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ABSTRACT

This paper proposes a certifiable defense against adversarial patch attacks on im-
age classification. Our approach classifies random crops from the original image
independently and classifies the original image as the majority vote over predicted
classes of the crops. This process minimizes changes to the training process, as
only the crop classification model needs to be trained, and can be trained in a
standard manner without explicit adversarial training. Leveraging the fact that a
patch attack can only influence a certain number of pixels in the image, we derive
certified robustness bounds for the classifier. Our method is particularly effective
when realistic transformations are applied to the adversarial patch, such as affine
transformations. Such transformations occur naturally when an adversarial patch
is physically introduced in a scene. Our method improves upon the current state
of the art in defending against patch attacks on CIFAR10 and ImageNet, both in
terms of certified accuracy and inference time.

1 INTRODUCTION

Despite their incredible success in many computer vision tasks, deep neural networks are known to
be sensitive to adversarial attacks; small perturbations to an input image can lead to large changes
in the output. A wide range of defenses against adversarial attacks have been conducted in image
classification, where the goal of the attacker is simply to change the predicted label(s) of an image
(Kurakin et al., 2016a; Szegedy et al., 2013; Madry et al., 2017). But these defenses have typically
considered a relatively unrealistic threat model that does not easily extend to the physical settings. In
particular, these works have mainly considered the so-called `p-norm threat model, where an attacker
is allowed to perturb the intensity at all pixels of the input image by a small amount. In contrast,
adversarial patch attacks are considered as physically-realizable alternatives, modeling scenaria
where a small object is placed in the scene so as to alter or suppress classification results (Brown
et al., 2017). Here, the attack is spatially compact, but can change the pixel value to any value within
an allowable range.

This paper develops a practical and provably robust defense against patch attacks. Inspired by the
randomized smoothing defense (Cohen et al., 2019; Levine & Feizi, 2019) for the `p-norm threat
model, our approach classifies randomly sampled sub-regions or crops of an image independently
and outputs the majority vote across these crops as the class prediction of the input image. This
approach has numerous benefits. First, given the size of adversarial patches, we can compute the
probability of a sampled crop overlapping with the attacked region (patch), and use this probability to
determine if the classification outcome of an image can be guaranteed (certified) to not be changed
by any adversarial patch. Second, this approach is highly practical, as the crop classifier can be
trained using standard architectures such as VGG (Simonyan & Zisserman, 2014) or ResNet (He
et al., 2016) without the need for adversarial training. Indeed, random cropping is already a common
data augmentation strategy for training machine learning models, and thus the method can be trained
via standard techniques. This is different from most existing work on certifiable defenses against
patch attacks (Levine & Feizi, 2020; Xiang et al., 2020; Chiang et al., 2020) which need extra
computation for certification during training. Third, the proposed approach separates the training
procedure from the patch threat model, thus making the method more robust against realistic settings
of patch attacks, for example, patch transformations including rotation in x-y plane and aspect ratio
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CIFAR10 2.4% patch ImageNet 2.0% patch

certification acc. time certification acc. time
(clean acc.) in ms (clean acc.) in ms

Proposed method 47.5 (88.4) 0.7 12.2 (55.7 ) 21.8
De-rand. smoothing 17.5 (83.9) 17.5 3.2 (43.1) 703.2
PatchGuard: De-rand. smoothing 18.2 (84.5) 18.2 3.5 (43.6) 734.5
PatchGuard: Bagnets 27.1 (82.6) 0.7 9.6 (54.4) 25.7

Table 1: Worst-case certified accuracy (%), clean accuracy(%), and certification time of the proposed
method, De-randomized smoothing (Levine & Feizi, 2020), and PatchGuard (Xiang et al., 2020)
with De-randomized smoothing and Bagnets as base structure. For each method, we list the worst
certified accuracy under affine transformation of the patch. Note that this is different from results in
the original paper where patch transformations are not considered.

changes. This is in sharp contrast to prior work that either have fixed strategies to exclude parts
of the image or extract features from fixed parts of the image (Levine & Feizi, 2020; Xiang et al.,
2020).

We summarize our main results on CIFAR10 and ImageNet in Table 1 in comparison with the current
state of the art certifiable defense against patch attack (Xiang et al., 2020) with patch transformation.
We report certified accuracy, which is the percentage of test images for which classification outcome
equals to the ground truth label and is guaranteed to not change under patch attack. Our method is
better in both speed and certified accuracy compared to De-randomized smoothing (Levine & Feizi,
2020) and PatchGuard (Xiang et al., 2020) under patch attack with possible affine transformations
of the patch. In addition, our method outperforms these past approaches on ImageNet (though not
on CIFAR10) in the setting where the patch aligns with coordinates of the image axes and does not
undergo affine transformations as in Table 2, which was the setting considered in this past work.

