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Abstract

Novel view synthesis (NVS) and surface reconstruction (SR)
are essential tasks in 3D Gaussian Splatting (3DGS). De-
spite recent progress, these tasks are often addressed in-
dependently, with GS-based rendering methods struggling
under diverse light conditions and failing to produce ac-
curate surfaces, while GS-based reconstruction methods
frequently compromise rendering quality. This raises a
central question: must rendering and reconstruction al-
ways involve a trade-off? To address this, we propose
MGSR, a 2D/3D Mutual-boosted Gaussian Splatting for
Surface Reconstruction that enhances both rendering qual-
ity and 3D reconstruction accuracy. MGSR introduces two
branches—one based on 2DGS and the other on 3DGS. The
2DGS branch excels in surface reconstruction, providing
precise geometry information to the 3DGS branch. Lever-
aging this geometry, the 3DGS branch employs a geometry-
guided illumination decomposition module that captures re-
flected and transmitted components, enabling realistic ren-
dering under varied light conditions. Using the trans-
mitted component as supervision, the 2DGS branch also
achieves high-fidelity surface reconstruction. Throughout
the optimization process, the 2DGS and 3DGS branches
undergo alternating optimization, providing mutual super-
vision. Prior to this, each branch completes an indepen-
dent warm-up phase, with an early stopping strategy imple-
mented to reduce computational costs. We evaluate MGSR
on a diverse set of synthetic and real-world datasets, at both
object and scene levels, demonstrating strong performance
in rendering and surface reconstruction. Code is available
at https://github.com/TsingyuanChou/MGSR.

1. Introduction

3D Gaussian Splatting (3DGS) [9] has recently gained great
attention in computer graphics and 3D vision [3]. By

*Corresponding authors

representing scenes as collections of 3D Gaussian primi-
tives, 3DGS offers a more flexible and adaptive represen-
tation, enabling accurate and efficient rendering and visu-
alization without relying on neural networks. 3DGS ef-
fectively resolves the issues of low training efficiency and
insufficient geometric accuracy in previous NeRF meth-
ods. Due to its impressive rendering efficiency and ac-
curacy, 3DGS has been widely applied in fields such as
SLAM [15], dynamic real-world or large-scale scene mod-
eling [16, 20], reconstruction [11, 18], navigation [28], ma-
nipulation [13, 14, 19], 3D generation [2, 29], and 3D hu-
man simulation [17], etc.

Nevertheless, achieving high-fidelity surface reconstruc-
tion (SR) and improving the realism of novel view synthesis
(NVS) under various light conditions are two main chal-
lenges in 3DGS. Specifically, considering that GS-based
rendering methods are affected by different light conditions,
previous methods [4, 8] proposed to decompose light to en-
hance the neural rendering in scenes containing reflective
surfaces with the introduction of BRDF (Figure 1a). How-
ever, despite the effectiveness of illumination decomposi-
tion in rendering, these methods are time-consuming and
still struggle to achieve meaningful mesh extraction due to
inherent limitations in 3DGS. For instance, the centers of
Gaussian primitives do not align well with the surface. On
the other hand, GS-based SR methods [5, 6, 24] endeavor
to constrain the Gaussian primitives close to the surface, in-
evitably sacrifice rendering quality and are sensitive to light
conditions, which may cause surface artifacts on surfaces
(Figure 1b). For example, 2DGS [6] utilize 2D Gaussian
primitives for 3D scene representation, facilitating accurate
and view-consistent geometry modeling. However, 2DGS
still cannot effectively model surfaces when ambient light-
ing changes.

To solve these contradictions, we propose MGSR,
a 2D/3D Mutual-boosted Gaussian splatting for Surface
Reconstruction that enhances both rendering quality and
3D reconstruction accuracy (Figure Ic). Specifically, two
branches are devised based on 2DGS and 3DGS, which are
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Figure 1. MGSR achieves strong NVS and SR results compared with methods based on 2DGS [6] and 3DGS [24]. The input consists
of multi-view images captured from various camera positions and angles, under significantly varying light conditions. In some views, the
object appears well-lit and clearly visible, while in others, it is poorly lit, resulting in shadows, reflections, and inconsistencies across the

images.

