

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNFOLDING GENERATIVE FLOWS WITH KOOPMAN OPERATORS: FAST AND INTERPRETABLE SAMPLING

Anonymous authors

Paper under double-blind review

ABSTRACT

Continuous Normalizing Flows (CNFs) enable elegant generative modeling but remain bottlenecked by slow sampling: producing a single sample requires solving a nonlinear ODE with hundreds of function evaluations. Recent approaches such as Rectified Flow and OT-CFM accelerate sampling by straightening trajectories, yet the learned dynamics remain nonlinear black boxes, limiting both efficiency and interpretability. We propose a fundamentally different perspective: globally linearizing flow dynamics via Koopman theory. By lifting Conditional Flow Matching (CFM) into a higher-dimensional Koopman space, we represent its evolution with a single linear operator. This yields two key benefits. First, sampling becomes one-step and parallelizable, computed in closed form via the matrix exponential. Second, the Koopman operator provides a spectral blueprint of generation, enabling novel interpretability through its eigenvalues and modes. We derive a practical, simulation-free training objective that enforces infinitesimal consistency with the teacher’s dynamics and show that this alignment preserves fidelity along the full generative path, distinguishing our method from boundary-only distillation. Empirically, our approach achieves competitive sample quality with dramatic speedups, while uniquely enabling spectral analysis [and editing-control](#) of generative flows.

1 INTRODUCTION

While classic generative models like VAEs Kingma & Welling (2014) and GANs Goodfellow et al. (2014) offer fast, interpretable sampling, they have been surpassed in sample fidelity by dynamical system-based approaches like Diffusion Models Ho et al. (2020); Song et al. (2020) and Continuous Normalizing Flows (CNFs) Chen et al. (2018). This leap in quality, however, comes at the cost of slow, iterative sampling and limited interpretability.

For both model families, sampling is an iterative and slow process. Diffusion models learn to iteratively denoise data and therefore require multiple evaluations to generate samples, while sampling CNFs requires solving an ODE. In the case of CNFs, recent work has focused on accelerating sampling, with approaches such as Rectified Flow (Liu et al., 2023a) and Optimal Transport Conditional Flow Matching (Tong et al., 2024; Pooladian et al., 2023) that learn straighter generative paths. These methods successfully reduce the computational cost of generation while maintaining similar fidelity; however, they do not address the sampling process’s lack of interpretability. This flaw limits our ability to understand *how* the model generates data, trust its outputs, and meaningfully control the generation process.

In this work, we address the challenges of slow sampling and limited interpretability in generative models grounded in dynamical systems. We build on Koopman operator theory, a classical framework for linearizing complex dynamical systems (Koopman, 1931; Mezić, 2005; Brunton et al., 2022). Originally developed in the 1930s, this theory has seen a resurgence in recent years thanks to machine learning methods that learn finite-dimensional approximations of the operator from data (Brunton et al., 2022; Bevanda et al., 2021). Neural network-based approaches such as Koopman autoencoders (Lusch et al., 2018; Otto & Rowley, 2019; Azencot et al., 2020) have successfully learned linear embeddings for complex systems in fields like fluid dynamics (Rowley et al., 2009) and molecular dynamics (Klus et al., 2018). We apply this approach to the dynamics of a pre-trained CNF, learning a latent space in which the dynamics evolve linearly under a corresponding learned linear operator (Lusch et al., 2018; Azencot et al., 2020). This transformation provides two key advantages:

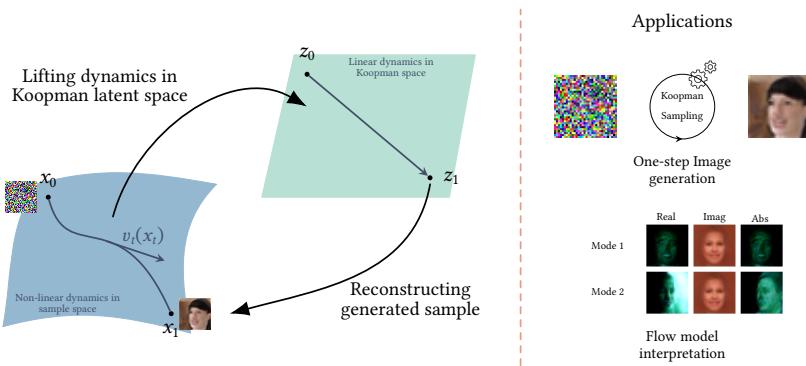


Figure 1: Overview of our approach: we propose to apply Koopman theory to the dynamics of generative modeling from continuous normalizing flow models. We learn a Koopman latent space and its linear dynamics from a given non-linear CNF model. This approach presents two direct applications: one-step sampling and flow model interpretability.

1. **Generative process decomposition:** The learned Koopman operator acts as an interpretable blueprint of the generative process. We show that either the learned canonical frame of the Koopman latent space, or the eigendecomposition of the Koopman operator reveal semantic components of the dynamics. This allows for an unprecedented analysis of how CNF models constructs data from noise.
2. **One-Step Analytical Sampling:** A direct consequence of this linearization is that the solution to the generative ODE becomes analytical, given by a matrix exponential. This allows us to map noise to a data sample in a single, parallelizable step, eliminating the iterative sampling cost entirely.

Our core contribution is a practical, simulation-free training objective that learns this Koopman representation. We theoretically prove that naïve supervision strategies yield suboptimal objectives and impractical training processes. Crucially, we derive an efficient supervision strategy that constrains the learned linear dynamics to stay consistent with the teacher model’s vector field along the *entire* generative path. We show that this can be enforced while remaining simulation-free, inheriting the properties of the underlying Continuous Flow Matching model. This distinguishes our approach from standard distillation methods, that only match the start and end points of the trajectory, while incurring only a moderate additional computational cost. Specifically, our contributions are:

- We introduce a novel framework **for learning** a global Koopman linearization of the non-autonomous dynamics in Conditional Flow Matching models.
- We derive a practical, simulation-free training objective that enforces consistency along the full generative trajectory, yielding a **full** linearization rather than mere boundary-focused distillation.
- We demonstrate empirically that our method achieves competitive one-step sampling performance while uniquely enabling spectral analysis, disentangled generative control, and **improved robustness in** downstream tasks.

2 RELATED WORK

Our work connects four main areas: flow-based generative models, methods for accelerated sampling, Koopman operator theory for dynamical systems, and interpretability in generative modeling. We defer a formal introduction of Koopman operator theory to Section 3.2. For an overview of the field, we urge the interested reader to refer to the excellent introduction by Brunton et al. (2022).

108
109

2.1 FLOW-BASED GENERATIVE MODELS

110
111
112
113
114
115
116
117
118

Flow-based models learn an invertible mapping between a data distribution and a simple base distribution, offering tractable likelihoods (Dinh et al., 2014; 2017; Kingma & Dhariwal, 2018). Continuous Normalizing Flows (CNFs) parameterize this map as the solution to an ODE (Chen et al., 2018). Although powerful, training early CNFs was often unstable and computationally intensive. Conditional Flow Matching (CFM) represents a major step forward, providing a stable and efficient simulation-free training objective by regressing a neural network to a conditional vector field (Lipman et al., 2023; Tong et al., 2023; Liu et al., 2023b). However, while these models have achieved high accuracy for generative modeling, their sampling process remains inherently slow, opening the way for distilled models for faster sampling.

119
120

2.2 ACCELERATED AND ONE-STEP SAMPLING

121
122
123
124
125
126
127
128

The slow and iterative sampling of CNFs has motivated extensive research into acceleration. One popular direction, which includes Rectified Flow (Liu et al., 2023a) and OT-CFM (Pooladian et al., 2023), regularizes the learned ODE to have straighter trajectories, thus requiring fewer discretization steps. Another direction uses knowledge distillation to train a separate student model capable of single-step generation. This includes Consistency Models (Song et al., 2023) and other distillation techniques (Salimans & Ho, 2022; Luo et al., 2023; Liu et al., 2025). Although these methods achieve remarkable speed, they typically produce a compressed, black-box sampler that does not offer the interpretability or analytical control that our Koopman framework provides.

129
130
131
132
133
134
135

We also note that concurrently with our work, Berman et al. (2025) propose a Koopman-based generative model that learns a discrete-time Koopman operator, mapping noisy samples at $t = 0$ directly to target data at $t = 1$. While their approach is primarily positioned as an enhancement to diffusion models (though not exclusive to them), *our work focuses on conditional flow matching*, framing the problem as supervised learning of vector fields over time. In contrast to their discrete formulation, *we explicitly model the full continuous-time dynamics* by learning the Koopman generator, granting access to the entire latent flow from $t = 0$ to $t = 1$.

136
137

2.3 INTERPRETING AND EXPLAINING GENERATIVE MODELS

138
139
140
141
142
143
144
145
146

While methods exist for interpreting the latent spaces of classic models, such as VAEs and GANs, extending these powerful editing techniques to modern, iterative models like diffusion and flows has proven challenging due to their complex dynamics. Existing approaches for these models are often more complicated than the earlier methods Kwon et al. (2022); Yang et al. (2023); Meng et al. (2022); Kulikov et al. (2024), in addition to lacking the conceptual clarity of the latter. In contrast, our work offers a direct path to interpretability by learning a global linearization of the generative dynamics, which naturally yields a simple and editable latent space. A more detailed review of interpretability methods is provided in Appendix G.

147

3 MATHEMATICAL BACKGROUND

148
149
150

3.1 CONDITIONAL FLOW MATCHING

151
152

A Continuous Normalizing Flow (CNF) maps a prior distribution p_0 to a data distribution p_1 by solving the ODE

153
154

$$\frac{dx_t}{dt} = v_t(x_t), \text{s.t. } x_0 \sim p_0, x_1 \sim p_1 \quad (1)$$

155
156
157
158
159

, where v_t is a time-dependent vector field Chen et al. (2018). A naive regression loss to learn v_t is intractable, as both the true field v_t and the marginal path distribution p_t are unknown Lipman et al. (2023). Conditional Flow Matching (CFM) provides a tractable, simulation-free objective by regressing a neural network v_θ onto a *conditional* velocity field $u_t(x_t|x_1)$.

160
161

Sampling from a trained CFM model requires numerically integrating its ODE via $x_1 = x_0 + \int_0^1 v_\theta(s, x_s) ds$, a slow process with potentially many function evaluations Chen et al. (2018). However, if the dynamics were linear, i.e., of the form $\frac{dx_t}{dt} = Ax_t$, sampling would become a single,

162 analytical step: $x_t = e^{At}x_0$ that can be solved via matrix exponentiation. This vast efficiency gap
 163 motivates our core objective: to find a global linearization of the learned CFM dynamics.
 164

165 **3.2 KOOPMAN THEORY FOR AUTONOMOUS SYSTEMS**
 166

167 Koopman theory provides a powerful framework for globally linearizing nonlinear dynamical sys-
 168 tems (Koopman, 1931; Mezić, 2005; Brunton et al., 2022). The central idea is to shift perspective
 169 from the finite-dimensional state space, where dynamics are nonlinear, to the infinite-dimensional
 170 space of functions - referred to as “observables” - where the dynamics become linear.

171 Formally, consider an autonomous dynamical system $\frac{dx_t}{dt} = v(x_t)$. This system induces a *flow map*
 172 F_t that advances an initial state x to its value at time t , namely $x_t = F_t(x)$, along the trajectories
 173 defined by v . Let $g : \mathbb{R}^d \rightarrow \mathbb{R}$ be an *observable function* on the state space. Given an initial state
 174 x , we define the *Koopman operator* \mathcal{K}_t on the space of observables, denoted $\mathcal{G}(\mathbb{R}^d)$, which evolves
 175 observables along the trajectories generated by the vector field v :

$$176 \quad \mathcal{K}_t g(x) := (g \circ F_t)(x) = g(F_t(x)) = g(x_t). \quad (2)$$

178 Koopman theory builds on the fact that this operator is trivially linear (regardless of the non-linearity
 179 of F_t) due to the linearity of the composition of functions: $\mathcal{K}_t(g_1 + g_2)(x) = (g_1 + g_2) \circ F_t(x) =$
 180 $g_1 \circ F_t(x) + g_2 \circ F_t(x) = \mathcal{K}_t g_1(x) + \mathcal{K}_t g_2(x)$, for all observables g_1, g_2 .
 181

182 Taking the Lie derivative, we can then define the **Koopman generator**, \mathcal{L} , such that $\mathcal{L}g :=$
 183 $\lim_{t \rightarrow 0} \frac{\mathcal{K}_t g - g}{t}$, and one can show that Brunton et al. (2022)

$$184 \quad 185 \quad \mathcal{L}g = \frac{dg}{dt} = \nabla_x g(x) \cdot v(x), \quad (3)$$

186 which is also trivially linear in g , leading to a linear equation on the space of observables. The operator
 187 and generator are related by the matrix exponential, $\mathcal{K}_t = \exp(t\mathcal{L})$. Finding \mathcal{L} is the objective of
 188 Koopman theory.
 189

190 In summary, the potentially complex and non-linear ODE Equation (1) on the finite-dimensional
 191 state space \mathbb{R}^d can be expressed as a linear equation in another space, $\mathcal{G}(\mathbb{R}^d)$, which consists of
 192 scalar-valued functions defined on the state space. The practical challenge in Koopman theory is to
 193 find *invertible mappings* $f : \mathbb{R}^d \rightarrow \mathcal{G}(\mathbb{R}^d)$ that allow solving the linear equation in the observable
 194 space and then recovering the solution in the original state space. However, computing such a
 195 mapping is often intractable in practice due to the *infinite dimensionality* of $\mathcal{G}(\mathbb{R}^d)$.
 196

197 A particular case arises when there exists an m -dimensional linear subspace of $\mathcal{G}(\mathbb{R}^d)$, $F =$
 198 $\text{span}\{g_i\}_{i=1}^m$, invariant under the linear operator \mathcal{L} . The action of the generator on F can then
 199 be represented by a single finite-dimensional matrix $L \in \mathbb{R}^{m \times m}$. The dynamics on this space of
 200 observables can then be written as:

$$200 \quad \frac{d\mathbf{g}_t}{dt}(x) = L\mathbf{g}_t(x), \quad (4)$$

201 where $\mathbf{g}_t(x) = [g_1(x_t), \dots, g_m(x_t)]^\top \in \mathbb{R}^m$ are the *Koopman coordinates*, i.e., the values of the
 202 observables $\{g_i\}_{i=1}^m$ evaluated at the state x_t , where x_t is the evolution of the initial state x to time t
 203 along the trajectories generated by the dynamics.
 204

205 **Fast analytical integration with Koopman operator** Thus, the general goal when applying
 206 Koopman theory to dynamical systems is to (1) identify a sufficiently expressive set of observables
 207 $\{g_i\}_{i=1}^m$ and (2) determine the Koopman generator matrix L on this space of observables. With this
 208 in hand, we can build an invertible Koopman representation $g : \mathbb{R}^d \rightarrow \mathbb{R}^m$ that maps a state x to
 209 its Koopman coordinates $\mathbf{g}(x)$. This enables us, given an initial state $x_0 \in \mathbb{R}^d$, to solve the ODE
 210 associated with a *nonlinear dynamical system* in a space where it evolves linearly, using the matrix
 211 exponential $\mathbf{g}_1 = e^L g(x_0) \in \mathbb{R}^m$. We can then recover the solution of the ODE in the original state
 212 space by applying the inverse map $x_1 = g^{-1}(e^L g(x_0)) \in \mathbb{R}^d$.
 213

214 **Mode decomposition of Koopman operator** Another appeal of the Koopman theory is that it
 215 exposes an *interpretable* structure of the ODE, as we can decompose the different modes of the
 linear Koopman operator L . Intuitively, Koopman theory serves as a nonlinear analogue of Fourier

analysis: just as Fourier modes decompose signals into orthogonal oscillatory components, Koopman eigenfunctions decompose dynamics into independent modes with specific growth rates. We employ the *real Schur decomposition*:

$$L = QTQ^\top, \quad (5)$$

which represents each conjugate pair as a real 2×2 block and each real eigenvalue as a 1×1 block. A key property of the Koopman representation is that in Schur coordinates $y_t = Q^\top z_t$, the matrix exponential decomposes into independent modes. For a real eigenvalue λ , the corresponding 1×1 block yields an exponential mode $y(t) = e^{\lambda t} y(0)$, while 2×2 blocks of the form

$$\begin{pmatrix} \sigma & \omega \\ -\omega & \sigma \end{pmatrix} \quad (6)$$

yield planar spirals $y(t) = e^{\sigma t} R(\omega t) y(0)$ with radial rate σ and rotation frequency ω . Importantly, in both cases, the norm of each component grows according to a predictable exponential rate: $e^{\lambda t}$ or $e^{\sigma t}$. This provides a canonical *ordering* to all the modes (akin to ordering Fourier modes by frequency).

