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ABSTRACT

Continuous Normalizing Flows (CNFs) enable elegant generative modeling but
remain bottlenecked by slow sampling: producing a single sample requires solving
a nonlinear ODE with hundreds of function evaluations. Recent approaches such
as Rectified Flow and OT-CFM accelerate sampling by straightening trajectories,
yet the learned dynamics remain nonlinear black boxes, limiting both efficiency
and interpretability. We propose a fundamentally different perspective: globally
linearizing flow dynamics via Koopman theory. By lifting Conditional Flow Match-
ing (CFM) into a higher-dimensional Koopman space, we represent its evolution
with a single linear operator. This yields two key benefits. First, sampling becomes
one-step and parallelizable, computed in closed form via the matrix exponential.
Second, the Koopman operator provides a spectral blueprint of generation, enabling
novel interpretability through its eigenvalues and modes. We derive a practical,
simulation-free training objective that enforces infinitesimal consistency with the
teacher’s dynamics and show that this alignment preserves fidelity along the full
generative path, distinguishing our method from boundary-only distillation. Empir-
ically, our approach achieves competitive sample quality with dramatic speedups,
while uniquely enabling spectral analysis and editing-control of generative flows.

1 INTRODUCTION

While classic generative models like VAEs Kingma & Welling (2014) and GANs Goodfellow et al.
(2014) offer fast, interpretable sampling, they have been surpassed in sample fidelity by dynamical
system-based approaches like Diffusion Models Ho et al. (2020); Song et al. (2020) and Continuous
Normalizing Flows (CNFs) Chen et al. (2018). This leap in quality, however, comes at the cost of
slow, iterative sampling and limited interpretability.

For both model families, sampling is an iterative and slow process. Diffusion models learn to itera-
tively denoise data and therefore require multiple evaluations to generate samples, while sampling
CNFs requires solving an ODE. In the case of CNFs, recent work has focused on accelerating sam-
pling, with approaches such as Rectified Flow (Liu et al., 2023a) and Optimal Transport Conditional
Flow Matching (Tong et al., 2024; Pooladian et al., 2023) that learn straighter generative paths. These
methods successfully reduce the computational cost of generation while maintaining similar fidelity;
however, they do not address the sampling process’s lack of interpretability. This flaw limits our
ability to understand how the model generates data, trust its outputs, and meaningfully control the
generation process.

In this work, we address the challenges of slow sampling and limited interpretability in generative
models grounded in dynamical systems. We build on Koopman operator theory, a classical framework
for linearizing complex dynamical systems (Koopman, 1931; Mezić, 2005; Brunton et al., 2022).
Originally developed in the 1930s, this theory has seen a resurgence in recent years thanks to machine
learning methods that learn finite-dimensional approximations of the operator from data (Brunton
et al., 2022; Bevanda et al., 2021). Neural network–based approaches such as Koopman autoen-
coders (Lusch et al., 2018; Otto & Rowley, 2019; Azencot et al., 2020) have successfully learned
linear embeddings for complex systems in fields like fluid dynamics (Rowley et al., 2009) and
molecular dynamics (Klus et al., 2018). We apply this approach to the dynamics of a pre-trained CNF,
learning a latent space in which the dynamics evolve linearly under a corresponding learned linear
operator (Lusch et al., 2018; Azencot et al., 2020). This transformation provides two key advantages:
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Figure 1: Overview of our approach: we propose to apply Koopman theory to the dynamics of
generative modeling from continuous normalizing flow models. We learn a Koopman latent space
and its linear dynamics from a given non-linear CNF model. This approach presents two direct
applications: one-step sampling and flow model interpretability.

1. Generative process decomposition: The learned Koopman operator acts as an interpretable
blueprint of the generative process. We show that either the learned canonical frame of the
Koopman latent space, or the eigendecomposition of the Koopman operator reveal semantic
components of the dynamics. This allows for an unprecedented analysis of how CNF models
constructs data from noise.

2. One-Step Analytical Sampling: A direct consequence of this linearization is that the
solution to the generative ODE becomes analytical, given by a matrix exponential. This
allows us to map noise to a data sample in a single, parallelizable step, eliminating the
iterative sampling cost entirely.

Our core contribution is a practical, simulation-free training objective that learns this Koopman repre-
sentation. We theoretically prove that naı̈ve supervision strategies yield suboptimal objectives and
impractical training processes. Crucially, we derive an efficient supervision strategy that constrains
the learned linear dynamics to stay consistent with the teacher model’s vector field along the entire
generative path. We show that this can be enforced while remaining simulation-free, inheriting the
properties of the underlying Continuous Flow Matching model. This distinguishes our approach
from standard distillation methods, that only match the start and end points of the trajectory, while
incurring only a moderate additional computational cost. Specifically, our contributions are:

• We introduce a novel framework for learning a global Koopman linearization of the non-
autonomous dynamics in Conditional Flow Matching models.

• We derive a practical, simulation-free training objective that enforces consistency along the
full generative trajectory, yielding a full linearization rather than mere boundary-focused
distillation.

• We demonstrate empirically that our method achieves competitive one-step sampling per-
formance while uniquely enabling spectral analysis, disentangled generative control, and
improved robustness in downstream tasks.

2 RELATED WORK

Our work connects four main areas: flow-based generative models, methods for accelerated sampling,
Koopman operator theory for dynamical systems, and interpretability in generative modeling. We
defer a formal introduction of Koopman operator theory to Section 3.2. For an overview of the field,
we urge the interested reader to refer to the excellent introduction by Brunton et al. (2022).
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2.1 FLOW-BASED GENERATIVE MODELS

Flow-based models learn an invertible mapping between a data distribution and a simple base
distribution, offering tractable likelihoods (Dinh et al., 2014; 2017; Kingma & Dhariwal, 2018).
Continuous Normalizing Flows (CNFs) parameterize this map as the solution to an ODE (Chen et al.,
2018). Although powerful, training early CNFs was often unstable and computationally intensive.
Conditional Flow Matching (CFM) represents a major step forward, providing a stable and efficient
simulation-free training objective by regressing a neural network to a conditional vector field (Lipman
et al., 2023; Tong et al., 2023; Liu et al., 2023b). However, while these models have achieved high
accuracy for generative modeling, their sampling process remains inherently slow, opening the way
for distilled models for faster sampling.

2.2 ACCELERATED AND ONE-STEP SAMPLING

The slow and iterative sampling of CNFs has motivated extensive research into acceleration. One
popular direction, which includes Rectified Flow (Liu et al., 2023a) and OT-CFM (Pooladian et al.,
2023), regularizes the learned ODE to have straighter trajectories, thus requiring fewer discretization
steps. Another direction uses knowledge distillation to train a separate student model capable of
single-step generation. This includes Consistency Models (Song et al., 2023) and other distillation
techniques (Salimans & Ho, 2022; Luo et al., 2023; Liu et al., 2025). Although these methods achieve
remarkable speed, they typically produce a compressed, black-box sampler that does not offer the
interpretability or analytical control that our Koopman framework provides.

We also note that concurrently with our work, Berman et al. (2025) propose a Koopman-based
generative model that learns a discrete-time Koopman operator, mapping noisy samples at t = 0
directly to target data at t = 1. While their approach is primarily positioned as an enhancement to
diffusion models (though not exclusive to them), our work focuses on conditional flow matching,
framing the problem as supervised learning of vector fields over time. In contrast to their discrete
formulation, we explicitly model the full continuous-time dynamics by learning the Koopman generator,
granting access to the entire latent flow from t = 0 to t = 1.

2.3 INTERPRETING AND EXPLAINING GENERATIVE MODELS

While methods exist for interpreting the latent spaces of classic models, such as VAEs and GANs,
extending these powerful editing techniques to modern, iterative models like diffusion and flows has
proven challenging due to their complex dynamics. Existing approaches for these models are often
more complicated than the earlier methods Kwon et al. (2022); Yang et al. (2023); Meng et al. (2022);
Kulikov et al. (2024), in addition to lacking the conceptual clarity of the latter. In contrast, our work
offers a direct path to interpretability by learning a global linearization of the generative dynamics,
which naturally yields a simple and editable latent space. A more detailed review of interpretability
methods is provided in Appendix G.

3 MATHEMATICAL BACKGROUND

3.1 CONDITIONAL FLOW MATCHING

A Continuous Normalizing Flow (CNF) maps a prior distribution p0 to a data distribution p1 by
solving the ODE

dxt
dt

= vt(xt), s.t. x0 ∼ p0, x1 ∼ p1 (1)

, where vt is a time-dependent vector field Chen et al. (2018). A naive regression loss to learn vt
is intractable, as both the true field vt and the marginal path distribution pt are unknown Lipman
et al. (2023). Conditional Flow Matching (CFM) provides a tractable, simulation-free objective by
regressing a neural network vθ onto a conditional velocity field ut(xt|x1).
Sampling from a trained CFM model requires numerically integrating its ODE via x1 = x0 +∫ 1

0
vθ(s, xs)ds, a slow process with potentially many function evaluations Chen et al. (2018). How-

ever, if the dynamics were linear, i.e., of the form dxt

dt = Axt, sampling would become a single,
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analytical step: xt = eAtx0 that can be solved via matrix exponentiation. This vast efficiency gap
motivates our core objective: to find a global linearization of the learned CFM dynamics.

