
Linear-Time Modeling of Linguistic Structure:
An Order-Theoretic Perspective

Tianyu Liu Afra Amini Mrinmaya Sachan Ryan Cotterell
{tianyu.liu, afra.amini, mrinmaya.sachan, ryan.cotterell}@inf.ethz.ch

Abstract

Tasks that model the relation between pairs of
tokens in a string are a vital part of understand-
ing natural language. Such tasks, in general,
require exhaustive pair-wise comparisons
of tokens, thus having a quadratic runtime
complexity in the length of the string. We
show that these exhaustive comparisons can
be avoided, and, moreover, the complexity of
such tasks can be reduced to linear by casting
the relation between tokens as a partial order
over the string. Our method predicts real
numbers for each token in a string in parallel
and sorts the tokens accordingly, resulting in
total orders of the tokens in the string. Each
total order implies a set of arcs oriented from
smaller to greater tokens, sorted by their
predicted numbers. The intersection of total
orders results in a partial order over the set
of tokens in the string, which is then decoded
into a directed graph representing the desired
linguistic structure. Our experiments on
dependency parsing and coreference resolution
show that our method achieves state-of-the-art
or comparable performance. Moreover, the
linear complexity and parallelism of our
method double the speed of graph-based coref-
erence resolution models, and bring a 10-times
speed-up over graph-based dependency parsers.

https://github.com/lyutyuh/partial

1 Introduction

Strings of tokens in natural language are not
constructed arbitrarily. Indeed, which tokens
co-occur within the same string is highly structured
according to the rules of the language. Understand-
ing such structures is critical to the comprehension
of natural language. In natural language processing
(NLP), many structured prediction tasks aim to
automatically extract the underlying structure that
dictates the relationship between the tokens in
a string of text. Examples of such tasks include

dependency parsing, semantic parsing, and coref-
erence resolution. These tasks involve predicting
complex and hierarchical output structures, making
them inherently more challenging than their clas-
sification or regression counterparts. This paper
contributes a novel and generic framework for
structured prediction with empirical evidence from
dependency parsing and coreference resolution.

Many machine learning models for structured
prediction score and predict graphs (McDonald
et al., 2005; McDonald and Pereira, 2006), in
which the vertices represent the tokens in the string
and the edges represent the relations between them.
One common strategy to model a graph is to de-
compose it into smaller subgraphs that are tractable
(Taskar et al., 2004; Smith, 2011, §2.2). For
example, arc-factored models (Eisner, 1996) score
a graph only using the score of each constituent
edge. However, even with such simplification, the
computational costs of arc-factored models are
superlinear. The reason is that one needs to exhaus-
tively compute scores for all possible edges in the
graph, which, in general, requires at least quadratic
number of computations with respect to the length
of the string. Another common strategy employs
weighted transition-based systems (Knuth, 1965;
Yamada and Matsumoto, 2003; Nivre, 2003). They
decompose structures into transitions between
intermediate model states and do offer linear-time
algorithms. However, in general, predicting the
transitions between states cannot be parallelized,
which is another worrying limitation. The authors
of this paper contend the limitations of both graph-
based and transition-based models are frustrating
in an era when researchers are processing longer
and longer texts (Tay et al., 2021).

From a more abstract perspective, the mathemati-
cal and algorithmic foundation on which structured
prediction models rest can be regarded as a design
choice. Graph-based and transition-based model-
ing are both specific design choices. These design

mailto:tianyu.liu@inf.ethz.ch
mailto:afra.amini@inf.ethz.ch
mailto:mrinmaya.sachan@inf.ethz.ch
mailto:ryan.cotterell@inf.ethz.ch
https://github.com/lyutyuh/partial

(a) An example dependency
structure. The root arc and
arc labels are omitted.

(b) The token-split struc-
ture of Fig. 1a, which is a
partially ordered set.

(c) A realizer of Fig. 1b with 2 total orders such that E =
E1 ∩E2. E1 and E2 contain the arcs oriented from V r (red
nodes) to V b (blue nodes) and from left to right.

Figure 1: An overview of our method. To model a linguistic structure, represented as a directed graph in Fig. 1a,
we first convert it into a token-split structure (see §3.4) in Fig. 1b, which is a partial order, to remove undesired
transitivity. Then, 2 real numbers are predicted for each vertex in Fig. 1b. The positions of vertices in Fig. 1c in
the inequalities indicate the real numbers the vertices are mapped to. The vertices are sorted twice accordingly,
resulting in a realizer (see Def. 3.8) of 2 total orderings, each possessing a set of edges E1 and E2. The exact
set of desired edges in the original structure can be restored from the intersection of E1 and E2 (see §3.3). Some
qualitative examples are included in App. J.

choices impose substantial inductive biases by con-
fining the class of models available to be utilized to
solve the task and set limits on the efficiency of the
models. In this paper, we propose a fresh design
choice for structured prediction. Specifically, we
propose an order-theoretic perspective to under-
stand and model structures in NLP. Our approach
can predict many structures in natural language in
O(N) time where N is the length of the string and
is easily parallelizable. The linear-time complexity
means our method avoids comparing all O

(
N2

)
token pairs. The key innovation that enables this
speed-up is the following: Rather than considering
structures as graphs, we view them as partial
orderings of the tokens in the strings.

Concretely, we treat structured prediction as a
regression task. Because the set of real numbers R
is naturally ordered by <, we use real numbers as
the proxy for determining the partial order. We pre-
dict K numbers for each token and sort the tokens
K times accordingly. Two tokens are partially
ordered by ≺ if and only if they are ordered by <
in all of the K orders above. We further provide an
efficiency guarantee based on the well-established
result in order theory that partial orders satisfying
particular conditions can be represented as the
intersection of as few as K = 2 total orders. We
show that most structures in natural language,
including trees, alignments, and set partitions,
satisfy these conditions. This result enables us to
develop a linear-time algorithm for predicting such
structures. Fig. 1 gives an illustrative example of
our framework applied to dependency parsing, in
which the structure being modeled is a tree.

On dependency parsing, our experimental results

show that our method achieves 96.1 labeled attach-
ment score (LAS) and 97.1 unlabeled attachment
score (UAS) by using an intersection of only 2 total
orders, 96.4 LAS and 97.4 UAS using an intersec-
tion of 4 total orders on the English Penn Treebank
(Marcus et al., 1993). Furthermore, our method
sets the new state of the art on Universal Dependen-
cies 2.2 (Nivre et al., 2018), while being 10 times
faster and more memory efficient than graph-based
models. Our method also achieves 79.2 F1 score
with only 4 total orders on the English OntoNotes
coreference resolution benchmark (Pradhan et al.,
2012), which is on par with the state of the art,
while being twice as fast and using less memory.

2 Motivation

We now provide high-level motivation for
order-theoretic structured prediction.

2.1 Linearization of Structure

The NLP literature abounds with linear-time struc-
tured prediction models. Many are derived from the
classical shift–reduce parsers (Knuth, 1965) from
the compiler literature. One recent line of research
has derived linear-time parsers by reducing parsing
to tagging (Gómez-Rodríguez and Vilares, 2018;
Strzyz et al., 2020; Kitaev and Klein, 2020; Amini
et al., 2023, inter alia). In these methods, a finite set
of tags C is chosen such that all structures for pars-
ing a string can be embedded in CN for a string of
length N . Tagging-based parsers often yield strong
empirical performance in both constituency pars-
ing and projective dependency parsing. A natural
question is, then, why do we need another method?

We give two motivations. The first linguistic

and the second mathematical. Linguistically, the
underlying structures of natural language, e.g.,
syntax, semantics, and discourse, are often not
aligned with the surface form of a sequence due
to the existence of displacement (Chomsky, 2015,
Chapter 1, p. 44). The strong performance of
parsing-as-tagging schemes relies, in part, on there
being a tight correspondence between the surface
string and structure (Amini and Cotterell, 2022,
Proposition 1). Mathematically, the maximum
number of structures that a discrete tag sequence
can represent is at most O

(
|C|N

)
. This set is

simply not large enough to capture many structures
of interest in NLP. For instance, the space of
non-projective dependency trees of N tokens has
a cardinality of O

(
NN−2

)
(Cayley, 1889). There-

fore, to parse non-projective dependency trees with
tagging, the size of the tag set has to grow with N .
However, this implies performing a classification
task with an infinite number of classes.

2.2 An Illuminating Example
Order-theoretic approaches appear across computer
science. For instance, it is well-known that a binary
tree can be uniquely restored from its inorder
traversal and either the pre- or postorder traversal.
Consider the following binary tree.
Example 2.1 (Binary Tree).

b

c

d

a

f

e g a

b

c

d

f

e g

Inorder : abcdefg Postorder: acbegfd

Figure 2: An example binary tree and a partial order
over the vertices induced by two total orders.

■

In a binary tree, a vertex x is a left descendant
of vertex y if and only if x is visited before y in
both of the in- and postorder traversal. E.g., in
Ex. 2.1, a is the left descendant of d and is visited
before d in both the in- and postorder traversal.

Another way of stating the above fact is that a
binary tree can be recovered from the combination
of two total orders, the one induced by the inorder
traversal and the one induced by the postorder
traversal. Combining these two total orders yields
a partial order, i.e., left descendant, from which
the left child of each vertex can be identified. This
partial order is shown on the right of Ex. 2.1. See
App. B and (Knuth, 1997, §2.3.1, Ex. 7) for further
discussion. In light of these observations, we con-
ceive an order-theoretic treatment that constructs

a tree by predicting multiple total orders and inter-
secting them. In terms of computation, predicting
total orders only requires labeling each node with
real numbers and then sorting, the complexity of
which is linear under radix sort. On the other hand,
an arc-factored model necessarily computes all
O
(
N2

)
pair-wise scores for every pair of vertices

to decide the existence of each edge.
Next, we generalize the intuitions gained from

this example. In §3, we explore the class of graphs
that can be efficiently represented with partial
orders. In §4, we show how to learn the ordering
efficiently with neural networks.

3 Order and Structure

In this section, we describe an order-theoretic treat-
ment for linguistic structure prediction. Specifi-
cally, we treat the structure to be predicted as a
partially ordered set, i.e., a set equipped with a
transitive relation ≺. We begin by revisiting how
linguistic structures are represented as graphs.

3.1 Linguistic Structures as Directed Graphs

Let Σ be an alphabet, i.e., a finite set of natural
language tokens, and let w = w1w2 · · ·wN ∈ Σ∗

be a string. Linguistic structure prediction is the
task of assigning a structure, e.g., a dependency
tree, to a given string w in natural language.

A wide range of linguistic structures are built
upon the relations between pairs of tokens. Many
structured prediction models are thus arc-factored,
i.e., they predict the arcs between a pair of tokens
and then combine them back into structures, which
are our focus in this work. Formally, their major
goal is to model the homogeneous relation1 on
the spanning node set V = {w1, w2, · · · , wN}
of a sentence w = w1 · · ·wN (Kübler et al., 2009).
The output space is defined by the input itself, in
contrast to the external label spaces in other tasks
such as classification or language generation.