We have made several contributions in this paper: first, we propose a defense against patch attack
for image classification with certified robustness; second, the proposed method is fast in comput-
ing image certification and robust against patch transformation; third, the proposed method can be
applied to any image classification model with only minimal changes to the training process.

2 BACKGROUND AND RELATED WORK

Adversarial attacks Adversarial attacks on image classification have been known for some time,
with original work coming out of the field of robust optimization (Ben-Tal et al., 2009). Test-
time attacks on ML models in general were studied in (Dalvi et al., 2004; Biggio et al., 2013),
though the area gained momentum considerably when these methods were applied to deep learning
systems to demonstrate that deep classifiers could be easily fooled by imperceptible changes to
images (Szegedy et al., 2013; Goodfellow et al., 2014). In the following years many defenses against
such attacks were proposed (Tramèr et al., 2017; Papernot et al., 2016), although most heuristic
approaches were later found to be ineffective (Athalye et al., 2018). Amongst the defense strategies
that have stood the test of time are: 1) adversarial training (Goodfellow et al., 2014; Kurakin et al.,
2016b; Madry et al., 2017), now commonly carried out using a projected gradient descent based
approach for synthesizing adversarial attacks and then incorporating them into the training; and 2)
provably robust training (Wong & Kolter, 2017; Raghunathan et al., 2018). Our approach is more
related to the randomized smoothing-based methods (Cohen et al., 2019; Levine & Feizi, 2019) in
the latter direction, in which random points around the original input are sampled and classified, and
the predicted class of the original input is declared as the aggregation of these outputs.

The majority of the attacks mentioned above focus on attacks with bounded `∞-norm, where attacks
are permitted to modify any pixel in the image by (at most) some fixed amount (and are usually
permitted to design a new adversarial perturbation for each new input image, though the so-called
“universal” `∞ attacks have been studied as well (Moosavi-Dezfooli et al., 2017)). If we consider
real-life attackers, however, this level of freedom on the attacker’s side seems uncommon: attackers
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would need to have access to the deep learning system at the pixel level, which if true, also means
that the system has already been compromised, making it unclear what benefit such an attack would
have. In contrast, physically-realizable attacks such that can be implemented in the real world have
been primarily modeled by the so-called patch attacks (Brown et al., 2017; Eykholt et al., 2018),
where a particular ‘pattern’ is designed to fool a deep learning system. We consider patch attacks as
the threat model to defend against for it being physically realizable.

Defense against patch attacks There are also two threads of research in defending against patch
attacks: 1) empirical defense strategies which show stronger empirical robustness but no analytical
guarantees (McCoyd et al., 2020; Naseer et al., 2019; Hayes, 2018); most of these methods rely
on the fact that a patch attack has to produce strong local features that are very different from its
neighborhood to change classification outcome; by analyzing local features, one can detect patch
location or smooth out such feature values to reduce effectiveness of the patch, and 2) certified
defenses which provide analytical lower bounds of classification accuracy under patch attack.

Certifiable defense against patch attacks Relevant to our work is the defense which provides
provable lower bounds of classification accuracy. In Chiang et al. (2020), interval bound propaga-
tion was used to provide certification, but the method is not applicable to commonly used image
classification networks such as ResNet50 (He et al., 2016) or VGG16 (Simonyan & Zisserman,
2014) because the depth of these architectures renders the bound trivial, and thus cannot provide
useful certification. Another line of research utilizes the fact that an adversarial patch can only have
local influence on the image. To reduce such influence, De-randomized smoothing (Levine & Feizi,
2020) uses ablation to exhaustively block all possible patch locations while (Zhang et al., 2020) uses
Bagnets (Brendel & Bethge, 2019) with limited receptive field to contain the number of affected
features. Both methods then aggregate logits from ablated versions of images or local regions for
final classification. PatchGuard (Xiang et al., 2020) adds additional detection of patch location and
then sets features extracted from the detected locations to be zero. However all three methods re-
quire special image classifier structures – Levine & Feizi (2020) require three additional channels to
express ablation, Zhang et al. (2020) is limited to Bagnets, and Xiang et al. (2020) uses either of the
former structures. Our proposed method instead can use any image classification architecture and
does not require any additional steps to compute certification during model training except cropping
images. This makes our method much more practical and easier to deploy onto existing systems. We
will compare our proposed method with De-randomized smoothing (DRS) and PatchGuard (PG) in
the experiments and an overview of the two prior arts can be found in Appendix A.