3.2 KOOPMAN THEORY FOR AUTONOMOUS SYSTEMS

Koopman theory provides a powerful framework for globally linearizing nonlinear dynamical sys-
tems (Koopman, 1931; Mezić, 2005; Brunton et al., 2022). The central idea is to shift perspective
from the finite-dimensional state space, where dynamics are nonlinear, to the infinite-dimensional
space of functions - referred to as “observables” - where the dynamics become linear.

Formally, consider an autonomous dynamical system dxt

dt = v(xt). This system induces a flow map
Ft that advances an initial state x to its value at time t, namely xt = Ft(x), along the trajectories
defined by v. Let g : Rd → R be an observable function on the state space. Given an initial state
x, we define the Koopman operator Kt on the space of observables, denoted G(Rd), which evolves
observables along the trajectories generated by the vector field v:

Ktg(x) := (g ◦ Ft)(x) = g(Ft(x)) = g(xt). (2)

Koopman theory builds on the fact that this operator is trivially linear (regardless of the non-linearity
of Ft) due to the linearity of the composition of functions: Kt(g1 + g2)(x) = (g1 + g2) ◦ Ft(x) =
g1 ◦ Ft(x) + g2 ◦ Ft(x) = Ktg1(x) +Ktg2(x), for all observables g1, g2.

Taking the Lie derivative, we can then define the Koopman generator, L, such that Lg :=
limt→0

Ktg−g
t , and one can show that Brunton et al. (2022)

Lg =
dg

dt
= ∇xg(x) · v(x), (3)

which is also trivially linear in g, leading to a linear equation on the space of observables. The operator
and generator are related by the matrix exponential, Kt = exp(tL). Finding L is the objective of
Koopman theory.

In summary, the potentially complex and non-linear ODE Equation (1) on the finite-dimensional
state space Rd can be expressed as a linear equation in another space, G(Rd), which consists of
scalar-valued functions defined on the state space. The practical challenge in Koopman theory is to
find invertible mappings f : Rd → G(Rd) that allow solving the linear equation in the observable
space and then recovering the solution in the original state space. However, computing such a
mapping is often intractable in practice due to the infinite dimensionality of G(Rd).
A particular case arises when there exists an m-dimensional linear subspace of G(Rd), F =
span{gi}mi=1, invariant under the linear operator L. The action of the generator on F can then
be represented by a single finite-dimensional matrix L ∈ Rm×m. The dynamics on this space of
observables can then be written as:

dgt
dt

(x) = Lgt(x), (4)

where gt(x) = [g1(xt), . . . , gm(xt)]
T ∈ Rm are the Koopman coordinates, i.e., the values of the

observables {gi}mi=1 evaluated at the state xt, where xt is the evolution of the initial state x to time t
along the trajectories generated by the dynamics.

Fast analytical integration with Koopman operator Thus, the general goal when applying
Koopman theory to dynamical systems is to (1) identify a sufficiently expressive set of observables
{gi}mi=1 and (2) determine the Koopman generator matrix L on this space of observables. With this
in hand, we can build an invertible Koopman representation g : Rd → Rm that maps a state x to
its Koopman coordinates g(x). This enables us, given an initial state x0 ∈ Rd, to solve the ODE
associated with a nonlinear dynamical system in a space where it evolves linearly, using the matrix
exponential g1 = eLg(x0) ∈ Rm. We can then recover the solution of the ODE in the original state
space by applying the inverse map x1 = g−1

(
eLg(x0)

)
∈ Rd.

Mode decomposition of Koopman operator Another appeal of the Koopman theory is that it
exposes an interpretable structure of the ODE, as we can decompose the different modes of the
linear Koopman operator L. Intuitively, Koopman theory serves as a nonlinear analogue of Fourier
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analysis: just as Fourier modes decompose signals into orthogonal oscillatory components, Koopman
eigenfunctions decompose dynamics into independent modes with specific growth rates. We employ
the real Schur decomposition:

L = QTQ⊤, (5)

which represents each conjugate pair as a real 2× 2 block and each real eigenvalue as a 1× 1 block.
A key property of the Koopman representation is that in Schur coordinates yt = Q⊤zt, the matrix
exponential decomposes into independent modes. For a real eigenvalue λ, the corresponding 1× 1
block yields an exponential mode y(t) = eλty(0), while 2× 2 blocks of the form(

σ ω
−ω σ

)
(6)

yield planar spirals y(t) = eσtR(ωt)y(0) with radial rate σ and rotation frequency ω. Importantly, in
both cases, the norm of each component grows according to a predictable exponential rate: eλt or eσt.
This provides a canonical ordering to all the modes (akin to ordering Fourier modes by frequency).

4 METHODOLOGY AND THEORETICAL RESULTS

Our objective is to learn a Koopman representation for a pre-trained CFM model, specified by its
vector field vt. This involves learning an encoder gϕ for the Koopman representation that linearizes
the dynamics, a generator matrix L, and a decoder g−1

ψ that maps back to the state space. Here ϕ and
ψ are the learnable parameters of the corresponding neural networks. Several additional challenges
arise compared to previous neural Koopman-based approaches Lusch et al. (2018):

1. CFM dynamics are non-autonomous (explicitly time-dependent), whereas classic Koopman
theory applies to autonomous systems.

2. The training objective for the Koopman representation must be tractable, ideally inheriting
the simulation-free nature of CFM.

3. The learned observables g must be expressive enough to capture the dynamics and allow for
accurately generated samples.

4.1 ADAPTING KOOPMAN THEORY TO NON-AUTONOMOUS DYNAMICS

Time dependence trick. As mentioned above, Koopman theory applies to autonomous dynamics,
where the velocity v(xt) does not depend on the time. We can address this time-dependence of vt(xt)
by using a standard trick in system dynamics literature (Strogatz (2000), Chap 1.): we augment the
state space to include time. The state becomes yt = (t, xt), and the dynamics are defined on this
augmented space with respect to a new external time parameter τ :

dy

dτ
=
d(t, xt)

dτ
= [1, vt(xt)] . (7)

Our observables are now functions of both space and time, g(t, x). A crucial detail, however, is how
we parameterize the linear dynamics on this augmented state to ensure the time variable evolves
correctly (i.e., ṫ = 1).

Affine lift for time evolution. To enforce the constraint ṫ ≡ 1, we use an affine lift. The state is
augmented with a constant bias coordinate to become zt = [1, t, g(t, x)]T . For the dynamics
ż = Lz to satisfy the physical constraints 1̇ = 0 and ṫ = 1 for all states, the generator L is uniquely
constrained to adopt a block structure. The precise parameterization of L is available in the appendix.

4.2 LEARNING KOOPMAN DYNAMICS

Given a pre-trained CFM teacher network vt, our main goal is to learn observable functions {gi}mi=1
that span a finite-dimensional subspace invariant under the Koopman generator L associated with
the dynamics vt, and to learn the corresponding generator on this space. We learn the observables
with an encoder gϕ that maps an initial state x ∈ Rd to its Koopman coordinates at time t, gt(t, x) =
[g1(t, xt), . . . , gm(t, xt)]

T ∈ Rm. We also learn the Koopman generator on this space as a dense
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matrix L ∈ Rm×m. To recover the solution of the ODE in the original state space and ensure the
learned linear dynamics correspond to the underlying nonlinear dynamics, we also learn a decoder
network g−1

ψ that maps the Koopman coordinates gt(x) back to the state xt at time t.

We generate noise and target-data pairs (x0, x1) using the pretrained CFM model, and aim to learn
the following mapping:

xt ≃ g−1(etLg(0, x0)).

Training loss Our training objective is as follows:
Ltrain = λphaseLphase + λtargetLtarget + λreconLrecon + λconsLcons.

The first two terms ensure that the integrated linear dynamics map the start of a trajectory to its end
in the Koopman space (phase loss):

Lphase = E(x0, x1)

∥∥eLgϕ(0, x0)− gϕ(1, x1)
∥∥2 , (8)

and in the state space (after decoding - target loss):

Ltarget = E(x0, x1)

∥∥∥g−1
ψ

(
eLgϕ(0, x0)

)
− x1

∥∥∥2 , (9)

The third term encourages that we can retrieve the final state with the decoder:

Lrecon = Ex1

[
dImage

(
g−1
ψ (gϕ(1, x1)) , x1

)]
(10)

where dImage is a distance measure on the image space, such as MSE or LPIPS Zhang et al. (2018).
The reconstruction loss is particularly important due to an inherent non-identifiability in the Koopman
representation, as formalized in the proposition below. This term allows us to find, among the space
of Koopman linearizing coordinate systems, the decodable ones.

