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Abstract

Tasks that model the relation between pairs of
tokens in a string are a vital part of understand-
ing natural language. Such tasks, in general,
require exhaustive pair-wise comparisons
of tokens, thus having a quadratic runtime
complexity in the length of the string. We
show that these exhaustive comparisons can
be avoided, and, moreover, the complexity of
such tasks can be reduced to linear by casting
the relation between tokens as a partial order
over the string. Our method predicts real
numbers for each token in a string in parallel
and sorts the tokens accordingly, resulting in
total orders of the tokens in the string. Each
total order implies a set of arcs oriented from
smaller to greater tokens, sorted by their
predicted numbers. The intersection of total
orders results in a partial order over the set
of tokens in the string, which is then decoded
into a directed graph representing the desired
linguistic structure. Our experiments on
dependency parsing and coreference resolution
show that our method achieves state-of-the-art
or comparable performance. Moreover, the
linear complexity and parallelism of our
method double the speed of graph-based coref-
erence resolution models, and bring a 10-times
speed-up over graph-based dependency parsers.

https://github.com/lyutyuh/partial

1 Introduction

Strings of tokens in natural language are not
constructed arbitrarily. Indeed, which tokens
co-occur within the same string is highly structured
according to the rules of the language. Understand-
ing such structures is critical to the comprehension
of natural language. In natural language processing
(NLP), many structured prediction tasks aim to
automatically extract the underlying structure that
dictates the relationship between the tokens in
a string of text. Examples of such tasks include

dependency parsing, semantic parsing, and coref-
erence resolution. These tasks involve predicting
complex and hierarchical output structures, making
them inherently more challenging than their clas-
sification or regression counterparts. This paper
contributes a novel and generic framework for
structured prediction with empirical evidence from
dependency parsing and coreference resolution.

Many machine learning models for structured
prediction score and predict graphs (McDonald
et al., 2005; McDonald and Pereira, 2006), in
which the vertices represent the tokens in the string
and the edges represent the relations between them.
One common strategy to model a graph is to de-
compose it into smaller subgraphs that are tractable
(Taskar et al., 2004; Smith, 2011, §2.2). For
example, arc-factored models (Eisner, 1996) score
a graph only using the score of each constituent
edge. However, even with such simplification, the
computational costs of arc-factored models are
superlinear. The reason is that one needs to exhaus-
tively compute scores for all possible edges in the
graph, which, in general, requires at least quadratic
number of computations with respect to the length
of the string. Another common strategy employs
weighted transition-based systems (Knuth, 1965;
Yamada and Matsumoto, 2003; Nivre, 2003). They
decompose structures into transitions between
intermediate model states and do offer linear-time
algorithms. However, in general, predicting the
transitions between states cannot be parallelized,
which is another worrying limitation. The authors
of this paper contend the limitations of both graph-
based and transition-based models are frustrating
in an era when researchers are processing longer
and longer texts (Tay et al., 2021).

From a more abstract perspective, the mathemati-
cal and algorithmic foundation on which structured
prediction models rest can be regarded as a design
choice. Graph-based and transition-based model-
ing are both specific design choices. These design
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(a) An example dependency
structure. The root arc and
arc labels are omitted.

(b) The token-split struc-
ture of Fig. 1a, which is a
partially ordered set.

(c) A realizer of Fig. 1b with 2 total orders such that E =
E1 ∩E2. E1 and E2 contain the arcs oriented from V r (red
nodes) to V b (blue nodes) and from left to right.

Figure 1: An overview of our method. To model a linguistic structure, represented as a directed graph in Fig. 1a,
we first convert it into a token-split structure (see §3.4) in Fig. 1b, which is a partial order, to remove undesired
transitivity. Then, 2 real numbers are predicted for each vertex in Fig. 1b. The positions of vertices in Fig. 1c in
the inequalities indicate the real numbers the vertices are mapped to. The vertices are sorted twice accordingly,
resulting in a realizer (see Def. 3.8) of 2 total orderings, each possessing a set of edges E1 and E2. The exact
set of desired edges in the original structure can be restored from the intersection of E1 and E2 (see §3.3). Some
qualitative examples are included in App. J.

choices impose substantial inductive biases by con-
fining the class of models available to be utilized to
solve the task and set limits on the efficiency of the
models. In this paper, we propose a fresh design
choice for structured prediction. Specifically, we
propose an order-theoretic perspective to under-
stand and model structures in NLP. Our approach
can predict many structures in natural language in
O(N) time where N is the length of the string and
is easily parallelizable. The linear-time complexity
means our method avoids comparing all O

(
N2

)
token pairs. The key innovation that enables this
speed-up is the following: Rather than considering
structures as graphs, we view them as partial
orderings of the tokens in the strings.

Concretely, we treat structured prediction as a
regression task. Because the set of real numbers R
is naturally ordered by <, we use real numbers as
the proxy for determining the partial order. We pre-
dict K numbers for each token and sort the tokens
K times accordingly. Two tokens are partially
ordered by ≺ if and only if they are ordered by <
in all of the K orders above. We further provide an
efficiency guarantee based on the well-established
result in order theory that partial orders satisfying
particular conditions can be represented as the
intersection of as few as K = 2 total orders. We
show that most structures in natural language,
including trees, alignments, and set partitions,
satisfy these conditions. This result enables us to
develop a linear-time algorithm for predicting such
structures. Fig. 1 gives an illustrative example of
our framework applied to dependency parsing, in
which the structure being modeled is a tree.

On dependency parsing, our experimental results

show that our method achieves 96.1 labeled attach-
ment score (LAS) and 97.1 unlabeled attachment
score (UAS) by using an intersection of only 2 total
orders, 96.4 LAS and 97.4 UAS using an intersec-
tion of 4 total orders on the English Penn Treebank
(Marcus et al., 1993). Furthermore, our method
sets the new state of the art on Universal Dependen-
cies 2.2 (Nivre et al., 2018), while being 10 times
faster and more memory efficient than graph-based
models. Our method also achieves 79.2 F1 score
with only 4 total orders on the English OntoNotes
coreference resolution benchmark (Pradhan et al.,
2012), which is on par with the state of the art,
while being twice as fast and using less memory.

2 Motivation

We now provide high-level motivation for
order-theoretic structured prediction.

2.1 Linearization of Structure

The NLP literature abounds with linear-time struc-
tured prediction models. Many are derived from the
classical shift–reduce parsers (Knuth, 1965) from
the compiler literature. One recent line of research
has derived linear-time parsers by reducing parsing
to tagging (Gómez-Rodríguez and Vilares, 2018;
Strzyz et al., 2020; Kitaev and Klein, 2020; Amini
et al., 2023, inter alia). In these methods, a finite set
of tags C is chosen such that all structures for pars-
ing a string can be embedded in CN for a string of
length N . Tagging-based parsers often yield strong
empirical performance in both constituency pars-
ing and projective dependency parsing. A natural
question is, then, why do we need another method?

We give two motivations. The first linguistic



and the second mathematical. Linguistically, the
underlying structures of natural language, e.g.,
syntax, semantics, and discourse, are often not
aligned with the surface form of a sequence due
to the existence of displacement (Chomsky, 2015,
Chapter 1, p. 44). The strong performance of
parsing-as-tagging schemes relies, in part, on there
being a tight correspondence between the surface
string and structure (Amini and Cotterell, 2022,
Proposition 1). Mathematically, the maximum
number of structures that a discrete tag sequence
can represent is at most O

(
|C|N

)
. This set is

simply not large enough to capture many structures
of interest in NLP. For instance, the space of
non-projective dependency trees of N tokens has
a cardinality of O

(
NN−2

)
(Cayley, 1889). There-

fore, to parse non-projective dependency trees with
tagging, the size of the tag set has to grow with N .
However, this implies performing a classification
task with an infinite number of classes.

