERT (Devlin et al., 2018) trained via masked language
modeling (as opposed to next token prediction). We train a 2.2 billion parameter BERT on MLPerf
training data which uses wikipedia articles. We get better error rate of masked language model pre-
dictions - LASER - 0.2125 vs Standard Attention - 0.2145 (0.93% relative improvement). One may
notice that LASER makes more difference in decoder-only models compared to BERT. We used
model dimension of 2048, hidden dimension - 8192, number of attention heads 16, each of size 256.

4.3 VISION TRANSFORMER (VIT) AND CONFORMER - SPEECH-TO-TEXT

Vision Transformer (ViT) on Imagenet-1k. In this section, we experiment with the Vision
Transformer (ViT) S/16 (Dosovitskiy et al., 2021) variant on the Imagenet-1k classification task
(Deng et al., 2009) which are part of AlgoPerf benchmarks (Dahl et al., 2023) for optimizer com-
parisons. These benchmarks are identically implemented in init2winit framework (Gilmer et al.,
2023), build on JAX, which we use for our experiments.

A hyperparameter sweep was conducted over 50 configurations on NAdamW (Dozat, 2016), focus-
ing on the search space defined in Table 3. We selected the best-performing hyperparameter config-
uration based on validation performance for standard attention, run it for 5 different random seeds
(for initialization) and report the validation curves corresponding to median in Figure 5, where we

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Conformer Speech-to-Text - Validation (b) ViT ImageNet Classification - Validation

Figure 5: Comparison of LASER attention vs Standard attention in two tasks: Conformer Speech-to-Text
(left) and ViT ImageNet Classification (right). LASER attention provides a 1% absolute improvement in error
rate (25.27% → 24.09%) i.e., a ∼4.67% relative improvement. In Conformer, we notice an improvement of
word error rate (WER) (0.0843 → 0.0824) - 2.25% relative improvement. Median curve among 5 random
initializations corresponding to the best performing hyperparameter configuration is reported.

show that LASER attention provides a 1% absolute improvement in error rate (25.27% → 24.12%),
which translates to a ∼4% relative improvement over standard attention.

Conformer on Librispeech Speech-to-Text. We also evaluate the performance of LASER atten-
tion on the Librispeech Speech-to-Text dataset (Panayotov et al., 2015) using the Conformer model
(Gulati et al., 2020). Similar to the ViT experiments, we use the AlgoPerf benchmark and perform a
hyperparameter sweep across 50 configurations to optimize standard attention. We pick the optimal
hyperparameters, run them for 5 different random seeds (for initialization) and report the validation
curves corresponding to median in Figure 5 where we demonstrate a clear reduction in word error
rate (WER) (0.0843 → 0.0824) when using LASER attention.

These experiments show that LASER attention improves both image classification and speech-to-
text performance, further highlighting its versatility and efficiency across different modalities.

Comparisons using OPTLists. In AlgoPerf (Dahl et al., 2023), a list of 5 hyperparameters for
NAdamW, tuned for a variety of benchmarks (as opposed to just Conformer and ViT) were pro-
vided - OPTList. We also evaluate our models on OPTList by running each hyperparameter with
5 different random seeds (initializations) and picking the median of the best performing hyperpa-
rameter. For Imagenet-ViT benchmark we obtain a reduction in validation error rate from 0.21732
to 0.21348. In Librispeech-Conformer benchmark we obtain a reduction validation word error rate
from 0.07728 to 0.07607.

5 CONCLUSIONS

In this paper, we first identified a bottleneck in the gradient backpropagation of attention mechanism
where the gradients are scaled by small Jacobian values while passing through the softmax operation.
We fix this issue by transforming the inputs and outputs of attention mechanism, and show that
this leads to larger Jacobians in the limiting case. We demonstrate the improvements in training
performance over four types of transformers spanning different modalities (text, speech and vision):
(a) decoder-only (via Large Language model) upto 2.2 billion parameters, (b) encoder-only (BERT)
with 2.2 billion parameters, (c) vision Transformers on Imagenet, and (d) Conformer on Librispeech
speech-to-text, where we show significant and consistent improvements in performance.

6 LIMITATIONS

While we conduct research on improving attention mechanism, which has wide applicability. Due to
quadratic complexity in sequence length, scaling to large sequence lengths can be a major limitation
of LASER or any attention mechanism.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In 3rd International Conference on Learning Representations,
ICLR 2015, 2015. URL https://arxiv.org/abs/1409.0473.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020. URL https://arxiv.org/abs/2004.05150.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language. In Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence, 2020.

Pierre Blanchard, Desmond J Higham, and Nicholas J Higham. Accurate computation of the log-
sum-exp and softmax functions. arXiv preprint arXiv:1909.03469, 2019.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, and Dougal
Maclaurin. Jax: Autograd and xla. https://github.com/google/jax, 2018. Accessed:
2024-09-25.

John S Bridle. Probabilistic interpretation of feedforward classification network outputs, with re-
lationships to statistical pattern recognition. In Neurocomputing: Algorithms, Architectures and
Applications, pp. 227–236. Springer, 1990.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019. URL https://arxiv.org/abs/
1904.10509.