We choose to only decode at t = 1 for those reasons: first, learning to reconstruct random noise may
affect the capacity of the decoder to reconstruct images faithfully. Second, by not reconstructing
intermediary states from observables, we give more flexibility to the encoder and generator to learn
the proper Koopman representation space that manages to linearize the dynamics.
Proposition 1 (Non-identifiability up to linear transformation). The Koopman observable coordinates
g are identifiable only up to an arbitrary invertible linear transformationM . If the pair (g, L) satisfies
the consistency and phase objectives, so does the transformed pair (M−1g, M−1LM).

Corollary 1.1. A reconstruction loss of the form ∥g−1(g(t, x)) − x∥2, with a fixed decoder g−1,
breaks this invariance. It “fixes the gauge” by selecting the specific coordinate system that the chosen
decoder can successfully map back to the data space.

The proof is provided in Appendix A. This result motivates the necessity of Lrecon to obtain a unique
and useful representation.

Finally, the consistency loss forces the dynamics in the learned latent space to be governed by the
linear generator L, by adapting Equation (3) to our problem:

Lcons = Et, xt∼pt(xt) ∥Lgϕ(t, xt)−∇xgϕ(xt)vt(xt)∥2 (11)

4.3 EFFICIENT DYNAMICS LEARNING

One might notice that, similarly to the CNF loss, the consistency loss Lcons is intractable, as it would
require sampling from the path distribution xt ∼ pt(xt). A first solution would be to generate
full trajectories (xt)t, but this would pose both discretization and scale problems for storing the
pre-computed trajectories. Another solution is to hope to substitute the marginal velocity vt(xt)
with the conditional velocity ut(xt|x1) and sample from the tractable pt(xt|x1), mirroring the CFM
training strategy. However, as the following proposition shows, these two objectives are not equivalent
when learning the encoder g.
Proposition 2 (Marginal vs. Conditional Objectives). Let Lmarg be the desired consistency loss
evaluated over the marginal distribution pt(xt), and let Lcond be the tractable alternative evaluated
using conditional samples and velocities. The two objectives are related by:

Lcond = Lmarg +∆(g) (12)

where ∆(g) = Et, x1, xt ∥∇xg(t, xt)(ut(xt|x1)− vt(xt))∥2 ≥ 0.
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The proof is provided in Appendix B. Because of the positive, g-dependent term ∆(g), minimizing
Lcond will not necessarily minimize Lmarg.

Fortunately, as we have a pre-trained CFM model, the marginal velocity field vt(xt) is known. This
allows us to formulate a practical estimator for the true marginal loss, as stated in the following
proposition.

Proposition 3 (Practical Estimator for the Consistency Loss). Given that the marginal path distribu-
tion pt(xt) is defined as pt(xt) =

∫
pt(xt|x1)q(x1)dx1, the marginal consistency loss Lcons can be

estimated tractably using samples from the data distribution q(x1) and the conditional path pt(·|x1)
as follows:

Lcons = Et, x1∼q1, xt∼pt(·|x1) ∥Lgϕ(t, xt)−∇xgϕ(xt)vt(xt)∥2 (13)

The proof is provided in Appendix C. This result is key: it allows us to optimize the correct marginal
objective using the same efficient, simulation-free sampling strategy as CFM training, bypassing
the need to compute and store full ODE trajectories.

Moreover, this loss is a key distinction of our method. Most single-step distillation-based generative
models Song et al. (2023) focus on learning a direct mapping D : x0 7→ x1 that minimizes a
boundary-condition loss, like ∥D(x0)− x1∥2. However, by focusing on endpoints, the distillation
completely ignores the dynamics of the generative ODE. An infinite number of vector fields can
satisfy the boundary conditions. In contrast, our approach seeks to perform a true linearization of
the full dynamics. The inclusion of the infinitesimal consistency loss, Lcons, forces our Koopman
representation to remain faithful to the teacher’s dynamics at every point along the trajectory.

4.4 GLOBAL LINEARIZATION AS AN INTERPRETABILITY AND CONTROL TOOL

As mentioned above, in addition to distilling a teacher model for faster sampling, we also aim to
expose an interpretable structure within generative dynamics by leveraging Koopman operator theory.
We highlight the value of our approach, as a tool to shed light on the underlying dynamics, as well as
to direct the behavior of the teacher model.

Image and mode inversion A first step in interpreting Koopman modes is to un-lift them to the CFM
dynamics. First, we highlight that our analytical sampling allows us to invert any image x into the
noise space, a task that is generally non-trivial for nonlinear generators and often requires specialized
methods (e.g., Mokady et al. (2023) for diffusion models). We do so by computing the corresponding
latent noise g(0, x0) = exp(−L)g(1, x) and optimizing noise in pixel space which reproduces the
latent. We detail and demonstrate some inversion examples in the supplementary material F.1.

We can then un-lift any mode vk into the pixel space. We do this by solving an inverse problem: Let
x0 ∼ p0 be a sample noise, vi a Koopman mode. We search xipert, such that:

xipert = argmin
x

||gϕ(0, x0 + x)− gϕ(0, x0) + αvi||2. (14)

Class-conditioned spectral signatures Let a dataset D = {xi} and Dc = {xi(c)}. We encode each
image and project it onto Koopman modes, giving coefficients αi(k) = |⟨ϕk, zi⟩| and αi(k, c) =
|⟨ϕk, zi(c)⟩|. We then compute the dataset and class-averaged responses

ᾱ(k) = 1
|D|

∑
i∈D

αi(k), ᾱ(k, c) =
1

|Dc|

∑
i∈Dc

αi(k, c), (15)

and define the per-class transfer function

H(|λ|, c) = ᾱ(|λ|, c)/ᾱ(|λ|). (16)

This measures how each class amplifies or suppresses modes of a spectral magnitude. By looking at
which modes correspond to the highest class spectral deviation, we can understand which modes are
common to images and which ones handle class-specific features.

Semantic mode discovery Given an image x, we perturb its lifted representation z as z′k = z + αvk.
We measure the CLIP Radford et al. (2021) - a common embedding space for text and images -
similarity between the decoded image and some selected attribute β prompts pβ . We define the

7
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coherence Cβk between a mode vk and an attribute β as the sign consistency of similarity changes
across test images:

Cβk =
1

N

N∑
i=1

sign(⟨CLIP(z′k),CLIP(pβ)⟩ − ⟨CLIP(z),CLIP(pβ)⟩ (17)

We can then select modes vi with the highest coherence for different attributes, allowing semantic
editing of the images, both in the Koopman space and in the image space with the un-lifted modes
xipert.

Insights on Teacher Training We use our Koopman framework to probe how the CFM teacher
acquires its dynamics during training. We compare the modes vli, v

full
j at different training stages l

with the modes of the the fully trained teacher by computing their similarity Sl,full
ij , and further their

cumulative similarity cs(k) to the full matrix vfull:

Sl,full
ij =

∣∣∣⟨vl,†i vfull
j ⟩

∣∣∣ / (∥vli∥∥vfull
j ∥

)
, cs(k) =

1

k

k∑
i=1

Sl,full
ii (18)

The full similarity matrix and the cumulative similarity at different stages indicate how much the
teacher has learned compared to the final teacher, obtained insights are detailed in E.2.

5 EXPERIMENTS

To validate our framework, we investigate three key questions: (1) Can our one-step sampler achieve
competitive generative quality? (2) Is the infinitesimal consistency loss (Lcons) crucial for learning
an interpretable linearization, as opposed to a simple boundary-matching distillation? (3) Does this
learned structure lead to a more robust and functionally useful model? Our experiments show that
while a simple distillation model can achieve a competitive FID Heusel et al. (2017) score, only the
model trained with Lcons learns a disentangled, editable, and robust generative process.

5.1 EXPERIMENTAL SETUP

Datasets and Teacher Model. We evaluate on MNIST LeCun et al. (2010), CIFAR-10 Krizhevsky
et al. (2009), and a 32x32 downsampled version of the FFHQ face dataset Karras et al. (2019). Our
teacher is a pre-trained Optimal Transport Conditional Flow Matching (OT-CFM) model with a
U-Net architecture. For boundary-based losses (Ltarget, Lphase, Lrecon), we use 1 million pre-generated
(x0, x1) pairs from the teacher network.

Koopman-CFM Architecture. Our model consists of an encoder (gϕ) and decoder (g−1
ψ ), both using

a SongUNet architecture Karras et al. (2022), which map to and from a 1024-dimensional latent
space. The dynamics are governed by a learned affine linear generator (L̃).

Training and Baselines. We train for 800,000 iterations using the Adam optimizer Kingma & Ba
(2017). Our primary baseline is an ablation of our own model trained without the consistency loss
(Lcons = 0), which reduces it to a standard distillation model.

5.2 GENERATION QUALITY

We evaluate sample quality using the Fréchet Inception Distance (FID), shown in Table 1. Our full
Koopman-CFM model with consistency achieves competitive performance. Interestingly, the model
trained without consistency achieves a slightly superior FID on FFHQ (7.5 vs. 8.5 for the teacher).
This suggests that, when only constraining the endpoints, the distillation model is free to find a
combination of paths and latent space that is easier to learn. As mentioned above, however, such
a model is not guaranteed to replicate the trajectories of the teacher model. We provide uncurated
generated examples with the consistency trained model in the appendix Section D.