Definition 3.1 (Structure). A structure over a
string w = w1w2 · · ·wN is a directed graph
G = (V ,E), where V = {w1, w2, · · · , wN},
E ⊆ V × V is the set of arcs. A typed structure
G = (V ,E,R) is a structure with E ⊆ V ×V ×R,
where R is a finite set of relation labels.

1A homogeneous relation on a set X is a binary relation
between two elements in X . It can be equivalently represented
with the set of edges in a graph in which X is the set of
vertices.

Most linguistic structures are naturally sub-
sumed under this definition. We give two examples
of linguistic structure prediction tasks.

Example 3.2 (Dependency Parsing; Kübler et al.,
2009, Def. 2.3). A dependency structure is a
structure G = (V ,E,R), where E ⊆ V × V ×R,
and R is the set of dependency relation types. If
(x, y, r) ∈ E, then ∀r′ ̸= r, (x, y, r′) /∈ E. ■

Example 3.3 (Coreference Resolution). A coref-
erence structure is a structure G = (V ,E,R),
where E ⊆ V × V ×R, and R = {r, r′}. The re-
lations r, r′ represent the entity mention and coref-
erence, respectively. We have (x, y, r) ∈ E if and
only if the textual span x :y in w is a mention of an
entity. (x1, x2, r′)∈E∧(y1, y2, r′)∈E if and only
if the textual spans x1 :y1 and x2 :y2 corefer. ■

3.2 From Directed Graphs to Partial Orders
Our treatment constructs linguistic structures with
techniques from order theory. The key is to cast
the relation between tokens as an order, which is
defined as follows.

Definition 3.4 (Order; Hausdorff, 1914). An order
over a set V is a relation ≺ such that the following
hold for all x, y, z ∈ V :

(a) irreflexivity: x⊀x;
(b) asymmetry: x≺ y =⇒ y⊀x;
(c) transitivity: x≺ y ∧ y≺ z =⇒ x≺ z.

Natural language exhibits structural sparsity in
that each token in a string usually only interacts
with very few other tokens with a particular relation.
For instance, in a dependency graph, there are no
direct paths between most of the word pairs. Such
sparsity, from an order-theoretic point of view, can
be characterized by incomparability in a partially
ordered set (Birkhoff, 1967, Chapter 1, p. 2).

By analogy, we define the following partially
ordered structure, which is a partially ordered set
mathematically. Its elements are the tokens of a
string, and its order encodes a linguistic structure.

Definition 3.5 (Partially Ordered Structure). Let
G = (V ,E) be a structure. Define the following
relation ≺: For x, y ∈ V , x≺ y ⇐⇒ (x, y) ∈ E.
We call P = (V ,E,≺) a partially ordered
structure if ≺ satisfies Def. 3.4.

The essential theoretical foundation of our
linguistic structure prediction framework is the
classic result that partial orders can be represented
by an intersection of total orders (Dushnik and
Miller, 1941). It is this result that enables us to use

real numbers as a proxy to determine the partial
ordering of tokens.
Definition 3.6 (Totally Ordered Structure). A
partially ordered structure P = (V ,E,≺) is
totally ordered if ∀x, y ∈ V : x≺ y ∨ y≺x.

Due to the transitivity of the ordering relation ≺,
a totally ordered structure of |V | elements always
contains |E| =

(|V |
2

)
relations. Given a collec-

tion of structures {(V ,Ek)}k∈[K] defined over the
same set of vertices V , their intersection is also
a structure—namely (V ,∩k∈[K]Ek), where K ∈
N, [K]

def
= {1, · · · ,K}. The intersection of par-

tially ordered structures remains partially ordered.
We now cite a famous theorem from order theory.

Theorem 3.7 (Szpilrajn (1930)). Every partially
ordered structure is contained in a totally ordered
structure, i.e., for every partially ordered structure
P = (V ,E,≺), there exists a totally ordered
structure T = (V , Ê,≺) such that E ⊆ Ê.

Thm. 3.7 ensures that every partially ordered
structure can be embedded in some totally ordered
structure in the sense that the totally ordered struc-
ture contains all the relations in the partially or-
dered structure. More importantly, a stronger result
can be shown: Partially ordered structures can al-
ways be represented as intersections of a collection
of totally ordered structures.
Definition 3.8 (Realizer). Let P = (V ,E,≺)
be a partially ordered structure. A realizer
RP of P is a set of totally ordered structures{
T 1, T 2, · · · , T K

}
over V , i.e., each T k =

(V ,Ek,≺k), such that E =
⋂

k∈[K]Ek. In other
words, ∀x, y ∈ V , x≺ y ⇐⇒

∧
k∈[K] x≺k y.

Theorem 3.9 (Dushnik and Miller, 1941, Thm.
2.32). There exists a realizer RP for every
partially ordered structure P = (V ,E,≺).

A corollary of the above theorem is that the
complexity of a partially ordered structure can
be characterized by its order dimension, which is
defined as follows.
Definition 3.10 (Order Dimension; Dushnik and
Miller, 1941). Let P = (V ,E,≺) be a partially
ordered structure. The order dimension DP of P
is the cardinality of the smallest realizer of P .

3.3 Efficiency Guarantees
In this section, we give an efficiency guarantee of
order-theoretic structured prediction. These effi-
ciency guarantees come from a series of results in

order theory and lattice theory (Dushnik and Miller,
1941; Hiraguchi, 1955; Birkhoff, 1967, inter alia).

First, it is important to note that not all partially
ordered structures can be represented as an inter-
section of a constant number of totally ordered
structures (Dushnik and Miller, 1941, Thm. 4.1).

In fact, testing whether the order dimension of
a partial order P is at most K, ∀K ≥ 3 is NP-
complete (Yannakakis, 1982). However, we con-
tend that most of the linguistic structures found
in natural language processing (Smith, 2011)—
including trees, equivalence classes (i.e., set parti-
tioning), and alignment (i.e., bipartite matching)—
can be represented as the intersection of 2 totally
ordered structures. We postulate that this is possi-
ble due to their innate sparsity, i.e., a token tends
to only interact with a few other tokens. These
assumptions are formalized as follows.

Assumption 3.11 (Sparsity). A class of linguis-
tic structures G = (V ,E) over natural language
strings w ∈ Σ∗ with N = |w| is called sparse if
O(|E|) = O(N).

Assumption 3.12 (Linguistic Structures are
2-dimensional). Structures in natural language
can be represented as intersections of 2 totally
ordered structures.

We justify Assumptions 3.11–3.12 in App. D.
Empirical evidence is also provided in §5, where
2-dimensional order-theoretic models are trained
to tackle two linguistic structure prediction tasks
with high performance.

3.4 Token-Split Structures

An obvious limitation of our formulation of linguis-
tic structures as partial orders is that by Def. 3.4,
partial order is transitive. In other words, x≺ y ∧
y≺ z implies x≺ z, which, however, does not hold
in the structures characterized by the directed graph
formalization in Def. 3.1. In addition, we note
that our notation of structures generalizes to cyclic
graphs. However, partially ordered structures are
inherently acyclic due to the transitivity of ≺. We
now introduce the token-split structure, which
enables cycles and removes redundant edges intro-
duced by transitivity in partially ordered structures.

Definition 3.13 (Token-Split Structure). A token-
split structure induced by a structure G = (V ,E)
is a structure P = (V̂ , Ê,≺) such that
(a) V̂

def
= V r ∪ V b, where V r = {xr | x ∈

V }, V b = {xb | x ∈ V };

(b) V r ∩ V b = ∅;
(c) Ê =

{
(xr, yb) | (x, y) ∈ E

}
.

In other words, a token-split structure maps
the edges from the original structure, including
self-loops, into a bipartite graph in which the
edges are oriented from V r to V b. An example is
displayed in Fig. 1b.

Given a token-split structure P = (V̂ , Ê,≺), we
can recover the original structure G = (V ,E) from
which P is induced using the following equation

E={(x, y) | xr ∈ V r∧ yb ∈ V b∧ xr ≺ yb} (1)

Theorem 3.14. Token-split structures are partially
ordered.

Proof. See App. C.1. ■

Remark 3.15 (Conversion between Structures
and Partially Ordered Structures). Thm. 3.14 and
Eq. (1) ensure that we can convert back and forth
between any structure under Def. 3.1 and a par-
tially ordered structure. Specifically, they enable
us to first convert a structure to a partially ordered
structure, predict it order-theoretically, and then
finally convert it back to a structure.

4 A Neural Parameterization

In this section, we describe the core technical
contribution of our work. We show how to model
partially ordered structures with a neural model.
Specifically, we define a parameterized realizer of
Def. 3.8 and an objective function for training the
realizer to model the token-split structures. We also
give algorithms for efficient training and decoding.

4.1 Neuralized Total Order

We now discuss a parameterized neural network
that induces partial orders as the intersection of
several total orders.

Definition 4.1 (Functional Realizer). A func-
tional realizer of a partially ordered structure
P = (V ,E,≺) is a set of mappings Fθ =

{f (1)
θ , · · · , f (K)

θ }, where θ is the set of learnable
parameters shared among f

(k)
θ , and the order di-

mension K ∈ N is a hyperparameter of the realizer.
The realize element f (k)

θ : V → R, ∀k ∈ [K] maps
each vertex in the input structure to a real number.
We overload Fθ as a mapping Fθ : V → RK ,

defined as Fθ(x)
def
=

[
f
(1)
θ (x), · · · , f (K)

θ (x)
]⊤

.

The set of real numbers R is totally or-
dered, in which the order is given by the
< (less than) relation. Each individual
f
(k)
θ ∈ Fθ induces a total order T k =(
V , {(x, y) | x, y ∈ V , f

(k)
θ (x) < f

(k)
θ (y)},≺k

)
.2

The functional realizer assigns K total orders
{T 1, T 2, · · · , T K} to the input string. During de-
coding, an edge from x to y exists in P if and only
if x≺k y holds in T k, ∀k ∈ [K].

Implementing Def. 4.1 with neural networks is
straightforward. To obtain f

(k)
θ (xr) and f

(k)
θ (xb),

where xr, xb are two vertices introduced by the
token-split formulation (Def. 3.13) corresponding
to the same token wx in the input, we apply
two linear projections on the contextualized
representation of x given by a pretrained model
parameterized by θ.3 In total, 2K real numbers
are predicted for each input token.

4.2 Learning a Functional Realizer
To learn the functional realizers with a gradient-
based procedure, we need a differentiable objective.
In a partially ordered structure P with functional
realizer Fθ = {f (1)

θ , f
(2)
θ , · · · , f (K)

θ }, we have

x≺ y if and only if
∧

k∈[K]

(
f
(k)
θ (x) < f

(k)
θ (y)

)
.

We re-express this condition as follows:

Fθ(x, y)
def
= max

k∈[K]

(
f
(k)
θ (x)− f

(k)
θ (y)

)
< 0 (2)

We call Fθ a pair-wise function. On the
other hand, we have x⊀ y if and only if∨

k∈[K]

(
f
(k)
θ (x) ≥ f

(k)
θ (y)

)
. This condition

can be re-expressed as Fθ(x, y) ≥ 0. Thus,
empirically, the smaller Fθ(x, y) is, the more
likely the relation x≺ y exists.