optimized synchronously and mutually enhance each other:
the 2DGS branch provides accurate geometric information,
with its limited rendering capabilities improved by 3DGS
branch, while the 3DGS branch focuses on rendering, with
the cost of geometric accuracy compensated by the 2DGS
branch. With geometry information, a geometry-guided il-
lumination decomposition module is devised in the 3DGS
branch to obtain the reflected and transmitted components,
achieving realistic rendering under various light conditions.
To achieve this, an additional Spherical Harmonic (SH) is
introduced to model reflected colors, along with two other
parameters: reflected opacity and reflected confidence, to
represent the reflected component accurately. Using the
transmitted component as supervision, the 2DGS branch
can achieve high-fidelity SR while avoiding the impact of
illumination factors on surface estimation. Throughout the
mutual-boosted supervision stage, the 2DGS and 3DGS
branches engage in alternating optimization for mutual su-
pervision. Prior to alternating optimization, the two mod-
ules undergo an independent warm-up stage, and an auto-
stop strategy is introduced to reduce unnecessary computa-
tional burdens. To the best of our knowledge, MGSR is the
first GS-based approach that investigates the simultaneous
enhancement of rendering and reconstruction, as well as the
first mutual-boosted work on GS involving both 2DGS and
3DGS. MGSR is thoroughly evaluated across a wide range
of synthetic and real-world datasets, as well as object- and
scene-level datasets, showcasing its superior performance
in both rendering and mesh extraction. In summary, our
main contributions are as follows:

 The first to explore the feasibility of the joint promotion
between rendering and reconstruction, introducing a GS-

based 2D/3D mutual-boosted approach that ensures ren-
dering quality while achieving high-fidelity SR under var-
ious light conditions.

e The 2DGS branch aims to provide geometry information
to enhance the illumination decomposition of the 3DGS.
The decomposed transmitted color will be in turn utilized
to supervise the 2DGS branch for improved surface re-
construction, independent of varying light conditions.

* Leveraging geometric information from the 2DGS
branch, we have developed a geometry-guided illumi-
nation decomposition module to enhance the accuracy
of decomposing reflected and transmitted components,
achieving more realistic rendering outcomes.

* To address the varying convergence speeds in the two
branches during the warm-up stage, an auto-stop strat-
egy has been devised. This strategy involves initiating
alternating optimization once one branch has completed
its warm-up stage.

2. Related work

Lighting estimation and decomposition. Estimating and
decomposing light conditions in 3D scenes is a challeng-
ing task, further complicated by factors such as reflections,
refractions, overexposure, and diverse material properties,
resulting in problems related to multi-view inconsistency.
NeRFactor [26] addresses spatially varying reflectance and
environmental lighting using a re-rendering loss, smooth-
ness priors, and data-driven BRDF prior learned from real-
world measurements. NEILF [23] represents scene lighting
as Neural Incident Light and models material properties as
surface BRDF. NEILF++ [25] integrates incident and out-
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going light fields through physically-based rendering and
surface inter-reflections. Ref-NeRF [21] replaces view-
dependent emitted radiance parameterization of NeRF with
a representation of reflected radiance. However, NeRF-
based methods are primarily constrained by their significant
computational burdens and relatively slow rendering speed.

Recently, several attempts have also been made at light-
ing estimation and decomposition on 3DGS. R3DG [4]
leverages 3DGS and NEILF [23] to create a ray-tracing
and relighting-capable 3DGS representation. GShader [8]
presents a simplified shading function for reflective surfaces
in 3DGS, where a novel normal estimation is introduced
that uses the shortest axis direction of the 3D Gaussian as an
approximate normal, eliminating reliance on depth map pri-
ors and avoiding the flattening or 2D projection of 3D Gaus-
sians. GS-IR [12] utilizes depth-derivation-based regular-
ization for normal estimation and a baking-based method
for modeling indirect lighting, enabling a precise decompo-
sition of material attributes and illumination, thereby sig-
nificantly improving the photorealism of the rendered out-
comes. The prevailing focus in current efforts on lighting
estimation and decomposition is predominantly on achiev-
ing photorealistic rendering, which consequently hinders
the ability to carry out surface mesh extraction effectively.