5.3 ABLATION

Koopman space dimension. As shown in Figure 2, the Koopman dimension of 1026 (1024+2) is
optimal for the generation quality. Notably, increasing the dimension to 1026 does not affect the
quality with potential instabilities of the Koopman sampling components, such as the exponentiation.
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Table 1: FID (↓) and sampling time (s/img, ↓) on three benchmark datasets. Our Koopman formulation
achieves competitive or superior generation quality while enabling fast inference. Baselines are
trained under identical preprocessing for fair comparisons. ♯ Indicates reproduction. Rectified Flow
uses 2RF training and 1-step distillation.

Method NFE MNIST FFHQ CIFAR-10 Sampling Time (ms/img)
Koopman (ours, w/ consistency) 1 7.1 10.1 17.4 37.2
Koopman (ours, w/o consistency) 1 6.4 7.5 14.1 37.2
OT-CFM 1 181 149 226 7.1
OT-CFM 3 28.1 51 59.3 25.2
OT-CFM 5 12.5 31.4 31.5 41.1
OT-CFM 25 4.4 11.6 12.3 209
OT-CFM (Tong et al. (2024)) 100 1.9 8.5 7 849
Rectified Flow (Liu et al. (2023a)) 1 ♯ 1.76 ♯ 4.23 4.85 ♯ 24.9
MeanFlow (Geng et al. (2025)) 1 ♯ 4.03 ♯ 3.34 ♯ 3.59 ♯ 22.5

Impact of consistency on trajectories. We measure how Lcons affects the capacity of the model
to reproduce the teacher’s dynamics. To test this, we encode a teacher’s trajectory {xt}t∈[0,1] in the
latent space and compare this ground truth path zt = gϕ(t, xt) against the analytical linear trajectory
from our model, z̃t = exp(L̃t)z̃0. We show the results in Table 2, with more details in the Appendix
C.2. The trajectories are significantly better when using the consistency loss.

Dimension scalability Results in Table 1 show that we can learn Koopman representations with
increasing variability, from the relatively simple MNIST to more complex datasets like FFHQ and
CIFAR-10. To assess the dimension scalability, we trained a Koopman generator on FFHQ images of
dimension 64x64. We obtain a FID of 13.4, showing similar results when the dimension increases.

258 514 1026
Koopman Dimension
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Figure 2: FID score as a function of
Koopman dimension on the FFHQ
dataset. The higher the dimension,
the lower the FID.

Dataset Mean MSE

FFHQ (w/ consistency) 5.0 × 10−6

FFHQ (w/o consistency) 1.30× 10−3

CIFAR-10 (w/ consistency) 1.0 × 10−5

CIFAR-10 (w/o consistency) 1.74× 10−3

Table 2: Mean, standard deviation of MSE be-
tween CFM trajectories and predicted Koopman
trajectories. The consistency-trained model con-
sistently outperforms the distilled model for tra-
jectory fidelity

Quality of the Koopman latent space. We also provide a qualitative evaluation of the Koopman
latent space. Namely, we borrow from the GAN literature and search for semantic directions in the
latent space, such as glasses or gender. To find these directions in the latent space, we classify the
dataset with attributes’ CLIP (Radford et al. (2021)) embedding similarity and compute the mean and
difference with relevant latents, see Appendix F.2. for more details. Given a semantically coherent
mode, we invert it to the image space and compare the quality of the semantic editing.

As shown in Figure 3, furthermore in Appendix F.3., both latent spaces provide semantic directions,
as expected from the faithful reconstruction of images. However, only the consistency-trained model
transfers cleanly to the teacher, whereas the model without consistency introduces artifacts.

5.4 INTERPRETABILITY ANALYSIS

Do Koopman Modes Encode Semantic Content?

We compute the coherence of modes on the FFHQ dataset with four attributes, namely, glasses, smile,
brown and young. Figure 4 compares the maximum coherence (Eq. 17) of models with and without
consistency as well as the maximum mean CLIP difference, it also shows qualitative effect of the
identified mode perturbation. The consistent model achieves near-perfect coherence for attributes
like sunglasses (0.97) and brown hair (0.94), with variation magnitudes up to 24× larger. This

9
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Figure 3: CFM-based semantic editing comparison. We port identified semantic directions from the
Koopman latent space to the CFM noise-space via inversion as explained in F.3, here for sunglasses.
Notably, we can see that recovered direction in the purely distilled model provides unreliable edits, as
it comes with noticeable noisy artifacts, as opposed to our consistent model.

W/ W/o
Attr./Coherence Max. Var. Max. Var.

Glasses .97 .046 .48 .002
Smile .52 .010 .50 .003
Brown .94 .027 .50 .003
Young .45 .007 .32 .001

Avg. .72 .022 .45 .002

With Consistency Without Consistency
Figure 4: Semantic content of Koopman modes. Left: Maximal (Max.) and Variance (Var.) coherence
of single-mode perturbations. Center/Right: Sunglasses mode perturbation with increasing effect
(left→right within each panel). With consistency, the maximal ”sunglasses” coherent eigenmode adds
sunglasses while preserving identity. Without, perturbations produce negligible semantic change.

demonstrates that consistency is essential for learning modes that align with interpretable semantics.
We provide more details in the Appendix E.4.

Figure 5: Progressive reconstruction of image as we progressively feed modes with ascending real
eigenvalue part. The modes appear to act in a coarse-to-fine manner
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Figure 6: Per-class spectral devia-
tion on CIFAR-10.

We show in Fig. 6 the different transfer functions (Eq. 16) for
each class of CIFAR-10. Notably, low-energy modes are largely
shared across classes, while higher-energy modes differentiate
them. This is further supported by observing Figure 5, where
the important elements of the face appear before differentiating
ones, such as the smile, hat, and background. This may shed
light on our observations in Appendix E.2 on teacher training.

6 CONCLUSION AND DISCUSSION

We introduced a principled Koopman operator framework to linearize Conditional Flow Matching,
achieving fast, one-step, and interpretable generative modeling on realistic image domains. Key chal-
lenges remain in scaling to high-resolution images, where the generator matrix becomes prohibitively
large and its exponential can be numerically unstable. Future work should explore structured operator
approximations and specialized matrix exponential algorithms to address these computational hurdles.
Furthermore, we observe that the quality gap between our method and traditional CFM widens on
more complex datasets, motivating a deeper theoretical investigation into the conditions under which
CFM dynamics admit a finite-dimensional Koopman representation Iacob et al. (2023). Finally, the
modality-agnostic nature of our framework opens exciting avenues for adapting this linearization
approach to other data types, such as audio and 3D shapes.
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APPENDIX

The supplementary materials below provide an expanded theoretical motivation, experimental details,
and additional results that support and extend the main paper. Each section corresponds to specific
elements of our method and results, with backward references to the main paper for clarity.

APPENDIX OVERVIEW

• Section A: Theoretical Results and Proofs
In Section A we provide additional theoretical results and proofs, including the non-
identifiability of Koopman coordinates, the non-equivalence of the conditional and marginal
velocity field estimators and a tractable estimator for the marginal consistency loss.

• Section B: Detailed Experimental Setup
In Section B we give details on the experimental setup, covering dataset preparation, archi-
tectures, hyperparameters, and computational resources.

• Section C: Ablations
In Section C we present ablations, shedding light on the impact of loss terms on FID, the
effect of Koopman dimension on FID, the role of consistency in trajectory fidelity, and the
interpretability of modes with and without consistency.

• Section D: Uncurated Samples and Sampling Speeds
In Section E we provide uncurated samples and wall-clock timings to further illustrate the
speed–fidelity–interpretability tradeoff of our Koopman sampler.

• Section E: Interpretability and Spectral Analysis
In Section E we analyze the learned Koopman representation, including mode structure with
and without consistency, progressive coarse-to-fine reconstruction via eigenvalue ordering,
class-conditioned spectral signatures, semantic mode discovery via CLIP coherence, and
insights on teacher training dynamics.

• Section F: Applications
In Section F we demonstrate practical applications of our framework, including image
and mode inversion, discovering semantic directions in the Koopman latent space, noise
engineering for CFM-based editing, and functional robustness on downstream tasks such as
inpainting, super-resolution, and denoising.

• Section G: Extended survey on interpretability of generative models
In Section G we provide a more extensive discussion on intepretrability of generative models.

Together, these sections provide a deeper understanding of our Koopman-CFM framework and
support its efficiency, stability, and interpretability as claimed in the main paper.

A THEORETICAL RESULTS AND PROOFS

In this section we expand on the theoretical foundations introduced in Section 4 of the main paper.
We provide detailed proofs of Theorem 1 and Propositions 1–3, which establish the non-identifiability
of Koopman coordinates up to linear transformations and justify the inclusion of the reconstruction
loss, as well as the derivation of a tractable marginal consistency objective. These results complement
the main text by giving formal guarantees for the claims underlying our Koopman-CFM framework.