4 METHODOLOGY AND THEORETICAL RESULTS

Our objective is to learn a Koopman representation for a pre-trained CFM model, specified by its vector field v_t . This involves learning an encoder g_ϕ for the Koopman representation that linearizes the dynamics, a generator matrix L , and a decoder g_ψ^{-1} that maps back to the state space. Here ϕ and ψ are the learnable parameters of the corresponding neural networks. Several additional challenges arise compared to previous neural Koopman-based approaches Lusch et al. (2018):

1. CFM dynamics are non-autonomous (explicitly time-dependent), whereas classic Koopman theory applies to autonomous systems.
2. The training objective for the Koopman representation must be tractable, ideally inheriting the simulation-free nature of CFM.
3. The learned observables g must be expressive enough to capture the dynamics and allow for accurately generated samples.

4.1 ADAPTING KOOPMAN THEORY TO NON-AUTONOMOUS DYNAMICS

Time dependence trick. As mentioned above, Koopman theory applies to autonomous dynamics, where the velocity $v(x_t)$ does not depend on the time. We can address this time-dependence of $v_t(x_t)$ by using a standard trick in system dynamics literature (Strogatz (2000), Chap 1.): we augment the state space to include time. The state becomes $y_t = (t, x_t)$, and the dynamics are defined on this augmented space with respect to a new external time parameter τ :

$$\frac{dy}{d\tau} = \frac{d(t, x_t)}{d\tau} = [1, v_t(x_t)]. \quad (7)$$

Our observables are now functions of both space and time, $g(t, x)$. A crucial detail, however, is how we parameterize the linear dynamics on this augmented state to ensure the time variable evolves correctly (i.e., $t = 1$).

Affine lift for time evolution. To enforce the constraint $\dot{t} \equiv 1$, we use an *affine lift*. The state is augmented with a constant bias coordinate to become $z_t = [1, t, g(t, x)]^\top$. For the dynamics $\dot{z} = Lz$ to satisfy the physical constraints $\dot{1} = 0$ and $\dot{t} = 1$ for all states, the generator L is uniquely constrained to adopt a block structure. The precise parameterization of L is available in the appendix.

4.2 LEARNING KOOPMAN DYNAMICS

Given a pre-trained CFM teacher network v_t , our main goal is to learn observable functions $\{g_i\}_{i=1}^m$ that span a finite-dimensional subspace *invariant under* the Koopman generator L *associated with* the dynamics v_t , and to learn the corresponding generator on this space. We learn the observables with an encoder g_ϕ that maps an initial state $x \in \mathbb{R}^d$ to its Koopman coordinates at time t , $g_t(t, x) = [g_1(t, x_t), \dots, g_m(t, x_t)]^\top \in \mathbb{R}^m$. We also learn the Koopman generator on this space as a dense

matrix $L \in \mathbb{R}^{m \times m}$. To recover the solution of the ODE in the original state space and ensure the learned linear dynamics correspond to the *underlying nonlinear dynamics*, we also learn a decoder network g_ψ^{-1} that maps the Koopman coordinates $\mathbf{g}_t(x)$ back to the state x_t at time t .

We generate noise and target-data pairs (x_0, x_1) using the pretrained CFM model, and aim to learn the following mapping:

$$x_t \simeq g^{-1}(e^{tL}g(0, x_0)).$$

Training loss Our training objective is as follows:

$$\mathcal{L}_{\text{train}} = \lambda_{\text{phase}} \mathcal{L}_{\text{phase}} + \lambda_{\text{target}} \mathcal{L}_{\text{target}} + \lambda_{\text{recon}} \mathcal{L}_{\text{recon}} + \lambda_{\text{cons}} \mathcal{L}_{\text{cons}}.$$

The first two terms ensure that the integrated linear dynamics map the start of a trajectory to its end in the Koopman space (phase loss):

$$\mathcal{L}_{\text{phase}} = \mathbb{E}_{(x_0, x_1)} \|e^L g_\phi(0, x_0) - g_\phi(1, x_1)\|^2, \quad (8)$$

and in the state space (after decoding - target loss):

$$\mathcal{L}_{\text{target}} = \mathbb{E}_{(x_0, x_1)} \left\| g_\psi^{-1}(e^L g_\phi(0, x_0)) - x_1 \right\|^2, \quad (9)$$

The third term encourages that we can retrieve the final state with the decoder:

$$\mathcal{L}_{\text{recon}} = \mathbb{E}_{x_1} \left[d_{\text{Image}} \left(g_\psi^{-1}(g_\phi(1, x_1)), x_1 \right) \right] \quad (10)$$

where d_{Image} is a distance measure on the image space, such as MSE or LPIPS Zhang et al. (2018). The reconstruction loss is particularly important due to an inherent non-identifiability in the Koopman representation, as formalized in the proposition below. This term allows us to find, among the space of Koopman linearizing coordinate systems, the decodable ones.

We choose to only decode at $t = 1$ for those reasons: first, learning to reconstruct random noise may affect the capacity of the decoder to reconstruct images faithfully. Second, by not reconstructing intermediary states from observables, we give more flexibility to the encoder and generator to learn the proper Koopman representation space that manages to linearize the dynamics.

Proposition 1 (Non-identifiability up to linear transformation). *The Koopman observable coordinates g are identifiable only up to an arbitrary invertible linear transformation M . If the pair (g, L) satisfies the consistency and phase objectives, so does the transformed pair $(M^{-1}g, M^{-1}LM)$.*

Corollary 1.1. *A reconstruction loss of the form $\|g^{-1}(g(t, x)) - x\|^2$, with a fixed decoder g^{-1} , breaks this invariance. It “fixes the gauge” by selecting the specific coordinate system that the chosen decoder can successfully map back to the data space.*

The proof is provided in Appendix A. This result motivates the necessity of $\mathcal{L}_{\text{recon}}$ to obtain a unique and useful representation.

Finally, the consistency loss forces the dynamics in the learned latent space to be governed by the linear generator L , by adapting Equation (3) to our problem:

$$\mathcal{L}_{\text{cons}} = \mathbb{E}_{t, x_t \sim p_t(x_t)} \|Lg_\phi(t, x_t) - \nabla_x g_\phi(x_t)v_t(x_t)\|^2 \quad (11)$$

4.3 EFFICIENT DYNAMICS LEARNING

One might notice that, similarly to the CNF loss, the consistency loss $\mathcal{L}_{\text{cons}}$ is intractable, as it would require sampling from the path distribution $x_t \sim p_t(x_t)$. A first solution would be to generate full trajectories $(x_t)_t$, but this would pose both discretization and scale problems for storing the pre-computed trajectories. Another solution is to hope to substitute the marginal velocity $v_t(x_t)$ with the conditional velocity $u_t(x_t|x_1)$ and sample from the tractable $p_t(x_t|x_1)$, mirroring the CFM training strategy. However, as the following proposition shows, these two objectives are not equivalent when learning the encoder g .

Proposition 2 (Marginal vs. Conditional Objectives). *Let $\mathcal{L}_{\text{marg}}$ be the desired consistency loss evaluated over the marginal distribution $p_t(x_t)$, and let $\mathcal{L}_{\text{cond}}$ be the tractable alternative evaluated using conditional samples and velocities. The two objectives are related by:*

$$\mathcal{L}_{\text{cond}} = \mathcal{L}_{\text{marg}} + \Delta(g) \quad (12)$$

where $\Delta(g) = \mathbb{E}_{t, x_1, x_t} \|\nabla_x g(t, x_t)(u_t(x_t|x_1) - v_t(x_t))\|^2 \geq 0$.

324 The proof is provided in Appendix B. Because of the positive, g -dependent term $\Delta(g)$, minimizing
 325 $\mathcal{L}_{\text{cond}}$ will not necessarily minimize $\mathcal{L}_{\text{marg}}$.
 326

327 Fortunately, as we have a pre-trained CFM model, the marginal velocity field $v_t(x_t)$ is known. This
 328 allows us to formulate a practical estimator for the true marginal loss, as stated in the following
 329 proposition.

330 **Proposition 3** (Practical Estimator for the Consistency Loss). *Given that the marginal path distribu-
 331 tion $p_t(x_t)$ is defined as $p_t(x_t) = \int p_t(x_t|x_1)q(x_1)dx_1$, the marginal consistency loss $\mathcal{L}_{\text{cons}}$ can be
 332 estimated tractably using samples from the data distribution $q(x_1)$ and the conditional path $p_t(\cdot|x_1)$
 333 as follows:*

$$\mathcal{L}_{\text{cons}} = \mathbb{E}_{t, x_1 \sim q_1, x_t \sim p_t(\cdot|x_1)} \|Lg_\phi(t, x_t) - \nabla_{\mathbf{x}} g_\phi(x_t) v_t(x_t)\|^2 \quad (13)$$

335 The proof is provided in Appendix C. This result is key: it allows us to **optimize the correct marginal**
 336 **objective using the same efficient, simulation-free sampling strategy** as CFM training, bypassing
 337 the need to compute and store full ODE trajectories.

339 Moreover, this loss is a key distinction of our method. Most single-step distillation-based generative
 340 models Song et al. (2023) focus on learning a direct mapping $\mathcal{D} : x_0 \mapsto x_1$ that minimizes a
 341 boundary-condition loss, like $\|\mathcal{D}(x_0) - x_1\|^2$. However, by focusing on endpoints, the distillation
 342 completely ignores the dynamics of the generative ODE. An infinite number of vector fields can
 343 satisfy the boundary conditions. In contrast, our approach seeks to perform a true *linearization* of
 344 the **full dynamics**. The inclusion of the infinitesimal consistency loss, $\mathcal{L}_{\text{cons}}$, forces our Koopman
 345 representation to remain faithful to the teacher’s dynamics **at every point along the trajectory**.

346 4.4 GLOBAL LINEARIZATION AS AN INTERPRETABILITY AND CONTROL TOOL

348 As mentioned above, in addition to distilling a teacher model for faster sampling, we also aim to
 349 expose an *interpretable* structure within generative dynamics by leveraging Koopman operator theory.
 350 We highlight the value of our approach, as a tool to shed light on the underlying dynamics, as well as
 351 to *direct* the behavior of the teacher model.

352 **Image and mode inversion** A first step in interpreting Koopman modes is to un-lift them to the CFM
 353 dynamics. First, we highlight that our analytical sampling allows us to invert any image x into the
 354 noise space, a task that is generally non-trivial for nonlinear generators and often requires specialized
 355 methods (e.g., Mokady et al. (2023) for diffusion models). We do so by computing the corresponding
 356 latent noise $g(0, x_0) = \exp(-L)g(1, x)$ and optimizing noise in pixel space which reproduces the
 357 latent. We detail and demonstrate some inversion examples in the supplementary material F.1.

358 We can then un-lift any mode v_k into the pixel space. We do this by solving an inverse problem: Let
 359 $x_0 \sim p_0$ be a sample noise, \mathbf{v}_i a Koopman mode. We search x_{pert}^i , such that:

$$x_{\text{pert}}^i = \arg \min_x \|g_\phi(0, x_0 + x) - g_\phi(0, x_0) + \alpha \mathbf{v}_i\|^2. \quad (14)$$

363 **Class-conditioned spectral signatures** Let a dataset $D = \{x_i\}$ and $D_c = \{x_i(c)\}$. We encode each
 364 image and project it onto Koopman modes, giving coefficients $\alpha_i(k) = |\langle \phi_k, z_i \rangle|$ and $\alpha_i(k, c) =$
 365 $|\langle \phi_k, z_i(c) \rangle|$. We then compute the dataset and class-averaged responses

$$\bar{\alpha}(k) = \frac{1}{|D|} \sum_{i \in D} \alpha_i(k), \bar{\alpha}(k, c) = \frac{1}{|D_c|} \sum_{i \in D_c} \alpha_i(k, c), \quad (15)$$

369 and define the per-class transfer function

$$H(|\lambda|, c) = \bar{\alpha}(|\lambda|, c) / \bar{\alpha}(|\lambda|). \quad (16)$$

371 This measures how each class amplifies or suppresses modes of a spectral magnitude. By looking at
 372 which modes correspond to the highest class spectral deviation, we can understand which modes are
 373 common to images and which ones handle class-specific features.

376 **Semantic mode discovery** Given an image x , we perturb its lifted representation z as $z'_k = z + \alpha v_k$.
 377 We measure the CLIP Radford et al. (2021) - a common embedding space for text and images -
 378 similarity between the decoded image and some selected attribute β prompts p_β . We define the

378 *coherence* C_k^β between a mode v_k and an attribute β as the sign consistency of similarity changes
 379 across test images:

$$380 \quad 381 \quad C_k^\beta = \frac{1}{N} \sum_{i=1}^N \text{sign}(\langle \text{CLIP}(z'_k), \text{CLIP}(p_\beta) \rangle - \langle \text{CLIP}(z), \text{CLIP}(p_\beta) \rangle) \quad (17)$$

383 We can then select modes v_i with the highest coherence for different attributes, allowing semantic
 384 editing of the images, both in the Koopman space and in the image space with the un-lifted modes
 385 x_{pert}^i .