3DGS driven surface reconstruction. The misalign-
ment of the centroids (means) of 3D Gaussians with the
actual surfaces presents a challenge for accurately recon-
structing surfaces. A common strategy is to flatten the
Gaussian spheres [5] or utilize 2D Gaussian disks [6], ef-
fectively pulling the Gaussian centers closer to the surfaces
of the object. SuGaR [5] incorporates a regularization term
that enhances the alignment between Gaussians and sur-
faces within the scene to improve the accuracy of normal
estimation. 2DGS [6] adopts flattened 2D Gaussians to rep-
resent 3D scenes and defines the normal as the direction of
the steepest change in density of the 2D Gaussian distribu-
tion. GOF [24] utilizes ray-tracing-based volume rendering
and establishes a level set by opacities of 3D Gaussians.
Surface normals of the Gaussians are approximated using
the intersection plane between the ray and the Gaussian, en-
abling regularization that significantly improves the geom-
etry. These methods solely focus on scenes with consistent
light conditions, which often results in the reconstructed
mesh exhibiting significant holes and surface inaccuracies.
Unlike previous methods, PGSR [1] takes the light condi-
tions into account and incorporates exposure compensation
to enhance the accuracy. PGSR flattens the Gaussian into a
planar shape and introduces unbiased depth estimation for
extracting geometric parameters for surface reconstruction.
However, it may result in over-smoothness in the highlight
area, and be challenging in reconstructing reflective or mir-
ror surfaces. Therefore, to reconstruct meshes under vary-
ing light conditions, we propose a method capable of accu-

rate textured mesh extraction in diverse light scenarios.

3. Method

3.1. Overview

MGSR is a 2D/3D mutual-boosted framework that consists
of two branches: improved 3DGS branch (Section 3.2) and
2DGS branch (Section 3.3). Initially, each branch under-
goes an independent warm-up phase, after which they en-
gage in alternating optimization through mutual-boosted su-
pervision (Section 3.4).

The 3DGS branch is designed to perform illumination
decomposition by introducing reflection-related parameters
to disentangle reflections and handle overexposure. How-
ever, accurate illumination decomposition relies on reliable
geometry, which the 3DGS branch alone cannot provide.
To address this limitation, we introduce a geometry-guided
illumination decomposition module, which leverages depth
information from the 2DGS branch to enhance rendering
performance under diverse light conditions.

Specifically, the 2DGS branch aligns 2D Gaussian disks
with the surface, capturing initial and relatively accurate ge-
ometry information even under significantly varying light
conditions. In the subsequent alternating optimization
phase, the 3DGS branch is supervised by depth maps gen-
erated by the 2DGS branch, while reflection-free images
rendered by the 3DGS branch concurrently supervise the
2DGS branch, facilitating a mutual-boosted alternating op-
timization. Finally, following to [6], we employ Truncated
Signed Distance Fusion (TSDF) [27] to extract the recon-
structed textured meshes.

3.2. Illlumination decomposition with 3DGS

3DGS is constrained in modeling transparent or translu-
cent materials, such as glass. To enhance the comprehen-
sive modeling of scenes under various light conditions, the
entire scene is modeled as composed of transmitted and
reflected components. Specifically, we retain the origi-
nal 3DGS as the transmitted component, while introducing
three reflection-related parameters to represent the reflected
component: reflected opacity s € R, reflected confidence
B € [0,1], and reflected SH Cyet € R¥, where k refers to the
degrees of freedom.

The reflected confidence 3 represents the probability that
an individual Gaussian primitive captures the reflected com-
ponent. When splatting 3D Gaussians to 2D images, 3 is ac-
cumulated as described in Equation (1) to obtain the pixel-
wise reflected confidence W, and the transmitted color Cipypn
and reflected color C's are calculated with a-blending from
front to back, as depicted in:

K k-1
W= fau ] (1-#). M
=1

j=1
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Figure 2. MGSR is a 2D/3D mutual-boosted framework with two branches: 2DGS branch (upper) for SR and 3DGS branch (bottom) for
NVS. Each branch is enhanced by our specific designs. Upon receiving inputs from various light conditions, the two branches initially
undergo a warm-up stage of initialization for mutual-boosted optimization. In the alternating optimization process under mutual-boosted
supervision, the 3DGS branch is guided by depth maps generated by the 2DGS branch, while simultaneously, rendered transmitted images

without reflections from the 3DGS branch provide reflection-removed supervision to the 2DGS branch.