A.1 PRELIMINARIES ON CFM

We remind here the main components of Conditional Flow Matching Tong et al. (2023), before deriv-
ing the proofs of our propositions. A Continuous Normalizing Flow (CNF) models the transformation
from a prior distribution p0 to a data distribution p1 = q1 via a probability path pt. This path is
induced by a time-dependent vector field vt through the ODE:

dxt
dt

= vt(xt), x0 ∼ p0, x1 ∼ p1 (19)
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where xt ∈ Rd is a sample at time t. A naive objective to learn vt would be a regression loss:

Lnaive = Et∼U(0,1),xt∼pt ∥vθ(t, xt)− vt(xt)∥2 (20)

This objective is intractable because both the true vector field vt and the marginal path distribution pt
are unknown. Conditional Flow Matching (CFM) circumvents this by defining a tractable conditional
probability path pt(xt|x1) and its corresponding conditional vector field ut(xt|x1). The marginal
velocity field vt can be expressed as an expectation over these conditional fields:

vt(xt) = Ex1∼q(x1|xt)[ut(xt|x1)] =
∫
pt(xt|x1)q(x1)

pt(xt)
ut(xt|x1)dx1 (21)

Remarkably, CFM shows that minimizing a simulation-free objective based on the conditional
velocity field is equivalent to minimizing the intractable marginal objective. The CFM loss is:

LCFM = Et∼U(0,1),x1∼q1,xt∼pt(·|x1) ∥vθ(t, xt)− ut(xt|x1)∥2 (22)

While this makes training efficient, sampling requires solving the integral:

x1 = x0 +

∫ 1

0

vθ(s, xs)ds (23)

A.2 PROOF OF THEOREM 1

Proof. Let the augmented state observable be E(t, x) = [t, g(t, x)]T . We show that the objectives
are invariant under the transformation E 7→ ET = T−1E and L 7→ LT = T−1LT for any invertible
block-diagonal matrix T = diag(1,M).

We use two facts. First, the chain rule implies that the Jacobian transforms as:

D(ET )[1, vt] = D(T−1E)[1, vt] = T−1DE[1, vt]. (J)

Second, the matrix exponential (and thus the flow) is conjugate under T :

exp(∆tLT ) = T−1 exp(∆tL)T. (C)

Infinitesimal Consistency. The residual is Rcons = DE[1, vt]− LE. The transformed residual is:

Rcons,T = DET [1, vt]− LTET
(J),(C)
= T−1DE[1, vt]− T−1LE = T−1Rcons.

Thus, Rcons = 0 if and only if Rcons,T = 0.

Phase Loss. The residual is Rphase = E(1, x1)− eLE(0, x0). The transformed residual is:

Rphase,T = ET (1, x1)− eLTET (0, x0)

= T−1E(1, x1)− (T−1eLT )(T−1E(0, x0))

= T−1(E(1, x1)− eLE(0, x0)) = T−1Rphase.

Again, the zero set of the loss is invariant. Since the norms of the residuals are scaled by the constant
transformation T−1, the set of global minimizers is preserved under this transformation. Therefore,
the objectives only identify g up to an invertible linear transformation M .

A.3 PROOF OF PROPOSITION 1

Proof. To simplify the notation, let us define:

A(xt) = Lg(xt)

B(xt) = ∇g(xt) vt(xt)
C(xt, x1) = ∇g(xt)ut(xt | x1)

With this notation, the losses are Lmarg = Ext∼pt [∥A(xt) − B(xt)∥2] and Lcond =
Ex1∼q,xt∼pt(·|x1)[∥A(xt)− C(xt, x1)∥2].
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We expand the squared norms inside the expectations:

Lmarg =

∫
pt(xt)

(
∥A∥2 − 2⟨A,B⟩+ ∥B∥2

)
dxt

Lcond =

∫∫
q(x1) pt(xt | x1)

(
∥A∥2 − 2⟨A,C⟩+ ∥C∥2

)
dxt dx1

We will now compare the terms of these two expansions one by one.

(i) First Term (∥A∥2): The first term of Lcond is
∫∫

q(x1) pt(xt | x1) ∥A(xt)∥2 dxt dx1. Since
A(xt) does not depend on x1, we can use the law of iterated expectation or simply rearrange the
integral:∫∫

q(x1) pt(xt | x1) ∥A(xt)∥2 dxt dx1 =

∫ (∫
q(x1) pt(xt | x1) dx1

)
∥A(xt)∥2 dxt

=

∫
pt(xt) ∥A(xt)∥2 dxt

This is identical to the first term of Lmarg.

(ii) Cross Term (−2⟨A, ·⟩): The cross term of Lcond is
∫∫

q(x1) pt(xt | x1)
(

−
2⟨A(xt), C(xt, x1)⟩

)
dxt dx1. We analyze the integral:∫∫
q(x1) pt(xt | x1) ⟨A(xt), C(xt, x1)⟩ dxt dx1

=

∫ 〈
A(xt),

∫
q(x1) pt(xt | x1)C(xt, x1) dx1

〉
dxt

=

∫ 〈
A(xt),

∫
q(x1) pt(xt | x1)∇g(xt)ut(xt | x1) dx1

〉
dxt

=

∫ 〈
A(xt),∇g(xt)

∫
q(x1) pt(xt | x1)ut(xt | x1) dx1

〉
dxt

By definition, the marginal velocity field vt(xt) is the expectation of the conditional field ut(xt | x1)
over the posterior p(x1 | xt) = q(x1)pt(xt|x1)

pt(xt)
. So, vt(xt) =

∫
ut(xt | x1) q(x1)pt(xt|x1)

pt(xt)
dx1.

Multiplying by pt(xt) gives pt(xt)vt(xt) =
∫
q(x1) pt(xt | x1)ut(xt | x1) dx1. Substituting this

back into our expression:

. . . =

∫
⟨A(xt),∇g(xt) (pt(xt)vt(xt))⟩ dxt

=

∫
⟨A(xt), pt(xt)B(xt)⟩ dxt

=

∫
pt(xt)⟨A(xt), B(xt)⟩ dxt

This shows that the cross terms of Lcond and Lmarg are also identical.

(iii) Final Quadratic Term (∥ · ∥2): The final term of Lcond is Ex1,xt [∥C(xt, x1)∥2]. We use the law
of total variance: for a random variable Z, E[∥Z∥2] = ∥E[Z]∥2 + Var(Z). We apply this by first
conditioning on xt.

Ex1,xt
[∥C∥2] = Ext∼pt

[
Ex1∼p(x1|xt)[∥C(xt, x1)∥

2]
]

= Ext

[
∥Ex1|xt

[C(xt, x1)]∥2 + Varx1|xt
(C(xt, x1))

]
Let’s compute the inner conditional expectation:

Ex1|xt
[C(xt, x1)] = Ex1|xt

[∇g(xt)ut(xt | x1)] = ∇g(xt)Ex1|xt
[ut(xt | x1)] = ∇g(xt)vt(xt) = B(xt).

Substituting this back:

Ex1,xt
[∥C∥2] = Ext

[
∥B(xt)∥2 + Varx1|xt

(C(xt, x1))
]

= Ext
[∥B(xt)∥2] + Ext

[Varx1|xt
(C(xt, x1))]
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The first part, Ext
[∥B(xt)∥2] =

∫
pt(xt)∥B(xt)∥2 dxt, is exactly the final term of Lmarg. The second

part is the discrepancy term ∆(g):

∆(g) = Ext
[Varx1|xt

(C(xt, x1))]

= Ext

[
Ex1|xt

[
∥C(xt, x1)− Ex1|xt

[C(xt, x1)]∥2
]]

= Ext

[
Ex1|xt

[
∥C(xt, x1)−B(xt)∥2

]]
= Ex1,xt

[
∥C(xt, x1)−B(xt)∥2

]
=

∫∫
q(x1) pt(xt | x1)∥∇g(xt)ut(xt | x1)−∇g(xt)vt(xt)∥2 dxt dx1

=

∫∫
q(x1) pt(xt | x1)∥∇g(xt)(ut(xt | x1)− vt(xt))∥2 dxt dx1

Conclusion: Assembling all the terms, we have:

Lcond = Ext [∥A∥2]︸ ︷︷ ︸
Term 1

− 2Ext [⟨A,B⟩]︸ ︷︷ ︸
Term 2

+
(
Ext [∥B∥2] + ∆(g)

)︸ ︷︷ ︸
Term 3

=
(
Ext [∥A∥2]− 2Ext [⟨A,B⟩] + Ext [∥B∥2]

)
+∆(g)

= Lmarg +∆(g)

Since ∆(g) is the expectation of a squared norm, it is non-negative, which proves the theorem.