2.2 An Illuminating Example
Order-theoretic approaches appear across computer
science. For instance, it is well-known that a binary
tree can be uniquely restored from its inorder
traversal and either the pre- or postorder traversal.
Consider the following binary tree.
Example 2.1 (Binary Tree).
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Figure 2: An example binary tree and a partial order
over the vertices induced by two total orders.

■

In a binary tree, a vertex x is a left descendant
of vertex y if and only if x is visited before y in
both of the in- and postorder traversal. E.g., in
Ex. 2.1, a is the left descendant of d and is visited
before d in both the in- and postorder traversal.

Another way of stating the above fact is that a
binary tree can be recovered from the combination
of two total orders, the one induced by the inorder
traversal and the one induced by the postorder
traversal. Combining these two total orders yields
a partial order, i.e., left descendant, from which
the left child of each vertex can be identified. This
partial order is shown on the right of Ex. 2.1. See
App. B and (Knuth, 1997, §2.3.1, Ex. 7) for further
discussion. In light of these observations, we con-
ceive an order-theoretic treatment that constructs

a tree by predicting multiple total orders and inter-
secting them. In terms of computation, predicting
total orders only requires labeling each node with
real numbers and then sorting, the complexity of
which is linear under radix sort. On the other hand,
an arc-factored model necessarily computes all
O
(
N2

)
pair-wise scores for every pair of vertices

to decide the existence of each edge.
Next, we generalize the intuitions gained from

this example. In §3, we explore the class of graphs
that can be efficiently represented with partial
orders. In §4, we show how to learn the ordering
efficiently with neural networks.

3 Order and Structure

In this section, we describe an order-theoretic treat-
ment for linguistic structure prediction. Specifi-
cally, we treat the structure to be predicted as a
partially ordered set, i.e., a set equipped with a
transitive relation ≺. We begin by revisiting how
linguistic structures are represented as graphs.

3.1 Linguistic Structures as Directed Graphs

Let Σ be an alphabet, i.e., a finite set of natural
language tokens, and let w = w1w2 · · ·wN ∈ Σ∗

be a string. Linguistic structure prediction is the
task of assigning a structure, e.g., a dependency
tree, to a given string w in natural language.

A wide range of linguistic structures are built
upon the relations between pairs of tokens. Many
structured prediction models are thus arc-factored,
i.e., they predict the arcs between a pair of tokens
and then combine them back into structures, which
are our focus in this work. Formally, their major
goal is to model the homogeneous relation1 on
the spanning node set V = {w1, w2, · · · , wN}
of a sentence w = w1 · · ·wN (Kübler et al., 2009).
The output space is defined by the input itself, in
contrast to the external label spaces in other tasks
such as classification or language generation.

Definition 3.1 (Structure). A structure over a
string w = w1w2 · · ·wN is a directed graph
G = (V ,E), where V = {w1, w2, · · · , wN},
E ⊆ V × V is the set of arcs. A typed structure
G = (V ,E,R) is a structure with E ⊆ V ×V ×R,
where R is a finite set of relation labels.

1A homogeneous relation on a set X is a binary relation
between two elements in X . It can be equivalently represented
with the set of edges in a graph in which X is the set of
vertices.



Most linguistic structures are naturally sub-
sumed under this definition. We give two examples
of linguistic structure prediction tasks.

Example 3.2 (Dependency Parsing; Kübler et al.,
2009, Def. 2.3). A dependency structure is a
structure G = (V ,E,R), where E ⊆ V × V ×R,
and R is the set of dependency relation types. If
(x, y, r) ∈ E, then ∀r′ ̸= r, (x, y, r′) /∈ E. ■

Example 3.3 (Coreference Resolution). A coref-
erence structure is a structure G = (V ,E,R),
where E ⊆ V × V ×R, and R = {r, r′}. The re-
lations r, r′ represent the entity mention and coref-
erence, respectively. We have (x, y, r) ∈ E if and
only if the textual span x :y in w is a mention of an
entity. (x1, x2, r′)∈E∧(y1, y2, r′)∈E if and only
if the textual spans x1 :y1 and x2 :y2 corefer. ■

3.2 From Directed Graphs to Partial Orders
Our treatment constructs linguistic structures with
techniques from order theory. The key is to cast
the relation between tokens as an order, which is
defined as follows.

Definition 3.4 (Order; Hausdorff, 1914). An order
over a set V is a relation ≺ such that the following
hold for all x, y, z ∈ V :

(a) irreflexivity: x⊀x;
(b) asymmetry: x≺ y =⇒ y⊀x;
(c) transitivity: x≺ y ∧ y≺ z =⇒ x≺ z.

Natural language exhibits structural sparsity in
that each token in a string usually only interacts
with very few other tokens with a particular relation.
For instance, in a dependency graph, there are no
direct paths between most of the word pairs. Such
sparsity, from an order-theoretic point of view, can
be characterized by incomparability in a partially
ordered set (Birkhoff, 1967, Chapter 1, p. 2).

By analogy, we define the following partially
ordered structure, which is a partially ordered set
mathematically. Its elements are the tokens of a
string, and its order encodes a linguistic structure.

Definition 3.5 (Partially Ordered Structure). Let
G = (V ,E) be a structure. Define the following
relation ≺: For x, y ∈ V , x≺ y ⇐⇒ (x, y) ∈ E.
We call P = (V ,E,≺) a partially ordered
structure if ≺ satisfies Def. 3.4.

The essential theoretical foundation of our
linguistic structure prediction framework is the
classic result that partial orders can be represented
by an intersection of total orders (Dushnik and
Miller, 1941). It is this result that enables us to use

real numbers as a proxy to determine the partial
ordering of tokens.
Definition 3.6 (Totally Ordered Structure). A
partially ordered structure P = (V ,E,≺) is
totally ordered if ∀x, y ∈ V : x≺ y ∨ y≺x.

Due to the transitivity of the ordering relation ≺,
a totally ordered structure of |V | elements always
contains |E| =

(|V |
2

)
relations. Given a collec-

tion of structures {(V ,Ek)}k∈[K] defined over the
same set of vertices V , their intersection is also
a structure—namely (V ,∩k∈[K]Ek), where K ∈
N, [K]

def
= {1, · · · ,K}. The intersection of par-

tially ordered structures remains partially ordered.
We now cite a famous theorem from order theory.

Theorem 3.7 (Szpilrajn (1930)). Every partially
ordered structure is contained in a totally ordered
structure, i.e., for every partially ordered structure
P = (V ,E,≺), there exists a totally ordered
structure T = (V , Ê,≺) such that E ⊆ Ê.

Thm. 3.7 ensures that every partially ordered
structure can be embedded in some totally ordered
structure in the sense that the totally ordered struc-
ture contains all the relations in the partially or-
dered structure. More importantly, a stronger result
can be shown: Partially ordered structures can al-
ways be represented as intersections of a collection
of totally ordered structures.
Definition 3.8 (Realizer). Let P = (V ,E,≺)
be a partially ordered structure. A realizer
RP of P is a set of totally ordered structures{
T 1, T 2, · · · , T K

}
over V , i.e., each T k =

(V ,Ek,≺k), such that E =
⋂

k∈[K]Ek. In other
words, ∀x, y ∈ V , x≺ y ⇐⇒

∧
k∈[K] x≺k y.

Theorem 3.9 (Dushnik and Miller, 1941, Thm.
2.32). There exists a realizer RP for every
partially ordered structure P = (V ,E,≺).