K i—1
B i j
Ctran = g Ctran Xtran H (1 - O‘tran) ’ 2
i=1 j=1

K i—1
Cref = Z Czefazef H (1 - O‘ﬁef) ) 3)
i=1 =1

where ¢ denotes the index of the Gaussian sphere,
and oyer denote to the transmitted opacity 6y, and reflected
opacity 6,f multiplied by the density of the splatted Gaus-
sian at the pixel location, ¢/, and c’,; represent the view-
dependent transmitted and reflected color calculated from
transmitted SH Cyan and reflected SH Cer. The rendered
color C'is calculated according to Equation (4), combining
the transmitted and reflected components, weighted by the
reflected confidence W:

C = Ciran + W X Cleg. “)

A total variation (TV) 1088 LansTv 18 utilized to smooth in
local regions of the transmitted components. Subsequently,
the rendering loss is applied to encourage rendered color C'
to be similar to the GT color Cgr.

Liender = ML1(C, Car) + (1 = A1) Lpssim(C, Car),  (5)

where \; represents to the balance coefficient, £, computes
the absolute error, while Lp_ssiv refers to the differentiable
structural similarity index measure (SSIM). The total loss
is a weighted sum of the rendering loss and the TV loss of
transmitted components,

L3p = Lrender + A2Lyrans-TV, (6)

where A2 denotes to the weight.

However, due to the inherent limitation of 3DGS, specif-
ically the inaccuracy of the depth map, although this 3D
branch successfully performs illumination decomposition,
it still cannot extract the surface mesh. Therefore, an addi-
tional 2DGS branch is introduced to provide reliable geom-
etry supervision.

3.3. Surface reconstruction with 2DGS

2DGS represents the scene with flattened 2D Gaussian
primitives, aligning the centers of the Gaussian disks with
the surface. The aim of this section is to utilize these flat-
tened Gaussian primitives to obtain initialized depth maps
of scenes under various light conditions, which also serve as
supervision for the 3DGS branch and are refined iteratively
through the mutual-boosted stage (Section 3.4).

As an initial estimate, the rendering depth map Z is
computed as a weighted sum of the normalized intersected
depths z, as depicted in:

7 - Do Wiz

_Ziwi+f’ (7)

where w; = T;«; is the contribution of 2D Gaussian disk to
the rendering depth at the pixel location. «; is the opacity 6
multiplied by the density of the splatted Gaussian, and the
visibility term T; is calculated:

1—1

T=1[0-q), ®)

j=1
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where the definition of «; is same as above.

In the representation based on 2D Gaussian primitives, it
is crucial to ensure that all 2D splats are locally aligned with
the actual surfaces of the object. This alignment is partic-
ularly important in the context of volume rendering, where
multiple semi-transparent surfels may be encountered along
the ray. To accurately identify the actual surface, we fol-
low [6] and consider the median point of intersection where
the accumulated opacity reaches 0.5. The normals of the 2D
splats are encouraged to be aligned with the gradients of the
depth maps, as shown in:

Ly=) wi(l—n/N), 9)

where 7 indexes the intersected splats along the ray, n; rep-
resents the normal of the splat oriented towards the camera,
and N is the normal estimated from the nearby depth point
Z, and computed by:

VaoZ x Ny Z

N = 1

Considering that our task is to reconstruct the surface
meshes under various light conditions, a weighted normal
loss is employed, which encourages the model to primarily
learn the normals of the surfaces rather than those of the en-
tire scenes. The normal loss from the camera’s perspective
will be determined based on the division of the mask into
foreground and background, with a coefficient v applied to
weight the contributions. Two TV losses Lg1v and L 1y
are introduced as smooth terms on both rendered depths and
normals. The overall loss of the 2DGS branch consists of a
weighted combination:

Lo = Lrender + A3(YLn + MaLotv) + AsLaty, (11)

where A3, A4, and A5 represent the weights, and Lienger 1S
defined in Equation (5).

Yet, the 2DGS branch has only accomplished modeling
of illuminated scenes and relatively reliable depth estima-
tion without eliminating the influence of light conditions,
which is inconsistent with real unlit scenes. To address this
issue, an alternating optimization approach is devised after
the warm-up stage of both the 2DGS and 3DGS branches.

3.4. Alternating optimization of 2D & 3D Gaussians

Given that the warm-up 3DGS branch has performed a pre-
liminary illumination decomposition in Section 3.2, and the
warm-up 2DGS branch has provided an initial estimate of
the depth maps for the scenes under various light condi-
tions in Section 3.3, our alternating optimization approach
utilizes the transmitted colors from the 3DGS branch to su-
pervise the 2DGS branch for surface reconstruction, while
the depth maps from the 2DGS branch provides geometry

Warm-up 3D-GS branch

: =
¢

Depths Rendered
2D/3D Mutual-boosted Optimization
Optimized 3D-GS branch

-
wEq

Depths Rendered

Figure 3. Geometry enhancement in 3DGS branch for realistic
rendering through our mutual-boosted optimization.

information for the 3DGS branch for better illumination de-
composition.