386 **Insights on Teacher Training** We use our Koopman framework to probe how the CFM teacher
 387 acquires its dynamics during training. We compare the modes v_i^l, v_j^{full} at different training stages l
 388 with the modes of the the fully trained teacher by computing their similarity $S_{ij}^{l,\text{full}}$, and further their
 389 cumulative similarity $c_s(k)$ to the full matrix v_{full} :

$$391 \quad 392 \quad S_{ij}^{l,\text{full}} = \left| \langle v_i^{l,\dagger} v_j^{\text{full}} \rangle \right| / (\|v_i^l\| \|v_j^{\text{full}}\|), \quad c_s(k) = \frac{1}{k} \sum_{i=1}^k S_{ii}^{l,\text{full}} \quad (18)$$

393 The full similarity matrix and the cumulative similarity at different stages indicate how much the
 394 teacher has learned compared to the final teacher, obtained insights are detailed in E.2.

396 5 EXPERIMENTS

397 To validate our framework, we investigate three key questions: (1) Can our one-step sampler achieve
 398 competitive generative quality? (2) Is the infinitesimal consistency loss ($\mathcal{L}_{\text{cons}}$) crucial for learning
 399 an interpretable linearization, as opposed to a simple boundary-matching distillation? (3) Does this
 400 learned structure lead to a more robust and functionally useful model? Our experiments show that
 401 while a simple distillation model can achieve a competitive FID Heusel et al. (2017) score, only the
 402 model trained with $\mathcal{L}_{\text{cons}}$ learns a disentangled, editable, and robust generative process.

405 5.1 EXPERIMENTAL SETUP

406 **Datasets and Teacher Model.** We evaluate on MNIST LeCun et al. (2010), CIFAR-10 Krizhevsky
 407 et al. (2009), and a 32x32 downsampled version of the FFHQ face dataset Karras et al. (2019). Our
 408 teacher is a pre-trained Optimal Transport Conditional Flow Matching (OT-CFM) model with a
 409 U-Net architecture. For boundary-based losses ($\mathcal{L}_{\text{target}}, \mathcal{L}_{\text{phase}}, \mathcal{L}_{\text{recon}}$), we use 1 million pre-generated
 410 (x_0, x_1) pairs from the teacher network.

411 **Koopman-CFM Architecture.** Our model consists of an encoder (g_ϕ) and decoder (g_ψ^{-1}), both using
 412 a SongUNet architecture Karras et al. (2022), which map to and from a 1024-dimensional latent
 413 space. The dynamics are governed by a learned affine linear generator (\tilde{L}).

414 **Training and Baselines.** We train for 800,000 iterations using the Adam optimizer Kingma & Ba
 415 (2017). Our primary baseline is an ablation of our own model trained without the consistency loss
 416 ($\mathcal{L}_{\text{cons}} = 0$), which reduces it to a standard distillation model.

419 5.2 GENERATION QUALITY

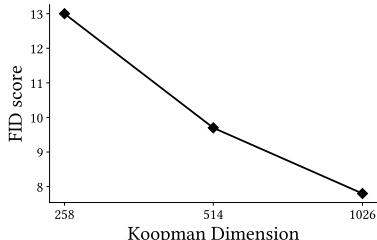
420 We evaluate sample quality using the Fréchet Inception Distance (FID), shown in Table 1. Our full
 421 Koopman-CFM model with consistency achieves competitive performance. Interestingly, the model
 422 trained without consistency achieves a slightly superior FID on FFHQ (7.5 vs. 8.5 for the teacher).
 423 This suggests that, when only constraining the endpoints, the distillation model is free to find a
 424 combination of paths and latent space that is easier to learn. As mentioned above, however, such
 425 a model is not guaranteed to replicate the trajectories of the teacher model. We provide uncurated
 426 generated examples with the consistency trained model in the appendix Section D.

428 5.3 ABLATION

429 **Koopman space dimension.** As shown in Figure 2, the Koopman dimension of 1026 (1024+2) is
 430 optimal for the generation quality. Notably, increasing the dimension to 1026 does not affect the
 431 quality with potential instabilities of the Koopman sampling components, such as the exponentiation.

432
 433
 434
 435
 Table 1: FID (\downarrow) and sampling time (s/img, \downarrow) on three benchmark datasets. Our Koopman formulation
 achieves competitive or superior generation quality while enabling fast inference. Baselines are
 trained under identical preprocessing for fair comparisons. \ddagger Indicates reproduction. Rectified Flow
 uses 2RF training and 1-step distillation.

Method	NFE	MNIST	FFHQ	CIFAR-10	Sampling Time (ms/img)
Koopman (ours, w/ consistency)	1	7.1	10.1	17.4	37.2
Koopman (ours, w/o consistency)	1	6.4	7.5	14.1	37.2
OT-CFM	1	181	149	226	7.1
OT-CFM	3	28.1	51	59.3	25.2
OT-CFM	5	12.5	31.4	31.5	41.1
OT-CFM	25	4.4	11.6	12.3	209
OT-CFM (Tong et al. (2024))	100	1.9	8.5	7	849
Rectified Flow (Liu et al. (2023a))	1	\ddagger 1.76	\ddagger 4.23	4.85	\ddagger 24.9
MeanFlow (Geng et al. (2025))	1	\ddagger 4.03	\ddagger 3.34	\ddagger 3.59	\ddagger 22.5



466
 467
 468
 Figure 2: FID score as a function of
 469 Koopman dimension on the FFHQ
 470 dataset. The higher the dimension,
 471 the lower the FID.

Dataset	Mean MSE
FFHQ (w/ consistency)	5.0×10^{-6}
FFHQ (w/o consistency)	1.30×10^{-3}
CIFAR-10 (w/ consistency)	1.0×10^{-5}
CIFAR-10 (w/o consistency)	1.74×10^{-3}

472
 473
 474
 Table 2: Mean, standard deviation of MSE be-
 475 tween CFM trajectories and predicted Koopman
 476 trajectories. The consistency-trained model
 477 consistently outperforms the distilled model for tra-
 478 jectory fidelity

479
 480
 481
 482
 483
 484
 485
 486
Quality of the Koopman latent space. We also provide a qualitative evaluation of the Koopman
 latent space. Namely, we borrow from the GAN literature and search for semantic directions in the
 latent space, such as glasses or gender. To find these directions in the latent space, we classify the
 dataset with attributes’ CLIP (Radford et al. (2021)) embedding similarity and compute the mean and
 difference with relevant latents, see Appendix F.2. for more details. Given a semantically coherent
 mode, we invert it to the image space and compare the quality of the semantic editing.

487
 488
 489
 490 As shown in Figure 3, furthermore in Appendix F.3., both latent spaces provide semantic directions,
 491 as expected from the faithful reconstruction of images. However, only the consistency-trained model
 492 transfers cleanly to the teacher, whereas the model without consistency introduces artifacts.

493 5.4 INTERPRETABILITY ANALYSIS

494 Do Koopman Modes Encode Semantic Content?

495
 496
 497
 498
 499
 500 We compute the coherence of modes on the FFHQ dataset with four attributes, namely, *glasses*, *smile*,
 501 *brown* and *young*. Figure 4 compares the maximum coherence (Eq. 17) of models with and without
 502 consistency as well as the maximum mean CLIP difference, it also shows qualitative effect of the
 503 identified mode perturbation. The consistent model achieves near-perfect coherence for attributes
 504 like sunglasses (0.97) and brown hair (0.94), with variation magnitudes up to 24 \times larger. This

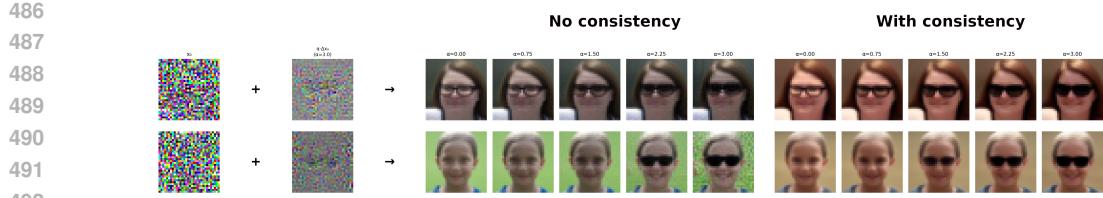


Figure 3: CFM-based semantic editing comparison. We port identified semantic directions from the Koopman latent space to the CFM noise-space via inversion as explained in F.3, here for sunglasses. Notably, we can see that recovered direction in the purely distilled model provides unreliable edits, as it comes with noticeable noisy artifacts, as opposed to our consistent model.

Attr./Coherence	W/		W/o	
	Max.	Var.	Max.	Var.
Glasses	.97	.046	.48	.002
Smile	.52	.010	.50	.003
Brown	.94	.027	.50	.003
Young	.45	.007	.32	.001
Avg.	.72	.022	.45	.002

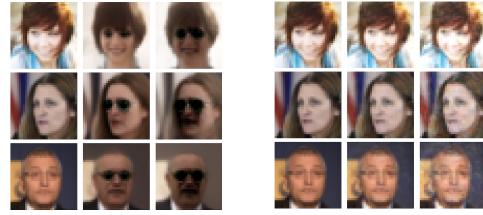


Figure 4: Semantic content of Koopman modes. **Left:** Maximal (Max.) and Variance (Var.) coherence of single-mode perturbations. **Center/Right:** Sunglasses mode perturbation with increasing effect (left→right within each panel). With consistency, the maximal "sunglasses" coherent eigenmode adds sunglasses while preserving identity. Without, perturbations produce negligible semantic change.

demonstrates that consistency is essential for learning modes that align with interpretable semantics. We provide more details in the Appendix E.4.

Figure 5: Progressive reconstruction of image as we progressively feed modes with ascending real eigenvalue part. The modes appear to act in a coarse-to-fine manner

Class-conditioned spectral signatures

We show in Fig. 6 the different transfer functions (Eq. 16) for each class of CIFAR-10. Notably, low-energy modes are largely shared across classes, while higher-energy modes differentiate them. This is further supported by observing Figure 5, where the important elements of the face appear before differentiating ones, such as the smile, hat, and background. This may shed light on our observations in Appendix E.2 on teacher training.

6 CONCLUSION AND DISCUSSION

We introduced a principled Koopman operator framework to linearize Conditional Flow Matching, achieving fast, one-step, and interpretable generative modeling on realistic image domains. Key challenges remain in scaling to high-resolution images, where the generator matrix becomes prohibitively large and its exponential can be numerically unstable. Future work should explore structured operator approximations and specialized matrix exponential algorithms to address these computational hurdles. Furthermore, we observe that the quality gap between our method and traditional CFM widens on more complex datasets, motivating a deeper theoretical investigation into the conditions under which CFM dynamics admit a finite-dimensional Koopman representation Iacob et al. (2023). Finally, the modality-agnostic nature of our framework opens exciting avenues for adapting this linearization approach to other data types, such as audio and 3D shapes.

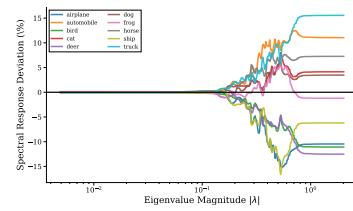


Figure 6: Per-class spectral deviation on CIFAR-10.

540 REFERENCES

542 Omri Azencot, N Benjamin Erichson, Vanessa Lin, and Michael Mahoney. Forecasting sequential
 543 data using consistent koopman autoencoders. In *International Conference on Machine Learning*,
 544 pp. 475–485. PMLR, 2020.

545 Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
 546 perspectives. *IEEE transactions on pattern analysis and machine intelligence*, 35(8):1798–1828,
 547 2013.

548 Nimrod Berman, Ilan Naiman, Moshe Eliasof, Hedi Zisling, and Omri Azencot. One-step offline
 549 distillation of diffusion-based models via koopman modeling. *arXiv preprint arXiv:2505.13358*,
 550 2025.

552 Petar Bevanda, Stefan Sosnowski, and Sandra Hirche. Koopman operator dynamical models: Learn-
 553 ing, analysis and control. *Annual Reviews in Control*, 52:197–212, 2021.

554 Steven L. Brunton, Marko Budišić, Eurika Kaiser, and J. Nathan Kutz. Modern koopman theory for
 555 dynamical systems. *SIAM Review*, 64(2):229–340, 2022. doi: 10.1137/21M1401243.

557 Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins,
 558 and Alexander Lerchner. Understanding disentangling in β -vae. *arXiv preprint arXiv:1804.03599*,
 559 2018.

560 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differ-
 561 ential equations. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 31,
 562 2018.

563 Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
 564 Interpretable representation learning by information maximizing generative adversarial nets. In
 565 *Proceedings of the 30th International Conference on Neural Information Processing Systems*, pp.
 566 2180–2188, 2016.

568 Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
 569 estimation. In *Workshop on Deep Learning, NIPS*, 2014.

570 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In
 571 *International Conference on Learning Representations (ICLR)*, 2017.

573 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J. Zico Kolter, and Kaiming He. Mean flows for
 574 one-step generative modeling, 2025. URL <https://arxiv.org/abs/2505.13447>.

575 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 576 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in Neural
 577 Information Processing Systems*, 2014.

579 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 580 trained by a two time-scale update rule converge to a local nash equilibrium, 2017.

581 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
 582 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
 583 constrained variational framework. In *International Conference on Learning Representations
 584 (ICLR)*, 2016.

585 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 586 neural information processing systems*, 33:6840–6851, 2020.

588 Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace: Discovering
 589 interpretable gan controls. In *Proc. NeurIPS*, 2020.

590 Lucian C Iacob, Maarten Schoukens, and Roland Tóth. Finite dimensional koopman form of
 591 polynomial nonlinear systems. *IFAC-PapersOnLine*, 56(2):6423–6428, 2023.

593 Ali Jahanian, Lucy Chai, and Phillip Isola. On the "steerability" of generative adversarial networks.
 594 In *International Conference on Learning Representations*, 2020.

594 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 595 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 596 *recognition*, pp. 4401–4410, 2019.

597 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 598 based generative models, 2022.

600 Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvärinen. Variational autoencoders
 601 and nonlinear ica: A unifying framework. In *International Conference on Artificial Intelligence*
 602 *and Statistics*, pp. 2207–2217. PMLR, 2020.

603 Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In *International Conference on*
 604 *Machine Learning*, pp. 2649–2658. PMLR, 2018.

606 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
 607 <https://arxiv.org/abs/1412.6980>.

608 Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
 609 In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 31, 2018.

611 Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In *2nd International*
 612 *Conference on Learning Representations, ICLR*, 2014.

613 Stefan Klus, Feliks Nüske, Péter Koltai, Hao Wu, Ioannis Kevrekidis, Christof Schütte, and Frank
 614 Noé. Data-driven model reduction and transfer operator approximation. *Journal of Nonlinear*
 615 *Science*, 28:985–1010, 2018.

617 Bernard O Koopman. Hamiltonian systems and transformation in hilbert space. *Proceedings of the*
 618 *National Academy of Sciences*, 17(5):315–318, 1931.