3 PROVABLE PATCH DEFENSE WITH RANDOMIZED CROPPING

A physically-realizable adversarial patch attack can be found by solving the optimization problem:
max
δ∈∆

E(x,y)∼D,t∼T [`(hθ(A(x, δ, t)), y)] (1)

where hθ : X → Y denotes some (presumably deep-network-based) hypothesis function; θ denotes
parameters of the model, x ∈ X denotes the original input to the network and δ ∈ X the perturbation
to the input; ∆ ⊆ X denotes the set of allowable perturbations; y ∈ Y denotes the true label;
` : Y × Y → R denotes a loss function that measures the performance of the image classifier;
and T : X → X is the set of transformations that the perturbation δ might go through. The
feasible set ∆ denotes a simple allowable set of values for the patch, which typically would just
be constrained to lie in valid RGB space. Patches overwrite a portion of the image with the patch
perturbation itself, at a given location with a given set of transformations, such as scaling, rotation,
and other transformations in T . We refer to this combination as the patch application function A :
X ×X ×T → X , whereA(x, δ, t) denotes the application of patch δ to image xwith transformation
t. Attack budget considered for patch attack is the percentage of area that the patch covers over the
whole image. Throughout this paper, we consider the patch being one connected area bounded by a
rectangle with size pi × pj .

3.1 RANDOMIZED CROPPING DEFENSE

Although a patch attack can change pixel values to any arbitrary value, it can only influence the
pixels within the patch itself. Therefore, networks extracting features with compact receptive fields
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Figure 1: Forward pass of randomized crop defense

and aggregating such local features for final classification are more robust against patch attacks. An
example of such methods is Bagnets (Brendel & Bethge, 2019), where 1x1 convolutional kernels
are used to restrict the size of the receptive fields. Several existing techniques (Zhang et al., 2020;
Xiang et al., 2020) utilize Bagnets for adversarial defense. However, the major drawback of Bagnets
is that it extracts local features at fixed locations, therefore a patch may be placed in particular
locations to influence more number of local features than other locations, thus reducing the worst-
case robustness of Bagnets. In contrast to this architecture, we propose to extract local features at
random locations by sampling random crops; this greatly reduces variations in the number of local
features an adversarial patch can influence.

Based on above observations, we propose a randomized cropping approach as shown in Fig. 1:
given a full-size test image x as input, we first randomly select n crops uniformally over all possible
locations, where crop size ki × kj is smaller than image size mi × mj in both dimensions. Each
of the sampled crops (x̂i) then goes through the crop-based classifier gθ and its predicted class (ŷi)
is obtained. The final classification of x is the majority of {ŷi}ni=1. The equivalent pseudo code of
Fig. 1 is in Appendix B.

Training randomized cropping classifier The robust classifier fθ has three components: (1) sam-
pling n crops with uniform distribution, (2) classifying crops with gθ, and (3) majority voting. Since
both random sampling of the crops via a uniform distribution and majority voting have no trainable
parameters, the set of trainable parameters of fθ is the same as gθ. Therefore training the robust
classifier fθ only involves training the crop classifier gθ, which can be trained in standard ways with
only data augmentation of randomly cropping the input x as in Algorithm 1. Other variables are
either pre-determined hyperparameters (crop size ki, kj), or can be adjusted at test time (number of
crops n).

Since the training procedure of randomized cropping classifier fθ only requires training the crop
classifier gθ without any assumption on attack parameters (size, shape, and location), nor does it
depend on hand-crafted rules or thresholds, our method is robust against different patch shapes. We
show supportive experimental results in Section 4 for this claim.

Algorithm 1: Training crop classifier for T epochs given crop size ki × kj , image classifier gθ
with loss function `, and a dataset of M images
Input: Full size image data x, labels y
for t = 1, . . . , T do

for m = 1, . . . , M do
Set x̂ as a crop of size ki × kj from image x at a random location;
θ = θ −∇θ`(fθ(x̂, y) //Update model weights with some optimizer, e.g. SGD

end
end

3.2 CERTIFIABLE ROBUSTNESS BOUND

Here we compute the probability that an image x is certified robust, i.e., the classification outcome
of x cannot be changed by patch attack of given size. Given a clean image, we randomly sample n
crops {x̂i}ni=1 and obtain the set of n predicted classes {ŷi}ni=1 of the crops. Let n1 be the number
crops that are predicted as the majority in {ŷi}ni=1, and n2 be the number crops that are predicted as
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the second majority in {ŷi}ni=1. Then if there exists a patch attack that can change the classification
outcome of x, then the patch must overlap with at least n2to1 = bn1−n2c

2 + 1 of the crops. On the
other hand, if there are only less than n2to1 crops that overlap with the patch, then x is certified
robust. Therefore, pc can be represented as the probability that, out of the n sampled crops, there
are less than n2to1 crops that overlap with the adversarial patch.