A corollary of the above theorem is that the
complexity of a partially ordered structure can
be characterized by its order dimension, which is
defined as follows.
Definition 3.10 (Order Dimension; Dushnik and
Miller, 1941). Let P = (V ,E,≺) be a partially
ordered structure. The order dimension DP of P
is the cardinality of the smallest realizer of P .

3.3 Efficiency Guarantees
In this section, we give an efficiency guarantee of
order-theoretic structured prediction. These effi-
ciency guarantees come from a series of results in



order theory and lattice theory (Dushnik and Miller,
1941; Hiraguchi, 1955; Birkhoff, 1967, inter alia).

First, it is important to note that not all partially
ordered structures can be represented as an inter-
section of a constant number of totally ordered
structures (Dushnik and Miller, 1941, Thm. 4.1).

In fact, testing whether the order dimension of
a partial order P is at most K, ∀K ≥ 3 is NP-
complete (Yannakakis, 1982). However, we con-
tend that most of the linguistic structures found
in natural language processing (Smith, 2011)—
including trees, equivalence classes (i.e., set parti-
tioning), and alignment (i.e., bipartite matching)—
can be represented as the intersection of 2 totally
ordered structures. We postulate that this is possi-
ble due to their innate sparsity, i.e., a token tends
to only interact with a few other tokens. These
assumptions are formalized as follows.

Assumption 3.11 (Sparsity). A class of linguis-
tic structures G = (V ,E) over natural language
strings w ∈ Σ∗ with N = |w| is called sparse if
O(|E|) = O(N).

Assumption 3.12 (Linguistic Structures are
2-dimensional). Structures in natural language
can be represented as intersections of 2 totally
ordered structures.

We justify Assumptions 3.11–3.12 in App. D.
Empirical evidence is also provided in §5, where
2-dimensional order-theoretic models are trained
to tackle two linguistic structure prediction tasks
with high performance.

3.4 Token-Split Structures

An obvious limitation of our formulation of linguis-
tic structures as partial orders is that by Def. 3.4,
partial order is transitive. In other words, x≺ y ∧
y≺ z implies x≺ z, which, however, does not hold
in the structures characterized by the directed graph
formalization in Def. 3.1. In addition, we note
that our notation of structures generalizes to cyclic
graphs. However, partially ordered structures are
inherently acyclic due to the transitivity of ≺. We
now introduce the token-split structure, which
enables cycles and removes redundant edges intro-
duced by transitivity in partially ordered structures.

Definition 3.13 (Token-Split Structure). A token-
split structure induced by a structure G = (V ,E)
is a structure P = (V̂ , Ê,≺) such that
(a) V̂

def
= V r ∪ V b, where V r = {xr | x ∈

V }, V b = {xb | x ∈ V };

(b) V r ∩ V b = ∅;
(c) Ê =

{
(xr, yb) | (x, y) ∈ E

}
.

In other words, a token-split structure maps
the edges from the original structure, including
self-loops, into a bipartite graph in which the
edges are oriented from V r to V b. An example is
displayed in Fig. 1b.

Given a token-split structure P = (V̂ , Ê,≺), we
can recover the original structure G = (V ,E) from
which P is induced using the following equation

E={(x, y) | xr ∈ V r∧ yb ∈ V b∧ xr ≺ yb} (1)

Theorem 3.14. Token-split structures are partially
ordered.

Proof. See App. C.1. ■

Remark 3.15 (Conversion between Structures
and Partially Ordered Structures). Thm. 3.14 and
Eq. (1) ensure that we can convert back and forth
between any structure under Def. 3.1 and a par-
tially ordered structure. Specifically, they enable
us to first convert a structure to a partially ordered
structure, predict it order-theoretically, and then
finally convert it back to a structure.

4 A Neural Parameterization

In this section, we describe the core technical
contribution of our work. We show how to model
partially ordered structures with a neural model.
Specifically, we define a parameterized realizer of
Def. 3.8 and an objective function for training the
realizer to model the token-split structures. We also
give algorithms for efficient training and decoding.

4.1 Neuralized Total Order

We now discuss a parameterized neural network
that induces partial orders as the intersection of
several total orders.

Definition 4.1 (Functional Realizer). A func-
tional realizer of a partially ordered structure
P = (V ,E,≺) is a set of mappings Fθ =

{f (1)
θ , · · · , f (K)

θ }, where θ is the set of learnable
parameters shared among f

(k)
θ , and the order di-

mension K ∈ N is a hyperparameter of the realizer.
The realize element f (k)

θ : V → R, ∀k ∈ [K] maps
each vertex in the input structure to a real number.
We overload Fθ as a mapping Fθ : V → RK ,

defined as Fθ(x)
def
=

[
f
(1)
θ (x), · · · , f (K)

θ (x)
]⊤

.



The set of real numbers R is totally or-
dered, in which the order is given by the
< (less than) relation. Each individual
f
(k)
θ ∈ Fθ induces a total order T k =(
V , {(x, y) | x, y ∈ V , f

(k)
θ (x) < f

(k)
θ (y)},≺k

)
.2

The functional realizer assigns K total orders
{T 1, T 2, · · · , T K} to the input string. During de-
coding, an edge from x to y exists in P if and only
if x≺k y holds in T k, ∀k ∈ [K].

Implementing Def. 4.1 with neural networks is
straightforward. To obtain f

(k)
θ (xr) and f

(k)
θ (xb),

where xr, xb are two vertices introduced by the
token-split formulation (Def. 3.13) corresponding
to the same token wx in the input, we apply
two linear projections on the contextualized
representation of x given by a pretrained model
parameterized by θ.3 In total, 2K real numbers
are predicted for each input token.

4.2 Learning a Functional Realizer
To learn the functional realizers with a gradient-
based procedure, we need a differentiable objective.
In a partially ordered structure P with functional
realizer Fθ = {f (1)

θ , f
(2)
θ , · · · , f (K)

θ }, we have

x≺ y if and only if
∧

k∈[K]

(
f
(k)
θ (x) < f

(k)
θ (y)

)
.

We re-express this condition as follows:

Fθ(x, y)
def
= max

k∈[K]

(
f
(k)
θ (x)− f

(k)
θ (y)

)
< 0 (2)

We call Fθ a pair-wise function. On the
other hand, we have x⊀ y if and only if∨

k∈[K]

(
f
(k)
θ (x) ≥ f

(k)
θ (y)

)
. This condition

can be re-expressed as Fθ(x, y) ≥ 0. Thus,
empirically, the smaller Fθ(x, y) is, the more
likely the relation x≺ y exists.

We now define a training objective, which en-
courages the model to make decisions that comply
with the order constraints enforced by the struc-
tures, described by Eq. (2). Given the token-split
version P = (V ,E,≺) induced by the structure
being modeled, we consider the following objective

L(θ) = log
∑

(x,y)∈V 2\E

exp−Fθ(x, y)+

log
∑

(x,y)∈E

expFθ(x, y)
(3)

2In this work, we assume f
(k)
θ is injective, i.e., ∀x, y ∈

V , f
(k)
θ (x) ̸= f

(k)
θ (y). See §8.4 for further discussion on the

practicality of this assumption.
3If wx consists of more than one subword due to tokeniza-

tion, we apply the projection to the representation of the last
subword.

The first term maximizes Fθ(x, y) for x⊀ y, while
the second minimizes Fθ(x, y) for x≺ y. Note that
in the second term, we assume O(|E|) = O(N) in
a linguistic structure following Assumption 3.11.

4.3 An Efficient Algorithm
We remark that both training and decoding of the
proposed model can be regarded as performing an
aggregation for every token x ∈ V .