620 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

622 Vladimir Kulikov, Matan Kleiner, Inbar Huberman-Spiegelglas, and Tomer Michaeli. Flowedit:
 623 Inversion-free text-based editing using pre-trained flow models. *arXiv preprint arXiv:2412.08629*,
 624 2024.

625 Mingi Kwon, Jaeseok Jeong, and Youngjung Uh. Diffusion models already have a semantic latent
 626 space. In *The Eleventh International Conference on Learning Representations*, 2022.

628 Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. *ATT Labs [Online]*.
 629 Available: <http://yann.lecun.com/exdb/mnist>, 2, 2010.

630 Yaron Lipman, Ioannis Gkioulekas, Tatsunori Hashimoto, William T Liu, Ben Poole, Ricky Richter-
 631 Powell, Robin Rombach, Ali Toker, and Jiaxin Wu. Flow matching for generative modeling. In
 632 *International Conference on Learning Representations (ICLR)*, 2023.

634 Enshu Liu, Xuefei Ning, Yu Wang, and Zinan Lin. Distilled decoding 1: One-step sampling of
 635 image auto-regressive models with flow matching. In *The Thirteenth International Conference on*
 636 *Learning Representations*, 2025.

637 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
 638 straight lines improves generalization and efficiency. In *International Conference on Learning*
 639 *Representations (ICLR)*, 2023a. Often referred to as Rectified Flow.

641 Yujia Liu, Chuan Guo Li, Kuan-Chieh Zhou, and Anima Anandkumar. Flow matching with stochastic
 642 differential equations. *arXiv preprint arXiv:2306.02393*, 2023b.

643 Simian Luo, Yiqin Wu, Surui Wang, Puchao Chen, Shijie Zhao, Jun Zhu, et al. Latent consis-
 644 tency models: Synthesizing high-resolution images with few-step inference. *arXiv preprint*
 645 *arXiv:2310.04378*, 2023.

647 Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
 648 of nonlinear dynamics. *Nature communications*, 9(1):4950, 2018.

648 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
 649 SDEdit: Guided image synthesis and editing with stochastic differential equations. In *International*
 650 *Conference on Learning Representations*, 2022.

651

652 Igor Mezić. Spectral properties of dynamical systems, model reduction and decompositions. *Nonlinear*
 653 *Dynamics*, 41:309–325, 2005.

654 Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
 655 editing real images using guided diffusion models. In *Proceedings of the IEEE/CVF conference on*
 656 *computer vision and pattern recognition*, pp. 6038–6047, 2023.

657

658 Samuel E Otto and Clarence W Rowley. Linearly recurrent autoencoder networks for learning
 659 dynamics. *SIAM Journal on Applied Dynamical Systems*, 18(1):558–593, 2019.

660 Aram-Alexandre Pooladian, Alexander Gushchin, Regina Barzilay, and Tommi Jaakkola. Multisam-
 661 ple flow matching: Straightening flows with minibatch couplings. *arXiv preprint arXiv:2305.17160*,
 662 2023.

663

664 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 665 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 666 models from natural language supervision. In *International conference on machine learning*, pp.
 667 8748–8763. PMLR, 2021.

668 Clarence W Rowley, Igor Mezić, Shervin Bagheri, Philipp Schlatter, and Dan S Henningson. Spectral
 669 analysis of nonlinear flows. *Journal of fluid mechanics*, 641:115–127, 2009.

670 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. *arXiv*
 671 *preprint arXiv:2202.00512*, 2022.

672

673 Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in gans. In *Proceedings of*
 674 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1532–1540, 2021.

675

676 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 677 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 678 *arXiv:2011.13456*, 2020.

679

680 Yang Song, Prafulla Dhariwal, Mark Zhang, and Karsten Kreis. Consistency models. In *International*
 681 *Conference on Machine Learning (ICML)*, 2023.

682

683 Steven H. Strogatz. *Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry*
 684 *and Engineering*. Westview Press, 2000.

685

686 Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Liu, Kilian Rector-
 687 Brooks, Guy Wolf Fatras, Elizabeth Creager, and Yoshua Bengio. Conditional flow matching:
 688 Simulation-free dynamic optimal transport. *arXiv preprint arXiv:2302.00482*, 2023.

689

690 Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
 691 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 692 with minibatch optimal transport. *Transactions on Machine Learning Research*, 2024.

693

694 Andrey Voynov and Artem Babenko. Unsupervised discovery of interpretable directions in the gan
 695 latent space. In *International conference on machine learning*, pp. 9786–9796. PMLR, 2020.

696

697 Tao Yang, Yuwang Wang, Yan Lv, and Nanning Zheng. Disdiff: Unsupervised disentanglement of
 698 diffusion probabilistic models. *arXiv preprint arXiv:2301.13721*, 2023.

699

700 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 701 diffusion models. In *IEEE International Conference on Computer Vision (ICCV)*, 2023.

702

703 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 704 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

702 APPENDIX
703704 The supplementary materials below provide an expanded theoretical motivation, experimental details,
705 and additional results that support and extend the main paper. Each section corresponds to specific
706 elements of our method and results, with backward references to the main paper for clarity.
707708 APPENDIX OVERVIEW
709710 • **Section A: Theoretical Results and Proofs**
711712 In Section A we provide additional theoretical results and proofs, including the non-
713 identifiability of Koopman coordinates, the non-equivalence of the conditional and marginal
714 velocity field estimators and a tractable estimator for the marginal consistency loss.715 • **Section B: Detailed Experimental Setup**
716717 In Section B we give details on the experimental setup, covering dataset preparation, archi-
718 tectures, hyperparameters, and computational resources.719 • **Section C: Ablations**
720721 In Section C we present ablations, shedding light on the impact of loss terms on FID, the
722 effect of Koopman dimension on FID, the role of consistency in trajectory fidelity, and the
723 interpretability of modes with and without consistency.724 • **Section D: Uncurated Samples and Sampling Speeds**
725726 In Section E we provide uncurated samples and wall-clock timings to further illustrate the
727 speed–fidelity–interpretability tradeoff of our Koopman sampler.728 • **Section E: Interpretability and Spectral Analysis**
729730 In Section E we analyze the learned Koopman representation, including mode structure with
731 and without consistency, progressive coarse-to-fine reconstruction via eigenvalue ordering,
732 class-conditioned spectral signatures, semantic mode discovery via CLIP coherence, and
733 insights on teacher training dynamics.734 • **Section F: Applications**
735736 In Section F we demonstrate practical applications of our framework, including image
737 and mode inversion, discovering semantic directions in the Koopman latent space, noise
738 engineering for CFM-based editing, and functional robustness on downstream tasks such as
739 inpainting, super-resolution, and denoising.740 • **Section G: Extended survey on interpretability of generative models**
741

742 In Section G we provide a more extensive discussion on interpretability of generative models.

743 Together, these sections provide a deeper understanding of our Koopman-CFM framework and
744 support its efficiency, stability, and interpretability as claimed in the main paper.
745746 A THEORETICAL RESULTS AND PROOFS
747748 In this section we expand on the theoretical foundations introduced in Section 4 of the main paper.
749 We provide detailed proofs of Theorem 1 and Propositions 1–3, which establish the non-identifiability
750 of Koopman coordinates up to linear transformations and justify the inclusion of the reconstruction
751 loss, as well as the derivation of a tractable marginal consistency objective. These results complement
752 the main text by giving formal guarantees for the claims underlying our Koopman-CFM framework.
753754 A.1 PRELIMINARIES ON CFM
755756 We remind here the main components of Conditional Flow Matching Tong et al. (2023), before deriv-
757 ing the proofs of our propositions. A Continuous Normalizing Flow (CNF) models the transformation
758 from a prior distribution p_0 to a data distribution $p_1 = q_1$ via a probability path p_t . This path is
759 induced by a time-dependent vector field v_t through the ODE:
760

761
$$\frac{dx_t}{dt} = v_t(x_t), x_0 \sim p_0, x_1 \sim p_1 \quad (19)$$

756 where $x_t \in \mathbb{R}^d$ is a sample at time t . A naive objective to learn v_t would be a regression loss:
 757

$$758 \quad \mathcal{L}_{\text{naive}} = \mathbb{E}_{t \sim U(0,1), x_t \sim p_t} \|v_\theta(t, x_t) - v_t(x_t)\|^2 \quad (20)$$

759 This objective is intractable because both the true vector field v_t and the marginal path distribution p_t
 760 are unknown. Conditional Flow Matching (CFM) circumvents this by defining a tractable conditional
 761 probability path $p_t(x_t|x_1)$ and its corresponding conditional vector field $u_t(x_t|x_1)$. The marginal
 762 velocity field v_t can be expressed as an expectation over these conditional fields:
 763

$$764 \quad v_t(x_t) = \mathbb{E}_{x_1 \sim q(x_1|x_t)} [u_t(x_t|x_1)] = \int \frac{p_t(x_t|x_1)q(x_1)}{p_t(x_t)} u_t(x_t|x_1) dx_1 \quad (21)$$

765 Remarkably, CFM shows that minimizing a simulation-free objective based on the conditional
 766 velocity field is equivalent to minimizing the intractable marginal objective. The CFM loss is:
 767

$$768 \quad \mathcal{L}_{\text{CFM}} = \mathbb{E}_{t \sim U(0,1), x_1 \sim q_1, x_t \sim p_t(\cdot|x_1)} \|v_\theta(t, x_t) - u_t(x_t|x_1)\|^2 \quad (22)$$

769 While this makes training efficient, sampling requires solving the integral:
 770

$$771 \quad x_1 = x_0 + \int_0^1 v_\theta(s, x_s) ds \quad (23)$$

772 A.2 PROOF OF THEOREM 1

773 *Proof.* Let the augmented state observable be $E(t, x) = [t, g(t, x)]^T$. We show that the objectives
 774 are invariant under the transformation $E \mapsto E_T = T^{-1}E$ and $L \mapsto L_T = T^{-1}LT$ for any invertible
 775 block-diagonal matrix $T = \text{diag}(1, M)$.

776 We use two facts. First, the chain rule implies that the Jacobian transforms as:
 777

$$778 \quad D(E_T)[1, v_t] = D(T^{-1}E)[1, v_t] = T^{-1}DE[1, v_t]. \quad (J)$$

779 Second, the matrix exponential (and thus the flow) is conjugate under T :
 780

$$781 \quad \exp(\Delta t L_T) = T^{-1} \exp(\Delta t L) T. \quad (C)$$

782 **Infinitesimal Consistency.** The residual is $R_{\text{cons}} = DE[1, v_t] - LE$. The transformed residual is:
 783

$$784 \quad R_{\text{cons}, T} = DE_T[1, v_t] - L_T E_T \stackrel{(J), (C)}{=} T^{-1}DE[1, v_t] - T^{-1}LE = T^{-1}R_{\text{cons}}.$$

785 Thus, $R_{\text{cons}} = 0$ if and only if $R_{\text{cons}, T} = 0$.
 786

787 **Phase Loss.** The residual is $R_{\text{phase}} = E(1, x_1) - e^L E(0, x_0)$. The transformed residual is:
 788

$$789 \quad \begin{aligned} R_{\text{phase}, T} &= E_T(1, x_1) - e^{L_T} E_T(0, x_0) \\ &= T^{-1}E(1, x_1) - (T^{-1}e^L T)(T^{-1}E(0, x_0)) \\ &= T^{-1}(E(1, x_1) - e^L E(0, x_0)) = T^{-1}R_{\text{phase}}. \end{aligned}$$

790 Again, the zero set of the loss is invariant. Since the norms of the residuals are scaled by the constant
 791 transformation T^{-1} , the set of global minimizers is preserved under this transformation. Therefore,
 792 the objectives only identify g up to an invertible linear transformation M . \square
 793

801 A.3 PROOF OF PROPOSITION 1

802 *Proof.* To simplify the notation, let us define:
 803

$$804 \quad \begin{aligned} A(x_t) &= Lg(x_t) \\ B(x_t) &= \nabla g(x_t) v_t(x_t) \\ C(x_t, x_1) &= \nabla g(x_t) u_t(x_t | x_1) \end{aligned}$$

805 With this notation, the losses are $\mathcal{L}_{\text{marg}} = \mathbb{E}_{x_t \sim p_t} [\|A(x_t) - B(x_t)\|^2]$ and $\mathcal{L}_{\text{cond}} =$
 806 $\mathbb{E}_{x_1 \sim q, x_t \sim p_t(\cdot|x_1)} [\|A(x_t) - C(x_t, x_1)\|^2]$.
 807

810 We expand the squared norms inside the expectations:
 811

$$\begin{aligned}\mathcal{L}_{\text{marg}} &= \int p_t(x_t) (\|A\|^2 - 2\langle A, B \rangle + \|B\|^2) dx_t \\ \mathcal{L}_{\text{cond}} &= \iint q(x_1) p_t(x_t | x_1) (\|A\|^2 - 2\langle A, C \rangle + \|C\|^2) dx_t dx_1\end{aligned}$$

816 We will now compare the terms of these two expansions one by one.
 817

818 **(i) First Term ($\|A\|^2$):** The first term of $\mathcal{L}_{\text{cond}}$ is $\iint q(x_1) p_t(x_t | x_1) \|A(x_t)\|^2 dx_t dx_1$. Since
 819 $A(x_t)$ does not depend on x_1 , we can use the law of iterated expectation or simply rearrange the
 820 integral:

$$\begin{aligned}\iint q(x_1) p_t(x_t | x_1) \|A(x_t)\|^2 dx_t dx_1 &= \int \left(\int q(x_1) p_t(x_t | x_1) dx_1 \right) \|A(x_t)\|^2 dx_t \\ &= \int p_t(x_t) \|A(x_t)\|^2 dx_t\end{aligned}$$

825 This is identical to the first term of $\mathcal{L}_{\text{marg}}$.
 826

827 **(ii) Cross Term ($-2\langle A, \cdot \rangle$):** The cross term of $\mathcal{L}_{\text{cond}}$ is $\iint q(x_1) p_t(x_t | x_1) (-2\langle A(x_t), C(x_t, x_1) \rangle) dx_t dx_1$. We analyze the integral:
 828

$$\begin{aligned}\iint q(x_1) p_t(x_t | x_1) \langle A(x_t), C(x_t, x_1) \rangle dx_t dx_1 &= \int \left\langle A(x_t), \int q(x_1) p_t(x_t | x_1) C(x_t, x_1) dx_1 \right\rangle dx_t \\ &= \int \left\langle A(x_t), \int q(x_1) p_t(x_t | x_1) \nabla g(x_t) u_t(x_t | x_1) dx_1 \right\rangle dx_t \\ &= \int \left\langle A(x_t), \nabla g(x_t) \int q(x_1) p_t(x_t | x_1) u_t(x_t | x_1) dx_1 \right\rangle dx_t\end{aligned}$$