Kyunghyun Cho. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Q Davis, Afroz Mohiuddin, Łukasz Kaiser, et al. Rethinking atten-
tion with performers. In International Conference on Learning Representations, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Caroline Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Google Cloud. Google cloud tpu v5e: Next-generation ai hardware for large-scale model train-
ing. https://cloud.google.com/blog/products/ai-machine-learning/
introducing-tpu-v5e, 2023. Accessed: 2024-09-25.

George E Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,
Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, et al.
Benchmarking neural network training algorithms. arXiv preprint arXiv:2306.07179, 2023.

11

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2004.05150
https://github.com/google/jax
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://cloud.google.com/blog/products/ai-machine-learning/introducing-tpu-v5e
https://cloud.google.com/blog/products/ai-machine-learning/introducing-tpu-v5e

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 2022. URL https://arxiv.org/abs/2205.14135.

Tri Dao, Daniel Fu, Xinyang G Wang, et al. Flashattention 2: Faster attention with better mem-
ory scheduling. arXiv preprint arXiv:2401.14155, 2024. URL https://arxiv.org/abs/
2401.14155.

Pradeep Dasigi, Waleed Ammar, Chandra Bhagavatula, and Ryan Power. Qasper: A dataset for
question answering on scientific research papers. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 535–546, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255. IEEE, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2021.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Justin M. Gilmer, George E. Dahl, Zachary Nado, Priya Kasimbeg, and Sourabh Medapati.
init2winit: A jax codebase for initialization, optimization, and tuning research, 2023. URL
http://github.com/google/init2winit.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented transformer
for speech recognition. In Proc. Interspeech, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770–778, 2016.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International Conference on Ma-
chine Learning, pp. 5156–5165. PMLR, 2020.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking
beyond the surface: A challenge set for reading comprehension over multiple sentences. Proceed-
ings of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 252–262, 2018.

Vid Kocijan, Elias Chamorro-Perera, Damien Sileo, Jonathan Raiman, and Peter Clark. Winogrande:
An adversarial winograd schema challenge at scale. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 8732–8740, 2020.

12

https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2401.14155
https://arxiv.org/abs/2401.14155
http://github.com/google/init2winit

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 785–794, 2017.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural Networks: Tricks of the Trade, pp. 9–50. Springer, 2002.

Hector J. Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In Pro-
ceedings of the Thirteenth International Conference on Principles of Knowledge Representation
and Reasoning, pp. 552–561, 2012.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu, May 2024.
URL https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vander-
wende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper understanding
of commonsense stories. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 839–849,
2016.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. In Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
1797–1807, Brussels, Belgium, October 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1206. URL https://aclanthology.org/D18-1206.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An asr corpus
based on public domain audio books. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5206–5210. IEEE, 2015.

Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: The word-in-context dataset for
evaluating context-sensitive meaning representations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 1267–1273, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018. OpenAI.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. In Journal of Machine Learning Research, volume 21, pp. 1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Google Research. Pax: A jax-based neural network training framework. https://github.
com/google/pax, 2023. Accessed: 2024-09-25.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient routing trans-
formers: Dynamic token interaction models for natural language processing. arXiv preprint
arXiv:2003.05997, 2021. URL https://arxiv.org/abs/2003.05997.

Uri Shaham, Lirui Lukas, Gabriel Ilharco, Efrat Oren, Jonathan Berant, Colin Raffel, and Omer
Levy. Scrolls: Standardized comparison over long language sequences. arXiv preprint
arXiv:2201.03533, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017.

13

https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://aclanthology.org/D18-1206
http://jmlr.org/papers/v21/20-074.html
https://github.com/google/pax
https://github.com/google/pax
https://arxiv.org/abs/2003.05997

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. In Advances in Neural Information Processing Systems (NeurIPS), pp.
3261–3275. Curran Associates, Inc., 2019.

Yang You, Jing Li, Sashank Reddi, Jason Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, and Cho-Jui Hsieh. Large batch optimization for deep learning: Training bert in
76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

Shuailong Zhang, Huanbo Liu, Shuyan Liu, Yuwei Wang, Jiawei Liu, Zhiyu Gao, Wei Xu, Yiming
Xu, Xin Sun, Lei Cui, et al. Record: Bridging the gap between human and machine commonsense
reading comprehension. arXiv preprint arXiv:1810.12885, 2018.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 HYPERPARAMETER SEARCH SPACE

In Table 3 we outline the hyperparameter search space for all the benchmarks in Section 4.3.

Parameter Min Max Scaling/Feasible Points

learning rate 10−4 10−2 log
1− β1 10−2 0.15 log
β2 - - 0.9, 0.99, 0.999
warmup factor - - 0.05
weight decay 5× 10−3 1.0 log
label smoothing - - 0.1, 0.2
dropout rate - - 0.1

Table 3: Hyperparameter search space used in Section 4.3.