Definition 4.2 (Aggregation). An ⊕-aggregation
given a token x for a pair-wise function Fθ over
the set V is an operation

⊕
y∈V Fθ(x, y), where

⊕ is a commutative and associative operation over
which real number addition + is distributive.

Aggregation is a common abstraction for com-
puting the relation between a token x and every
other token. The aggregation operator is associa-
tive and commutative, thus can be computed in
parallel. The number of required computations is
O(|V |) for naïvely computing an aggregation of x.

During training, we ⊕-aggregate using
negative log-sum-exp, i.e., we compute
− log

∑
y exp(−Fθ(x, y)) for all x, to compute

the first term of Eq. (3). In greedy decoding, we
⊕-aggregate by computing miny Fθ(x, y) to find
the optimal relation arc from each x. Naïvely, ⊕-
aggregating for every token x ∈ V takesO

(
N2

)
in

total, as each aggregand has a complexity ofO(N).
However, the partial order we assigned over V
allows us to efficiently compute the aggregands.

For K = 2, we can inspect Eq. (2) to see that
Fθ(x, y) is equal to either f

(1)
θ (x) − f

(1)
θ (y) or

f
(2)
θ (x) − f

(2)
θ (y). We now define the following

two subsets of V for k ∈ {1, 2}:

Sk(x)=
{
y | Fθ(x, y) = f

(k)
θ (x)− f

(k)
θ (y)

}
Using this notation, we can write the following⊕

(x,y)∈V 2

Fθ(x, y) =
⊕
x∈V

⊕
y∈V

Fθ(x, y) (5a)

=
⊕
x∈V

⊕
y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
︸ ︷︷ ︸

def
=G1

(5b)

⊕
⊕
x∈V

⊕
y∈S2(x)

(
f
(2)
θ (x)− f

(2)
θ (y)

)
︸ ︷︷ ︸

def
=G2

We now give an efficient algorithm to compute G1

and, by symmetry, G2. Our first observation is that,



by distributivity, we can write

G1 =
⊕
x∈V

⊕
y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
(6a)

=
⊕
x∈V

(
f
(1)
θ (x) +

⊕
y∈S1(x)

−f (1)
θ (y)

)
︸ ︷︷ ︸

def
=G1(x)

(6b)

Alone, this application of dynamic program-
ming does not reduce the complexity from
O
(
N2

)
to O(N) as desired because the inner

aggregand,
⊕

y∈S1(x)
−f (1)

θ (y), itself still takes
O(N) time. However, we are able to compute⊕

y∈S1(x)
−f (1)

θ (y) in amortized O(1) time due
to Fredman’s (1976, Eq. 1) algebraic trick.

The strategy is to sort4 the vertices of
the partially ordered structure according
to f

(1)
θ (y) − f

(2)
θ (y). Thus, if we have

f
(1)
θ (y) − f

(2)
θ (y) < f

(1)
θ (x) − f

(2)
θ (x), sim-

ple algebra reveals that f
(2)
θ (x) − f

(2)
θ (y) <

f
(1)
θ (x)− f

(1)
θ (y). Thus, for a given x, every ver-

tex y that comes before x in the sorted order satis-
fies Fθ(x, y) = f

(1)
θ (x)− f

(1)
θ (y). Aggregating in

this order enables intermediate results to be reused.

Algorithm 1 Computing G1 when K = 2.

1: procedure COMPUTE-G1(f (1)
θ , f

(2)
θ , V )

2: U ← sort
(
V , key=f

(1)
θ −f

(2)
θ

)
3: G1, s1 ← 0,0 ▷ 0 is the zero element of ⊕
4: for n = 1 up to N :
5: q1= f

(1)
θ (Un) + s1 ▷ q1 = G1(Un)

6: G1⊕= q1
7: s1⊕= −f (1)

θ (Un)
8: return G1

Likewise, if we sorted in reverse, i.e., according
to f

(2)
θ (y)− f

(1)
θ (y), the same manipulation yields

that for a given x, every vertex y that comes
before x in the reverse sorted order satisfies
Fθ(x, y) = f

(2)
θ (x)− f

(2)
θ (y).

The algorithm for computing G1 is given in
Algorithm 1, which has O(N) computations in
total. Moreover, if parallelized, it can be run
in O(logN) time. For K > 2, we speculate
that the aggregation algorithm can be done in
O
(
KN logK−2N

)
. We leave this to future work.

See App. E.2 for further discussion.
4As before, we take the complexity of sorting to be O(N)

where we can apply radix sort as implemented by Pytorch.

5 Experiments

We report the experimental results on two represen-
tative linguistic structure prediction problems in
NLP, namely dependency parsing and coreference
resolution. The graph-theoretic definitions of these
tasks are given in Examples 3.2 and 3.3. We first
convert the linguistic structures to partially ordered
(token-split) structures as described in §3.4, and
then apply the neural method described in §4 to
model the partially ordered structures.

5.1 Dependency Parsing
Modeling. Orders ≺ are not typed in Def. 3.5.
In other words, under Def. 3.5, all relations in
a partially ordered structure are of the same
type. To model dependency type labels, we apply
a token-level classifier on the contextualized
representation. During decoding, similar to
arc-factored models for dependency parsing, we
keep the head word that minimizes Fθ(x, y) for
a given x, i.e., argminy∈V Fθ(x, y).

For pretrained language models, we use
XLNet-large-cased5 (Yang et al., 2019) for
PTB, bert-base-chinese6 for CTB, and
bert-base-multilingual-cased7 for UD.

Datasets. We conduct experiments on the En-
glish Penn Treebank (PTB; Marcus et al., 1993),
the Chinese Penn Treebank (CTB; Xue et al., 2005),
and the Universal Dependencies 2.2 (UD; Nivre
et al., 2018). Hyperparameter settings and dataset
statistics are given in Apps. F.1 and G.1.

Accuracy. We report the experimental results
in Tab. 1. The full results on UD are included
in App. I.1. On PTB and UD, our method
achieves state-of-the-art performance compared
with O

(
N3

)
(Yang and Tu, 2022), O

(
N2

)
(Mrini

et al., 2020), and O(N) (Amini et al., 2023) meth-
ods. Although Amini et al.’s (2023) method has
the same complexity as ours, it is worth noting
that our method is more general since it can handle
non-projective dependencies without using pseudo-
projectivization (Nivre and Nilsson, 2005).

Efficiency. We evaluate the efficiency of our
method with two representative baseline models.
As depicted in Tab. 2, we observe that our method
with K = 2 is almost 10 times as fast as Biaff

5https://huggingface.co/xlnet-large-cased
6https://huggingface.co/bert-base-chinese
7https://huggingface.co/

bert-base-multilingual-cased

https://huggingface.co/xlnet-large-cased
https://huggingface.co/bert-base-chinese
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased


PTB CTB UD

Model UAS LAS UAS LAS LAS

Zhou and Zhao∗ 97.0 95.4 91.2 89.2 -
Mrini et al.∗ 97.4 96.3 94.6 89.3 -

Chen and Manning 91.8 89.6 83.9 82.4 -
Dozat and Manning 95.7 94.1 89.3 88.2 91.8

Yang and Tu# 97.4 95.8 93.3 92.3 91.9
Amini et al. 97.4 96.4 93.2 91.9 91.8

Ours (K = 2) 97.1 96.1 90.7 89.5 91.2
Ours (K = 4) 97.4 96.4 92.4 91.4 92.1

Table 1: Experimental results on PTB, CTB, and UD.
∗ indicates usage of extra constituency annotation. #

is our re-implementation using the same pretrained en-
coder as ours. K is the dimension of the realizer used.