The below derivation assumes that the random selection is uniform over all crop locations with
replacement, i.e., the same crop can be selected again. Derivations for uniform sampling crops
without replacement can be found in Appendix C.

Following the argument above, we first compute the probability that a single sampled crop xi over-
laps the adversarial patch, and use this probability to compute pc. This probability can be computed
as the total number of crops overlapping with the patch (denoted by nadv) divided by the number of
all possible crops (nall). Although a physically-realizable adversarial patch can be at any location
in the image, to guarantee robustness, we consider the worst-case scenario where the patch is at the
location that it can influence maximum number of crops (usually at the center of the image). When
the patch is at the center of the image,

nadv = min(pi + ki − 1,mi − ki + 1)×min(pj + kj − 1,mj − kj + 1), (2)
nall = (mi − ki + 1)× (mj − kj + 1), and (3)

pa =
nadv
nall

. (4)

After we sample n crops {x̂i}ni=1 from the original input x and {ŷi}ni=1 = {gθ(x̂i)} are the predicted
classes of the crops. Suppose in {ŷi}ni=1, n1 of them are the majority class y′, and n2 of them are the
second-majority class y′′. If an adversarial patch changes the majority class, the minimal number of
crop-based predicted classes that it has to change will be

n2to1 =
bn1 − n2c

2
+ 1 (5)

to make y′′ the majority class.

The probability of certification pc is equal to the probability that out of {x̂i}ni=1, at most n2to1 − 1
of them overlaps with the adversarial patch:

pc =

n2to1−1∑
i=0

Cni ∗ pia ∗ (1− pa)(n−i), (6)

where Cni is the binomial coefficient (n choose i). If pc is close to 1.0, the input image is certifiably
robust under patch attack. In the experiments we select pc ≥ 0.95 for an image to be considered
certified. Throughout this paper, we consider certified accuracy, meaning only data with predicted
class y′ being the ground truth class will be considered for certification.

Note that because the crops are randomly sampled, n2to1 and hence pc is an instance of a random
distribution. However we argue that when n is large enough, there n2to1 and pc will have very small
variance. Experiments to verify this point are in Appendix D.

The above computation of probability of certification in Eq. 6 again shows that pc is monotonically
increasing with n2to1. So to maximize number of certified robust images, the randomized cropping
classifier should maximize n2to1, which is equivalent to maximizing classification accuracy of gθ.
This is another way to view that, to train the proposed robust classifier fθ, one only needs to train
gθ.

4 EXPERIMENTAL RESULTS

Datasets, models, and device. We conduct experiments on two benchmark image classification
datasets: CIFAR10 and ImageNet. For both datasets we evaluate over the whole evaluation set and
report certified accuracy as percentage of images that are classified correctly and can be certified
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CIFAR10 ImageNet

ours DRS PG+DRS / ours DRS PG+DRS /
Patch Size Bagnets smoothing Bagnets

0.4% 65.7 68.9 69.2 / 53.2 24.7 22.3 24.8 / 23.1
1.0% 60.2 62.7 65.3 / 41.2 20.1 17.7 19.9 / 18.6
2.0% 55.2 60.9 61.1 / 37.2 16.4 14.0 16.0 / 13.3
2.4% 52.3 57.1 58.1 / 31.7 15.3 13.1 14.7 / 11.2
3.0% 37.8 42.1 43.5 / 25.1 14.2 11.2 13.01 / 8.9

Table 2: Certified accuracy (%) over CIFAR10 and ImageNet of our method, De-randomized
smoothing (DRS) (Levine & Feizi, 2020), and PatchGuard (PG)(Xiang et al., 2020). We consider
images with pc ≥ 0.95 be certified.

with probability higher than 0.95. For CIFAR10, we use ResNet9 without the final pooling layer as
the crop model, and for ImageNet we use ResNet34 as the crop model and resize and pad the image
to 224x224. Experiments and timing are done on single Nvidia 2080 Ti GPU, and 16-core Intel
i7-5960X CPU. For both models we use cyclic learning rate with 10−3 initial learning rate. The
models are trained 30 epochs and training time is 14 GPU-hours and 328 GPU-hours for CIFAR10
and ImageNet, respectively.

we chose crop size of 10x10 (10% total area) for CIFAR and 80x80 (13% total area) for ImageNet;
for these experiments we assume patch shape is square with no rotation. For each input image in
CIFAR10, we randomly sample 128 crops and for each image in ImageNet we sample 256 crops.