We now define a training objective, which en-
courages the model to make decisions that comply
with the order constraints enforced by the struc-
tures, described by Eq. (2). Given the token-split
version P = (V ,E,≺) induced by the structure
being modeled, we consider the following objective

L(θ) = log
∑

(x,y)∈V 2\E

exp−Fθ(x, y)+

log
∑

(x,y)∈E

expFθ(x, y)
(3)

2In this work, we assume f
(k)
θ is injective, i.e., ∀x, y ∈

V , f
(k)
θ (x) ̸= f

(k)
θ (y). See §8.4 for further discussion on the

practicality of this assumption.
3If wx consists of more than one subword due to tokeniza-

tion, we apply the projection to the representation of the last
subword.

The first term maximizes Fθ(x, y) for x⊀ y, while
the second minimizes Fθ(x, y) for x≺ y. Note that
in the second term, we assume O(|E|) = O(N) in
a linguistic structure following Assumption 3.11.

4.3 An Efficient Algorithm
We remark that both training and decoding of the
proposed model can be regarded as performing an
aggregation for every token x ∈ V .

Definition 4.2 (Aggregation). An ⊕-aggregation
given a token x for a pair-wise function Fθ over
the set V is an operation

⊕
y∈V Fθ(x, y), where

⊕ is a commutative and associative operation over
which real number addition + is distributive.

Aggregation is a common abstraction for com-
puting the relation between a token x and every
other token. The aggregation operator is associa-
tive and commutative, thus can be computed in
parallel. The number of required computations is
O(|V |) for naïvely computing an aggregation of x.

During training, we ⊕-aggregate using
negative log-sum-exp, i.e., we compute
− log

∑
y exp(−Fθ(x, y)) for all x, to compute

the first term of Eq. (3). In greedy decoding, we
⊕-aggregate by computing miny Fθ(x, y) to find
the optimal relation arc from each x. Naïvely, ⊕-
aggregating for every token x ∈ V takesO

(
N2

)
in

total, as each aggregand has a complexity ofO(N).
However, the partial order we assigned over V
allows us to efficiently compute the aggregands.

For K = 2, we can inspect Eq. (2) to see that
Fθ(x, y) is equal to either f

(1)
θ (x) − f

(1)
θ (y) or

f
(2)
θ (x) − f

(2)
θ (y). We now define the following

two subsets of V for k ∈ {1, 2}:

Sk(x)=
{
y | Fθ(x, y) = f

(k)
θ (x)− f

(k)
θ (y)

}
Using this notation, we can write the following⊕

(x,y)∈V 2

Fθ(x, y) =
⊕
x∈V

⊕
y∈V

Fθ(x, y) (5a)

=
⊕
x∈V

⊕
y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
︸ ︷︷ ︸

def
=G1

(5b)

⊕
⊕
x∈V

⊕
y∈S2(x)

(
f
(2)
θ (x)− f

(2)
θ (y)

)
︸ ︷︷ ︸

def
=G2

We now give an efficient algorithm to compute G1

and, by symmetry, G2. Our first observation is that,

by distributivity, we can write

G1 =
⊕
x∈V

⊕
y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
(6a)

=
⊕
x∈V

(
f
(1)
θ (x) +

⊕
y∈S1(x)

−f (1)
θ (y)

)
︸ ︷︷ ︸

def
=G1(x)

(6b)

Alone, this application of dynamic program-
ming does not reduce the complexity from
O
(
N2

)
to O(N) as desired because the inner

aggregand,
⊕

y∈S1(x)
−f (1)

θ (y), itself still takes
O(N) time. However, we are able to compute⊕

y∈S1(x)
−f (1)

θ (y) in amortized O(1) time due
to Fredman’s (1976, Eq. 1) algebraic trick.

The strategy is to sort4 the vertices of
the partially ordered structure according
to f

(1)
θ (y) − f

(2)
θ (y). Thus, if we have

f
(1)
θ (y) − f

(2)
θ (y) < f

(1)
θ (x) − f

(2)
θ (x), sim-

ple algebra reveals that f
(2)
θ (x) − f

(2)
θ (y) <

f
(1)
θ (x)− f

(1)
θ (y). Thus, for a given x, every ver-

tex y that comes before x in the sorted order satis-
fies Fθ(x, y) = f

(1)
θ (x)− f

(1)
θ (y). Aggregating in

this order enables intermediate results to be reused.

Algorithm 1 Computing G1 when K = 2.

1: procedure COMPUTE-G1(f (1)
θ , f

(2)
θ , V)

2: U ← sort
(
V , key=f

(1)
θ −f

(2)
θ

)
3: G1, s1 ← 0,0 ▷ 0 is the zero element of ⊕
4: for n = 1 up to N :
5: q1= f

(1)
θ (Un) + s1 ▷ q1 = G1(Un)

6: G1⊕= q1
7: s1⊕= −f (1)

θ (Un)
8: return G1

Likewise, if we sorted in reverse, i.e., according
to f

(2)
θ (y)− f

(1)
θ (y), the same manipulation yields

that for a given x, every vertex y that comes
before x in the reverse sorted order satisfies
Fθ(x, y) = f

(2)
θ (x)− f

(2)
θ (y).

The algorithm for computing G1 is given in
Algorithm 1, which has O(N) computations in
total. Moreover, if parallelized, it can be run
in O(logN) time. For K > 2, we speculate
that the aggregation algorithm can be done in
O
(
KN logK−2N

)
. We leave this to future work.

See App. E.2 for further discussion.
4As before, we take the complexity of sorting to be O(N)

where we can apply radix sort as implemented by Pytorch.

5 Experiments

We report the experimental results on two represen-
tative linguistic structure prediction problems in
NLP, namely dependency parsing and coreference
resolution. The graph-theoretic definitions of these
tasks are given in Examples 3.2 and 3.3. We first
convert the linguistic structures to partially ordered
(token-split) structures as described in §3.4, and
then apply the neural method described in §4 to
model the partially ordered structures.

5.1 Dependency Parsing
Modeling. Orders ≺ are not typed in Def. 3.5.
In other words, under Def. 3.5, all relations in
a partially ordered structure are of the same
type. To model dependency type labels, we apply
a token-level classifier on the contextualized
representation. During decoding, similar to
arc-factored models for dependency parsing, we
keep the head word that minimizes Fθ(x, y) for
a given x, i.e., argminy∈V Fθ(x, y).

For pretrained language models, we use
XLNet-large-cased5 (Yang et al., 2019) for
PTB, bert-base-chinese6 for CTB, and
bert-base-multilingual-cased7 for UD.

Datasets. We conduct experiments on the En-
glish Penn Treebank (PTB; Marcus et al., 1993),
the Chinese Penn Treebank (CTB; Xue et al., 2005),
and the Universal Dependencies 2.2 (UD; Nivre
et al., 2018). Hyperparameter settings and dataset
statistics are given in Apps. F.1 and G.1.

Accuracy. We report the experimental results
in Tab. 1. The full results on UD are included
in App. I.1. On PTB and UD, our method
achieves state-of-the-art performance compared
with O

(
N3

)
(Yang and Tu, 2022), O

(
N2

)
(Mrini

et al., 2020), and O(N) (Amini et al., 2023) meth-
ods. Although Amini et al.’s (2023) method has
the same complexity as ours, it is worth noting
that our method is more general since it can handle
non-projective dependencies without using pseudo-
projectivization (Nivre and Nilsson, 2005).

Efficiency. We evaluate the efficiency of our
method with two representative baseline models.
As depicted in Tab. 2, we observe that our method
with K = 2 is almost 10 times as fast as Biaff

5https://huggingface.co/xlnet-large-cased
6https://huggingface.co/bert-base-chinese
7https://huggingface.co/

bert-base-multilingual-cased

https://huggingface.co/xlnet-large-cased
https://huggingface.co/bert-base-chinese
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased

PTB CTB UD

Model UAS LAS UAS LAS LAS

Zhou and Zhao∗ 97.0 95.4 91.2 89.2 -
Mrini et al.∗ 97.4 96.3 94.6 89.3 -

Chen and Manning 91.8 89.6 83.9 82.4 -
Dozat and Manning 95.7 94.1 89.3 88.2 91.8

Yang and Tu# 97.4 95.8 93.3 92.3 91.9
Amini et al. 97.4 96.4 93.2 91.9 91.8

Ours (K = 2) 97.1 96.1 90.7 89.5 91.2
Ours (K = 4) 97.4 96.4 92.4 91.4 92.1

Table 1: Experimental results on PTB, CTB, and UD.
∗ indicates usage of extra constituency annotation. #

is our re-implementation using the same pretrained en-
coder as ours. K is the dimension of the realizer used.

Speed (sent/s) ↑ Memory (GB) ↓

#token Ours Hexa Biaff Ours Hexa Biaff

32 3232 2916 493 1.7 2.9 4.5
64 3332 3011 328 1.7 3.0 10.1
128 3182 2649 202 1.9 3.7 30.6
256 3314 3270 98 3.1 4.5 56.2

overall 3347 3176 338 1.7 3.0 10.6

Table 2: Speed and memory consumption comparison
on PTB test set. We report results averaged over 3
random runs of our method with K = 2. The other
settings and the results for Hexa and Biaff are taken
from Amini et al. (2023, Tab. 3).

(Dozat and Manning, 2017), and consumes less
memory than Hexa (Amini et al., 2023), which is
O(N) in space complexity. We further include
some qualitative examples using K = 2 in App. J
for a more intuitive picture of our method.

5.2 Coreference Resolution
Modeling. Our method operates in a two-stage
manner to accommodate the two relations in
Ex. 3.3. First, it extracts a list of entity mentions
using the partial order induced by r (mention
relation). In other words, x≺ y ⇐⇒ span x :y is
an entity mention. Then, it models the partial order
induced by r′ (coreference relation) over the ex-
tracted mentions. In other words, m1≺m2 ⇐⇒
mention m1 corefers to m2. To find the optimal
coreferent antecedent for each mention m, we
keep m′ that minimizes Fθ(m,m′).

The overall complexity of the coreference
resolution model is O(N), since the complexity
of the encoder used (Beltagy et al., 2020) and
the number of valid mentions are both O(N),

assuming entity mentions are constituents (Liu
et al., 2022). We experiment on the CoNLL-2012
English shared task dataset (OntoNotes; Pradhan
et al., 2012). Hyperparameter settings and dataset
statistics are given in Apps. F.2 and G.2.

Accuracy. The experimental results are dis-
played in Tab. 3. Similar to the results for
dependency parsing, an intersection of 2 total
orders can already achieve reasonable performance
on coreference resolution. This provides empirical
evidence for our assertion in §3.3 that most
structures in NLP can be represented as the
intersection of at most 2 total orders. When K = 4,
the performance of our method is comparable
to Kirstain et al. (2021), which uses the same
pretrained encoder as ours and requires an O

(
N2

)
biaffine product computation for token-pair scores.