Speed (sent/s) ↑ Memory (GB) ↓

#token Ours Hexa Biaff Ours Hexa Biaff

32 3232 2916 493 1.7 2.9 4.5
64 3332 3011 328 1.7 3.0 10.1
128 3182 2649 202 1.9 3.7 30.6
256 3314 3270 98 3.1 4.5 56.2

overall 3347 3176 338 1.7 3.0 10.6

Table 2: Speed and memory consumption comparison
on PTB test set. We report results averaged over 3
random runs of our method with K = 2. The other
settings and the results for Hexa and Biaff are taken
from Amini et al. (2023, Tab. 3).

(Dozat and Manning, 2017), and consumes less
memory than Hexa (Amini et al., 2023), which is
O(N) in space complexity. We further include
some qualitative examples using K = 2 in App. J
for a more intuitive picture of our method.

5.2 Coreference Resolution
Modeling. Our method operates in a two-stage
manner to accommodate the two relations in
Ex. 3.3. First, it extracts a list of entity mentions
using the partial order induced by r (mention
relation). In other words, x≺ y ⇐⇒ span x :y is
an entity mention. Then, it models the partial order
induced by r′ (coreference relation) over the ex-
tracted mentions. In other words, m1≺m2 ⇐⇒
mention m1 corefers to m2. To find the optimal
coreferent antecedent for each mention m, we
keep m′ that minimizes Fθ(m,m′).

The overall complexity of the coreference
resolution model is O(N), since the complexity
of the encoder used (Beltagy et al., 2020) and
the number of valid mentions are both O(N),

assuming entity mentions are constituents (Liu
et al., 2022). We experiment on the CoNLL-2012
English shared task dataset (OntoNotes; Pradhan
et al., 2012). Hyperparameter settings and dataset
statistics are given in Apps. F.2 and G.2.

Accuracy. The experimental results are dis-
played in Tab. 3. Similar to the results for
dependency parsing, an intersection of 2 total
orders can already achieve reasonable performance
on coreference resolution. This provides empirical
evidence for our assertion in §3.3 that most
structures in NLP can be represented as the
intersection of at most 2 total orders. When K = 4,
the performance of our method is comparable
to Kirstain et al. (2021), which uses the same
pretrained encoder as ours and requires an O

(
N2

)
biaffine product computation for token-pair scores.

Efficiency. We compare the efficiency of our
method with Kirstain et al.’s (2021) method. It is
worth noting that Kirstain et al. (2021) has already
performed aggressive optimization in both the
speed and memory footprint of coreference model-
ing. Our method is still 2 times as fast, achieving a
speed of 82.8 documents per second vs. 41.9, while
using less memory, especially on long documents.
The full efficiency statistics are given in App. H.

Avg. P Avg. R Avg. F1

Lee et al. (2017) 69.9 64.7 67.2
Kantor and Globerson 76.1 77.1 76.6

Joshi et al. (2020) 80.1 78.9 79.6
Xu and Choi (2020) 80.3 79.5 79.9
Kirstain et al. (2021) 81.2 79.4 80.3

Ours (K = 2) 75.2 74.8 75.0
Ours (K = 4) 79.3 79.0 79.2

Table 3: Experimental results on the OntoNotes bench-
mark. K is the dimension of the realizer.

6 Related Work8

6.1 Structured Prediction
Structured prediction constitutes an important part
of natural language processing. It involves the
modeling of interrelated variables or outputs with
structural constraints. Some representative struc-
tured prediction problems are sequence tagging
(Church, 1988), dependency parsing (Kübler et al.,
2009), and coreference resolution (Stede, 2012).

8More related work is included in App. A.



Structured prediction can often be formulated
as learning and inference of probabilistic graphical
models (Smith, 2011, §2.2). The key idea is to
represent the probability distribution over the
output space using a graph, in which each vertex
corresponds to a random variable, and each edge
corresponds to a dependence relation between two
random variables.

6.2 Graph-Based Parsing

Graph-based parsers, or arc-factored parsers, con-
struct graphs by scoring all possible arcs (Eisner,
1996; McDonald and Pereira, 2006) between each
pair of words. At inference time, they use either
maximum spanning tree (MST) finding algorithms
(Chu and Liu, 1965; Edmonds, 1967; Tarjan, 1977),
or the projective MST algorithm (Eisner, 1996) to
build the valid dependency trees with maximum
score. Kiperwasser and Goldberg (2016) present a
neural graph-based parser that uses the same kind
of attention mechanism as Bahdanau et al. (2015)
for computing arc scores. Greedy decoding that
independently assigns a head word to each word
(Dozat and Manning, 2017) is also widely used as
an approximation to exact inference algorithms.

6.3 Tagging-Based Parsing

Inspired by transition-based parsers (Knuth, 1965)
and Bangalore and Joshi’s (1999) seminal work
on supertagging, one line of work uses pretrained
models to parse dependency trees by inferring tags
for each word in the input sequence. Li et al. (2018)
and Kiperwasser and Ballesteros (2018) predict the
relative position of the dependent with respect to
its head in a sequence-to-sequence manner. Strzyz
et al. (2019) give a framework for analyzing similar
tagging schemes. Gómez-Rodríguez et al. (2020)
infer a chunk of actions in a transition-based
system for each word in the sequence.

For non-projective dependency parsing, Gómez-
Rodríguez and Nivre (2010, 2013) show that ef-
ficient parsers exist for 2-planar trees (Yli-Jyrä,
2003), a sub-class of non-projective trees whose
arcs can be partitioned into 2 sets while arcs in
the same set do not cross each other. Strzyz et al.
(2020) propose an encoding scheme for 2-planar
trees, enabling a tagging-based parser for such trees.
As mentioned in §2.1, to handle the entire set of
non-projective trees, the size of the tag set has to be
unrestricted, which limits the efficiency and appli-
cability of this series of approaches of approaches.

6.4 Parsing with Syntactic Distance

Shen et al. (2018a,b) introduce a constituent pars-
ing scheme which is also based on the comparison
of real numbers. In this scheme, a neural model
is trained to assign one real number, termed the
syntactic distance, to the gap between every pair
of neighboring tokens. To parse a span into two
sub-constituents, the gap with the largest syntactic
distance within that span is chosen as the split point.
Parsing can be done by recursively performing the
above splitting procedure starting from a given
string. The algorithm has a runtime complexity of
O(N logN), which is significantly more efficient
than chart-based parsers with O

(
N2

)
complexity.

However, this method does not generalize easily to
perform non-context-free parsing, since it cannot
handle the possible discontinuity of constituents.
Moreover, the recursive splitting procedure
restricts the output space of parse trees to be a
subset of phrase-structure trees (Dyer et al., 2019).

7 Conclusion

In this paper, we propose an order-theoretic
treatment of linguistic structured prediction.
Theoretical and empirical results show that most
linguistic structure prediction problems can be
solved in linear time and memory by framing them
as partial orderings of the tokens in the input string.
We demonstrate the effectiveness of our method on
dependency parsing and coreference resolution, set-
ting the new state-of-the-art accuracy in some cases
and achieving significant efficiency improvements.

8 Limitations

8.1 Decoding Algorithms

This work does not provide algorithms for partic-
ular structures or algorithms that ensure the well-
formedness of structures, such as maximum span-
ning trees and projective trees. It remains to be
investigated whether existing constrained decod-
ing algorithms for arc-factored models (Chu and
Liu, 1965; Edmonds, 1967; Eisner, 1997, inter
alia) have their counterparts in the order-theoretic
method. We would like to explore decoding al-
gorithms for structured prediction under order-
theoretic formulation in future work.