Positional encoding. Because both CIFAR10 and ImageNet images have a certain region of inter-
est which is usually in the center of the image, some parts of the images contain more information
than others. For example, an image with label airplane usually has the airplane in the center, while
the corners and edges have the background of sky or airport. Therefore, crops sampled at different
position of the image contain different information. To represent such information, we add learnable
positional encoding (Vaswani et al., 2017) to the first layer of our classifier.

Metric. Although the certification probability pc can be computed to any clean image despite of
which data split this image is, in the experiment we follow the literature and report the certification
accuracy, i.e., percentage of test images that are certified and classified correctly. This metric di-
rectly reflects how robust and accurate the classifier is – for example, the ideal classifier with 100%
certified accuracy should classify all test images correctly and all test images’ predicted class cannot
be change by patch attack. We consider an image with pc ≥ 0.95 to be certified.

4.1 CLEAN ACCURACY AND INFERENCE TIME

Clean model accuracy and inference time per image compared with the above mentioned prior work
are shown in Table 1. Note that clean model accuracy and inference time remain the same with and
without affine transformation of the adversarial patch. In terms of inference time our method is faster
under all cases. This is because although multiple forward passes are needed, the number of crop
samples is smaller than equivalent sub-regions in Bagnets and much smaller than number of all band-
smoothed images as in De-randomized smoothing (DRS). PatchGuard with Bagnets (PG-Bagnets)
is slower than our method in ImageNet for the additional reason of having to go through all logits of
all possible classes sequentially. In addition, both De-randomized smoothing (DRS) and PatchGuard
with De-randomized smoothing (PG-DRS) as the base structure are an order of magnitude slower
than our method because De-randomized smoothing passes the whole image through the classifier,
which is much more expensive then passing crops (10% or 13% of the whole image) through the
classifier.
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pc ≥ 0.93 pc ≥ 0.95 pc ≥ 0.97 pc ≥ 0.99

CIFAR10 2.4% 52.8 52.3 52.0 49.6
ImageNet 2.0% 17.2 16.4 15.3 14.1

Table 3: Certified accuracy (%) with different thresholds for pc without patch transformation

CIFAR10 2.4% patch ImageNet 2% patch

ours DRS PG+DRS / ours DRS PG+DRS /
Transformation Bagnets smoothing Bagnets

AR 1:1 52.3 57.1 58.1 / 31.7 16.4 14.0 16.0 / 13.3
AR 2.7:1 50.7 65.8 67.2 / 30.4 15.8 15.2 17.6 / 12.4
AR 6:1 47.5 71.1 74.5 / 27.1 12.2 17.9 19.0 / 9.6
AR 1:2.7 50.7 40.6 42.4 / 30.4 15.8 11.3 11.9 / 12.4
AR 1:6 47.5 17.5 18.2 / 27.1 12.2 3.2 3.5 / 9.6
Rotate 45◦ 48.0 50.3 52.1 / 28.1 12.4 12.1 12.8 / 10.1

Worst case 47.5 17.5 18.2/27.1 12.2 3.2 3.5/9.6

Table 4: Certified accuracy (%) under patch rotation and different aspect ratio. We consider images
with pc ≥ 0.95 be certified.

4.2 WITHOUT PATCH TRANSFORMATION

We first present the certification accuracy in Table 2 of our randomized cropping method along
with De-randomized smoothing and PatchGuard on patch size ranging from 0.4% to 3%. Position
encoding used here is learnable position encoding with values up to 10% of normalized input value
range. We mainly compare our results with two prior arts: De-randomized smoothing (DRS) (Levine
& Feizi, 2020) and PatchGuard (PG) (Xiang et al., 2020). For all PatchGuard results there are two
sets of numbers separated by slash: the first set of numbers use De-randomized smoothing(Levine &
Feizi, 2020) as base structure and the second set of numbers use Bagnets (Brendel & Bethge, 2019).
Methods with the highest certified accuracy are highlighted in bold. We can see that although our
method is sub-optimal for CIFAR10, for ImageNet we have the highest certified accuracy except for
patch size 0.4%. We also show the certification accuracy with different thresholds for pc Table 3.