839 By definition, the marginal velocity field $v_t(x_t)$ is the expectation of the conditional field $u_t(x_t | x_1)$
 840 over the posterior $p(x_1 | x_t) = \frac{q(x_1)p_t(x_t | x_1)}{p_t(x_t)}$. So, $v_t(x_t) = \int u_t(x_t | x_1) \frac{q(x_1)p_t(x_t | x_1)}{p_t(x_t)} dx_1$.
 841 Multiplying by $p_t(x_t)$ gives $p_t(x_t)v_t(x_t) = \int q(x_1) p_t(x_t | x_1) u_t(x_t | x_1) dx_1$. Substituting this
 842 back into our expression:
 843

$$\begin{aligned}\dots &= \int \langle A(x_t), \nabla g(x_t) (p_t(x_t)v_t(x_t)) \rangle dx_t \\ &= \int \langle A(x_t), p_t(x_t) B(x_t) \rangle dx_t \\ &= \int p_t(x_t) \langle A(x_t), B(x_t) \rangle dx_t\end{aligned}$$

850 This shows that the cross terms of $\mathcal{L}_{\text{cond}}$ and $\mathcal{L}_{\text{marg}}$ are also identical.
 851

852 **(iii) Final Quadratic Term ($\|\cdot\|^2$):** The final term of $\mathcal{L}_{\text{cond}}$ is $\mathbb{E}_{x_1, x_t} [\|C(x_t, x_1)\|^2]$. We use the law
 853 of total variance: for a random variable Z , $\mathbb{E}[\|Z\|^2] = \mathbb{E}[\mathbb{E}[Z]^2] + \text{Var}(Z)$. We apply this by first
 854 conditioning on x_t .
 855

$$\begin{aligned}\mathbb{E}_{x_1, x_t} [\|C\|^2] &= \mathbb{E}_{x_t \sim p_t} [\mathbb{E}_{x_1 \sim p(x_1 | x_t)} [\|C(x_t, x_1)\|^2]] \\ &= \mathbb{E}_{x_t} [\|\mathbb{E}_{x_1 | x_t} [C(x_t, x_1)]\|^2 + \text{Var}_{x_1 | x_t} (C(x_t, x_1))]\end{aligned}$$

858 Let's compute the inner conditional expectation:
 859

$$\mathbb{E}_{x_1 | x_t} [C(x_t, x_1)] = \mathbb{E}_{x_1 | x_t} [\nabla g(x_t) u_t(x_t | x_1)] = \nabla g(x_t) \mathbb{E}_{x_1 | x_t} [u_t(x_t | x_1)] = \nabla g(x_t) v_t(x_t) = B(x_t).$$

860 Substituting this back:
 861

$$\begin{aligned}\mathbb{E}_{x_1, x_t} [\|C\|^2] &= \mathbb{E}_{x_t} [\|B(x_t)\|^2 + \text{Var}_{x_1 | x_t} (C(x_t, x_1))] \\ &= \mathbb{E}_{x_t} [\|B(x_t)\|^2] + \mathbb{E}_{x_t} [\text{Var}_{x_1 | x_t} (C(x_t, x_1))]\end{aligned}$$

864 The first part, $\mathbb{E}_{x_t}[\|B(x_t)\|^2] = \int p_t(x_t)\|B(x_t)\|^2 dx_t$, is exactly the final term of $\mathcal{L}_{\text{marg}}$. The second
 865 part is the discrepancy term $\Delta(g)$:

$$\begin{aligned}
 866 \Delta(g) &= \mathbb{E}_{x_t}[\text{Var}_{x_1|x_t}(C(x_t, x_1))] \\
 867 &= \mathbb{E}_{x_t}[\mathbb{E}_{x_1|x_t}[\|C(x_t, x_1) - \mathbb{E}_{x_1|x_t}[C(x_t, x_1)]\|^2]] \\
 868 &= \mathbb{E}_{x_t}[\mathbb{E}_{x_1|x_t}[\|C(x_t, x_1) - B(x_t)\|^2]] \\
 869 &= \mathbb{E}_{x_1, x_t}[\|C(x_t, x_1) - B(x_t)\|^2] \\
 870 &= \iint q(x_1) p_t(x_t | x_1) \|\nabla g(x_t) u_t(x_t | x_1) - \nabla g(x_t) v_t(x_t)\|^2 dx_t dx_1 \\
 871 &= \iint q(x_1) p_t(x_t | x_1) \|\nabla g(x_t)(u_t(x_t | x_1) - v_t(x_t))\|^2 dx_t dx_1
 \end{aligned}$$

872 **Conclusion:** Assembling all the terms, we have:

$$\begin{aligned}
 873 \mathcal{L}_{\text{cond}} &= \underbrace{\mathbb{E}_{x_t}[\|A\|^2]}_{\text{Term 1}} - 2\mathbb{E}_{x_t}[\langle A, B \rangle] + \underbrace{(\mathbb{E}_{x_t}[\|B\|^2] + \Delta(g))}_{\text{Term 3}} \\
 874 &= (\mathbb{E}_{x_t}[\|A\|^2] - 2\mathbb{E}_{x_t}[\langle A, B \rangle] + \mathbb{E}_{x_t}[\|B\|^2]) + \Delta(g) \\
 875 &= \mathcal{L}_{\text{marg}} + \Delta(g)
 \end{aligned}$$

876 Since $\Delta(g)$ is the expectation of a squared norm, it is non-negative, which proves the theorem. \square

877 A.4 PROOF OF PROPOSITION 2

878 *Proof.* The proof relies on the law of iterated expectation. Let $f(x_t)$ be any measurable function of
 879 x_t . The expectation of $f(x_t)$ over the marginal distribution $p_t(x_t)$ is:

$$880 \mathbb{E}_{x_t \sim p_t}[f(x_t)] = \int_{\mathbb{R}^d} f(x_t) p_t(x_t) dx_t$$

881 Now, we substitute the definition of the marginal path density, $p_t(x_t) = \int_{\mathbb{R}^d} q(x_1) p_t(x_t | x_1) dx_1$:

$$882 \mathbb{E}_{x_t \sim p_t}[f(x_t)] = \int_{\mathbb{R}^d} f(x_t) \left(\int_{\mathbb{R}^d} q(x_1) p_t(x_t | x_1) dx_1 \right) dx_t$$

883 We can combine the terms inside a double integral:

$$884 \mathbb{E}_{x_t \sim p_t}[f(x_t)] = \iint_{\mathbb{R}^d \times \mathbb{R}^d} f(x_t) q(x_1) p_t(x_t | x_1) dx_1 dx_t$$

885 By Fubini's theorem, we can exchange the order of integration since the integrand is non-negative (or
 886 integrable):

$$887 \mathbb{E}_{x_t \sim p_t}[f(x_t)] = \int_{\mathbb{R}^d} q(x_1) \left(\int_{\mathbb{R}^d} f(x_t) p_t(x_t | x_1) dx_t \right) dx_1$$

888 This expression can be recognized as a nested expectation. The inner integral is the expectation of
 889 $f(x_t)$ over the conditional distribution $p_t(\cdot | x_1)$, and the outer integral is the expectation over the data
 890 distribution $q(x_1)$:

$$\begin{aligned}
 891 \int_{\mathbb{R}^d} q(x_1) (\mathbb{E}_{x_t \sim p_t(\cdot | x_1)}[f(x_t)]) dx_1 &= \mathbb{E}_{x_1 \sim q} [\mathbb{E}_{x_t \sim p_t(\cdot | x_1)}[f(x_t)]] \\
 892 &= \mathbb{E}_{x_1 \sim q, x_t \sim p_t(\cdot | x_1)}[f(x_t)]
 \end{aligned}$$

893 We have thus shown the general identity $\mathbb{E}_{x_t \sim p_t}[f(x_t)] = \mathbb{E}_{x_1 \sim q, x_t \sim p_t(\cdot | x_1)}[f(x_t)]$.

894 To prove the theorem, we simply choose $f(x_t)$ to be the squared residual of the marginal loss:

$$895 f(x_t) = \|\mathcal{L}g(x_t) - \nabla_x g(x_t) v_t(x_t)\|^2$$

896 By its definition, $\mathcal{L}_{\text{marg}} = \mathbb{E}_{x_t \sim p_t}[f(x_t)]$. Applying the identity we just derived gives:

$$897 \mathcal{L}_{\text{marg}} = \mathbb{E}_{x_1 \sim q, x_t \sim p_t(\cdot | x_1)} [\|\mathcal{L}g(x_t) - \nabla_x g(x_t) v_t(x_t)\|^2]$$

898 This completes the proof. \square

918

Algorithm 1: Koopman–CFM Training (simulation-free; fixed teacher, precomputed pairs)

919

Input: Fixed teacher velocity $v_{\text{CFM}}(t, x)$; encoder g_ϕ ; decoder g_ψ^{-1} ; affine generator \tilde{L} ; precomputed buffer $\mathcal{B} = \{(x_0, x_1)\}$.

920

Definition: Lifted coordinate $\tilde{z}(t, x) := [1, t, g_\phi(t, x)]^\top$.

921

for each minibatch **do**

922

```

    Sample  $x_1 \sim q_1$ ,  $t \sim \mathcal{U}(0, 1)$ , then draw  $x_t \sim p_t(\cdot | x_1)$ ;
     $\mathcal{L}_{\text{cons}} \leftarrow \left\| \tilde{L} \tilde{z}(t, x_t) - Dg_\phi(t, x_t) [1, v_{\text{CFM}}(t, x_t)] \right\|^2$ ;
    Sample  $(x_0, x_1)$  from buffer  $\mathcal{B}$ ;
     $\mathcal{L}_{\text{phase}} \leftarrow \left\| \exp(\tilde{L}) \tilde{z}(0, x_0) - \tilde{z}(1, x_1) \right\|^2$ ;
     $\mathcal{L}_{\text{target}} \leftarrow \ell_{\text{img}}\left(g_\psi^{-1}(\exp(\tilde{L}) \tilde{z}(0, x_0)), x_1\right)$ ;
     $\mathcal{L}_{\text{recon}} \leftarrow \ell_{\text{img}}\left(g_\psi^{-1}(\tilde{z}(1, x_1)), x_1\right)$ ;
     $\mathcal{L} \leftarrow \lambda_c \mathcal{L}_{\text{cons}} + \lambda_p \mathcal{L}_{\text{phase}} + \lambda_t \mathcal{L}_{\text{target}} + \lambda_r \mathcal{L}_{\text{recon}}$ ;
    Update  $\{\phi, \psi, \tilde{L}\}$  by backprop on  $\mathcal{L}$ ;

```

923

924

925

Algorithm 2: One-Step Koopman Sampling (matrix exponential + decode)

926

Input: Trained (g_ϕ, g_ψ^{-1}, L) ; prior $p_0 = \mathcal{N}(0, I)$.

927

Input: Lifted coordinate $z(t, x) := [1, t, g_\phi(t, x)]^\top$.

928

Precompute $E \leftarrow \exp(L)$;

929

Sample $x_0 \sim p_0$;

930

return $\hat{x}_1 \leftarrow g_\psi^{-1}(E z(0, x_0))$;

931

932

933

934

935

936

B EXPERIMENTAL DETAILS

937

This section complements Section 5 of the main paper by providing full details needed for reproducibility. We describe dataset preparation, model architecture and parametrization, training schedules, and computational resources.

938

B.1 PARAMETERIZATION OF THE AFFINE LIFT

939

We parameterize \tilde{L} with the following block structure.

940

941

942

$$\tilde{L} = \begin{bmatrix} 0 & 0 & \mathbf{0} \\ 1 & 0 & \mathbf{0} \\ \mathbf{b}_g & \mathbf{A}_{gt} & \mathbf{A}_{gg} \end{bmatrix} \quad (24)$$

943

This parameterization guarantees correct time evolution by design and yields affine dynamics for the observables: $\dot{g} = \mathbf{b}_g + \mathbf{A}_{gt}t + \mathbf{A}_{gg}g$. The learned parameters are the weights ϕ, ψ of the encoder g_ϕ and decoder g_ψ^{-1} and the matrix blocks $(\mathbf{b}_g, \mathbf{A}_{gt}, \mathbf{A}_{gg})$.

944

945

946

Data. We evaluate our approach on three datasets of increasing difficulty. MNIST contains 60,000 training and 10,000 test grayscale images of handwritten digits at resolution 28×28 . FFHQ (Flickr-Faces-HQ) was downsampled to 32×32 resolution, from which we use all 70,000 RGB images. Finally, CIFAR-10 provides 50,000 training and 10,000 test images at resolution 32×32 across 10 object classes. This progression from simple digits to natural faces and general object classes allows us to systematically study the performance of our method as task complexity increases.

947

948

949

950

951

952

953

Model Architecture. For all datasets, we employ a consistent backbone architecture: a SongUNet used as both encoder and decoder. To reduce the overall parameter count, we restrict the encoder output and decoder input to a single channel. Moreover, to obtain explicit control over the Koopman dimension, we optionally append a linear projection from the flattened UNet output to the target latent dimension.

972 **Training Details.** Before training our pipeline, we pre-trained an OT-CFM model following the
 973 reference implementation provided in the torchcfm code examples. From this model, we generated
 974 between 10^4 and 10^6 (x_0, x_1) pairs (see Table 3 for exact counts per dataset), which served as inputs
 975 for computing the target loss. All models were trained using the Adam optimizer under identical
 976 training protocols across datasets. Experiments were carried out on NVIDIA A40, H100, and A100
 977 GPUs. Additional hyperparameters, including learning rates, batch sizes, and training schedules, are
 978 reported in Table 3.

	MNIST	FFHQ	CIFAR-10
CFM iterations	200k	800k	800k
Batch size	128	256	124
Learning rate	0.0001	0.0001	0.0001
Koopman iterations	70k	600k	800k
Target weight (w/o $\mathcal{L}_{\text{cons}}$ – w/ $\mathcal{L}_{\text{cons}}$)	1.0 – 1.0	1.0 – 0.01	1.0 – 0.01
Operator Dimension	1026	1026	1026
UNet Output Channels	1	1	1
UNet Base Channels	64	64	64
UNet Channels Multiplier	[1,2,2]	[1,2,2,2]	[1,2,2,2]
Linear Projection	✓	✗	✗

992 Table 3: Training hyperparameters for Koopman–CFM on MNIST, FFHQ, and CIFAR-10. *Linear*
 993 *projection* refers to the projection head at the UNet encoder output (resp. decoder input). Since loss
 994 terms are not of the same order of magnitude, the target loss was reweighted by the given parameter.
 995 *Koopman iterations* denote the number of iterations for the overall pipeline, while *CFM iterations*
 996 correspond to the underlying CFM model.

C ABLATIONS

1001 This section expands the analysis of Section 5 by presenting ablations that clarify the role of each
 1002 loss term, the effect of Koopman dimension, the impact of consistency on trajectory fidelity, and the
 1003 interpretability of modes.