8.2 Interpretability

In our method, the interactions between tokens are
not directly modeled as in graph-based structured



prediction models, which makes it more difficult
to interpret the output of our model. In addition,
we leave to future work the investigation of the
total ordering metrics (see App. J) learned by the
realizers in our method.

8.3 Hardness of Learning

Intuitively, it is harder to learn partial orders over
strings than directly modeling the arcs in a graph,
since our order-theoretic treatment has much fewer
parameters when scoring token pairs. We also
observed in our experiments that order-theoretic
models take more training iterations to converge
than arc-factored models.

For instance, consider the modeling of a tree
structure with N nodes with N − 1 arcs using
partial order, which implies N − 1 constraints of
the form x ≺ y and N2 − 2N + 1 constraints of
x⊀ y. From a theoretical perspective, K = 2 is
sufficient to represent such a structure as shown in
§3. In other words, there always exist 2 total orders
whose intersection satisfies the aforementioned
N(N − 1) constraints. However, it might not be
easy to find such orders in practice.

A realizer with K beyond 2 can more easily sat-
isfy the constraints, especially of the form x⊀ y—
since there are more constraints of this form. It
allows more possibilities for

∨
k∈[K] f

(k)
θ (x) ≥

f
(k)
θ (y) (i.e., more choices of k to satisfy the ex-

pression). On the other hand, using a small K
might make it harder to satisfy the constraints.

We plan to further investigate the hardness of
learning a string partial order in future work.

8.4 Precision of floating-point numbers and
numerical stability

Our method might be affected by the finite
precision of floating-point numbers and numerical
instability when applied to very long strings.
Although we did not encounter such issues in our
experiments (N ≤ 4096 = 212), issues might
arise when N > 65536 = 216 if bfloat16 or
half precision is used. In such extreme cases, our
assumption that ∀k ∈ [K], f

(k)
θ is injective cannot

be fulfilled. Thus, not all totally ordered structures
of N elements can be represented, and our method
might not exhibit the desired behavior.
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Grioni, Normunds Grūzı̄tis, Bruno Guillaume, Cé-
line Guillot-Barbance, Nizar Habash, Jan Hajič, Jan
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A Related Work

A.1 Ordinal Regression
Ordinal regression is a family of problems that involve ranking a set of objects. Unlike classification, the
label spaces in ordinal regression exhibit some natural ordering in its elements (McCullagh, 1980). For
instance, in information retrieval, a ranking model sorts a set of documents typically according to the
document’s relevance to the query. Practically, ordinal regression can either be tackled as either regression
or classification by treating the ranks as real-values or the assignment to a particular rank value as a
classification (Shawe-Taylor and Cristianini, 2004).

A.2 Order Embeddings of Lexicons
The notion of partial order has also been explored for learning word embeddings. The lexicons of
natural languages exhibit hierarchical structures according to the concepts that the words represent
(Miller, 1994). For instance, ‘cat’ and ‘dog’ are ‘animal’, ‘animal’ and ‘plant’ are ‘living thing’. Order
embeddings (Vendrov et al., 2015; Athiwaratkun and Wilson, 2018) propose to learn such property by
learning embeddings that encode such partial order on the lexicon, resulting in improved performance on
downstream tasks such as image caption retrieval.

B An Order-Theoretic Re-evaluation of §2.2

b
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d
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f

e g

Inorder : abcdefg

Postorder: acbegfd

(a) The example binary tree in §2.2 and its traversal sequences.
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(b) Partial order of §2.2 defined by the intersection of in- and postorder.
A → B represents the relation A≺1 B.

a
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d

f

e g

(c) Partial order of §2.2 defined by the intersection of reversed in- and pos-
torder. A → B represents the relation A≺2 B.

Figure 3: An order-theoretic re-evaluation of Thm. B.1.

Theorem B.1 (A binary tree and its traversal; Knuth, 1997, §2.3.1, Ex. 7). Given the inorder and either the
pre- or postorder traversal of the vertices in a binary tree, the binary tree structure can be reconstructed.

Proof Sketch (order-theoretic). Without loss of generality, we explain the case of the combination of in-
and postorder. V denotes the set of vertices in the binary tree. First, the intersection of in- and postorder
defines a partial order relation P1 = (V ,E1,≺1). For any 2 vertices x, y in the binary tree, x≺1 y if and
only if x is a left descendant of y. I.e., x is either the left child or a descendant of the left child of y (see
Fig. 3b). Since x is visited before visiting y in both inorder traversal and postorder traversal, if and only
if x is the left descendant of y. The left child of each vertex in V can be decoded from P1 by finding



the child with the deepest subtree. Second, the intersection of reversed inorder and postorder defines a
partial order relation P2 = (V ,E2,≺2). For any 2 vertices x, y in the binary tree, x≺2 y if and only if x
is a right descendant of y (see Fig. 3c). Since x is visited before visiting y in both the reversed inorder
traversal and postorder traversal, if and only if x is the right descendant of y. The right child of each
vertex in V can be decoded from P2 also by finding the child with the deepest subtree. Thus, the original
binary tree can be reconstructed.

■

C Proofs on the Partially Ordered Properties of Structures

C.1 Proof of Thm. 3.14
Theorem 3.14. Token-split structures are partially ordered.

Proof. We show that a token-split structure P =
(
V̂ , Ê,≺

)
satisfies all the properties of partially ordered

structure defined in Def. 3.4.

1. irreflexivity: By Def. 3.13 (c), for all x ∈ V̂ , x⊀x.
2. asymmetry: Suppose that ∃x, y, x ̸= y, s.t. x≺ y ∧ y≺x. By Definitions 3.13 (b) and 3.13 (c),

x, y ∈ V r ∩ V b = ∅. Thus, x≺ y =⇒ y⊀x.
3. transitivity: x≺ y ∧ y≺ z cannot hold by Def. 3.13 (c). Since x≺ y implies x ∈ V r ∧ y ∈ V b, while

y≺ z implies y ∈ V r ∧ x ∈ V b, a contradiction occurs due to y ∈ V r ∩ V b = ∅ by Def. 3.13 (b).
x≺ y ∧ y≺ z =⇒ x≺ z holds since the antecedent of the proposition is always false.

Thus, token-split structures are partially ordered. ■

D Guarantees of Order Dimension of Linguistic Structures

We justify the guarantees of order dimension of linguistic structures. One conventional way to characterize
the dimension of partial orders is from a lattice-theoretic point of view. A basic result tells us that a
partial order is 2-dimensional if and only if its complete lattice embedding has a planar Hasse diagram
(Baker et al., 1972). In other words, its complete lattice embedding can be drawn on a plane without
any crossing edges.

Theorem D.1 (Baker et al., 1972, Thm. 4.1). Suppose P = (V ,E,≺) is a partially ordered structure.
Then the following are equivalent:

(a) D(P) ≤ 2.
(b) The complete lattice embedding of P has a planar Hasse diagram.

Remark D.2. MacNeille (1937) and Birkhoff (1967, Chapter 5) introduced the construction of complete
lattice embeddings for any partial order. Although it is difficult in practice to compute the complete lattice
embedding for a partially ordered structure (MacNeille, 1937), Thm. D.1 can still provide an empirical
characterization of the class of structures that can be efficiently represented. According to Euler’s formula,
the average degree of a vertex in a planar graph cannot exceed 6 (West, 2018, §6.1.23), which intuitively
forces the partially ordered structures that can be represented as an intersection of 2 totally ordered
structures to be sparse enough—thus to have planar complete lattice embeddings.