As discussed in the previous subsection, our method is the fastest among the three methods. Al-
though using Bagnets (PG-Bagnets) as base structure makes PatchGuard much faster than using
De-randomized smoothing (PG-DRS), it pays the price of degrading certified accuracy. For exam-
ple, certification accuracy degrades from 58.1% (PG-DRS) to 31.7% (PG-Bagnets) for CIFAR10
with 2.4% patch size while our randomized cropping defense is as fast as PatchGuard with Bagnets
(PG-Bagnets) as show in Table 1 (inference time remains the same with or without patch transfor-
mation), but achieves much better (52.3%) certified accuracy. Moreover, on ImageNet our proposed
method is the fastest and with the highest certified accuracy as well as clean accuracy.

Combining the certified accuracy on ImageNet in Table 2 and the short inference time in Table 1,
our experiments show that the proposed randomized cropping defense is practical in the aspects of
fast certification and high certified accuracy for the dataset that is closer to real-life pictures.

4.3 WITH PATCH TRANSFORMATION

As described in Section 3, a physically-realizable patch can be subject to certain transformations,
such as scaling and rotation, before overwriting pixels in an image. These transformations can be
used to mimic relative camera angle and distance to the scene in the real physical world. While it
is reasonable to restrict the maximal area that an adversarial patch can influence in an image (since
it corresponds to how big the physical patch is), one cannot assume such area would always align
with coordinate axes of the image – even if the physical patch itself is square, when the scene is
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captured with different camera angles, the patch on the image will be rotated (rotation in x-y plane)
or stretched (rotation in depth). Therefore it is important that the patch defense can also provide
guarantees when the patch is rotated or if the aspect ratio is varied, given the same patch size.

In Table 4 we compare the proposed randomized cropping defense with De-randomized smoothing
(Levine & Feizi, 2020) and PatchGuard (Xiang et al., 2020) when a square patch is rotated 45
degrees and with aspect ratio (AR) 1:1, 6:1, 2.7:1, 1:2.7, 1:6, respectively. We highlight the highest
certified accuracy under worst transformation for both datasets. Aspect ratio 1:1 without rotation is
the same as Table 2 but listed here as reference. We chose 45 degrees because it is the worst case
for a square patch, as the same number of pixels within the patch but occupying the largest rectangle
area that aligns with coordinate axes of the image. Therefore rotation of 45 degrees provides a lower
bound of robustness under patch rotation. For all transformations of the patch, we consider the same
patch size.

We can clearly see that in Table 4, with the same patch size, transformation brings down the certified
accuracy of all three competing methods, however, the proposed randomized cropping defense has
the highest certified accuracy under worst-case patch transformation as listed in the last row of Table
4. This is because of our random sampling strategy that we have neither fixed the locations of sub-
regions as in Bagnets, nor fixed smoothing strategy as in De-randomized smoothing.

On the other hand, the fixed column-smoothing strategy (ablating columns of images) in De-
randomized smoothing (Levine & Feizi, 2020) which has the highest certifiable accuracy for square
patches aligning coordinate axes of the image suffers particularly because as the patch gets shorter
and longer (aspect ratio 1:3 and 1:6), the number of columns needed to ablate all the patch gets
higher, and leaves fewer pixels of the image for classification. Also rotating the patch 45 degrees is
equivalent to increasing the number of columns the patch occupies by 1.4 times, and hence signif-
icantly reduces certified accuracy for column-smoothing strategy. While there are other smoothing
techniques in De-randomized smoothing (block smoothing), similar effects can be expected as some
aspect ratio or rotation degree will cause significant degradation of certified accuracy. Same level of
degradation is also seen in PatchGuard with De-randomized smoothing base structure (numbers in
PatchGuard column before slash symbol).

4.4 DISCUSSIONS

How to choose crop size? Assuming that the number of crops n is fixed, then in general larger
crops leads to a better clean performance, as each crop contains more information when it covers
more pixel area. Also with larger crops, the crop classification accuracy of gθ would be better, indi-
cating that n2to1 in Eq. 5 could be larger and increases the probability of certification pc. However,
larger crops also means that the probability of overlapping the adversarial patch is higher (Eq. 7)
which will decrease pc. Therefore, for a given size of adversarial patch, there exists an optimal crop
size which maximizes the certification probability.