Efficiency. We compare the efficiency of our
method with Kirstain et al.’s (2021) method. It is
worth noting that Kirstain et al. (2021) has already
performed aggressive optimization in both the
speed and memory footprint of coreference model-
ing. Our method is still 2 times as fast, achieving a
speed of 82.8 documents per second vs. 41.9, while
using less memory, especially on long documents.
The full efficiency statistics are given in App. H.

Avg. P Avg. R Avg. F1

Lee et al. (2017) 69.9 64.7 67.2
Kantor and Globerson 76.1 77.1 76.6

Joshi et al. (2020) 80.1 78.9 79.6
Xu and Choi (2020) 80.3 79.5 79.9
Kirstain et al. (2021) 81.2 79.4 80.3

Ours (K = 2) 75.2 74.8 75.0
Ours (K = 4) 79.3 79.0 79.2

Table 3: Experimental results on the OntoNotes bench-
mark. K is the dimension of the realizer.

6 Related Work8

6.1 Structured Prediction
Structured prediction constitutes an important part
of natural language processing. It involves the
modeling of interrelated variables or outputs with
structural constraints. Some representative struc-
tured prediction problems are sequence tagging
(Church, 1988), dependency parsing (Kübler et al.,
2009), and coreference resolution (Stede, 2012).

8More related work is included in App. A.

Structured prediction can often be formulated
as learning and inference of probabilistic graphical
models (Smith, 2011, §2.2). The key idea is to
represent the probability distribution over the
output space using a graph, in which each vertex
corresponds to a random variable, and each edge
corresponds to a dependence relation between two
random variables.

6.2 Graph-Based Parsing

Graph-based parsers, or arc-factored parsers, con-
struct graphs by scoring all possible arcs (Eisner,
1996; McDonald and Pereira, 2006) between each
pair of words. At inference time, they use either
maximum spanning tree (MST) finding algorithms
(Chu and Liu, 1965; Edmonds, 1967; Tarjan, 1977),
or the projective MST algorithm (Eisner, 1996) to
build the valid dependency trees with maximum
score. Kiperwasser and Goldberg (2016) present a
neural graph-based parser that uses the same kind
of attention mechanism as Bahdanau et al. (2015)
for computing arc scores. Greedy decoding that
independently assigns a head word to each word
(Dozat and Manning, 2017) is also widely used as
an approximation to exact inference algorithms.

6.3 Tagging-Based Parsing

Inspired by transition-based parsers (Knuth, 1965)
and Bangalore and Joshi’s (1999) seminal work
on supertagging, one line of work uses pretrained
models to parse dependency trees by inferring tags
for each word in the input sequence. Li et al. (2018)
and Kiperwasser and Ballesteros (2018) predict the
relative position of the dependent with respect to
its head in a sequence-to-sequence manner. Strzyz
et al. (2019) give a framework for analyzing similar
tagging schemes. Gómez-Rodríguez et al. (2020)
infer a chunk of actions in a transition-based
system for each word in the sequence.

For non-projective dependency parsing, Gómez-
Rodríguez and Nivre (2010, 2013) show that ef-
ficient parsers exist for 2-planar trees (Yli-Jyrä,
2003), a sub-class of non-projective trees whose
arcs can be partitioned into 2 sets while arcs in
the same set do not cross each other. Strzyz et al.
(2020) propose an encoding scheme for 2-planar
trees, enabling a tagging-based parser for such trees.
As mentioned in §2.1, to handle the entire set of
non-projective trees, the size of the tag set has to be
unrestricted, which limits the efficiency and appli-
cability of this series of approaches of approaches.

6.4 Parsing with Syntactic Distance

Shen et al. (2018a,b) introduce a constituent pars-
ing scheme which is also based on the comparison
of real numbers. In this scheme, a neural model
is trained to assign one real number, termed the
syntactic distance, to the gap between every pair
of neighboring tokens. To parse a span into two
sub-constituents, the gap with the largest syntactic
distance within that span is chosen as the split point.
Parsing can be done by recursively performing the
above splitting procedure starting from a given
string. The algorithm has a runtime complexity of
O(N logN), which is significantly more efficient
than chart-based parsers with O

(
N2

)
complexity.

However, this method does not generalize easily to
perform non-context-free parsing, since it cannot
handle the possible discontinuity of constituents.
Moreover, the recursive splitting procedure
restricts the output space of parse trees to be a
subset of phrase-structure trees (Dyer et al., 2019).

7 Conclusion

In this paper, we propose an order-theoretic
treatment of linguistic structured prediction.
Theoretical and empirical results show that most
linguistic structure prediction problems can be
solved in linear time and memory by framing them
as partial orderings of the tokens in the input string.
We demonstrate the effectiveness of our method on
dependency parsing and coreference resolution, set-
ting the new state-of-the-art accuracy in some cases
and achieving significant efficiency improvements.

8 Limitations

8.1 Decoding Algorithms

This work does not provide algorithms for partic-
ular structures or algorithms that ensure the well-
formedness of structures, such as maximum span-
ning trees and projective trees. It remains to be
investigated whether existing constrained decod-
ing algorithms for arc-factored models (Chu and
Liu, 1965; Edmonds, 1967; Eisner, 1997, inter
alia) have their counterparts in the order-theoretic
method. We would like to explore decoding al-
gorithms for structured prediction under order-
theoretic formulation in future work.

8.2 Interpretability

In our method, the interactions between tokens are
not directly modeled as in graph-based structured

prediction models, which makes it more difficult
to interpret the output of our model. In addition,
we leave to future work the investigation of the
total ordering metrics (see App. J) learned by the
realizers in our method.

8.3 Hardness of Learning

Intuitively, it is harder to learn partial orders over
strings than directly modeling the arcs in a graph,
since our order-theoretic treatment has much fewer
parameters when scoring token pairs. We also
observed in our experiments that order-theoretic
models take more training iterations to converge
than arc-factored models.

For instance, consider the modeling of a tree
structure with N nodes with N − 1 arcs using
partial order, which implies N − 1 constraints of
the form x ≺ y and N2 − 2N + 1 constraints of
x⊀ y. From a theoretical perspective, K = 2 is
sufficient to represent such a structure as shown in
§3. In other words, there always exist 2 total orders
whose intersection satisfies the aforementioned
N(N − 1) constraints. However, it might not be
easy to find such orders in practice.

A realizer with K beyond 2 can more easily sat-
isfy the constraints, especially of the form x⊀ y—
since there are more constraints of this form. It
allows more possibilities for

∨
k∈[K] f

(k)
θ (x) ≥

f
(k)
θ (y) (i.e., more choices of k to satisfy the ex-

pression). On the other hand, using a small K
might make it harder to satisfy the constraints.

We plan to further investigate the hardness of
learning a string partial order in future work.

8.4 Precision of floating-point numbers and
numerical stability

Our method might be affected by the finite
precision of floating-point numbers and numerical
instability when applied to very long strings.
Although we did not encounter such issues in our
experiments (N ≤ 4096 = 212), issues might
arise when N > 65536 = 216 if bfloat16 or
half precision is used. In such extreme cases, our
assumption that ∀k ∈ [K], f

(k)
θ is injective cannot

be fulfilled. Thus, not all totally ordered structures
of N elements can be represented, and our method
might not exhibit the desired behavior.

Ethics Statement

We do not believe the work presented here further
amplifies biases already present in the datasets and

pretrained models. Therefore, we foresee no ethical
concerns in this work.

Acknowledgments

We would like to thank Zhaofeng Wu, Clément
Guerner, and Tim Vieira for their invaluable feed-
back. We are grateful to the anonymous reviewers
for their insightful comments and suggestions. Afra
Amini is supported by ETH AI Center doctoral fel-
lowship. MS acknowledges support from the Swiss
National Science Foundation (Project No. 197155),
a Responsible AI grant by the Haslerstiftung; and
an ETH Grant (ETH-19 21-1).

References
Kazimierz Adjukiewicz. 1935. Die syntaktische Kon-

nexität. Studia Philosophica, 1:1–27.

Afra Amini and Ryan Cotterell. 2022. On parsing as
tagging. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 8884–8900, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Afra Amini, Tianyu Liu, and Ryan Cotterell. 2023. Hex-
atagging: Projective dependency parsing as tagging.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 1453–1464, Toronto, Canada.
Association for Computational Linguistics.

Ben Athiwaratkun and Andrew Gordon Wilson. 2018.
On modeling hierarchical data via probabilistic order
embeddings. In International Conference on Learn-
ing Representations.

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR
2015.

K. A. Baker, P. C. Fishburn, and F. S. Roberts. 1972.
Partial orders of dimension 2. Networks, 2(1):11–28.

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Compu-
tational Linguistics, 25(2):237–265.

Yehoshua Bar-Hillel. 1953. A quasi-arithmetical nota-
tion for syntactic description. Language, 29(1):47–
58.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv:2004.05150.

Jon Louis Bentley. 1979. Decomposable searching prob-
lems. Information Processing Letters, 8(5):244–251.

https://books.google.com/books/about/Die_Syntaktische_Konnexit%C3%A4t.html?id=pcvBMwEACAAJ
https://books.google.com/books/about/Die_Syntaktische_Konnexit%C3%A4t.html?id=pcvBMwEACAAJ
https://aclanthology.org/2022.emnlp-main.607
https://aclanthology.org/2022.emnlp-main.607
https://doi.org/10.18653/v1/2023.acl-short.124
https://doi.org/10.18653/v1/2023.acl-short.124
https://openreview.net/forum?id=HJCXZQbAZ
https://openreview.net/forum?id=HJCXZQbAZ
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://doi.org/https://doi.org/10.1002/net.3230020103
https://aclanthology.org/J99-2004
https://aclanthology.org/J99-2004
http://www.jstor.org/stable/410452
http://www.jstor.org/stable/410452
https://arxiv.org/abs/2004.05150
https://doi.org/https://doi.org/10.1016/0020-0190(79)90117-0
https://doi.org/https://doi.org/10.1016/0020-0190(79)90117-0

Jon Louis Bentley. 1980. Multidimensional divide-and-
conquer. Commun. ACM, 23(4):214–229.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and
Mark Overmars. 2008. Computational Geometry:
Algorithms and Applications, 3rd edition. Springer-
Verlag TELOS, Santa Clara, CA, USA.

G. Birkhoff. 1967. Lattice Theory. American Mathe-
matical Society colloquium publications. American
Mathematical Society.

Arthur Cayley. 1889. A theorem on trees. Quarterly
Journal of Mathematics, 23:376–378.

Bernard Chazelle. 1988. A functional approach to data
structures and its use in multidimensional searching.
SIAM Journal on Computing, 17(3):427–462.

Bernard Chazelle. 1990a. Lower bounds for orthogonal
range searching: I. The reporting case. Journal of
the ACM, 37(2):200–212.

Bernard Chazelle. 1990b. Lower bounds for orthogo-
nal range searching: Part II. The arithmetic model.
Journal of the ACM, 37(3):439–463.

Danqi Chen and Christopher Manning. 2014. A fast and
accurate dependency parser using neural networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740–750, Doha, Qatar. Association for Com-
putational Linguistics.

Noam Chomsky. 2015. The Minimalist Program, 20
edition. The MIT Press.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On the
shortest arborescence of a directed graph. Scientia
Sinica, 14:1396–1400.