Parameter Value
learning rate [1e-1, 1e-2, 1e-3, 1e-4, 1e-5]
weight decay [1e-2, 1e-1, 1.0]
beta 1 0.9
beta 2 0.99
epsilon 1e-24
dropout rate 0.0

Table 4: Hyperparameter search space for language modeling experiments, Section 4.1

A.2 PROOFS

Proof of Lemma 3.1. The softmax activation function is applied row-wise on the preactivations Ã;
we can expand this computation row-wise as follows:

A = softmax(Ã)

=⇒

a⊤1
...
a⊤s

 =

softmax(ã⊤1)
...

softmax(ã⊤s)

=⇒ ai = softmax(ãi), i ∈ {1, . . . , N}

=

{
exp(ãi1)∑
k exp(ãik)

, . . . ,
exp(ãis)∑
k exp(ãik)

}
=⇒ aij =

exp(ãij)∑
k exp(ãik)

Taking gradient with respect to ãi in the last expression gives:

∂aij
∂ãil

= aij(1− aij) if l = j

= −aijail else

Putting everything together, the Jacobian of the transformation ai = softmax(ãi) can be written as
follows:

∂aij
∂ãil

= (diag(ai)− aia
⊤
i)

∂ℓ

∂ãi
= (diag(ai)− aia

⊤
i)

∂ℓ

∂ai
(8)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 TRAINING ANALYSIS

Training instability. There can be spikes in training curves initially during large language model
training. We notice that despite these spikes training stabilizes and converges smoothly. However,
training instability/spikes can be attributed to poor model architecture and optimizer choices. We
now ablate the choice of attention mechanism and understand its affect on training stability. Figure
6 compares training stability of different models.

(a) 234M Parameters (b) 300M Parameters (c) 1.1B Parameters (d) 2.2B Parameters

Figure 6: Train loss vs steps for LASER and standard attention across different number of param-
eters. The training stability for each attention mechanism can be observed through the number of
training spikes. Generally, models with LASER attention exhibit fewer training spikes compared to
models with standard attention, indicating greater stability in training for LASER attention across
all parameter scales. We focus the figures on initial part of the training as the rest of the training
didn’t demonstrate any training instability.

Model Size LASER (hrs) Standard Attention (hrs) Overhead (hrs) Percentage Overhead (%)
234M 12.08 11.61 0.47 3.80%
300M 19.53 19.05 0.48 2.40%
1B 25.99 25.17 0.82 3.27%
2B 28.04 27.48 0.56 2.04%

Table 5: Comparison of walltimes (in hours) for LASER and Standard Attention across different
language model sizes from Section 4.1. We note an overhead of 2-4 % compared to standard atten-
tion. However, our implementation is naive and the additional log(·) and exp(·) operations are not
fused with the attention function.

Scaling Law Analysis. In Figure 7, we used a power law fit f(n) = anb to fit the final test loss
values of autoregressive training runs in Section 4.1 as a function of number of parameters.

Figure 7: Scaling law: Power-law fit for test loss against number of parameters. This plot uses
234M, 300M, 435M, 1.1B and 2.2B parameter models’ final test losses after training on ∼ 167B
tokens. To reach a loss of 2.347, it takes 15.65% fewer parameters with LASER attention.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.4 LONG CONTEXT LANGUAGE MODELING

Long-context language modeling is an important research interest in large language modeling com-
munity. In this section, we evaluate LASER attention by scaling up context length to 8192 (in
contrast to 1024 in Section 4.1) and model size to 5.2B parameters (in contrast to 2.2B in Section
4.1). We train this model on ∼ 40B tokens of Fineweb-Edu dataset (Lozhkov et al., 2024), where
each sequence is of size 8192. The model uses 32 layers, hidden dimension of 7168 and model
dimension of 4096. LASER reaches a training loss of 1.625 vs 1.632 reached by standard attention.
We conduct evaluation on XSum (Narayan et al., 2018) and Scrolls-Qasper dataset (Shaham et al.,
2022; Dasigi et al., 2021). In Table 6, we measure ther

Context Length LASER (Decoder F1) Standard Attention (Decoder F1)
2048 3.06 2.88
4096 3.11 2.48
8192 3.18 2.34

Shots ROUGE-1 ROUGE-Lsum
LASER Standard LASER Standard

5 8.95 8.70 7.38 6.90
10 8.95 8.34 7.43 6.59

Table 6: Comparison of LASER and Standard Attention for Scrolls-Qasper (Left) and XSum
(Right).

SCROLLS-Qasper focuses on question answering over scientific research papers, requiring models
to understand and synthesize information from long, complex documents. XSum, on the other
hand, challenges models to generate concise, abstractive summaries of news articles, emphasizing
informativeness and coherence.

17

	Introduction
	Related Work
	LASER Attention- LogArithm of Summed Exponentials of Representations
	Transformers and Softmax Dot-Product Attention
	Gradient Analysis of Attention
	LASER Implementation via Log-Weighted-Sum-Exp Trick

	Experimental Results
	Autoregressive Language Modeling on C4
	Masked Language Modeling via BERT
	Vision Transformer (ViT) and Conformer - Speech-to-Text

	Conclusions
	Limitations
	Appendix
	Hyperparameter search space
	Proofs
	Training Analysis
	Long Context Language Modeling