To demonstrate the influence of crop size on certification accuracy and clean accuracy, clean and
certified accuracy with or without positional encoding, with regards to different crop sizes are shown
in Figure 2 for 2.4% patch on CIFAR10 and 2.0% patch on ImageNet – we use square crops and
square patches aligning with coordinate axes of the image, i.e., no patch transformation. Comparing
clean accuracy with and without positional encoding, we can see that although clean accuracy still
increases as crop size increases when crop classifier includes positional encoding, but not as much as
without positional encoding. Such results show positional encoding does provide extra information
for crops sampled from different locations. On the other hand, comparing clean accuracy with
certified accuracy, it is clear that the certified accuracy actually gets lower when crop size crosses
some threshold as discussed above.

Note that similar experiments as in Figure 2 can be conducted for different sizes of adversarial
patches to find optimal crop size. However we used fixed crop size in Table 1, 2, 4 to compare
with DRS and PG to have a fair comparison, as these two approaches do not have tune-able abla-
tion/kernel size.

How to choose number of crops? We show certified accuracy and inference time with different
number of sampled crops for 2.4% patch on CIFAR10 and 2.0% patch on ImageNet. Certified
accuracy of using all crops, i.e., selecting crops at all locations once without sampling, is plotted
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Figure 2: Clean and certified accuracy with different crop sizes. Left: CIFAR10 with 2.4% patch.
Right: ImageNet with 2.0% patch
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Figure 3: Certified accuracy and inference time(ms) with different number of sampled crops. Left:
CIFAR10 with 2.4% patch. Right: ImageNet with 2.0% patch

with the black dotted line as reference. This line can be viewed as the upper bound of the proposed
method. With more crops sampled, the certified accuracy increases but however inference time also
increases close to linearly. Therefore we chose relatively small number of crop samples to balance
between inference time and certification accuracy.

5 CONCLUSION

This paper proposes a new architecture for defense against physically-realizable patch attacks. The
proposed approach decomposes an image into a random assortment of crops, each of which is pro-
cessed by a classifier, and the majority across the crops is used as the classification outcome for the
input image. This approach provides a significant advance in the form of improved certified accu-
racy, while maintaining a high clean accuracy when compared to prior art. We have shown that the
proposed approach can be easily incorporated into standard training and test pipelines with minimal
change to the underlying codebase. We believe this approach, by relying on a simple yet effective
architectural change, provides a compelling alternative to traditional defense strategies and, in this
sense, advances robust machine learning.
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gio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Joint
European conference on machine learning and knowledge discovery in databases, pp. 387–402.
Springer, 2013.

9



Under review as a conference paper at ICLR 2021

Wieland Brendel and Matthias Bethge. Approximating cnns with bag-of-local-features models
works surprisingly well on imagenet. arXiv preprint arXiv:1904.00760, 2019.
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A OVERVIEW OF DE-RANDOMIZED SMOOTHING (DRS) AND PATCHGUARD
(PG)

De-randomized smoothing (Levine & Feizi, 2020) ablates all possible parts of the image and aggre-
gates logits of the ablated images for certification. The method compares number of ablated images
with high logit value of the majority predicted class with the number of ablated images with high
logit value of the second majority predicted class. If the difference between the two is larger than
two times possible number of ”ablation blocks” affected by adversarial patch, then this image is
certified robust against patch attack. The paper proposes two modes of ablation: block smoothing
and band smoothing. Block smoothing ablates square blocks while band smoothing ablates one col-
umn of the image. To represent ablated regions, the image classifier accept three additional channels
representing ablated pixels of the original RGB channels.

The main idea of PatchGuard (Xiang et al., 2020) is to detect possible patch location and mask
these locations for downstream robust classification. To detect patch location, the method identify if
there are any local regions that contribute abnormally strongly to a class. If there does exist such a
region, it is considered as the potential location of a patch and the features extracted from the region
is masked/discarded. Because such robust masking procedure can be combined with other robust
classification approaches, the paper evaluates its robust masking with two classification models:
De-randomized smoothing (PG-DRS) and BagsNet (PG-BN).

B DETAILED CERTIFICATION PROCEDURE

We summarize the certification procedure for a single image in Algorithm 2. A more robust classifier
should be able to certify and correctly classify a higher percentage of clean images in the test set.