C.1 IMPACT OF LOSS TERMS

1007 Table 4 shows the effect of adding loss components across datasets. Phase and reconstruction alone
 1008 yield poor FIDs, as they impose no constraint in image space. Adding the target loss improves fidelity
 1009 by supervising decoded samples. Adding the consistency loss (weight 0.01) slightly worsens FID
 1010 (e.g., FFHQ $7.5 \rightarrow 10.1$), since it regularizes the model to follow the teacher’s nonlinear trajectories
 1011 rather than shortcutting through straighter ones. This increases trajectory faithfulness at the cost of
 1012 marginally higher endpoint error. We argue this tradeoff is beneficial: while endpoint-only distillation
 1013 can optimize FID, it fails to capture the true generative flow (cf. Table 5, Fig. 8). Consistency-
 1014 trained models achieve competitive FIDs while uniquely enabling spectral decomposition and robust
 1015 downstream performance.

1016 Table 4: Loss ablation across datasets showing the effect of incrementally adding loss components

Dataset	$\mathcal{L}_{\text{recon}} + \mathcal{L}_{\text{phase}}$	$\mathcal{L}_{\text{recon}} + \mathcal{L}_{\text{phase}} + \mathcal{L}_{\text{target}}$	$\mathcal{L}_{\text{recon}} + \mathcal{L}_{\text{phase}} + 0.01\mathcal{L}_{\text{target}} + \mathcal{L}_{\text{cons}}$
MNIST	143.5	6.43	11.6
FFHQ	41	7.5	10.1
CIFAR-10	64.5	16.7	14.1

1023 Since we’re optimizing a composite loss, there may be concerns of instability during training. For
 1024 transparency we provide plots of the behavior of all our loss terms. Training is stable, and can be
 1025 rationalized with well aligned objectives derived from both Koopman theory and the CFM framework.

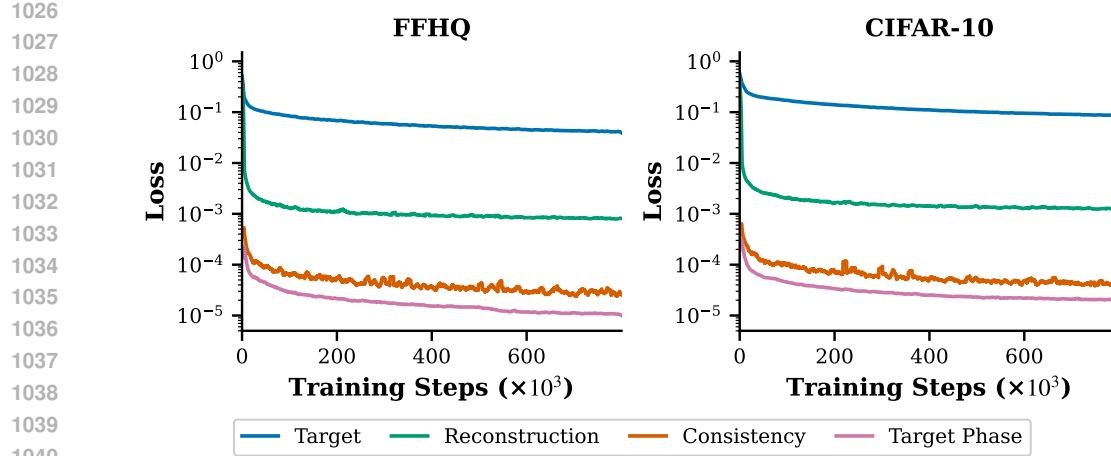


Figure 7: Training losses on CIFAR-10 and FFHQ datasets across different loss components.

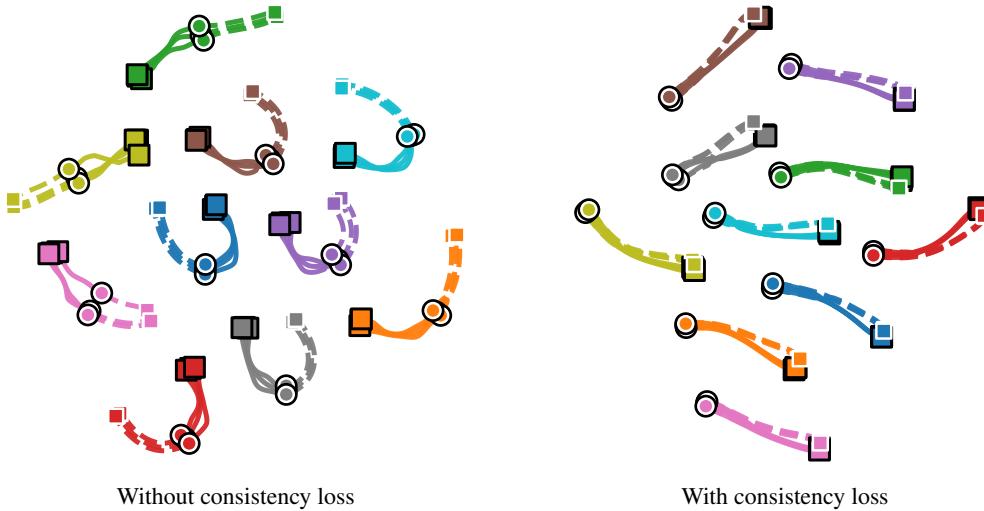


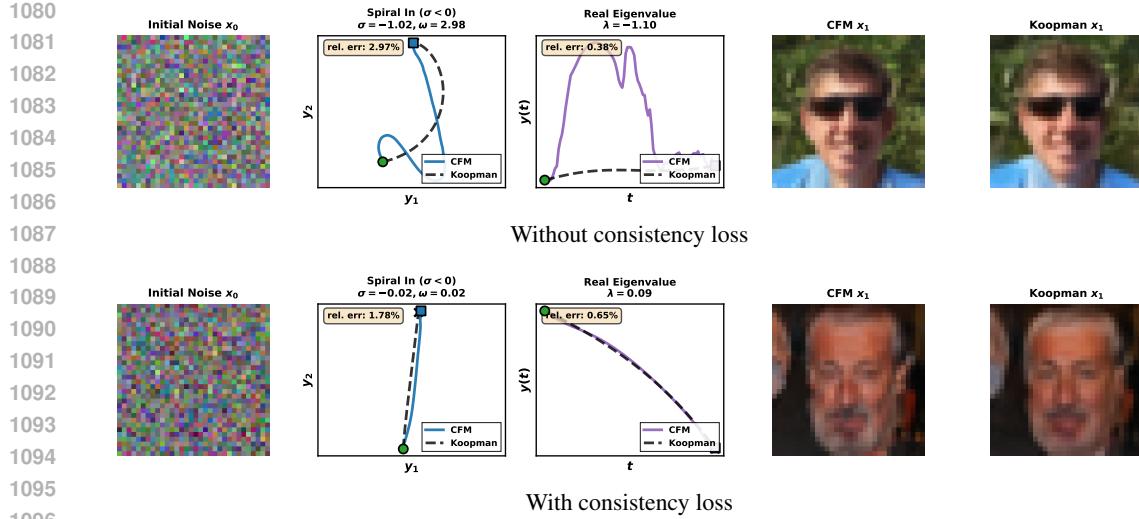
Figure 8: t-SNE visualization of CFM and Koopman trajectories in the embedding space on FFHQ. The consistency loss makes Koopman rollouts (dotted) follow the teacher dynamics (continuous) more closely. This is seen both in the proximity of trajectories and in the alignment of their endpoints. Circles mark starting points and squares mark end points.

C.2 TRAJECTORY FIDELITY WITH AND WITHOUT CONSISTENCY LOSS

Table 5: MSE between trajectory rollouts between CFM and Koopman dynamics in latent space: we generate 1000 full trajectories $\{x_t\}$ via CFM encode in the Koopman latent space $g(t, x_t)$ and compare them with Koopman rollouts $g(x_t) = e^{L_t}g(t=0, x_0)$.

Dataset	Min	Max	Mean MSE	Std Dev
FFHQ (w/ consistency)	3.0×10^{-6}	1.3×10^{-5}	5.0×10^{-6}	1.0×10^{-6}
FFHQ (w/o consistency)	5.24×10^{-4}	2.66×10^{-3}	1.30×10^{-3}	2.95×10^{-4}
CIFAR-10 (w/ consistency)	4.0×10^{-6}	3.7×10^{-5}	1.0×10^{-5}	4.0×10^{-6}
CIFAR-10 (w/o consistency)	3.46×10^{-4}	7.01×10^{-3}	1.74×10^{-3}	6.36×10^{-4}

We illustrate in Figure 8, the impact of consistency on trajectory fidelity. Notably, the consistency trained models trajectories closely tracks the teacher's nonlinear path. In contrast, the purely distilled



1097
1098
1099
1100

Figure 9: Trajectory comparison in Schur coordinates of the learned Koopman generator. With consistency, learned Koopman modes (dashed) accurately track CFM dynamics (solid). Without consistency, endpoints match but intermediate trajectories diverge, indicating the learned modes do not reflect true CFM dynamics.

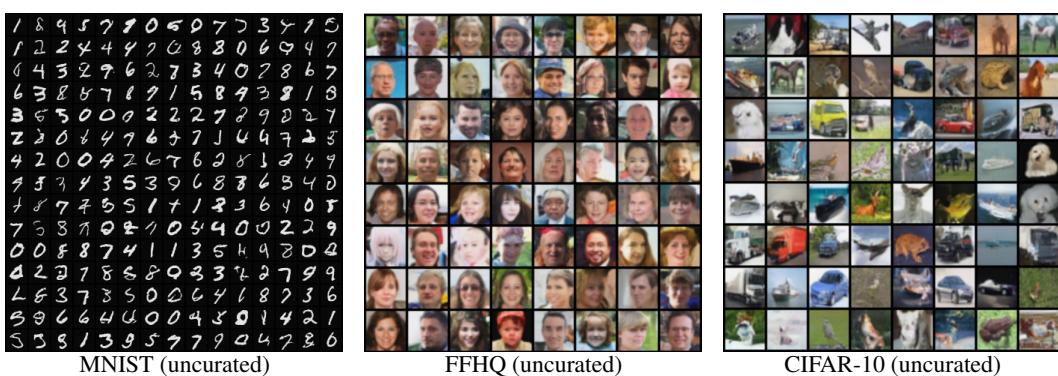
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

model trajectory diverges significantly, learning an unaligned shortcut, but with correct boundaries. This confirms that while a better FID can be achieved by ignoring the teacher’s dynamics, doing so prevents the model from learning a faithful representation of the generative process.

To visualize trajectory fidelity in an interpretable coordinate system, we project dynamics onto the Schur basis of the learned generator L (Figure 9). Each 2×2 block corresponds to a complex eigenvalue pair $\sigma \pm i\omega$, where σ governs the exponential envelope and ω the oscillation frequency. With consistency training, the learned Koopman modes accurately track the CFM teacher’s trajectory throughout, confirming that the representation captures the true generative dynamics. Without consistency, the endpoints remain correct, explaining the comparable generation quality, but the intermediate trajectory diverges significantly from the teacher. This demonstrates that consistency loss is essential for learning Koopman representations whose modes faithfully reflect the underlying flow, rather than merely learning a shortcut between boundaries.

D UNCURATED SAMPLES

This section supplements Section 5 by showing uncurated generations and reporting wall-clock sampling times, illustrating the tradeoffs between, speed, fidelity and interpretability.



1132
1133

Figure 10: Uncurated samples from our Koopman generative model across three datasets. All samples are obtained via our one-step strategy.

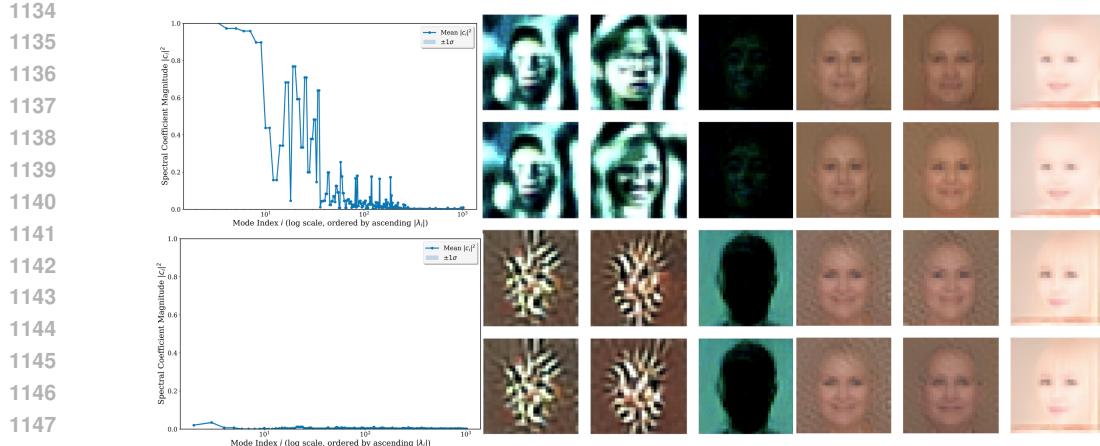


Figure 11: Left: Mean coefficients $|c_i|^2$ projected on the generator modes ordered by corresponding eigenvalue magnitude $|\lambda_i|^2$. Top corresponds to the spectrum along the modes obtained from training with consistency and bottom to those obtained from training without consistency Right: First three columns are some decoded modes of the generator trained with consistency loss, and the next three are those obtained from the generator trained without consistency.

E INTERPRETABILITY AND SPECTRAL ANALYSIS

E.1 KOOPMAN MODE STRUCTURE

Figure 11 illustrates how consistency qualitatively changes the learned Koopman modes. Without consistency, individual modes tend to decode into entire faces—effectively full puzzle pieces—which suggests poor disentanglement, as each mode redundantly encodes the whole sample. By contrast, with consistency, the modes behave like localized “patch bases,” decomposing faces into local interpretable components close to semantic components (e.g., hair, eyes). The spectral profile on the left of Fig. 11 also highlights important differences: with consistency, coefficients decay with eigenvalue magnitude, whereas without consistency the spectrum remains flat, indicating the absence of structured decomposition.

E.2 INSIGHTS ON TEACHER TRAINING

Similarity matrices (Fig. 15, left) reveal a clear ordering: when modes are sorted by $\text{Re}(\lambda)$, mid-training checkpoints already align with the low-decay modes of the final model, while early checkpoints show little correspondence. This is further quantified by the cumulative similarity (right), which increases monotonically across training stages.

E.3 GENERATION PROCESS: COARSE-TO-FINE.

To investigate the interpretability of the learned Koopman representation, we perform progressive mode reconstruction by truncating the eigenspectrum of the generator L . Specifically, we compute the eigendecomposition of the feature block $A_{gg} = L_{[2,2,:]}$ and construct a real-valued basis by taking $\text{Re}(v)$ and $\text{Im}(v)$ for each complex conjugate eigenvector pair. We sort modes by the real part of their eigenvalues, $\text{Re}(\lambda)$, which governs the exponential timescale of each mode: more negative values correspond to strongly decaying dynamics while values closer to zero or positive correspond to slowly decaying or amplifying dynamics.