Kenneth Ward Church. 1988. A stochastic parts pro-
gram and noun phrase parser for unrestricted text.
In Second Conference on Applied Natural Language
Processing, pages 136–143, Austin, Texas, USA. As-
sociation for Computational Linguistics.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. Stanford typed dependencies manual.
Technical report, Technical report, Stanford Univer-
sity.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings.

Ben Dushnik and E. W. Miller. 1941. Partially ordered
sets. American Journal of Mathematics, 63(3):600–
610.

Chris Dyer, Gábor Melis, and Phil Blunsom. 2019. A
critical analysis of biased parsers in unsupervised
parsing. CoRR, abs/1909.09428.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the national Bureau of Standards B,
71(4):233–240.

Jason Eisner. 1997. Bilexical grammars and a cubic-
time probabilistic parser. In Proceedings of the Fifth
International Workshop on Parsing Technologies,
pages 54–65, Boston/Cambridge, Massachusetts,
USA. Association for Computational Linguistics.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In COLING
1996 Volume 1: The 16th International Conference
on Computational Linguistics.

Michael L. Fredman. 1976. New bounds on the com-
plexity of the shortest path problem. SIAM Journal
on Computing, 5(1):83–89.

Carlos Gómez-Rodríguez, Michalina Strzyz, and David
Vilares. 2020. A unifying theory of transition-based
and sequence labeling parsing. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 3776–3793, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Carlos Gómez-Rodríguez and David Vilares. 2018.
Constituent parsing as sequence labeling. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1314–1324,
Brussels, Belgium. Association for Computational
Linguistics.

Carlos Gómez-Rodríguez and Joakim Nivre. 2010. A
transition-based parser for 2-planar dependency struc-
tures. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, pages
1492–1501, Uppsala, Sweden. Association for Com-
putational Linguistics.

Carlos Gómez-Rodríguez and Joakim Nivre. 2013.
Divisible Transition Systems and Multiplanar De-
pendency Parsing . Computational Linguistics,
39(4):799–845.

F. Hausdorff. 1914. Grundzüge der Mengenlehre.
Göschens Lehrbücherei/Gruppe I: Reine und Ange-
wandte Mathematik Series. Veit & Company.

Toshio Hiraguchi. 1955. On the dimension of orders.
The Science Reports of the Kanazawa University,
4:1–20.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the Association for
Computational Linguistics, 8:64–77.

https://doi.org/10.1145/358841.358850
https://doi.org/10.1145/358841.358850
https://dl.acm.org/doi/10.5555/1370949
https://dl.acm.org/doi/10.5555/1370949
https://books.google.ch/books?id=yiNlzwEACAAJ
https://doi.org/10.1017/CBO9780511703799.010
https://doi.org/10.1137/0217026
https://doi.org/10.1137/0217026
https://doi.org/10.1145/77600.77614
https://doi.org/10.1145/77600.77614
https://doi.org/10.1145/79147.79149
https://doi.org/10.1145/79147.79149
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
http://www.jstor.org/stable/j.ctt17kk8xd
https://cir.nii.ac.jp/crid/1570854175817997952?lang=en
https://cir.nii.ac.jp/crid/1570854175817997952?lang=en
https://doi.org/10.3115/974235.974260
https://doi.org/10.3115/974235.974260
https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.pdf
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
http://www.jstor.org/stable/2371374
http://www.jstor.org/stable/2371374
http://arxiv.org/abs/1909.09428
http://arxiv.org/abs/1909.09428
http://arxiv.org/abs/1909.09428
https://nvlpubs.nist.gov/nistpubs/jres/71b/jresv71bn4p233_a1b.pdf
https://aclanthology.org/1997.iwpt-1.10
https://aclanthology.org/1997.iwpt-1.10
https://aclanthology.org/C96-1058
https://aclanthology.org/C96-1058
https://doi.org/10.1137/0205006
https://doi.org/10.1137/0205006
https://doi.org/10.18653/v1/2020.coling-main.336
https://doi.org/10.18653/v1/2020.coling-main.336
https://doi.org/10.18653/v1/D18-1162
https://aclanthology.org/P10-1151
https://aclanthology.org/P10-1151
https://aclanthology.org/P10-1151
https://doi.org/10.1162/COLI_a_00150
https://doi.org/10.1162/COLI_a_00150
https://books.google.com/books?id=KTs4AAAAMAAJ
http://hdl.handle.net/2297/33759
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300

Ben Kantor and Amir Globerson. 2019. Coreference
resolution with entity equalization. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 673–677, Florence,
Italy. Association for Computational Linguistics.

Eliyahu Kiperwasser and Miguel Ballesteros. 2018.
Scheduled multi-task learning: From syntax to trans-
lation. Transactions of the Association for Computa-
tional Linguistics, 6:225–240.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple
and accurate dependency parsing using bidirectional
LSTM feature representations. Transactions of the
Association for Computational Linguistics, 4:313–
327.

Yuval Kirstain, Ori Ram, and Omer Levy. 2021. Coref-
erence resolution without span representations. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 14–19,
Online. Association for Computational Linguistics.

Nikita Kitaev and Dan Klein. 2020. Tetra-tagging:
Word-synchronous parsing with linear-time inference.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 6255–
6261, Online. Association for Computational Lin-
guistics.

Donald E. Knuth. 1965. On the translation of languages
from left to right. Information and Control, 8(6):607–
639.

Donald E. Knuth. 1997. The Art of Computer Pro-
gramming: Fundamental Algorithms, 3 edition, vol-
ume 1. Addison Wesley Longman Publishing Co.,
Inc., USA.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency Parsing. Springer Cham.

E. L. Lawler. 1978. Sequencing jobs to minimize to-
tal weighted completion time subject to precedence
constraints. In B. Alspach, P. Hell, and D.J. Miller,
editors, Algorithmic Aspects of Combinatorics, vol-
ume 2 of Annals of Discrete Mathematics, pages
75–90. Elsevier.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018.
Seq2seq dependency parsing. In Proceedings of the
27th International Conference on Computational Lin-
guistics, pages 3203–3214, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Tianyu Liu, Yuchen Jiang, Ryan Cotterell, and Mrin-
maya Sachan. 2022. A structured span selector. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2629–2641, Seattle, United States. Association
for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Holbrook Mann MacNeille. 1937. Partially ordered sets.
Transactions of the American Mathematical Society,
42(3):416–460.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Peter McCullagh. 1980. Regression models for ordinal
data. Journal of the Royal Statistical Society. Series
B (Methodological), 42(2):109–142.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In 11th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 81–88, Trento, Italy. Association for Computa-
tional Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 523–530, Vancouver,
British Columbia, Canada. Association for Computa-
tional Linguistics.

George A. Miller. 1994. WordNet: A lexical database
for English. In Human Language Technology: Pro-
ceedings of a Workshop held at Plainsboro, New
Jersey, March 8-11, 1994.

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran,
Trung Bui, Walter Chang, and Ndapa Nakashole.
2020. Rethinking self-attention: Towards inter-
pretability in neural parsing. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2020, pages 731–742, Online. Association for Com-
putational Linguistics.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
Eighth International Conference on Parsing Tech-
nologies, pages 149–160, Nancy, France.

Joakim Nivre, Mitchell Abrams, Željko Agić, Lars
Ahrenberg, Lene Antonsen, Maria Jesus Aranz-
abe, Gashaw Arutie, Masayuki Asahara, Luma
Ateyah, Mohammed Attia, Aitziber Atutxa, Lies-
beth Augustinus, Elena Badmaeva, Miguel Balles-
teros, Esha Banerjee, Sebastian Bank, Verginica

https://doi.org/10.18653/v1/P19-1066
https://doi.org/10.18653/v1/P19-1066
https://doi.org/10.1162/tacl_a_00017
https://doi.org/10.1162/tacl_a_00017
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.18653/v1/2021.acl-short.3
https://doi.org/10.18653/v1/2021.acl-short.3
https://doi.org/10.18653/v1/2020.acl-main.557
https://doi.org/10.18653/v1/2020.acl-main.557
https://doi.org/https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/https://doi.org/10.1016/S0019-9958(65)90426-2
https://dl.acm.org/doi/book/10.5555/260999
https://dl.acm.org/doi/book/10.5555/260999
http://www.morganclaypool.com/doi/abs/10.2200/S00169ED1V01Y200901HLT002
https://doi.org/https://doi.org/10.1016/S0167-5060(08)70323-6
https://doi.org/https://doi.org/10.1016/S0167-5060(08)70323-6
https://doi.org/https://doi.org/10.1016/S0167-5060(08)70323-6
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://aclanthology.org/C18-1271
https://doi.org/10.18653/v1/2022.naacl-main.189
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.ams.org/journals/tran/1937-042-03/S0002-9947-1937-1501929-X/S0002-9947-1937-1501929-X.pdf
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
http://www.jstor.org/stable/2984952
http://www.jstor.org/stable/2984952
https://aclanthology.org/E06-1011
https://aclanthology.org/E06-1011
https://aclanthology.org/E06-1011
https://aclanthology.org/H05-1066
https://aclanthology.org/H05-1066
https://aclanthology.org/H94-1111
https://aclanthology.org/H94-1111
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://aclanthology.org/W03-3017
https://aclanthology.org/W03-3017