Algorithm 2: Certify if patch attack can change the predicted class of an image x
Input: Full size image x, label y, crop classifier gθ
for i = 1 . . . n do

set x̂i as a ki × kj crop of x at random location;
ŷi = gθ(x̂i) //Predicted class of crop x̂i

end
ŷ′, ŷ′′ = majority and second majority of {ŷi}ni=1,
n1, n2 = number of crops classified as ŷ′, ŷ′′, respectively;
if ŷ′ 6= y then

return not certified
else

compute pc using Eq. 6, if pc is close to 1.0 then return certified, else return not certified
end

C UNIFORM SAMPLING WITHOUT REPLACEMENT

In this section we derive certification probability and experimental results with uniform sampling
without replacement. Let niall be the number of all possible location for the ith sampled crop, nadv
be the number of crop locations that overlaps with the adversarial patch, and pia is the probability
that the ith crop overlaps with the adversarial patch, then

nadv = min(pi + ki − 1,mi − ki + 1)×min(pj + kj − 1,mj − kj + 1), (7)

niall = (mi − ki + 1)× (mj − kj + 1)− i, and (8)

pia = min(1,
nadv
niall

). (9)

The probability of the image being certified pc is then the probability of less than n2to1 crops over-
laps with the patch. The closed-form expression of pc is complicated yet not informative and hence
omitted here. Comparing pia with the pa in Section 3, we can see that when sampling without re-
placement, the probability of sampling a crop that overlaps with the adversarial patch increases with

12



Under review as a conference paper at ICLR 2021

CIFAR10 2.4% ImageNet 2.0%

num. of crops clean (R/NR) certified (R/NR) clean (R/NR) certified (R/NR)

64 88.3/88.6 51.0/51.1 50.1/50.4 13.7/13.9
128 89.6/89.7 52.3/45.3 54.7/54.9 15.4/15.5
256 89.8/89.8 54.2/24.7 54.8/54.8 16.4/16.2
512 89.8/89.8 55.0/0.8 55.0/55.0 16.5/16.2

Table 5: Certified and clean accuracy (%) with (R) / without replacement (NR) over CIFAR10 and
ImageNet vs number of crops without patch transformation. Patch size is 2.4% for CIFAR10 and
2.0% for ImageNet and crop size is 10x10 for CIFAR10 and 80x80 for ImageNet. We consider
images with pc ≥ 0.95 to be certified.

CIFAR10 2.4% ImageNet 2.0%

num. of crops n2to1 interval/variance pc interval/variance n2to1 interval/variance pc interval/variance

64 1.3/0.6 1.9/0.9 2.1/0.8 3.0/1.0
128 0.8/0.4 0.8/0.5 1.4/0.5 1.5/0.7
256 0.5/0.2 0.5/0.3 0.9/0.3 0.8/0.4
512 0.2/0.1 0.2/0.1 0.6/0.1 0.5/0.1

Table 6: Averaged interval and variance of n2to1 and pc (in 10−2) vs number of crops without patch
transformation. Patch size is 2.4% for CIFAR10 and 2.0% for ImageNet and crop size is 10x10 for
CIFAR10 and 80x80 for ImageNet.

the number of crops sampled, and hence decreases the probability of certification pc. On the other
hand, sampling without replacement enlarges the expected area that crops would cover, so the clean
performance will be better than sampling with replacement.

We compare the certified and clean accuracy with and without replacement in Table 5. As number
of crops increases, we can see that the gain of clean accuracy for sampling without replacement
decreases because when number of crops increases, even sampling with replacement is likely to
cover most of the pixels, and the gain is slightly more significant in ImageNet than CIFAR10. This
may be because ImageNet images are in general more complex than CIFAR10 and having the crops
covering more pixels over the image could help the overall classification. The certified accuracy for
sampling without replacement gets worse than with replacement since the probability of sampling
a crop increases more significantly as the number of crops sampled increases. This is particularly
true for CIFAR10 – with image size 32x32 and patch size 10x10, the number of non-overlapping
crops that does not overlap with the patch is only 484, out of 1024 all possible locations. This means
when sampling 512 crops, there are at least 28 crops overlapping with the adversarial patch, which
significantly decrease pc.

D EXPERIMENTS ON pc INTERVAL

In this section we show the interval of n2to1 and pc with different number of crops sampled. We run
the certification process over test set 200 times to obtain the interval and variance of n2to1 and pc
for each test image. Interval is defined as difference between the highest value and the lowest value.
We ran this experiment over patch size 2.4% for CIFAR10 and 2.0% for ImageNet.

As shown in Table 6, with increasing number of crops, both interval and variance of n2to1 and pc
decrease, to negligible values.
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