Given an encoded image $z = [1, t, g]^\top$ where $g \in \mathbb{R}^{1024}$ denotes the feature vector, we reconstruct using only the first k modes by projecting onto the truncated basis $B_k \in \mathbb{R}^{1024 \times k}$:

$$\hat{g}_k = B_k B_k^\dagger g, \quad (25)$$

where B_k^\dagger denotes the pseudoinverse. The reconstructed features \hat{g}_k are then decoded back to image space.

Figure 12: Progressive mode reconstruction sorted by $\text{Re}(\lambda)$. Slow modes (negative $\text{Re}(\lambda)$) capture coarse structure, while fast modes (positive $\text{Re}(\lambda)$) add fine details. The learned Koopman spectrum provides an interpretable hierarchy reflecting the multi-scale nature of the generative process.

Figure 12 shows reconstructions for increasing k . The slowest modes ($k \leq 200$, $\text{Re}(\lambda) \leq -0.58$) produce homogenous outputs, indicating these modes encode a global bias that requires additional modes to balance. At $k = 400$, coarse facial structure emerges, face shape, average skin tone, and approximate feature positions. As k increases to 600–800, identity-specific features begin to appear, though images remain soft. Finally, modes with $\text{Re}(\lambda) > 0$ ($k > 1000$) contribute fine details: hair texture, sharp edges, and accessories such as hats and glasses. Full reconstruction recovers the original image with high fidelity.

These results demonstrate that the Koopman eigenspectrum induces a principled coarse-to-fine hierarchy: slow modes capture global structure while fast modes encode high-frequency details. Unlike PCA, which orders components by variance, this ordering emerges from the *dynamics* of the generative flow, providing an interpretable decomposition tied to the underlying generative process.

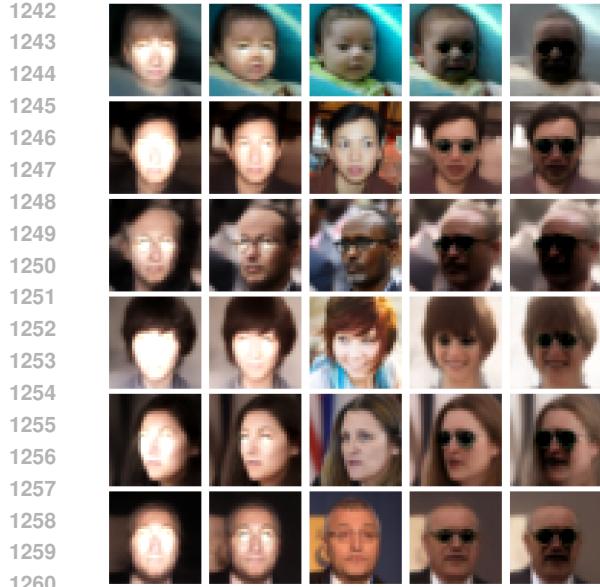
E.4 KOOPMAN MODES ALIGN WITH SEMANTIC DIRECTIONS

We provide uncurated qualitative examples of Koopman mode-induced image edits in Figure 13.a, Figure 13.c, Figure 13.d, Figure 13.b. Each row shows a different test image, with columns corresponding to perturbation strengths $\alpha \in \{-0.2, -0.1, 0, 0.1, 0.2\}$. Importantly, these modes were not manually selected; rather, they were automatically identified by ranking all eigenmodes according to their CLIP coherence scores with respect to each attribute prompt.

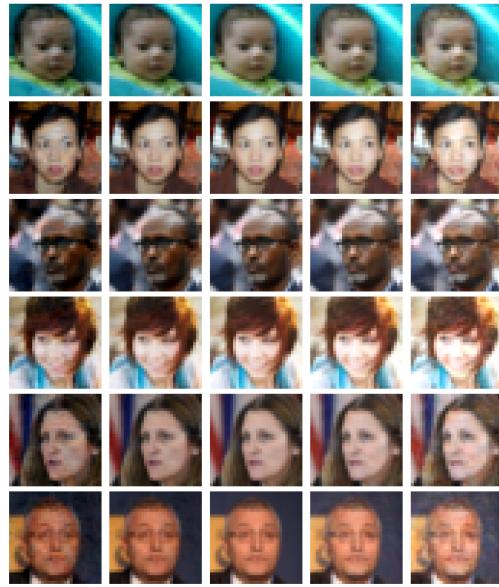
Sunglasses (Mode 1019). For the model trained with consistency loss, this mode demonstrates strong semantic alignment: positive α consistently introduces sunglasses across diverse subjects while preserving identity, pose, and background. Negative α produces the inverse effect, brightening the eye region and removing eyewear. The transformation generalizes across ages, genders, and lighting conditions, confirming that this eigenmode captures a disentangled semantic direction rather than spurious correlations.

Brown Hair (Mode 767). This mode exhibits coupling between hair color and global illumination. While positive α shifts toward darker hair tones, it simultaneously reduces overall image brightness. This entanglement suggests that some semantic attributes share spectral structure in the Koopman operator, consistent with the lower selectivity scores reported in Table 4.

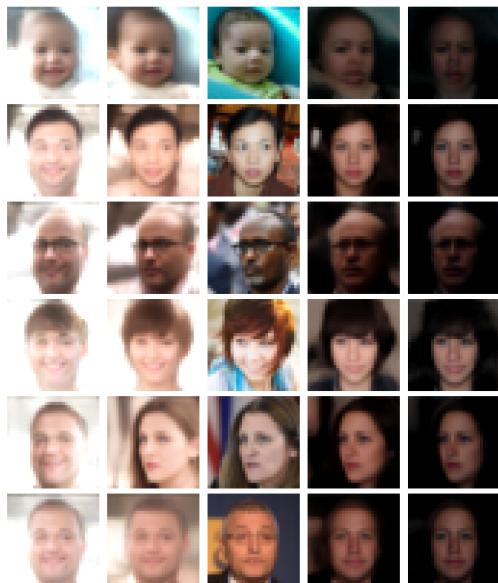
Effect of Consistency Loss. Without consistency loss, perturbing Koopman modes produces no discernible change in the decoded images, regardless of the perturbation magnitude α . In contrast,



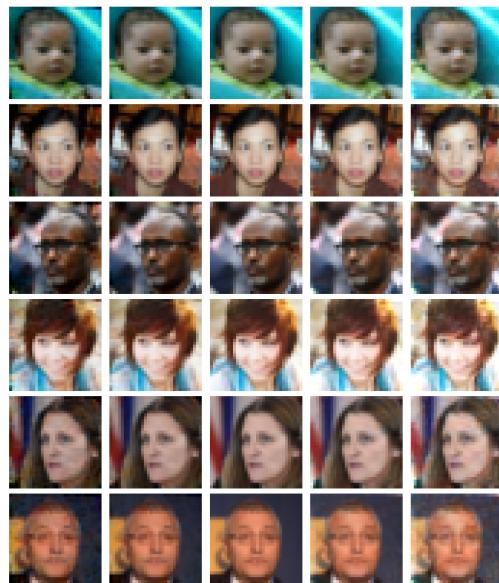
1261 Figure 13.a Sunglasses (Mode 1019) — with consistency
1262



1261 Figure 13.b Sunglasses (Mode 455) — without consistency
1262



1282 Figure 13.c Brown hair (Mode 767) — with consistency
1283



1282 Figure 13.d Brown hair (Mode 2) — without consistency
1283

1284 Figure 13: **Koopman mode perturbations for semantic editing.** Each grid shows different test subjects (rows) perturbed with $\alpha \in \{-0.2, -0.1, 0, 0.1, 0.2\}$ (columns). Modes were automatically identified via CLIP coherence analysis. **(a, c)** With consistency loss, perturbing individual eigenmodes produces semantically meaningful edits—adding sunglasses or darkening hair—while preserving identity. **(b, d)** Without consistency loss, the same perturbations yield no visible change, demonstrating that consistency training is essential for learning actionable semantic directions.

1290

1291

1292

1293 the consistency-trained model yields clearly visible and semantically coherent edits. This qualitative
1294 difference corroborates the quantitative findings in Section 5.4: consistency loss is essential not only
1295 for learning a faithful linear decomposition of the dynamics, but also for ensuring that the resulting
eigenmodes correspond to actionable semantic directions in image space.

Direction	No Consistency		Consistency	
	CLIP \uparrow	LPIPS \downarrow	CLIP \uparrow	LPIPS \downarrow
<i>Direct Koopman Editing</i>				
Hat	0.069	0.018	0.077	0.019
Sunglasses	0.070	0.035	0.072	0.034
Smile	0.093	0.016	0.090	0.020
Age	0.121	0.035	0.123	0.036
Gender (M \rightarrow W)	0.153	0.021	0.157	0.025
Gender (W \rightarrow M)	0.150	0.031	0.152	0.035
<i>CFM-Based Editing</i>				
Hat	0.148	0.060	0.094	0.053
Sunglasses	0.130	0.076	0.107	0.056
Smile	0.087	0.013	0.052	0.010
Age	0.186	0.097	0.145	0.087
Gender	0.178	0.091	0.139	0.043

Table 6: Quantitative comparison of latent directions, at $\alpha = 3.0$

F APPLICATIONS

F.1 INVERSION

To edit a real image \mathbf{x} , we first invert it to a corresponding noise sample \mathbf{x}_0 such that integrating the CFM ODE recovers the original image. We encode the image to its lifted representation $\mathbf{z} = g(\mathbf{x})$ and compute the target noise-space embedding $\mathbf{z}_0^* = \exp(-L)\mathbf{z}_1$. We then optimize \mathbf{x}_0 to match this target:

$$\mathbf{x}_0^* = \arg \min_{\mathbf{x}_0} \|g(\mathbf{x}_0) - \mathbf{z}_0^*\|_2^2 \quad (26)$$

We show inversion examples in Figure 14. We again highlight the difference with the no-consistency model, which introduces artifacts and have noticeable unstable optimization.

F.2 DISCOVERING SEMANTIC DIRECTIONS IN KOOPMAN LATENT SPACE

We discover semantic directions in the lifted Koopman space using a supervised approach. Given the FFHQ dataset, we first encode each image \mathbf{x} into its lifted representation

$$\mathbf{z} = g(\mathbf{x})$$

at $t = 1$. Binary attribute labels (e.g., smiling vs. not smiling, eyeglasses vs. no eyeglasses) are obtained via CLIP classification using natural-language prompts.

For each binary attribute, we compute a semantic direction as the difference between class-conditional mean embeddings:

$$\mathbf{d}_{\text{attr}} = \mathbb{E}[\mathbf{z} \mid y = 1] - \mathbb{E}[\mathbf{z} \mid y = 0]. \quad (27)$$

Semantic editing is performed via linear traversal in the Koopman latent space:

$$\mathbf{z}_{\text{edited}} = \mathbf{z} + \alpha \mathbf{d}_{\text{attr}}, \quad (28)$$

where α controls the edit strength. The edited latent code is then decoded back to image space via

$$\hat{\mathbf{x}} = g^{-1}(\mathbf{z}_{\text{edited}}).$$

We show, in Table 6, that the provided latent directions are better with the consistency model, both in Koopman or unlifted to the image space, with CLIP and LPIPS evaluations for different attributes.

1350
 1351 **F.3 NOISE ENGINEERING: PERFORMING IMAGE EDITING BY OPTIMIZING CFM NOISE**
 1352 **PERTURBATION**

1353 A key advantage of our Koopman-based framework is that semantic directions discovered in the lifted
 1354 space can be transferred to perform editing with the original CFM model. This demonstrates that the
 1355 Koopman operator captures meaningful structure that generalizes beyond the learned decoder.

1356
 1357 **Optimizing semantic perturbations.** Rather than directly adding $\mathbf{d}_{\text{attr}}^{(0)}$ in pixel space, we optimize
 1358 a perturbation $\Delta \mathbf{x}_0$ such that the perturbed noise induces the desired semantic shift in the lifted space:

$$\Delta \mathbf{x}_0^* = \arg \min_{\Delta \mathbf{x}_0} \left\| g(\mathbf{x}_0 + \Delta \mathbf{x}_0) - \left(g(\mathbf{x}_0) + \mathbf{d}_{\text{attr}}^{(0)} \right) \right\|_2^2 \quad (29)$$

1360 Edited images are then generated by integrating the perturbed noise through the *original* CFM model:

$$\hat{\mathbf{x}}_1 = \int_0^1 v_\theta(t, \mathbf{x}_0 + \alpha \Delta \mathbf{x}_0^*) dt \quad (30)$$

1361 where α controls the edit strength and v_θ is the pretrained CFM velocity field.

1362
 1363 **Role of consistency regularization.** We observe a stark difference in editing quality depending on
 1364 whether the Koopman model was trained with consistency loss. Figure 16 and Figure 17 compares
 1365 semantic traversals for models trained with and without this loss term.

1366 With consistency regularization, the optimized perturbations remain well-behaved across a wide
 1367 range of edit strengths ($\alpha \in [0, 3]$). Edits are semantically meaningful, identity is preserved, and
 1368 image quality remains stable even at large α values. In contrast, without consistency regularization,
 1369 edited images exhibit severe degradation at moderate-to-large perturbation strengths: backgrounds
 1370 become corrupted with color artifacts, facial structure deteriorates, and identity is lost.

1371 We attribute this to the role of consistency loss in aligning the Koopman dynamics with the underlying
 1372 CFM trajectory. When this alignment is enforced, the learned operator $\exp(L)$ accurately models how
 1373 features evolve under the flow, ensuring that mapped directions $\mathbf{d}_{\text{attr}}^{(0)} = \mathbf{d}_{\text{attr}} \exp(-L)$ correspond
 1374 to valid perturbations within the noise distribution’s support. Without this constraint, the backward
 1375 mapping may produce directions that push samples off the data manifold, causing the CFM integration
 1376 to generate out-of-distribution outputs.

1377 These results highlight that our Koopman framework not only enables direct editing via the learned
 1378 decoder g^{-1} , but also provides a principled mechanism for *noise engineering*, transferring semantic
 1379 control to any compatible generative model by operating in its noise space.

1380
 1381 **F.4 FUNCTIONAL ROBUSTNESS ON DOWNSTREAM TASKS**

1382 Finally, we evaluate if this interpretable structure of our framework translates to challenging down-
 1383 stream tasks: inpainting, super-resolution, and denoising. These tasks test the model’s ability to
 1384 perform conditional generation, which depends on the quality of its learned dynamics. For a corrupted
 1385 input encoded to $z_{1,corr}$, we reconstruct by adding noise at $t = 0$ and evolving it through the learned
 1386 process:

$$z_{0,corr} = e^{-L} z_{1,corr} \quad ; \quad x_{\text{recon}} = g_\psi^{-1}(e^L(z_{0,corr} + \text{noise}))$$

1387 As shown in Figure 18, the consistency-trained model significantly outperforms the ablation model
 1388 across all tasks. This superior performance is a direct consequence of the structured, Fourier-like basis
 1389 described above. Because its learned dynamics can induce local, patch-based semantic modifications,
 1390 the model is uniquely equipped to solve tasks that require local reasoning, like inpainting a missing
 1391 patch. The purely distilled model fails and simply reproduces the same image, showing that it only
 1392 learned the noise-to-data map, instead of the underlying image data distribution.