A.4 PROOF OF PROPOSITION 2

Proof. The proof relies on the law of iterated expectation. Let f(xt) be any measurable function of
xt. The expectation of f(xt) over the marginal distribution pt(xt) is:

Ext∼pt [f(xt)] =

∫
Rd

f(xt)pt(xt) dxt

Now, we substitute the definition of the marginal path density, pt(xt) =
∫
Rd q(x1)pt(xt|x1) dx1:

Ext∼pt [f(xt)] =

∫
Rd

f(xt)

(∫
Rd

q(x1)pt(xt|x1) dx1
)
dxt

We can combine the terms inside a double integral:

Ext∼pt [f(xt)] =

∫∫
Rd×Rd

f(xt)q(x1)pt(xt|x1) dx1 dxt

By Fubini’s theorem, we can exchange the order of integration since the integrand is non-negative (or
integrable):

Ext∼pt [f(xt)] =

∫
Rd

q(x1)

(∫
Rd

f(xt)pt(xt|x1) dxt
)
dx1

This expression can be recognized as a nested expectation. The inner integral is the expectation of
f(xt) over the conditional distribution pt(·|x1), and the outer integral is the expectation over the data
distribution q(x1):∫

Rd

q(x1)
(
Ext∼pt(·|x1)[f(xt)]

)
dx1 = Ex1∼q

[
Ext∼pt(·|x1)[f(xt)]

]
= Ex1∼q,xt∼pt(·|x1)[f(xt)]

We have thus shown the general identity Ext∼pt [f(xt)] = Ex1∼q,xt∼pt(·|x1)[f(xt)].

To prove the theorem, we simply choose f(xt) to be the squared residual of the marginal loss:

f(xt) =
∥∥Lg(xt)−∇xg(xt) vt(xt)

∥∥2
By its definition, Lmarg = Ext∼pt [f(xt)]. Applying the identity we just derived gives:

Lmarg = Ex1∼q,xt∼pt(·|x1)

[∥∥Lg(xt)−∇xg(xt) vt(xt)
∥∥2]

This completes the proof.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 1: Koopman–CFM Training (simulation-free; fixed teacher, precomputed pairs)

Input: Fixed teacher velocity vCFM(t, x); encoder gϕ; decoder g−1
ψ ; affine generator L̃; precomputed buffer

B = {(x0, x1)}.
Definition: Lifted coordinate z̃(t, x) := [ 1, t, gϕ(t, x) ]

⊤.
for each minibatch do

Sample x1 ∼ q1, t ∼ U(0, 1), then draw xt ∼ pt(· | x1);

Lcons ←
∥∥∥L̃ z̃(t, xt) − Dgϕ(t, xt)[ 1, vCFM(t, xt) ]

∥∥∥2

;

Sample (x0, x1) from buffer B;

Lphase ←
∥∥∥ exp(L̃) z̃(0, x0) − z̃(1, x1)

∥∥∥2

;

Ltarget ← ℓimg

(
g−1
ψ

(
exp(L̃) z̃(0, x0)

)
, x1

)
;

Lrecon ← ℓimg

(
g−1
ψ

(
z̃(1, x1)

)
, x1

)
;

L ← λcLcons + λpLphase + λtLtarget + λrLrecon;
Update {ϕ, ψ, L̃} by backprop on L;

Algorithm 2: One-Step Koopman Sampling (matrix exponential + decode)
Input: Trained (gϕ, g

−1
ψ , L); prior p0 = N (0, I).

Input: Lifted coordinate z(t, x) := [ 1, t, gϕ(t, x) ]
⊤.

Precompute E ← exp(L);
Sample x0 ∼ p0;

return x̂1 ← g−1
ψ

(
E z(0, x0)

)
;

B EXPERIMENTAL DETAILS

This section complements Section 5 of the main paper by providing full details needed for repro-
ducibility. We describe dataset prepration, model architecture and parametrization, training schedules,
and computational resources.

B.1 PARAMETERIZATION OF THE AFFINE LIFT

We parameterize L̃ with the following block structure.

L̃ =

[
0 0 0
1 0 0
bg Agt Agg

]
(24)

This parameterization guarantees correct time evolution by design and yields affine dynamics for the
observables: ġ = bg +Agtt+Aggg. The learned parameters are the weights ϕ, ψ of the encoder gϕ
and decoder g−1

ψ and the matrix blocks (bg,Agt,Agg).

Data. We evaluate our approach on three datasets of increasing difficulty. MNIST contains 60,000
training and 10,000 test grayscale images of handwritten digits at resolution 28× 28. FFHQ (Flickr-
Faces-HQ) was downscaled to 32×32 resolution, from which we use all 70,000 RGB images. Finally,
CIFAR-10 provides 50,000 training and 10,000 test images at resolution 32× 32 across 10 object
classes. This progression from simple digits to natural faces and general object classes allows us to
systematically study the performance of our method as task complexity increases.

Model Architecture. For all datasets, we employ a consistent backbone architecture: a SongUNet
used as both encoder and decoder. To reduce the overall parameter count, we restrict the encoder
output and decoder input to a single channel. Moreover, to obtain explicit control over the Koopman
dimension, we optionally append a linear projection from the flattened UNet output to the target
latent dimension.
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Training Details. Before training our pipeline, we pre-trained an OT-CFM model following the
reference implementation provided in the torchcfm code examples. From this model, we generated
between 104 and 106 (x0, x1) pairs (see Table 3 for exact counts per dataset), which served as inputs
for computing the target loss. All models were trained using the Adam optimizer under identical
training protocols across datasets. Experiments were carried out on NVIDIA A40, H100, and A100
GPUs. Additional hyperparameters, including learning rates, batch sizes, and training schedules, are
reported in Table 3.

MNIST FFHQ CIFAR-10

CFM iterations 200k 800k 800k
Batch size 128 256 124
Learning rate 0.0001 0.0001 0.0001
Koopman iterations 70k 600k 800k
Target weight (w/o Lcons – w/ Lcons) 1.0 – 1.0 1.0 – 0.01 1.0 – 0.01

Operator Dimension 1026 1026 1026
UNet Output Channels 1 1 1
UNet Base Channels 64 64 64
UNet Channels Multiplier [1,2,2] [1,2,2,2] [1,2,2,2]
Linear Projection ✓ ✗ ✗

Table 3: Training hyperparameters for Koopman–CFM on MNIST, FFHQ, and CIFAR-10. Linear
projection refers to the projection head at the UNet encoder output (resp. decoder input). Since loss
terms are not of the same order of magnitude, the target loss was reweighted by the given parameter.
Koopman iterations denote the number of iterations for the overall pipeline, while CFM iterations
correspond to the underlying CFM model.

C ABLATIONS

This section expands the analysis of Section 5 by presenting ablations that clarify the role of each
loss term, the effect of Koopman dimension, the impact of consistency on trajectory fidelity, and the
interpretability of modes.

C.1 IMPACT OF LOSS TERMS

Table 4 shows the effect of adding loss components across datasets. Phase and reconstruction alone
yield poor FIDs, as they impose no constraint in image space. Adding the target loss improves fidelity
by supervising decoded samples. Adding the consistency loss (weight 0.01) slightly worsens FID
(e.g., FFHQ 7.5 → 10.1), since it regularizes the model to follow the teacher’s nonlinear trajectories
rather than shortcutting through straighter ones. This increases trajectory faithfulness at the cost of
marginally higher endpoint error. We argue this tradeoff is beneficial: while endpoint-only distillation
can optimize FID, it fails to capture the true generative flow (cf. Table 5, Fig. 8). Consistency-
trained models achieve competitive FIDs while uniquely enabling spectral decomposition and robust
downstream performance.

Table 4: Loss ablation across datasets showing the effect of incrementally adding loss components

Dataset Lrecon + Lphase Lrecon + Lphase + Ltarget Lrecon + Lphase + 0.01Ltarget + Lcons

MNIST 143.5 6.43 11.6
FFHQ 41 7.5 10.1
CIFAR-10 64.5 16.7 14.1

Since we’re optimizing a composite loss, there may be concerns of instability during training. For
transparency we provide plots of the behavior of all our loss terms. Training is stable, and can be
rationalized with well aligned objectives derived from both Koopman theory and the CFM framework.
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Figure 7: Training losses on CIFAR-10 and FFHQ datasets across different loss components.

Without consistency loss With consistency loss

Figure 8: t-SNE visualization of CFM and Koopman trajectories in the embedding space on FFHQ.
The consistency loss makes Koopman rollouts (dotted) follow the teacher dynamics (continuous)
more closely. This is seen both in the proximity of trajectories and in the alignment of their endpoints.
Circles mark starting points and squares mark end points.

C.2 TRAJECTORY FIDELITY WITH AND WITHOUT CONSISTENCY LOSS

Table 5: MSE between trajectory rollouts between CFM and Koopman dynamics in latent space:
we generate 1000 full trajectories {xt} via CFM encode in the Koopman latent space g(t, xt) and
compare them with Koopman rollouts g(xt) = eLtg(t = 0, x0).