Specifically, since the illumination decomposition in the
3DGS branch is unsupervised, the transmitted components
from 3DGS branch might not be completely disentangled
from the reflected components after the warm-up stage, a
weighted rendering loss is introduced for rendering super-
vision for the 2DGS branch. Our goal is for the images
rendered by the 2DGS branch to not only approximate the
transmitted images but also to retain a slight similarity to
the illuminated images to enhance the stability of alternat-
ing optimization, as calculated by:

»Crender—m = )\Gﬁmulual + (]- - )\G)L:ZD—rendera (12)

where Lienger-m represents the mutual rendering loss in al-
ternating optimization, and Ag is the weight. L,ua de-
notes the rendering loss between the 2DGS branch rendered
images and the transmitted images from the 3DGS branch,
LoD-render 18 the rendering loss between the 2DGS branch
rendered images and the GT images, and both of the render-
ing loss are computed by Equation (5). Moreover, both TV
losses on depths (L4.1v.m) and normals (L, 7v.,) in 2DGS
branch are retained, but GT images are replaced with the
transmitted images. In the alternating optimization stage,
the loss function of 2DGS branch will be promoted to:

Lop = Liender-m +A3(7Ln + MaLotvem) + AsLatvem, (13)

where + is the coefficient that balances the contribution of
the foreground and background. The weights Ao, A3, and
A4 are the same as the warm-up stage.

Scene geometry is essential for realistic physically-based
rendering, and geometry estimation on Gaussian primitives
is difficult due to the discrete structures. Therefore, on the
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Figure 4. Visual comparisons on the OmniObject3D dataset [22].
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Figure 5. Visual comparisons on the Shiny Blender dataset [21].

other hand, a depth loss between 2DGS and 3DGS branches
is introduced to improve the geometry estimation for the
illumination decomposition of 3DGS branch (as shown in
Figure 3). The calculation of depth maps Zsp in 3DGS
branch is the same as Equation (7). To encourage the al-
ternating optimization to focus on the foreground part of
the input images, masks are used to avoid the calculation of
background by with a weight coefficient «. The depth loss
Lz is computed by:

Lz =vLy(Zow, Z3p), (14)

where Lo denotes the L2 loss, and Z,p is the estimated
depth map Z in the 2DGS branch.
The total loss Ly of the alternating optimization is:

Liotal = wopLop + w3pLsp + Waepth-munwar Lz,  (15)

where the losses of the 3D module £;p and the 2D module
Lop are calculated by Equation (6) and Equation (13), re-
spectively, and wsp, w3p, and Wgepth-muwal are the weights.
See Section 5 for their settings.

Auto-stop strategy. Moreover, due to the varying con-
vergence speeds in each branch, we should not warm up
both branches simultaneously at the same iterations. There-
fore, to prevent the two branches from being overly opti-
mized during the warm-up stage and to expedite the overall
process, an auto-stop strategy is introduced in the warm-
up process. Specifically, as one branch reaches conver-
gence, it will initiate our alternating optimization process
first. Subsequently, when the other branch also converges,
our mutual-boosted stage starts.

Table 1. NVS results on Shiny Blender and OmniObject3D. The
instance-level metrics are listed in Appendix.

Methods Shiny Blender OmniObject3D
SSIMT PSNR?T | SSIMT PSNR{  Timel
3D-GS 09630 32.62 | 0.9859  33.64 7min
GS-IR 09409 32.09 | 09752 35.16  33min
GShader 09679  34.35 | 0.9840 34.14  105min
R3DG 0.9646  34.20 | 0.9874 37.37  21min

MGSR (Ours) ‘ 0.9645  34.66 ‘ 0.9850  37.69 13min

4. Experiments

4.1. Datasets and evaluation metrics

DTU [7] is a large MVS dataset, where some scenes fea-
ture unfavorable light conditions for surface reconstruc-
tion, such as overexposure, underexposure, and metallic
reflections. Similar to previous baselines [6, 24], we uti-
lized the same 15 scans from the DTU dataset to vali-
date our approach. OmniObject3D [22] contains objects
with extensive areas of specular highlights on their surfaces.
Shiny Blender [21] is introduced to assess the capability
of surface mesh extraction under strong reflections. Ref-
NeRF Real Captured Scenes [21] consists of three in-the-
wild scenes with strong reflections. Tanks and Temples
(TnT) [10] consists a large number of high-resolution real-
world images under varying light conditions.