Fortunately, this is often the case in natural language. Such phenomenon is closely related to what
is termed valency by Tesnière (1959, Part 1, Book D). The number of actants (i.e., arguments) needed
to implement the function of a word is a property of the word itself—a constant that does not change
with the context (cf. categories9 in categorial grammars (Adjukiewicz, 1935; Bar-Hillel, 1953; Steedman,
1987)). In natural language, the valency of a word is often a small constant. For instance, Steedman (2000,
Chapter 3, fn. 10 and Chapter 8, p. 212) observes that the highest valency in the Dutch and English
lexicon can be regarded as bounded by 4.

9E.g., the English word “give” may have the category (VP/NP)/NP, meaning that it needs two NP categories to the right to
form a VP. An example is the verb phrase “give me an apple”, in which “me” and “an apple” are noun phrases.



We refer interested readers to MacNeille (1937) and Birkhoff (1967, Chapter 5) for the construction
of complete lattice embeddings. Here, we give a weaker but more practical efficiency guarantee, based
on a method to construct large partially ordered structures from smaller partially ordered structures.

Definition D.3 (Series-Parallel Partial Orders; Valdes et al., 1979). A partially ordered structure is
series-parallel if it satisfies the following inductive definition:
(a) A single-vertex structure with no edges is series-parallel;
(b) If partially ordered structures P1 = (V 1, E1,≺) and P2 = (V 2, E2,≺) are series-parallel, so is

the partially ordered structures constructed by either of the following operations:
i. Parallel composition:
Pp = (V 1 ∪ V 2, E1 ∪ E2,≺).

ii. Series composition:
Ps = (V 1 ∪ V 2, E1 ∪ E2 ∪ (M1×N 2),≺), whereM1 is the set of sinks of P1 and N 2 the set
of sources of P2.10

Theorem D.4 (Series-parallel partially ordered structures are 2-dimensional; Valdes et al., 1979). The
dimension of series-parallel partially ordered structures is at most 2.

Thm. D.4 provides the guarantee that many structures in natural language processing can be represented
as the intersection of 2 totally ordered structures. Since most structures of interest in NLP, such as trees
and forests (thereby alignments and set partitioning), can be subsumed under series-parallel partially
ordered structures, therefore have an order dimension of at most 2.

Proposition D.5 (Trees are 2-dimensional; Lawler, 1978). Directed tree partially ordered structures are
series-parallel. The order dimension of tree structures is at most 2.

Proposition D.6 (Forests are 2-dimensional). Forests are series-parallel. The order dimension of forest
structures is at most 2.

Proof. Forests are parallel compositions of trees. Thus, the proposition holds. ■

E Efficient Algorithm for ⊕-Aggregation

E.1 Correctness of Algorithm 1

Algorithm 1 Computing G1 when K = 2.

1: procedure COMPUTE-G1(f (1)
θ , f

(2)
θ , V )

2: U ← sort
(
V , key=f

(1)
θ −f

(2)
θ

)
3: G1, s1 ← 0,0 ▷ 0 is the zero element of ⊕
4: for n = 1 up to N :
5: q1= f

(1)
θ (Un) + s1 ▷ q1 = G1(Un)

6: G1⊕= q1
7: s1⊕= −f (1)

θ (Un)
8: return G1

Proposition E.1. In Algorithm 1, G1 =
⊕

x∈V
⊕

y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
.

Proof. By induction, we show that upon finishing step n, s1 =
⊕

y∈S1(Un+1)
−f (1)

θ (y), G1 =⊕
x∈{U1,··· ,Un}

⊕
y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
. First, S1(Un) = {U1, · · · , Un−1} holds as discussed

in §4.3. When n = 1, we have s1 = −f (1)
θ (U1), G1 = 0 =

⊕
x∈{U1}

⊕
y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
,

10Sources and sinks refer to the vertices without incoming arcs and without outgoing arcs, respectively.



since S1(U1) = ∅. Assume that our statements hold for n = j, when n = j + 1, it is straightforward
that s1 =

⊕
y∈S1(Uj+2)

−f (1)
θ (y). For G1, we have

G1 =
⊕

x∈{U1,··· ,Uj}

⊕
y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
⊕

f
(1)
θ (U j+1) +

⊕
y∈S1(Uj+1)

−f (1)
θ (y)

 (7a)

=
⊕

x∈{U1,··· ,Uj}

⊕
y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
⊕

⊕
y∈S1(Uj+1)

(
f
(1)
θ (U j+1)− f

(1)
θ (y)

)
(7b)

=
⊕

x∈{U1,··· ,Uj+1}

⊕
y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
(7c)

Thus, the claims hold for n = j + 1, establishing the induction step. ■

Proposition E.2. Algorithm 1 runs in O(N) time and space. With parallel computing, Algorithm 1 runs
in O(logN) span.

Proof. The sorting step in line 2 can be executed in O(N) time and space. The for loop in lines 4 to 7
runs in O(N) time and space. In total, Algorithm 1 runs in O(N) time and space. Computing s1 in each
step is a prefix-sum of −f (1)

θ (Un), which can be done in O(logN) span with parallel computing. q1, G1

in each step can be computed in O(1) in parallel following the computation of all s1. Thus, the total span
of Algorithm 1 is O(logN). ■

E.2 Order Dimension K > 2

Finding all y ∈ V such that x≺ y in a partial order for a given x ∈ V requires efficiently finding all y
that satisfy

∧
k∈[K](f

(k)
θ (x) < f

(k)
θ (y)). We remark that this problem bears a resemblance to orthogonal

range searching in a K-dimensional space (Berg et al., 2008, Chapter 5), i.e., for a given x, we aim to find
all y such that (f (1)

θ (y), f
(2)
θ (y), · · · , f (K)

θ (y)) is within the range (f
(1)
θ (x),∞)× (f

(2)
θ (x),∞)× · · · ×

(fK
θ (x),∞). This problem can be naïvely solved inO

(
logK−1N + ℓ

)
using a range tree (Bentley, 1979,

1980; Chazelle, 1988, 1990a,b), where ℓ is the cardinality of query results, as opposed to arc-factored
models in which solving the same problem takes O(N) computations.

For ⊕-aggregation, a more efficient algorithm which makes use of (K−1)-dimensional range trees
can be designed. In future work, we show that computing the complexity of ⊕-aggregation for all x ∈ V
can be further reduced to O

(
KN logK−2N

)
by applying Fredman’s (1976) trick which we used in

Algorithm 1. Extending the notation in §4.3, the set of all vertices V can be partitioned into K subsets
S1(x), · · · ,SK(x) for each x ∈ V , where Sk(x) = {y | y ∈ V ∧ Fθ(x, y) = f

(k)
θ (x) − f

(k)
θ (y)}.⊕

y∈V Fθ(x, y) can be decomposed into a ⊕-aggregation of K terms.

G(x)
def
=

⊕
y∈V

Fθ(x, y) (8a)

G(x) =
⊕

k∈[K]

(⊕
y∈Sk

Fθ(x, y)
)

︸ ︷︷ ︸
def
=Gk(x)

(8b)

We leave to future work showing that computing each Gk(x) takes O
(
logK−2N

)
.