Dataset Min Max Mean MSE Std Dev

FFHQ (w/ consistency) 3.0× 10−6 1.3× 10−5 5.0× 10−6 1.0× 10−6

FFHQ (w/o consistency) 5.24× 10−4 2.66× 10−3 1.30× 10−3 2.95× 10−4

CIFAR-10 (w/ consistency) 4.0× 10−6 3.7× 10−5 1.0× 10−5 4.0× 10−6

CIFAR-10 (w/o consistency) 3.46× 10−4 7.01× 10−3 1.74× 10−3 6.36× 10−4

We illustrate in Figure 8, the impact of consistency on trajectory fidelity. Notably, the consistency
trained models trajectories closely tracks the teacher’s nonlinear path. In contrast, the purely distilled
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Figure 9: Trajectory comparison in Schur coordinates of the learned Koopman generator. With
consistency, learned Koopman modes (dashed) accurately track CFM dynamics (solid). Without
consistency, endpoints match but intermediate trajectories diverge, indicating the learned modes do
not reflect true CFM dynamics.

model trajecotry diverges significantly, learning an unaligned shortcut, but with correct boundaries.
This confirms that while a better FID can be achieved by ignoring the teacher’s dynamics, doing so
prevents the model from learning a faithful representation of the generative process.

To visualize trajectory fidelity in an interpretable coordinate system, we project dynamics onto the
Schur basis of the learned generator L (Figure 9). Each 2 × 2 block corresponds to a complex
eigenvalue pair σ ± iω, where σ governs the exponential envelope and ω the oscillation frequency.
With consistency training, the learned Koopman modes accurately track the CFM teacher’s trajectory
throughout, confirming that the representation captures the true generative dynamics. Without
consistency, the endpoints remain correct, explaining the comparable generation quality, but the
intermediate trajectory diverges significantly from the teacher. This demonstrates that consistency
loss is essential for learning Koopman representations whose modes faithfully reflect the underlying
flow, rather than merely learning a shortcut between boundaries.

D UNCURATED SAMPLES

This section supplements Section 5 by showing uncurated generations and reporting wall-clock
sampling times, illustrating the tradeoffs between, speed, fidelity and interpretability.

MNIST (uncurated) FFHQ (uncurated) CIFAR-10 (uncurated)

Figure 10: Uncurated samples from our Koopman generative model across three datasets. All samples
are obtained via our one-step strategy.
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Figure 11: Left: Mean coefficients |ci|2 projected on the generator modes ordered by corresponding
eigenvalue magnitude |λi|2. Top corresponds to the spectrum along the modes obtained from training
with consistency and bottom to those obtained from training without consistency Right: First three
columns are some decoded modes of the generator trained with consistency loss, and the next three
are those obtained from the generator trained without consistency.

E INTERPRETABILITY AND SPECTRAL ANALYSIS

E.1 KOOPMAN MODE STRUCTURE

Figure 11 illustrates how consistency qualitatively changes the learned Koopman modes. Without
consistency, individual modes tend to decode into entire faces—effectively full puzzle pieces—which
suggests poor disentanglement, as each mode redundantly encodes the whole sample. By contrast,
with consistency, the modes behave like localized “patch bases,” decomposing faces into local
interpretable components close to semantic components (e.g., hair, eyes). The spectral profile on
the left of Fig. 11 also highlights important differences: with consistency, coefficients decay with
eigenvalue magnitude, whereas without consistency the spectrum remains flat, indicating the absence
of structured decomposition.

E.2 INSIGHTS ON TEACHER TRAINING

Similarity matrices (Fig. 15, left) reveal a clear ordering: when modes are sorted by Re(λ), mid-
training checkpoints already align with the low-decay modes of the final model, while early check-
points show little correspondence. This is further quantified by the cumulative similarity (right),
which increases monotonically across training stages.

E.3 GENERATION PROCESS: COARSE-TO-FINE.

To investigate the interpretability of the learned Koopman representation, we perform progressive
mode reconstruction by truncating the eigenspectrum of the generator L. Specifically, we compute
the eigendecomposition of the feature block Agg = L[2:,2:] and construct a real-valued basis by
taking Re(v) and Im(v) for each complex conjugate eigenvector pair. We sort modes by the real part
of their eigenvalues, Re(λ), which governs the exponential timescale of each mode: more negative
values correspond to strongly decaying dynamics while values closer to zero or positive correspond
to slowly decaying or amplifying dynamics.

Given an encoded image z = [1, t, g]⊤ where g ∈ R1024 denotes the feature vector, we reconstruct
using only the first k modes by projecting onto the truncated basis Bk ∈ R1024×k:

ĝk = BkB
†
kg, (25)

where B†
k denotes the pseudoinverse. The reconstructed features ĝk are then decoded back to image

space.
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Figure 12: Progressive mode reconstruction sorted by Re(λ). Slow modes (negative Re(λ)) capture
coarse structure, while fast modes (positive Re(λ)) add fine details. The learned Koopman spectrum
provides an interpretable hierarchy reflecting the multi-scale nature of the generative process.

Figure 12 shows reconstructions for increasing k. The slowest modes (k ≤ 200, Re(λ) ≤ −0.58)
produce homogenous outputs, indicating these modes encode a global bias that requires additional
modes to balance. At k = 400, coarse facial structure emerges, face shape, average skin tone, and
approximate feature positions. As k increases to 600–800, identity-specific features begin to appear,
though images remain soft. Finally, modes with Re(λ) > 0 (k > 1000) contribute fine details:
hair texture, sharp edges, and accessories such as hats and glasses. Full reconstruction recovers the
original image with high fidelity.

These results demonstrate that the Koopman eigenspectrum induces a principled coarse-to-fine
hierarchy: slow modes capture global structure while fast modes encode high-frequency details.
Unlike PCA, which orders components by variance, this ordering emerges from the dynamics of the
generative flow, providing an interpretable decomposition tied to the underlying generative process.

E.4 KOOPMAN MODES ALIGN WITH SEMANTIC DIRECTIONS

We provide uncurated qualitative examples of Koopman mode-induced image edits in Figure
13.a, Figure 13.c, Figure 13.d, Figure 13.b. Each row shows a different test image, with columns
corresponding to perturbation strengths α ∈ {−0.2,−0.1, 0, 0.1, 0.2}. Importantly, these modes
were not manually selected; rather, they were automatically identified by ranking all eigenmodes
according to their CLIP coherence scores with respect to each attribute prompt.

Sunglasses (Mode 1019). For the model trained with consistency loss, this mode demonstrates
strong semantic alignment: positive α consistently introduces sunglasses across diverse subjects
while preserving identity, pose, and background. Negative α produces the inverse effect, brightening
the eye region and removing eyewear. The transformation generalizes across ages, genders, and
lighting conditions, confirming that this eigenmode captures a disentangled semantic direction rather
than spurious correlations.

Brown Hair (Mode 767). This mode exhibits coupling between hair color and global illumination.
While positive α shifts toward darker hair tones, it simultaneously reduces overall image brightness.
This entanglement suggests that some semantic attributes share spectral structure in the Koopman
operator, consistent with the lower selectivity scores reported in Table 4.

Effect of Consistency Loss. Without consistency loss, perturbing Koopman modes produces no
discernible change in the decoded images, regardless of the perturbation magnitude α. In contrast,

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 13.a Sunglasses (Mode 1019) — with consis-
tency

Figure 13.b Sunglasses (Mode 455) — without con-
sistency

Figure 13.c Brown hair (Mode 767) — with consis-
tency

Figure 13.d Brown hair (Mode 2) — without consis-
tency

Figure 13: Koopman mode perturbations for semantic editing. Each grid shows different test
subjects (rows) perturbed with α ∈ {−0.2,−0.1, 0, 0.1, 0.2} (columns). Modes were automati-
cally identified via CLIP coherence analysis. (a, c) With consistency loss, perturbing individual
eigenmodes produces semantically meaningful edits—adding sunglasses or darkening hair—while
preserving identity. (b, d) Without consistency loss, the same perturbations yield no visible change,
demonstrating that consistency training is essential for learning actionable semantic directions.

the consistency-trained model yields clearly visible and semantically coherent edits. This qualitative
difference corroborates the quantitative findings in Section 5.4: consistency loss is essential not only
for learning a faithful linear decomposition of the dynamics, but also for ensuring that the resulting
eigenmodes correspond to actionable semantic directions in image space.
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No Consistency Consistency

Direction CLIP ↑ LPIPS ↓ CLIP ↑ LPIPS ↓
Direct Koopman Editing

Hat 0.069 0.018 0.077 0.019
Sunglasses 0.070 0.035 0.072 0.034
Smile 0.093 0.016 0.090 0.020
Age 0.121 0.035 0.123 0.036
Gender (M→W) 0.153 0.021 0.157 0.025
Gender (W→M) 0.150 0.031 0.152 0.035

CFM-Based Editing

Hat 0.148 0.060 0.094 0.053
Sunglasses 0.130 0.076 0.107 0.056
Smile 0.087 0.013 0.052 0.010
Age 0.186 0.097 0.145 0.087
Gender 0.178 0.091 0.139 0.043

Table 6: Quantitative comparison of latent directions, at α = 3.0

F APPLICATIONS

F.1 INVERSION

To edit a real image x, we first invert it to a corresponding noise sample x0 such that integrating the
CFM ODE recovers the original image. We encode the image to its lifted representation z = g(x)
and compute the target noise-space embedding z∗0 = exp(−L)z1. We then optimize x0 to match this
target:

x∗
0 = argmin

x0

∥g(x0)− z∗0∥
2
2 (26)

We show inversion examples in Figure 14. We again highlight the difference with the no-consistency
model, which introduces artifacts and have noticeable unstable optimization.