Barbu Mititelu, John Bauer, Sandra Bellato, Kepa
Bengoetxea, Riyaz Ahmad Bhat, Erica Biagetti, Eck-
hard Bick, Rogier Blokland, Victoria Bobicev, Carl
Börstell, Cristina Bosco, Gosse Bouma, Sam Bow-
man, Adriane Boyd, Aljoscha Burchardt, Marie Can-
dito, Bernard Caron, Gauthier Caron, Gülşen Ce-
biroğlu Eryiğit, Giuseppe G. A. Celano, Savas Cetin,
Fabricio Chalub, Jinho Choi, Yongseok Cho, Jayeol
Chun, Silvie Cinková, Aurélie Collomb, Çağrı Çöl-
tekin, Miriam Connor, Marine Courtin, Elizabeth
Davidson, Marie-Catherine de Marneffe, Valeria
de Paiva, Arantza Diaz de Ilarraza, Carly Dicker-
son, Peter Dirix, Kaja Dobrovoljc, Timothy Dozat,
Kira Droganova, Puneet Dwivedi, Marhaba Eli, Ali
Elkahky, Binyam Ephrem, Tomaž Erjavec, Aline Eti-
enne, Richárd Farkas, Hector Fernandez Alcalde, Jen-
nifer Foster, Cláudia Freitas, Katarína Gajdošová,
Daniel Galbraith, Marcos Garcia, Moa Gärdenfors,
Kim Gerdes, Filip Ginter, Iakes Goenaga, Koldo Go-
jenola, Memduh Gökırmak, Yoav Goldberg, Xavier
Gómez Guinovart, Berta Gonzáles Saavedra, Matias
Grioni, Normunds Grūzı̄tis, Bruno Guillaume, Cé-
line Guillot-Barbance, Nizar Habash, Jan Hajič, Jan
Hajič jr., Linh Hà Mỹ, Na-Rae Han, Kim Harris, Dag
Haug, Barbora Hladká, Jaroslava Hlaváčová, Florinel
Hociung, Petter Hohle, Jena Hwang, Radu Ion, Elena
Irimia, Tomáš Jelínek, Anders Johannsen, Fredrik
Jørgensen, Hüner Kaşıkara, Sylvain Kahane, Hiroshi
Kanayama, Jenna Kanerva, Tolga Kayadelen, Vá-
clava Kettnerová, Jesse Kirchner, Natalia Kotsyba,
Simon Krek, Sookyoung Kwak, Veronika Laippala,
Lorenzo Lambertino, Tatiana Lando, Septina Dian
Larasati, Alexei Lavrentiev, John Lee, Phương
Lê Hồng, Alessandro Lenci, Saran Lertpradit, Her-
man Leung, Cheuk Ying Li, Josie Li, Keying Li,
KyungTae Lim, Nikola Ljubešić, Olga Loginova,
Olga Lyashevskaya, Teresa Lynn, Vivien Macke-
tanz, Aibek Makazhanov, Michael Mandl, Christo-
pher Manning, Ruli Manurung, Cătălina Mărăn-
duc, David Mareček, Katrin Marheinecke, Héctor
Martínez Alonso, André Martins, Jan Mašek, Yuji
Matsumoto, Ryan McDonald, Gustavo Mendonça,
Niko Miekka, Anna Missilä, Cătălin Mititelu, Yusuke
Miyao, Simonetta Montemagni, Amir More, Laura
Moreno Romero, Shinsuke Mori, Bjartur Mortensen,
Bohdan Moskalevskyi, Kadri Muischnek, Yugo Mu-
rawaki, Kaili Müürisep, Pinkey Nainwani, Juan Igna-
cio Navarro Horñiacek, Anna Nedoluzhko, Gunta
Nešpore-Bērzkalne, Lương Nguyễn Thi., Huyền
Nguyễn Thi. Minh, Vitaly Nikolaev, Rattima Nitisaroj,
Hanna Nurmi, Stina Ojala, Adédayò. Olúòkun, Mai
Omura, Petya Osenova, Robert Östling, Lilja Øvrelid,
Niko Partanen, Elena Pascual, Marco Passarotti, Ag-
nieszka Patejuk, Siyao Peng, Cenel-Augusto Perez,
Guy Perrier, Slav Petrov, Jussi Piitulainen, Emily
Pitler, Barbara Plank, Thierry Poibeau, Martin Popel,
Lauma Pretkalnin, a, Sophie Prévost, Prokopis Proko-
pidis, Adam Przepiórkowski, Tiina Puolakainen,
Sampo Pyysalo, Andriela Rääbis, Alexandre Rade-
maker, Loganathan Ramasamy, Taraka Rama, Car-
los Ramisch, Vinit Ravishankar, Livy Real, Siva
Reddy, Georg Rehm, Michael Rießler, Larissa Ri-
naldi, Laura Rituma, Luisa Rocha, Mykhailo Ro-

manenko, Rudolf Rosa, Davide Rovati, Valentin
Ros, ca, Olga Rudina, Shoval Sadde, Shadi Saleh,
Tanja Samardžić, Stephanie Samson, Manuela San-
guinetti, Baiba Saulı̄te, Yanin Sawanakunanon,
Nathan Schneider, Sebastian Schuster, Djamé Sed-
dah, Wolfgang Seeker, Mojgan Seraji, Mo Shen,
Atsuko Shimada, Muh Shohibussirri, Dmitry Sichi-
nava, Natalia Silveira, Maria Simi, Radu Simionescu,
Katalin Simkó, Mária Šimková, Kiril Simov, Aaron
Smith, Isabela Soares-Bastos, Antonio Stella, Milan
Straka, Jana Strnadová, Alane Suhr, Umut Sulubacak,
Zsolt Szántó, Dima Taji, Yuta Takahashi, Takaaki
Tanaka, Isabelle Tellier, Trond Trosterud, Anna
Trukhina, Reut Tsarfaty, Francis Tyers, Sumire Ue-
matsu, Zdeňka Urešová, Larraitz Uria, Hans Uszkor-
eit, Sowmya Vajjala, Daniel van Niekerk, Gertjan
van Noord, Viktor Varga, Veronika Vincze, Lars
Wallin, Jonathan North Washington, Seyi Williams,
Mats Wirén, Tsegay Woldemariam, Tak-sum Wong,
Chunxiao Yan, Marat M. Yavrumyan, Zhuoran Yu,
Zdeněk Žabokrtský, Amir Zeldes, Daniel Zeman,
Manying Zhang, and Hanzhi Zhu. 2018. Universal
dependencies 2.2. LINDAT/CLARIAH-CZ digital
library at the Institute of Formal and Applied Linguis-
tics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

Joakim Nivre and Jens Nilsson. 2005. Pseudo-
projective dependency parsing. In Proceedings of
the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL’05), pages 99–106, Ann
Arbor, Michigan. Association for Computational Lin-
guistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unrestricted
coreference in OntoNotes. In Joint Conference on
EMNLP and CoNLL - Shared Task, pages 1–40, Jeju
Island, Korea. Association for Computational Lin-
guistics.

John Shawe-Taylor and Nello Cristianini. 2004. Kernel
Methods for Pattern Analysis. Cambridge University
Press.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and
Aaron Courville. 2018a. Neural language modeling
by jointly learning syntax and lexicon. In Interna-
tional Conference on Learning Representations.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron Courville, and Yoshua Bengio.
2018b. Straight to the tree: Constituency parsing
with neural syntactic distance. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1171–1180, Melbourne, Australia. Association for
Computational Linguistics.

N.A. Smith. 2011. Linguistic Structure Prediction. Syn-
thesis digital library of engineering and computer
science. Morgan & Claypool.

http://hdl.handle.net/11234/1-2837
http://hdl.handle.net/11234/1-2837
https://doi.org/10.3115/1219840.1219853
https://doi.org/10.3115/1219840.1219853
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://doi.org/10.1017/CBO9780511809682
https://doi.org/10.1017/CBO9780511809682
https://openreview.net/forum?id=rkgOLb-0W
https://openreview.net/forum?id=rkgOLb-0W
https://doi.org/10.18653/v1/P18-1108
https://doi.org/10.18653/v1/P18-1108
https://books.google.ch/books?id=LS3Tx59XSzcC

M. Stede. 2012. Discourse Processing. Synthesis lec-
tures on human language technologies. Morgan &
Claypool.

Mark Steedman. 1987. Combinatory grammars and par-
asitic gaps. Natural Language & Linguistic Theory,
5(3):403–439.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA, USA.

Michalina Strzyz, David Vilares, and Carlos Gómez-
Rodríguez. 2019. Viable dependency parsing as se-
quence labeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 717–723, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gómez-
Rodríguez. 2020. Bracketing encodings for 2-planar
dependency parsing. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 2472–2484, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Edward Szpilrajn. 1930. Sur l’extension de l’ordre
partiel. Fundamenta Mathematicae, 16(1):386–389.

Robert Endre Tarjan. 1977. Finding optimum branch-
ings. Networks, 7(1):25–35.

Ben Taskar, Dan Klein, Mike Collins, Daphne Koller,
and Christopher Manning. 2004. Max-margin pars-
ing. In Proceedings of the 2004 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1–8, Barcelona, Spain. Association for Com-
putational Linguistics.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. 2021. Long
range arena : A benchmark for efficient transformers.
In International Conference on Learning Representa-
tions.

L. Tesnière. 1959. Élements de Syntaxe Structurale. C.
Klincksieck.

Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler.
1979. The recognition of series parallel digraphs.
In Proceedings of the Eleventh Annual ACM Sympo-
sium on Theory of Computing, STOC ’79, page 1–12,
New York, NY, USA. Association for Computing
Machinery.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel
Urtasun. 2015. Order-embeddings of images and
language. In International Conference on Learning
Representations.

Xinyu Wang and Kewei Tu. 2020. Second-order neu-
ral dependency parsing with message passing and
end-to-end training. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Association

for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 93–99, Suzhou, China. Association
for Computational Linguistics.

Douglas B. West. 2018. Introduction to Graph Theory.
Pearson Modern Classics for Advanced Mathematics
Series. Pearson.

Liyan Xu and Jinho D. Choi. 2020. Revealing the myth
of higher-order inference in coreference resolution.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8527–8533, Online. Association for Computa-
tional Linguistics.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta Palmer.
2005. The penn chinese treebank: Phrase structure
annotation of a large corpus. Natural Language En-
gineering, 11(2):207–238.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of the Eighth International
Conference on Parsing Technologies, pages 195–206,
Nancy, France.

Songlin Yang and Kewei Tu. 2022. Headed-span-based
projective dependency parsing. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2188–2200, Dublin, Ireland. Association for Compu-
tational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems, volume 32. Curran
Associates, Inc.

Mihalis Yannakakis. 1982. The complexity of the par-
tial order dimension problem. SIAM Journal on Al-
gebraic Discrete Methods, 3(3):351–358.

Anssi Mikael Yli-Jyrä. 2003. Multiplanarity-a model
for dependency structures in treebanks. In TLT 2003,
Proceedings of the Second Workshop on Treebanks
and Linguistic Theories. Växjö University Press.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3295–3305, Online. Association for Computa-
tional Linguistics.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based
and transition-based dependency parsing. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 562–571,
Honolulu, Hawaii. Association for Computational
Linguistics.

https://books.google.com/books?id=6_xiUFpevAkC
http://www.jstor.org/stable/4047583
http://www.jstor.org/stable/4047583
https://mitpress.mit.edu/9780262692687/the-syntactic-process/
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/2020.coling-main.223
https://doi.org/10.18653/v1/2020.coling-main.223
http://eudml.org/doc/212499
http://eudml.org/doc/212499
https://doi.org/10.1002/net.3230070103
https://doi.org/10.1002/net.3230070103
https://aclanthology.org/W04-3201
https://aclanthology.org/W04-3201
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://books.google.ch/books?id=6SRZAAAAMAAJ
https://doi.org/10.1145/800135.804393
https://arxiv.org/pdf/1511.06361.pdf
https://arxiv.org/pdf/1511.06361.pdf
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://books.google.com/books?id=61gtAAAACAAJ
https://doi.org/10.18653/v1/2020.emnlp-main.686
https://doi.org/10.18653/v1/2020.emnlp-main.686
https://doi.org/10.1017/S135132490400364X
https://doi.org/10.1017/S135132490400364X
https://aclanthology.org/W03-3023
https://aclanthology.org/W03-3023
https://aclanthology.org/W03-3023
https://doi.org/10.18653/v1/2022.acl-long.155
https://doi.org/10.18653/v1/2022.acl-long.155
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.1137/0603036
https://doi.org/10.1137/0603036
https://helda.helsinki.fi/server/api/core/bitstreams/ea067a64-7dde-4488-8c45-4c8a52344b2e/content
https://helda.helsinki.fi/server/api/core/bitstreams/ea067a64-7dde-4488-8c45-4c8a52344b2e/content
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059
https://aclanthology.org/D08-1059

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase
Structure Grammar parsing on Penn Treebank. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2396–
2408, Florence, Italy. Association for Computational
Linguistics.

https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230

A Related Work

A.1 Ordinal Regression
Ordinal regression is a family of problems that involve ranking a set of objects. Unlike classification, the
label spaces in ordinal regression exhibit some natural ordering in its elements (McCullagh, 1980). For
instance, in information retrieval, a ranking model sorts a set of documents typically according to the
document’s relevance to the query. Practically, ordinal regression can either be tackled as either regression
or classification by treating the ranks as real-values or the assignment to a particular rank value as a
classification (Shawe-Taylor and Cristianini, 2004).