F Hyperparameter Settings

F.1 Dependency Parsing
For pretrained language models, we use XLNet-large-cased11 (Yang et al., 2019) for PTB,
bert-base-chinese12 for CTB, and bert-base-multilingual-cased13 for UD. We set the dimen-
sion of POS tag embedding to 256 for all experiments. On top of concatenated pretrained representations

11https://huggingface.co/xlnet-large-cased
12https://huggingface.co/bert-base-chinese
13https://huggingface.co/bert-base-multilingual-cased

https://huggingface.co/xlnet-large-cased
https://huggingface.co/bert-base-chinese
https://huggingface.co/bert-base-multilingual-cased


and POS embedding, we use a 3-layer BiLSTM (Hochreiter and Schmidhuber, 1997) with a hidden size
of 768 for base-sized models (bert-base-chinese on CTB and bert-multilingual-cased on UD)
and 1024 for large-sized models (xlnet-large-cased on PTB). We apply dropout with a rate of 0.33 to
the concatenated embedding layer, between LSTM layers, and before the linear projection layer of the
realizer. We employ AdamW (Loshchilov and Hutter, 2019) with a learning rate of 2e−5 for pretrained
LMs and 1e−4 for POS embedding, BiLSTM, and linear projection during training. The gradient clipping
threshold is set to 1.0. The batch size for training is 32. The number of training epochs is 50.

F.2 Coreference Resolution
We use longformer-large-cased14 (Beltagy et al., 2020) as the pretrained encoder. We use the same hy-
perparameter settings as Kirstain et al. (2021). We use AdamW with a learning rate of 1e−5 for pretrained
LM and 3e−4 for the linear projection during training, with 5600 linear warmup steps. Training documents
are batched into batches with maximum 5000 tokens in total. The number of training epochs is 129.

G Datasets

G.1 Dependency Parsing
Preprocessing. We follow previous work (Kiperwasser and Goldberg, 2016; Dozat and Manning, 2017)
to derive the dependency annotations from the treebank annotations using the Stanford Dependency con-
verter v3.3.0 (de Marneffe and Manning, 2008). During evaluation, punctuations are omitted. Following
Amini et al. (2023), we provide gold part-of-speech tags to the model during training and decoding.

Splits. The dataset splits are consistent with previous work. For PTB, we follow the standard split of
Marcus et al. (1993), resulting in 39,832 sentences for training, 1,700 for development, and 2,416 for
testing. For CTB, we follow the split of Zhang and Clark (2008), resulting in 16,091 sentences for training,
803 for development, and 1,910 for testing. For UD, we follow previous work (Zhang et al., 2020; Yang
and Tu, 2022) and use the standard splits of the following corpora for experiments: BG-btb, CA-ancora,
CS-pdt, DE-gsd, EN-ewt, ES-ancora, FR-gsd, IT-isdt, NL-alpino, NO-rrt, RO-rrt, RU-syntagrus.

Licenses. The PTB and CTB datasets are licensed under LDC User Agreement. The UD dataset is
licensed under the Universal Dependencies License Agreement.

G.2 Coreference Resolution
Preprocessing. We experiment on the CoNLL-2012 English shared task dataset (OntoNotes; Pradhan
et al., 2012). We follow the preprocessing procedure of (Kirstain et al., 2021). During training and
decoding, the speaker information is provided to the model.

Splits. The OntoNotes dataset contains 2,802 documents for training, 343 for validation, and 348 for
testing. We use this official split following previous work (Lee et al., 2017; Kirstain et al., 2021).

Licenses. The OntoNotes dataset is licensed under LDC User Agreement.

H Efficiency Evaluation

H.1 Dependency Parsing
For efficiency evaluation, BERT-large-cased15 is used as the pretrained encoder for our method with
K = 2, hexatagger (Hexa; Amini et al., 2023), and biaffine model (Biaff). We use the English PTB test
set and truncate or pad the input sentences to the control length. The results are averaged over 3 random
runs on the same server with one Nvidia A100-80GB GPU. The other experimental settings are kept the
same (i.e., the version of PyTorch and transformers, FP32 precision, batching).

H.2 Coreference Resolution
14https://huggingface.co/allenai/longformer-large-4096
15https://huggingface.co/bert-large-cased
16https://huggingface.co/allenai/longformer-base-4096

https://huggingface.co/allenai/longformer-large-4096
https://huggingface.co/bert-large-cased
https://huggingface.co/allenai/longformer-base-4096


Speed (doc/s) ↑ Memory (GB) ↓

Doc length Ours (K = 4) Kirstain et al. Ours (K = 4) Kirstain et al.

512 72.5 35.7 7.3 7.4
1024 54.3 26.7 7.3 7.4
2048 33.8 15.9 9.4 9.5
4096 19.3 8.6 17.8 21.0

overall 82.8 41.9 7.3 7.4

Table 4: Comparison of speed and memory consumption on OntoNotes test set using Longformer-base16 as
pretrained encoder. Results are averaged over 3 random runs on the same server with one Nvidia A100-80GB GPU
using BERT-large as encoder. We use a batch size of 32 documents.

We compare the efficiency of our order-theoretic method with baseline coreference resolution model.
The full results are given in Tab. 4. On the OntoNotes coreference resolution benchmark, our method is
twice as fast as Kirstain et al.’s (2021) model while using less memory, especially on long documents.
It is worth noting that Kirstain et al. (2021) has already performed aggressive optimization in both the
speed and memory footprint of coreference modeling. I.e., they abandon the computation for textual span
representations and entity-pair representations, and use biaffine scorers to compute coreference scores.

I Additional Experimental Results

I.1 Dependency Parsing
We report additional experimental results on the UD dependency parsing dataset in Tab. 5. On average,
our model has state-of-the-art performance and outperforms all other baseline models on 5 languages.

bg ca cs de en es fr it nl no ro ru Avg.

Zhang et al. (2020) 90.77 91.29 91.54 80.46 87.32 90.86 87.96 91.91 88.62 91.02 86.90 93.33 89.33
Wang and Tu (2020) 90.53 92.83 92.12 81.73 89.72 92.07 88.53 92.78 90.19 91.88 85.88 92.67 90.07

+BERTmultilingual

Wang and Tu (2020) 91.30 93.60 92.09 82.00 90.75 92.62 89.32 93.66 91.21 91.74 86.40 92.61 90.61
Dozat and Manning (2017) 90.30 94.49 92.65 85.98 91.13 93.78 91.77 94.72 91.04 94.21 87.24 94.53 91.82
Yang and Tu (2022) 91.10 94.46 92.57 85.87 91.32 93.84 91.69 94.78 91.65 94.28 87.48 94.45 91.96
Amini et al. (2023) 92.87 93.79 92.82 85.18 90.85 93.17 91.50 94.72 91.89 93.95 87.54 94.03 91.86

ours (K = 2) 92.81 93.26 92.52 83.33 90.38 92.55 89.83 93.82 91.29 93.61 87.40 94.10 91.24
ours (K = 4) 93.82 94.23 93.03 84.68 91.40 93.62 90.95 94.59 92.58 94.22 88.45 94.40 92.16

Table 5: LAS scores on the test sets of 12 languages in UD. Our method with an order dimension of K = 4 achieves
competitive performance in all languages, being state-of-the-art on 5 languages and on average.

J Qualitative Examples

We present some qualitative examples from the PTB development set and one non-projective example
using our method with a 2-dimensional realizer, with their ground truth annotations on the right in Figures
4–9. For a more intuitive and compact exhibition, we plot the 2 total orders output by our model in
a 2-dimensional plane. Each axis corresponds to one of the 2 orders. The relation x≺ y encoded by∧

k∈{1,2} f
(k)
θ (x) < f

(k)
θ (y) is equivalent to x being located below and to the left of y.

Tokens in V r and V b are represented by and , respectively. The line segments between and
are the extracted dependency relations. In each of the plots, every (token in V r) except for the root is
connected to a (token in V b), which indicates is the modifier of . The roots (about, moving, ready,
had, adds, bought represented by ) are not connected to any other word.
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Figure 7: We had to think about it ahead of time
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Figure 9: A sentence with a non-projective dependency structure: John bought a car yesterday which is red