F.2 DISCOVERING SEMANTIC DIRECTIONS IN KOOPMAN LATENT SPACE

We discover semantic directions in the lifted Koopman space using a supervised approach. Given the
FFHQ dataset, we first encode each image x into its lifted representation

z = g(x)

at t = 1. Binary attribute labels (e.g., smiling vs. not smiling, eyeglasses vs. no eyeglasses) are
obtained via CLIP classification using natural-language prompts.

For each binary attribute, we compute a semantic direction as the difference between class-conditional
mean embeddings:

dattr = E[z | y = 1]− E[z | y = 0] . (27)

Semantic editing is performed via linear traversal in the Koopman latent space:

zedited = z+ αdattr, (28)

where α controls the edit strength. The edited latent code is then decoded back to image space via

x̂ = g−1(zedited) .

We show, in Table 6, that the provided latent directions are better with the consistency model, both in
Koopman or unlifted to the image space, with CLIP and LPIPS evaluations for different attributes.
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F.3 NOISE ENGINEERING: PERFORMING IMAGE EDITING BY OPTIMIZING CFM NOISE
PERTURBATION

A key advantage of our Koopman-based framework is that semantic directions discovered in the lifted
space can be transferred to perform editing with the original CFM model. This demonstrates that the
Koopman operator captures meaningful structure that generalizes beyond the learned decoder.

Optimizing semantic perturbations. Rather than directly adding d
(0)
attr in pixel space, we optimize

a perturbation ∆x0 such that the perturbed noise induces the desired semantic shift in the lifted space:

∆x∗
0 = argmin

∆x0

∥∥∥g(x0 +∆x0)−
(
g(x0) + d

(0)
attr

)∥∥∥2
2

(29)

Edited images are then generated by integrating the perturbed noise through the original CFM model:

x̂1 =

∫ 1

0

vθ(t, x0 + α∆x∗
0) dt (30)

where α controls the edit strength and vθ is the pretrained CFM velocity field.

Role of consistency regularization. We observe a stark difference in editing quality depending on
whether the Koopman model was trained with consistency loss. Figure 16 and Figure 17 compares
semantic traversals for models trained with and without this loss term.

With consistency regularization, the optimized perturbations remain well-behaved across a wide
range of edit strengths (α ∈ [0, 3]). Edits are semantically meaningful, identity is preserved, and
image quality remains stable even at large α values. In contrast, without consistency regularization,
edited images exhibit severe degradation at moderate-to-large perturbation strengths: backgrounds
become corrupted with color artifacts, facial structure deteriorates, and identity is lost.

We attribute this to the role of consistency loss in aligning the Koopman dynamics with the underlying
CFM trajectory. When this alignment is enforced, the learned operator exp(L) accurately models how
features evolve under the flow, ensuring that mapped directions d(0)

attr = dattr exp(−L) correspond
to valid perturbations within the noise distribution’s support. Without this constraint, the backward
mapping may produce directions that push samples off the data manifold, causing the CFM integration
to generate out-of-distribution outputs.

These results highlight that our Koopman framework not only enables direct editing via the learned
decoder g−1, but also provides a principled mechanism for noise engineering, transferring semantic
control to any compatible generative model by operating in its noise space.

F.4 FUNCTIONAL ROBUSTNESS ON DOWNSTREAM TASKS

Finally, we evaluate if this interpretable structure of our framework translates to challenging down-
stream tasks: inpainting, super-resolution, and denoising. These tasks test the model’s ability to
perform conditional generation, which depends on the quality of its learned dynamics. For a corrupted
input encoded to z1,corr, we reconstruct by adding noise at t = 0 and evolving it through the learned
process:

z0,corr = e−Lz1,corr ; xrecon = g−1
ψ (eL(z0,corr + noise))

As shown in Figure 18, the consistency-trained model significantly outperforms the ablation model
across all tasks. This superior performance is a direct consequence of the structured, Fourier-like basis
described above. Because its learned dynamics can induce local, patch-based semantic modifications,
the model is uniquely equipped to solve tasks that require local reasoning, like inpainting a missing
patch. The purely distilled model fails and simply reproduces the same image, showing that it only
learned the noise-to-data map, instead of the underlying image data distribution.

G EXTENDED SURVEY ON INTERPRETABILITY OF GENERATIVE MODELS

There is a rich body of work on understanding how generative models transform noise into data. Early
research on VAEs and GANs focused on analyzing their latent spaces. Variational Autoencoders were
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used to learn disentangled representations of data Bengio et al. (2013), i.e., latent codes that separate
the underlying generative factors of variation Higgins et al. (2016); Burgess et al. (2018); Kim & Mnih
(2018); Khemakhem et al. (2020). The success of Generative Adversarial Networks Goodfellow et al.
(2014) prompted similar studies Chen et al. (2016). Because the latent space of GANs is not explicitly
structured, research focused on identifying directions that correspond to interpretable generative
factors, enabling controlled image editing Jahanian et al. (2020); Härkönen et al. (2020); Voynov
& Babenko (2020); Shen & Zhou (2021). The rise of diffusion and flow models as state-of-the-art
generative methods naturally raised the question of whether such interpretability techniques could be
extended to these models. However, their iterative generation process and the prevalence of complex,
learnable control mechanisms Zhang et al. (2023) have not yielded equally simple or powerful
methods for interpretation and editing. Existing approaches tend to be more complicated and lack
the conceptual clarity and usability of those developed for VAEs and GANs Kwon et al. (2022);
Yang et al. (2023); Meng et al. (2022); Kulikov et al. (2024). In contrast, our method preserves
the dynamical-systems view of these models while enabling simple and interpretable latent-space
manipulations.
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xopt (Optimized Noise) x1 (Original) x1 (Reconstructed)

Figure 14.a With consistency loss

xopt (Optimized Noise) x1 (Original) x1 (Reconstructed)

Figure 14.b Without consistency loss
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Figure 14.c Optimization loss (with consistency)
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Figure 14.d Optimization loss (without consistency)

Figure 14: CFM inversion via backward Koopman evolution. Each row in (a, b) shows: optimized
noise xopt, original image x1, and CFM reconstruction x̂1. (a) With consistency loss, reconstruc-
tions faithfully preserve identity. (b) Without consistency, reconstructions appear plausible but the
inversion is not principled. (c, d) Optimization loss curves reveal that consistency loss yields smooth
convergence, while without it the landscape is ill-conditioned with higher final loss.
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Figure 15.a Eigenmode similarity matrices comparing early and
mid-training checkpoints against the fully trained model.
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Figure 15.b Cumulative average di-
agonal similarity showing progressive
mode acquisition during training.

Figure 15: Koopman mode acquisition during training. (Left) Eigenmode similarity matrices
sorted by Re(λ); diagonal structure at mid-training indicates decaying modes are learned first.
(Right) Cumulative similarity confirms mid-training acquires low real part modes versus minimal
correspondence at early training.
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With Consistency Without Consistency

(a) Sunglasses

(b) Smile

Figure 16: Consistency loss enables stable semantic editing. Edits via optimized noise perturbations
x0+α∆x0 integrated through CFM (α ∈ [0, 3], increasing left-to-right). With consistency loss (left),
edits remain coherent and identity-preserving. Without (right), large α causes artifacts and structural
collapse.
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With Consistency Without Consistency

(a) Age

(b) Hat

Figure 17: Additional semantic directions. Same setup as Figure 16. Consistency loss enables
stable traversal across diverse attributes.
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Figure 18.a Inpainting Figure 18.b Super-Resolution Figure 18.c Denoising

Figure 18: Performance on structured generative tasks. For each task, we show the input, the
corrupted image, the result from our consistency-trained model, and the result from the ablation
model. Each row corresponds to the application of different gaussian noise. Our model consistently
produces coherent, high-fidelity results, while the ablation model fails.

32


	Introduction
	Related Work
	Flow-Based Generative Models
	Accelerated and One-Step Sampling
	Interpreting and Explaining Generative Models

	Mathematical Background
	Conditional Flow Matching
	Koopman Theory for autonomous systems

	Methodology and Theoretical Results
	Adapting Koopman Theory to Non-Autonomous Dynamics
	Learning Koopman Dynamics
	Efficient Dynamics learning
	Global Linearization as an Interpretability and Control Tool

	Experiments
	Experimental Setup
	Generation Quality
	Ablation
	Interpretability Analysis

	Conclusion and discussion
	Theoretical Results and Proofs
	Preliminaries on CFM
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Proposition 2

	Experimental Details
	Parameterization of the affine lift

	Ablations
	Impact of Loss Terms
	Trajectory Fidelity with and without Consistency Loss

	Uncurated Samples
	Interpretability and Spectral Analysis
	Koopman mode structure
	Insights on teacher training
	Generation process: coarse-to-fine.
	Koopman Modes Align with Semantic Directions

	Applications
	Inversion
	Discovering semantic directions in Koopman latent space
	Noise engineering: Performing image editing by optimizing CFM noise perturbation
	Functional Robustness on Downstream Tasks

	Extended survey on interpretability of generative models