A.2 Order Embeddings of Lexicons
The notion of partial order has also been explored for learning word embeddings. The lexicons of
natural languages exhibit hierarchical structures according to the concepts that the words represent
(Miller, 1994). For instance, ‘cat’ and ‘dog’ are ‘animal’, ‘animal’ and ‘plant’ are ‘living thing’. Order
embeddings (Vendrov et al., 2015; Athiwaratkun and Wilson, 2018) propose to learn such property by
learning embeddings that encode such partial order on the lexicon, resulting in improved performance on
downstream tasks such as image caption retrieval.

B An Order-Theoretic Re-evaluation of §2.2

b

c

d

a

f

e g

Inorder : abcdefg

Postorder: acbegfd

(a) The example binary tree in §2.2 and its traversal sequences.

a

b

c

d

f

e g

(b) Partial order of §2.2 defined by the intersection of in- and postorder.
A → B represents the relation A≺1 B.

a

b

c

d

f

e g

(c) Partial order of §2.2 defined by the intersection of reversed in- and pos-
torder. A → B represents the relation A≺2 B.

Figure 3: An order-theoretic re-evaluation of Thm. B.1.

Theorem B.1 (A binary tree and its traversal; Knuth, 1997, §2.3.1, Ex. 7). Given the inorder and either the
pre- or postorder traversal of the vertices in a binary tree, the binary tree structure can be reconstructed.

Proof Sketch (order-theoretic). Without loss of generality, we explain the case of the combination of in-
and postorder. V denotes the set of vertices in the binary tree. First, the intersection of in- and postorder
defines a partial order relation P1 = (V ,E1,≺1). For any 2 vertices x, y in the binary tree, x≺1 y if and
only if x is a left descendant of y. I.e., x is either the left child or a descendant of the left child of y (see
Fig. 3b). Since x is visited before visiting y in both inorder traversal and postorder traversal, if and only
if x is the left descendant of y. The left child of each vertex in V can be decoded from P1 by finding

the child with the deepest subtree. Second, the intersection of reversed inorder and postorder defines a
partial order relation P2 = (V ,E2,≺2). For any 2 vertices x, y in the binary tree, x≺2 y if and only if x
is a right descendant of y (see Fig. 3c). Since x is visited before visiting y in both the reversed inorder
traversal and postorder traversal, if and only if x is the right descendant of y. The right child of each
vertex in V can be decoded from P2 also by finding the child with the deepest subtree. Thus, the original
binary tree can be reconstructed.

■

C Proofs on the Partially Ordered Properties of Structures

C.1 Proof of Thm. 3.14
Theorem 3.14. Token-split structures are partially ordered.

Proof. We show that a token-split structure P =
(
V̂ , Ê,≺

)
satisfies all the properties of partially ordered

structure defined in Def. 3.4.

1. irreflexivity: By Def. 3.13 (c), for all x ∈ V̂ , x⊀x.
2. asymmetry: Suppose that ∃x, y, x ̸= y, s.t. x≺ y ∧ y≺x. By Definitions 3.13 (b) and 3.13 (c),

x, y ∈ V r ∩ V b = ∅. Thus, x≺ y =⇒ y⊀x.
3. transitivity: x≺ y ∧ y≺ z cannot hold by Def. 3.13 (c). Since x≺ y implies x ∈ V r ∧ y ∈ V b, while

y≺ z implies y ∈ V r ∧ x ∈ V b, a contradiction occurs due to y ∈ V r ∩ V b = ∅ by Def. 3.13 (b).
x≺ y ∧ y≺ z =⇒ x≺ z holds since the antecedent of the proposition is always false.

Thus, token-split structures are partially ordered. ■

D Guarantees of Order Dimension of Linguistic Structures

We justify the guarantees of order dimension of linguistic structures. One conventional way to characterize
the dimension of partial orders is from a lattice-theoretic point of view. A basic result tells us that a
partial order is 2-dimensional if and only if its complete lattice embedding has a planar Hasse diagram
(Baker et al., 1972). In other words, its complete lattice embedding can be drawn on a plane without
any crossing edges.

Theorem D.1 (Baker et al., 1972, Thm. 4.1). Suppose P = (V ,E,≺) is a partially ordered structure.
Then the following are equivalent:

(a) D(P) ≤ 2.
(b) The complete lattice embedding of P has a planar Hasse diagram.

Remark D.2. MacNeille (1937) and Birkhoff (1967, Chapter 5) introduced the construction of complete
lattice embeddings for any partial order. Although it is difficult in practice to compute the complete lattice
embedding for a partially ordered structure (MacNeille, 1937), Thm. D.1 can still provide an empirical
characterization of the class of structures that can be efficiently represented. According to Euler’s formula,
the average degree of a vertex in a planar graph cannot exceed 6 (West, 2018, §6.1.23), which intuitively
forces the partially ordered structures that can be represented as an intersection of 2 totally ordered
structures to be sparse enough—thus to have planar complete lattice embeddings.

Fortunately, this is often the case in natural language. Such phenomenon is closely related to what
is termed valency by Tesnière (1959, Part 1, Book D). The number of actants (i.e., arguments) needed
to implement the function of a word is a property of the word itself—a constant that does not change
with the context (cf. categories9 in categorial grammars (Adjukiewicz, 1935; Bar-Hillel, 1953; Steedman,
1987)). In natural language, the valency of a word is often a small constant. For instance, Steedman (2000,
Chapter 3, fn. 10 and Chapter 8, p. 212) observes that the highest valency in the Dutch and English
lexicon can be regarded as bounded by 4.

9E.g., the English word “give” may have the category (VP/NP)/NP, meaning that it needs two NP categories to the right to
form a VP. An example is the verb phrase “give me an apple”, in which “me” and “an apple” are noun phrases.

We refer interested readers to MacNeille (1937) and Birkhoff (1967, Chapter 5) for the construction
of complete lattice embeddings. Here, we give a weaker but more practical efficiency guarantee, based
on a method to construct large partially ordered structures from smaller partially ordered structures.

Definition D.3 (Series-Parallel Partial Orders; Valdes et al., 1979). A partially ordered structure is
series-parallel if it satisfies the following inductive definition:
(a) A single-vertex structure with no edges is series-parallel;
(b) If partially ordered structures P1 = (V 1, E1,≺) and P2 = (V 2, E2,≺) are series-parallel, so is

the partially ordered structures constructed by either of the following operations:
i. Parallel composition:
Pp = (V 1 ∪ V 2, E1 ∪ E2,≺).

ii. Series composition:
Ps = (V 1 ∪ V 2, E1 ∪ E2 ∪ (M1×N 2),≺), whereM1 is the set of sinks of P1 and N 2 the set
of sources of P2.10

Theorem D.4 (Series-parallel partially ordered structures are 2-dimensional; Valdes et al., 1979). The
dimension of series-parallel partially ordered structures is at most 2.

Thm. D.4 provides the guarantee that many structures in natural language processing can be represented
as the intersection of 2 totally ordered structures. Since most structures of interest in NLP, such as trees
and forests (thereby alignments and set partitioning), can be subsumed under series-parallel partially
ordered structures, therefore have an order dimension of at most 2.

Proposition D.5 (Trees are 2-dimensional; Lawler, 1978). Directed tree partially ordered structures are
series-parallel. The order dimension of tree structures is at most 2.

Proposition D.6 (Forests are 2-dimensional). Forests are series-parallel. The order dimension of forest
structures is at most 2.

Proof. Forests are parallel compositions of trees. Thus, the proposition holds. ■

E Efficient Algorithm for ⊕-Aggregation

E.1 Correctness of Algorithm 1

Algorithm 1 Computing G1 when K = 2.

1: procedure COMPUTE-G1(f (1)
θ , f

(2)
θ , V)

2: U ← sort
(
V , key=f

(1)
θ −f

(2)
θ

)
3: G1, s1 ← 0,0 ▷ 0 is the zero element of ⊕
4: for n = 1 up to N :
5: q1= f

(1)
θ (Un) + s1 ▷ q1 = G1(Un)

6: G1⊕= q1
7: s1⊕= −f (1)

θ (Un)
8: return G1

Proposition E.1. In Algorithm 1, G1 =
⊕

x∈V
⊕

y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
.

Proof. By induction, we show that upon finishing step n, s1 =
⊕

y∈S1(Un+1)
−f (1)

θ (y), G1 =⊕
x∈{U1,··· ,Un}

⊕
y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
. First, S1(Un) = {U1, · · · , Un−1} holds as discussed

in §4.3. When n = 1, we have s1 = −f (1)
θ (U1), G1 = 0 =

⊕
x∈{U1}

⊕
y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
,

10Sources and sinks refer to the vertices without incoming arcs and without outgoing arcs, respectively.

since S1(U1) = ∅. Assume that our statements hold for n = j, when n = j + 1, it is straightforward
that s1 =

⊕
y∈S1(Uj+2)

−f (1)
θ (y). For G1, we have

G1 =
⊕

x∈{U1,··· ,Uj}

⊕
y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
⊕

f
(1)
θ (U j+1) +

⊕
y∈S1(Uj+1)

−f (1)
θ (y)

 (7a)

=
⊕

x∈{U1,··· ,Uj}

⊕
y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
⊕

⊕
y∈S1(Uj+1)

(
f
(1)
θ (U j+1)− f

(1)
θ (y)

)
(7b)

=
⊕

x∈{U1,··· ,Uj+1}

⊕
y∈S1(x)

(
f
(1)
θ (x)− f

(1)
θ (y)

)
(7c)

Thus, the claims hold for n = j + 1, establishing the induction step. ■

Proposition E.2. Algorithm 1 runs in O(N) time and space. With parallel computing, Algorithm 1 runs
in O(logN) span.

Proof. The sorting step in line 2 can be executed in O(N) time and space. The for loop in lines 4 to 7
runs in O(N) time and space. In total, Algorithm 1 runs in O(N) time and space. Computing s1 in each
step is a prefix-sum of −f (1)

θ (Un), which can be done in O(logN) span with parallel computing. q1, G1

in each step can be computed in O(1) in parallel following the computation of all s1. Thus, the total span
of Algorithm 1 is O(logN). ■

E.2 Order Dimension K > 2

Finding all y ∈ V such that x≺ y in a partial order for a given x ∈ V requires efficiently finding all y
that satisfy

∧
k∈[K](f

(k)
θ (x) < f

(k)
θ (y)). We remark that this problem bears a resemblance to orthogonal

range searching in a K-dimensional space (Berg et al., 2008, Chapter 5), i.e., for a given x, we aim to find
all y such that (f (1)

θ (y), f
(2)
θ (y), · · · , f (K)

θ (y)) is within the range (f
(1)
θ (x),∞)× (f

(2)
θ (x),∞)× · · · ×

(fK
θ (x),∞). This problem can be naïvely solved inO

(
logK−1N + ℓ

)
using a range tree (Bentley, 1979,

1980; Chazelle, 1988, 1990a,b), where ℓ is the cardinality of query results, as opposed to arc-factored
models in which solving the same problem takes O(N) computations.