We utilize SSIM and PSNR to evaluate the rendering
quality, while reconstruction accuracy is validated by 10K
sampled points with Normal Consistency (NC) and Cham-
fer Distance (CD) measurements. Due to the limitation of
CD, we mainly focus on NC metric, which aligns better
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Methods Shiny Blender OmniObject3D
NCt CD| SSIMt PSNR? | NCt CD| SSIMt PSNR? Timel
NeuS2 62.58  0.51 8821 0.48 Smin

2D-GS* 6548 4154 09597 3346 |86.34 0.75 09836 3409 12min
GOF* 4454 211 09667 34.66 | 90.06 0.84 0.9885 3818 16min

MGSR (Ours) ‘ 6647 285 09645 34.66 ‘90.60 090 09850 37.69 13min

with human perception. Since GT mesh is unavailable for
real-world data, only visual comparisons are provided.

4.2. Results

Object-level data. Three objects from the Shiny Blender
with reflections and 30 objects from OmniObject3D with
highlights are conducted on all methods for comparison.
Table 1 and Table 2 present quantitative results on both NVS
and SR. MGSR surpasses all baselines in terms of the PSNR
metric for NVS and the NC metric for SR. As shown in vi-
sualization comparisons of Figure 4 and Figure 5, although
NeuS2 exhibits superior CDs, its smoothness on surfaces
with reflections is significantly poor. To address this issue,

Figure 6. Visual comparisons on DTU dataset [7].

GOF MGSR (Ours)

GOF 4 MGSR (Ours)
Figure 7. Visual comparisons on Ref-NeRF Real Captured Scenes dataset (Sedan) [21] and TnT dataset (Truck) [7].

Table 2. SR results on Shiny Blender and OmniObject3D. NC is
multiplied by 102, and CD is multiplied by 10%. Methods marked
with * fail on certain objects, which are excluded from the average
metric values presented in this table, but are detailed in the list of
instance-level metrics in the Appendix.

NC is introduced as an evaluation metric for reconstruction,
overcoming the limitations of CDs, which fail to capture
surface holes or bumps. 2DGS produces excessive faces on
reconstructed meshes on the exterior of objects while fail-
ing to accurately reconstruct thin surfaces. GOF tends to
reconstruct rough or incomplete surfaces when handling lit
surfaces. MGSR visually outperforms all baselines, result-
ing in the best NC, with smooth surfaces and accurate color
modeling. Table 3 and Figure 6 show the quantitative and
visual results compared to GS-based SR methods on DTU
dataset. Under varying light conditions, MGSR success-
fully reconstructs realistic and intact surfaces compared to
2DGS and GOF.

Scene-level data. As shown in Figure 7, two in-the-
wild scenes from Ref-NeRF [21] and TnT [10] are used
for visual comparisons. More comparisons are shown in
the Appendix. Previous GS-based methods fail to effec-
tively reconstruct glass or mirror surfaces, resulting in dam-
aged and inaccurate surfaces. In contrast, MGSR suc-
cessfully reconstructs meshes in mirror material, driven by
our devised 3DGS branch and mutual-boosted optimization,
which perform illumination decomposition and guide the
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Table 3. Instance-level Normal Consistency results of SR on DTU dataset. Results are multiplied by 10°.

Methods ‘ 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 ‘ Mean
2D-GS 50.58 49.89 4573 46.09 68.10 54.62 5436 54.72 60.33 33.12 49.59 71.81 60.83 4495 47.00 | 52.78
GOF 38.13 4776 4547 41.17 6147 49.84 5235 55.00 55.85 4275 4870 73.11 55.65 5201 47.05 | 51.09
MGSR (Ours) | 52.46 4859 47.47 51.66 55.17 4534 63.27 40.71 61.51 5240 4259 74.08 65.04 5216 43.81 | 53.08

Table 4. Ablations of loss weights (Models A-F), iterations of mutual-boosted optimization (Models G-J), bidrectional BP and auto-stop
warm-up strategy (Models K-L) on OmniObject3D dataset. NC is multiplied by 10%, and CD is multiplied by 10°. The best-performing

model in each ablation study is highlighted.