1393
 1394 **G EXTENDED SURVEY ON INTERPRETABILITY OF GENERATIVE MODELS**

1395 There is a rich body of work on understanding how generative models transform noise into data. Early
 1396 research on VAEs and GANs focused on analyzing their latent spaces. Variational Autoencoders were

1404 used to learn *disentangled* representations of data Bengio et al. (2013), i.e., latent codes that separate
1405 the underlying generative factors of variation Higgins et al. (2016); Burgess et al. (2018); Kim & Mnih
1406 (2018); Khemakhem et al. (2020). The success of Generative Adversarial Networks Goodfellow et al.
1407 (2014) prompted similar studies Chen et al. (2016). Because the latent space of GANs is not explicitly
1408 structured, research focused on identifying directions that correspond to interpretable generative
1409 factors, enabling controlled image editing Jahanian et al. (2020); Härkönen et al. (2020); Voynov
1410 & Babenko (2020); Shen & Zhou (2021). The rise of diffusion and flow models as state-of-the-art
1411 generative methods naturally raised the question of whether such interpretability techniques could be
1412 extended to these models. However, their iterative generation process and the prevalence of complex,
1413 learnable control mechanisms Zhang et al. (2023) have not yielded equally simple or powerful
1414 methods for interpretation and editing. Existing approaches tend to be more complicated and lack
1415 the conceptual clarity and usability of those developed for VAEs and GANs Kwon et al. (2022);
1416 Yang et al. (2023); Meng et al. (2022); Kulikov et al. (2024). In contrast, our method preserves
1417 the dynamical-systems view of these models while enabling simple and interpretable latent-space
1418 manipulations.

1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

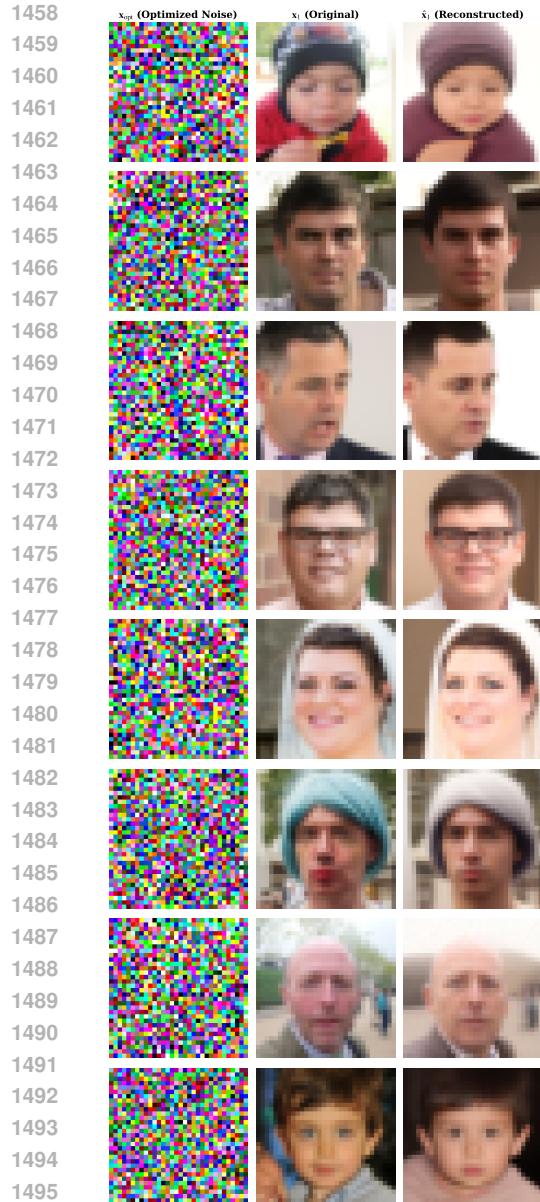


Figure 14.a With consistency loss

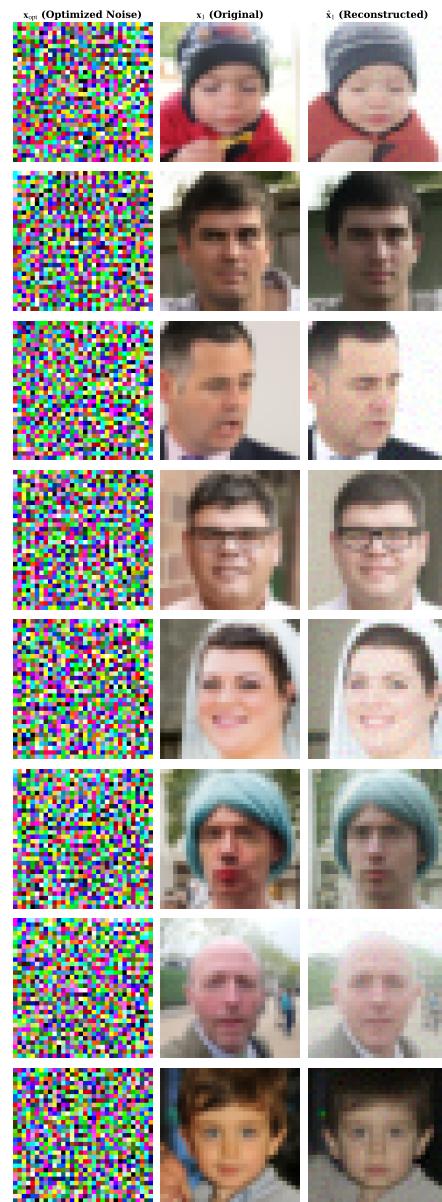


Figure 14.b Without consistency loss

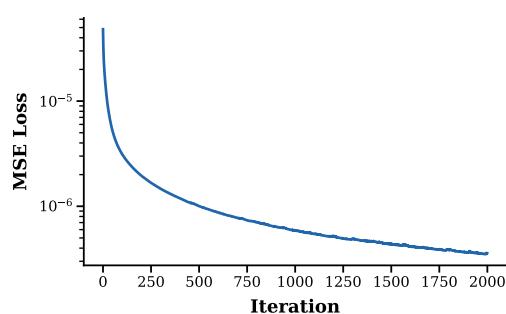


Figure 14.c Optimization loss (with consistency)

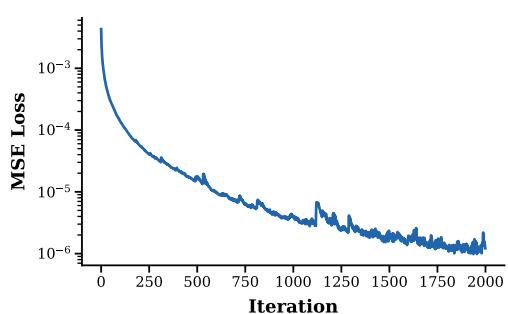


Figure 14.d Optimization loss (without consistency)

Figure 14: **CFM inversion via backward Koopman evolution.** Each row in (a, b) shows: optimized noise x_{opt} , original image x_1 , and CFM reconstruction \hat{x}_1 . **(a)** With consistency loss, reconstructions faithfully preserve identity. **(b)** Without consistency, reconstructions appear plausible but the inversion is not principled. **(c, d)** Optimization loss curves reveal that consistency loss yields smooth convergence, while without it the landscape is ill-conditioned with higher final loss.

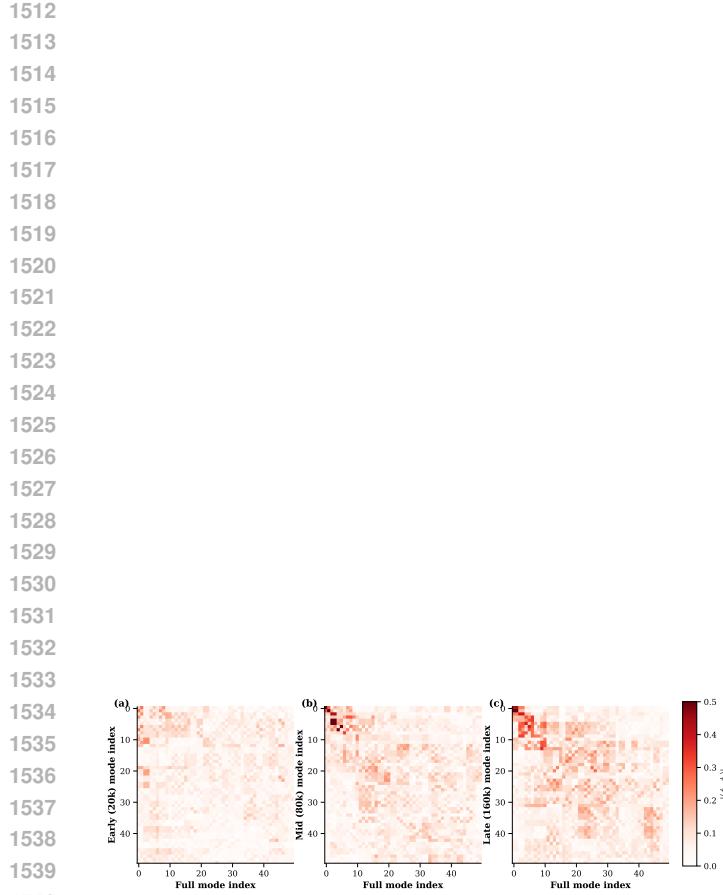


Figure 15.a Eigenmode similarity matrices comparing early and mid-training checkpoints against the fully trained model.

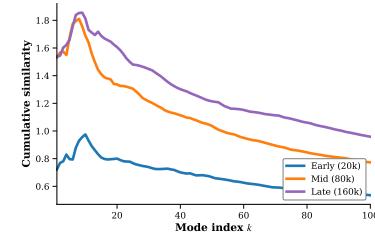


Figure 15.b Cumulative average diagonal similarity showing progressive mode acquisition during training.

Figure 15: Koopman mode acquisition during training. (Left) Eigenmode similarity matrices sorted by $\text{Re}(\lambda)$; diagonal structure at mid-training indicates decaying modes are learned first. (Right) Cumulative similarity confirms mid-training acquires low real part modes versus minimal correspondence at early training.

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Figure 16: **Consistency loss enables stable semantic editing.** Edits via optimized noise perturbations $\mathbf{x}_0 + \alpha \Delta \mathbf{x}_0$ integrated through CFM ($\alpha \in [0, 3]$, increasing left-to-right). With consistency loss (left), edits remain coherent and identity-preserving. Without (right), large α causes artifacts and structural collapse.

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

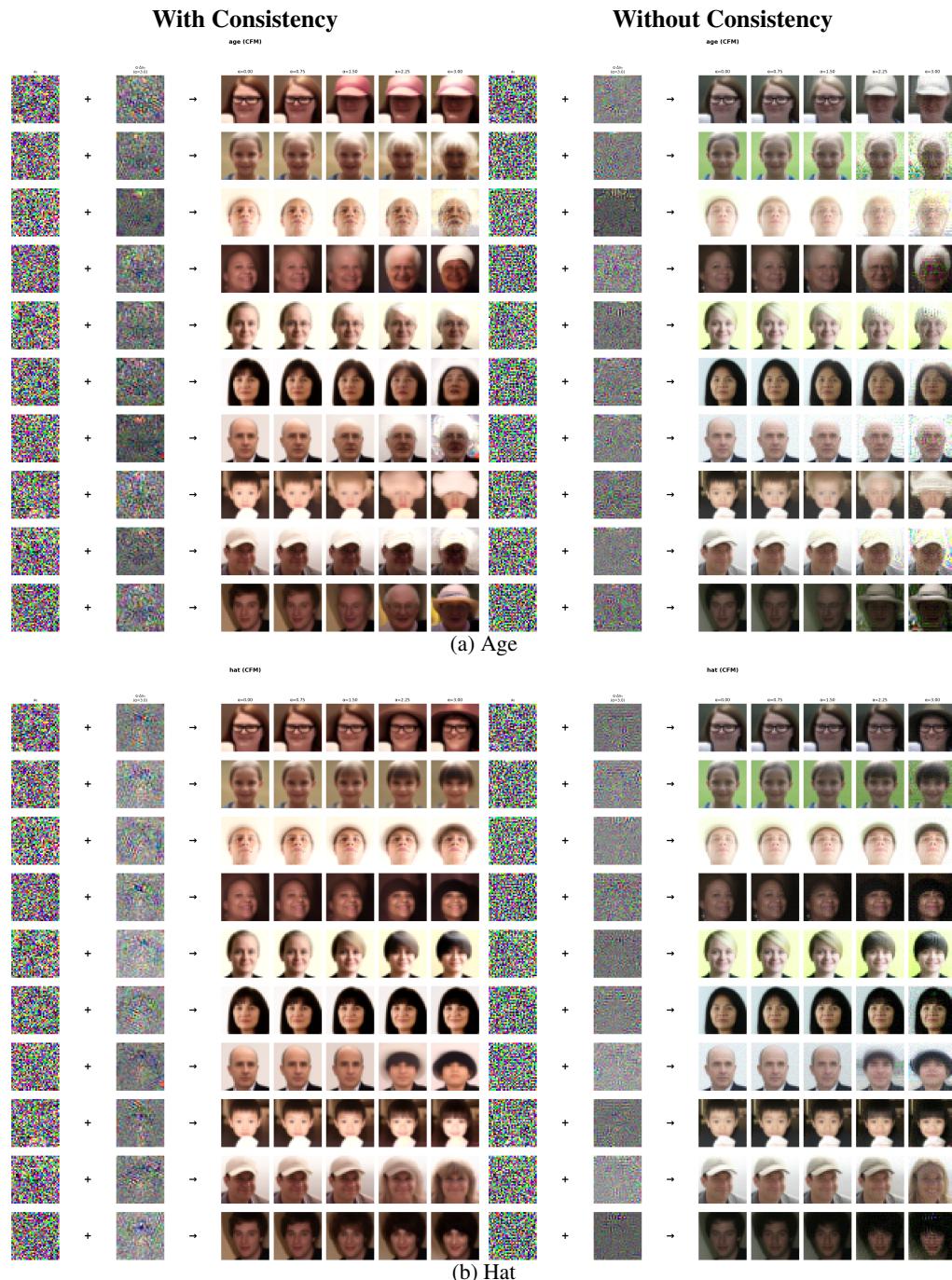
1642

1643

1644

1645

1646



1668 Figure 17: **Additional semantic directions.** Same setup as Figure 16. Consistency loss enables
 1669 stable traversal across diverse attributes.

1670

1671

1672

1673

1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693

1703

Figure 18.a Inpainting

1704

1705 Figure 18: Performance on structured generative tasks. For each task, we show the input, the
 1706 corrupted image, the result from our consistency-trained model, and the result from the ablation
 1707 model. Each row corresponds to the application of different gaussian noise. Our model consistently
 1708 produces coherent, high-fidelity results, while the ablation model fails.

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727