For ⊕-aggregation, a more efficient algorithm which makes use of (K−1)-dimensional range trees
can be designed. In future work, we show that computing the complexity of ⊕-aggregation for all x ∈ V
can be further reduced to O

(
KN logK−2N

)
by applying Fredman’s (1976) trick which we used in

Algorithm 1. Extending the notation in §4.3, the set of all vertices V can be partitioned into K subsets
S1(x), · · · ,SK(x) for each x ∈ V , where Sk(x) = {y | y ∈ V ∧ Fθ(x, y) = f

(k)
θ (x) − f

(k)
θ (y)}.⊕

y∈V Fθ(x, y) can be decomposed into a ⊕-aggregation of K terms.

G(x)
def
=

⊕
y∈V

Fθ(x, y) (8a)

G(x) =
⊕

k∈[K]

(⊕
y∈Sk

Fθ(x, y)
)

︸ ︷︷ ︸
def
=Gk(x)

(8b)

We leave to future work showing that computing each Gk(x) takes O
(
logK−2N

)
.

F Hyperparameter Settings

F.1 Dependency Parsing
For pretrained language models, we use XLNet-large-cased11 (Yang et al., 2019) for PTB,
bert-base-chinese12 for CTB, and bert-base-multilingual-cased13 for UD. We set the dimen-
sion of POS tag embedding to 256 for all experiments. On top of concatenated pretrained representations

11https://huggingface.co/xlnet-large-cased
12https://huggingface.co/bert-base-chinese
13https://huggingface.co/bert-base-multilingual-cased

https://huggingface.co/xlnet-large-cased
https://huggingface.co/bert-base-chinese
https://huggingface.co/bert-base-multilingual-cased

and POS embedding, we use a 3-layer BiLSTM (Hochreiter and Schmidhuber, 1997) with a hidden size
of 768 for base-sized models (bert-base-chinese on CTB and bert-multilingual-cased on UD)
and 1024 for large-sized models (xlnet-large-cased on PTB). We apply dropout with a rate of 0.33 to
the concatenated embedding layer, between LSTM layers, and before the linear projection layer of the
realizer. We employ AdamW (Loshchilov and Hutter, 2019) with a learning rate of 2e−5 for pretrained
LMs and 1e−4 for POS embedding, BiLSTM, and linear projection during training. The gradient clipping
threshold is set to 1.0. The batch size for training is 32. The number of training epochs is 50.

F.2 Coreference Resolution
We use longformer-large-cased14 (Beltagy et al., 2020) as the pretrained encoder. We use the same hy-
perparameter settings as Kirstain et al. (2021). We use AdamW with a learning rate of 1e−5 for pretrained
LM and 3e−4 for the linear projection during training, with 5600 linear warmup steps. Training documents
are batched into batches with maximum 5000 tokens in total. The number of training epochs is 129.

G Datasets

G.1 Dependency Parsing
Preprocessing. We follow previous work (Kiperwasser and Goldberg, 2016; Dozat and Manning, 2017)
to derive the dependency annotations from the treebank annotations using the Stanford Dependency con-
verter v3.3.0 (de Marneffe and Manning, 2008). During evaluation, punctuations are omitted. Following
Amini et al. (2023), we provide gold part-of-speech tags to the model during training and decoding.

Splits. The dataset splits are consistent with previous work. For PTB, we follow the standard split of
Marcus et al. (1993), resulting in 39,832 sentences for training, 1,700 for development, and 2,416 for
testing. For CTB, we follow the split of Zhang and Clark (2008), resulting in 16,091 sentences for training,
803 for development, and 1,910 for testing. For UD, we follow previous work (Zhang et al., 2020; Yang
and Tu, 2022) and use the standard splits of the following corpora for experiments: BG-btb, CA-ancora,
CS-pdt, DE-gsd, EN-ewt, ES-ancora, FR-gsd, IT-isdt, NL-alpino, NO-rrt, RO-rrt, RU-syntagrus.

Licenses. The PTB and CTB datasets are licensed under LDC User Agreement. The UD dataset is
licensed under the Universal Dependencies License Agreement.

G.2 Coreference Resolution
Preprocessing. We experiment on the CoNLL-2012 English shared task dataset (OntoNotes; Pradhan
et al., 2012). We follow the preprocessing procedure of (Kirstain et al., 2021). During training and
decoding, the speaker information is provided to the model.

Splits. The OntoNotes dataset contains 2,802 documents for training, 343 for validation, and 348 for
testing. We use this official split following previous work (Lee et al., 2017; Kirstain et al., 2021).

Licenses. The OntoNotes dataset is licensed under LDC User Agreement.

H Efficiency Evaluation

H.1 Dependency Parsing
For efficiency evaluation, BERT-large-cased15 is used as the pretrained encoder for our method with
K = 2, hexatagger (Hexa; Amini et al., 2023), and biaffine model (Biaff). We use the English PTB test
set and truncate or pad the input sentences to the control length. The results are averaged over 3 random
runs on the same server with one Nvidia A100-80GB GPU. The other experimental settings are kept the
same (i.e., the version of PyTorch and transformers, FP32 precision, batching).

H.2 Coreference Resolution
14https://huggingface.co/allenai/longformer-large-4096
15https://huggingface.co/bert-large-cased
16https://huggingface.co/allenai/longformer-base-4096

https://huggingface.co/allenai/longformer-large-4096
https://huggingface.co/bert-large-cased
https://huggingface.co/allenai/longformer-base-4096

Speed (doc/s) ↑ Memory (GB) ↓

Doc length Ours (K = 4) Kirstain et al. Ours (K = 4) Kirstain et al.

512 72.5 35.7 7.3 7.4
1024 54.3 26.7 7.3 7.4
2048 33.8 15.9 9.4 9.5
4096 19.3 8.6 17.8 21.0

overall 82.8 41.9 7.3 7.4

Table 4: Comparison of speed and memory consumption on OntoNotes test set using Longformer-base16 as
pretrained encoder. Results are averaged over 3 random runs on the same server with one Nvidia A100-80GB GPU
using BERT-large as encoder. We use a batch size of 32 documents.

We compare the efficiency of our order-theoretic method with baseline coreference resolution model.
The full results are given in Tab. 4. On the OntoNotes coreference resolution benchmark, our method is
twice as fast as Kirstain et al.’s (2021) model while using less memory, especially on long documents.
It is worth noting that Kirstain et al. (2021) has already performed aggressive optimization in both the
speed and memory footprint of coreference modeling. I.e., they abandon the computation for textual span
representations and entity-pair representations, and use biaffine scorers to compute coreference scores.

I Additional Experimental Results

I.1 Dependency Parsing
We report additional experimental results on the UD dependency parsing dataset in Tab. 5. On average,
our model has state-of-the-art performance and outperforms all other baseline models on 5 languages.

bg ca cs de en es fr it nl no ro ru Avg.

Zhang et al. (2020) 90.77 91.29 91.54 80.46 87.32 90.86 87.96 91.91 88.62 91.02 86.90 93.33 89.33
Wang and Tu (2020) 90.53 92.83 92.12 81.73 89.72 92.07 88.53 92.78 90.19 91.88 85.88 92.67 90.07

+BERTmultilingual

Wang and Tu (2020) 91.30 93.60 92.09 82.00 90.75 92.62 89.32 93.66 91.21 91.74 86.40 92.61 90.61
Dozat and Manning (2017) 90.30 94.49 92.65 85.98 91.13 93.78 91.77 94.72 91.04 94.21 87.24 94.53 91.82
Yang and Tu (2022) 91.10 94.46 92.57 85.87 91.32 93.84 91.69 94.78 91.65 94.28 87.48 94.45 91.96
Amini et al. (2023) 92.87 93.79 92.82 85.18 90.85 93.17 91.50 94.72 91.89 93.95 87.54 94.03 91.86

ours (K = 2) 92.81 93.26 92.52 83.33 90.38 92.55 89.83 93.82 91.29 93.61 87.40 94.10 91.24
ours (K = 4) 93.82 94.23 93.03 84.68 91.40 93.62 90.95 94.59 92.58 94.22 88.45 94.40 92.16

Table 5: LAS scores on the test sets of 12 languages in UD. Our method with an order dimension of K = 4 achieves
competitive performance in all languages, being state-of-the-art on 5 languages and on average.

J Qualitative Examples

We present some qualitative examples from the PTB development set and one non-projective example
using our method with a 2-dimensional realizer, with their ground truth annotations on the right in Figures
4–9. For a more intuitive and compact exhibition, we plot the 2 total orders output by our model in
a 2-dimensional plane. Each axis corresponds to one of the 2 orders. The relation x≺ y encoded by∧

k∈{1,2} f
(k)
θ (x) < f

(k)
θ (y) is equivalent to x being located below and to the left of y.

Tokens in V r and V b are represented by and , respectively. The line segments between and
are the extracted dependency relations. In each of the plots, every (token in V r) except for the root is
connected to a (token in V b), which indicates is the modifier of . The roots (about, moving, ready,
had, adds, bought represented by) are not connected to any other word.

20 0 20 40

30

20

10

0

10

20

30

We
're

about

to

see

ifadvertising

works

We'

're'

about'

to'

see'

if'
advertising'

works'

We ’re about to see if advertising works

Figure 4: We ’re about to see if advertising works

0 20 40 60 80

60

40

20

0

20

This

time

around

,they
're

moving

even

faster

This'
time'

around'

,'they'
're'

moving'even'

faster'

This time around , they ’re moving even faster

Figure 5: This time around , they ’re moving even faster

20 40 60 80 100

80

60

40

20

0

This

time,

the

firmswere

ready

This'
time'

,'

the'

firms'
were'

ready'

This time , the firms were ready

Figure 6: This time , the firms were ready

40 20 0 20 40 60

20

0

20

40

We

had

to

think

about

it

ahead

of

time

We'

had'
to'

think'

about'

it'

ahead'

of'

time'

We had to think about it ahead of time

Figure 7: We had to think about it ahead of time

0 20 40

30

20

10

0

10

He

adds

,

Thisisn't

1987

revisited

He'

adds'

,'

This'
isn'

't'

1987'revisited'

He adds , This isn ’t 1987 revisited

Figure 8: He adds , " This isn ’t 1987 revisited "

0 10 20 30 40

40

30

20

10

0

John

bought

a

car
yesterday

whichis

red

John'

bought'

a'

car'

yesterday'

which'
is'

red'

John bought a car yesterday which is red

Figure 9: A sentence with a non-projective dependency structure: John bought a car yesterday which is red