Model | Mutual-boosted Iterations | Bidirectional BP | Auto-stop Warm-up | wop  w3p  Wdephmuwal | SSIMT  PSNRT  NCt  CDJ
A 20k No Yes 0 1 0 0.9755 35.10 - -
B 20k No Yes 1 0 0 - - 90.16 0.92
C 20k No Yes 0.3 0.7 0.01 0.9861 37.88 90.54 0.92
D 20k No Yes 0.7 0.3 0.01 0.9825 36.99 90.62 0.92
E 20k No Yes 0.5 0.5 0.01 0.9850 37.69 90.60 0.90
F 20k No Yes 0.5 0.5 0.1 0.9803 36.42 90.60 0.91
G 5k No Yes 0.5 0.5 0.01 0.9820 36.76 90.40 0.89
H 10k No Yes 0.5 0.5 0.01 0.9842 37.37 90.50 0.91
1 20k No Yes 0.5 0.5 0.01 0.9850 37.69 90.60 0.90
J 30k No Yes 0.5 0.5 0.01 0.9850 37.71 90.60 0091
K 20k Yes Yes 0.5 0.5 0.01 0.9813 36.64 90.57 0.91
L 20k No No 05 05 0.01 0.9831 37.01 90.56 0.92
M 20k No Yes 0.5 0.5 0.01 0.9850 37.69 90.60 0.90

2DGS branch for enhanced SR.

Optimization time. In Table | and Table 2, we ad-
ditionally present the optimization time for all compared
methods. By eliminating the dependence on BRDF, MGSR
is faster than all illumination decomposition baselines.
Among methods supporting both NVS and SR, 2DGS is the
fastest. MGSR, supported by an auto-stop warm-up strat-
egy, outperforms GOF and achieves a comparable speed
with 2DGS. Specifically, each of the two branches in MGSR
has an average warm-up optimization time of around 3.5-4
minutes. The mutual-boosted optimization time is approxi-
mately 8-9 minutes.

5. Ablation studies

All ablation studies (Table 4) are conducted on the Om-
niObject3D dataset due to its various light conditions, with
the experimental setup consistent with Section 4. Addi-
tional results are provided in the Appendix.

Auto-stop warm-up. Experimental results (Models G-
J) show that the auto-stop strategy during warm-up out-
performs both MVS and SR, demonstrating the effective-
ness of the auto-stop strategy in preventing overfitting dur-
ing the warm-up stage. Bidirectional back-propagation
(BP). In alternating optimization (Section 3.4), the out-
puts from one branch are utilized to supervise the other
branch. During the supervision, the gradient of loss can be
back-propagated to one branch (unidirectional BP) or both
branches (bidirectional BP). Experimental results (Models
K and M) show that unidirectional BP outperforms bidi-
rectional BP in terms of both NVS and SR results. It is
mainly due to the bidirectional BP influences optimization

of the branch which provides supervision. Mutual-boosted
iterations. We observed that when the mutual-boosted it-
erations exceed 20k, there is no significant improvement in
the NVS and SR metrics (Models L and M). Therefore, 20k
iterations are optimal for MGSR. Loss weights. The cases
without mutual-boosted optimization are firstly validated,
where only the 3DGS branch is used for NVS or the 2DGS
branch for SR (Models A and B). The results were infe-
rior compared to the case with mutual-boosted optimiza-
tion. Furthermore, it is found that the branch with a higher
weight (Models C and D) during the mutual-boosted opti-
mization stage tends to favor the task it excels at, leading
to better performance. To balance both NVS and SR, the
weights of the two branches should be equal.

6. Conclusion

We introduce MGSR, a 2D/3D Mutual-boosted Gaussian
splatting for SR that enhances both rendering quality and
3D reconstruction accuracy under various light conditions.
Moreover, the auto-stop strategy is proposed in the warm-up
stage, while geometry-guided illumination decomposition
is devised in the mutual-boosted optimization stage. Ex-
tensive experiments across various synthetic and real-world
datasets at both object and scene levels have validated the
superiority of MGSR.

Limitations and future work. Although MGSR
achieves reliable reconstruction under reflective conditions,
over-smoothness may occur in low-light scenarios, leading
to the absence of details. A possible way for addressing
this issue is to incorporate exposure compensation for input
images, which we will investigate as a future work.
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