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ABSTRACT

Graph Visualization, also known as Graph Drawing, aims to find geometric em-
beddings of graphs that optimize certain criteria. Stress is a widely used metric;
stress is minimized when every pair of nodes is positioned at their shortest path
distance. However, stress optimization presents computational challenges due to
its inherent complexity and is usually solved using heuristics in practice. We intro-
duce a scalable Graph Neural Network (GNN) based Graph Drawing framework
with sub-quadratic runtime that can learn to optimize stress. Inspired by classical
stress optimization techniques and force-directed layout algorithms, we create a
coarsening hierarchy for the input graph. Beginning at the coarsest level, we iter-
atively refine and un-coarsen the layout, until we generate an embedding for the
original graph. To enhance information propagation within the network, we pro-
pose a novel positional rewiring technique based on intermediate node positions.
Our empirical evaluation demonstrates that the framework achieves state-of-the-
art performance while remaining scalable.

1 INTRODUCTION

Graphs, fundamental structures in discrete mathematics, are ubiquitous in various fields. Visualizing
graphs as node-link diagrams, where nodes are represented as points or circles and edges as connect-
ing lines, is a common practice. The quality of visualizations plays a crucial role in comprehending
the underlying graph structures. For example, when represented in a good way, the underlying
structure of the graph in Figure 1 becomes clear. A prevalent approach to enhancing graph visu-
alizations involves the optimization of a stress function, trying to arrange the nodes such that the
Euclidean distance between any two nodes closely approximates their shortest path distance in the
graph. However, achieving optimal layouts presents a substantial computational challenge (Demaine
et al., 2021). To address this challenge, these algorithms often resort to heuristic methods. For in-
stance, force-directed algorithms conceptualize the graph as a physical system governed by forces
akin to springs or magnetic fields (Kamada & Kawai, 1989). These algorithms simulate the system
iteratively to optimize graph stress, allowing nodes to reach equilibrium positions.

Figure 1: Graph Evolution with CoRe-GD: From coarse to fine. Our hierarchical approach priori-
tizes global positioning before local optimization. The resulting visualization makes the underlying
graph understandable. Graphs were drawn with CoRe-GD model trained for 3 dimensions.
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Tailoring heuristics to specific graph distributions is often necessary to produce high-quality vi-
sualizations. This requirement frequently demands domain-specific expertise but also provides an
avenue for learning-based solutions. Recent research (Giovannangeli et al., 2021; Wang et al., 2021)
has drawn parallels between force-directed algorithms and message-passing graph neural networks,
where nodes communicate with their neighbors. Nonetheless, scalability remains a challenge. When
presented with larger graphs necessitating more global context, these methods do not scale. While
extending message-passing to fully connected graphs can address this limitation, it incurs quadratic
computational and message complexity in the number of nodes, rendering it computationally im-
practical for large graphs. We therefore propose a new framework with a focus on scalability:
CoRe-GD, a scalable Coarsening and Rewiring Framework for Graph Drawing. CoRe-GD com-
bines hierarchical graph coarsening with a novel positional rewiring technique, facilitating commu-
nication beyond local neighborhoods. Notably, both coarsening and rewiring are computationally
efficient and introduce only a linear message-passing overhead.

Our approach begins with a hierarchical coarsening process, generating multiple levels. At the
coarsest level, nodes from the original graph are merged into supernodes, capturing global structural
properties. We prioritize optimizing the positions of these supernodes as an initial step. Subse-
quently, we reverse the coarsening process by uncontracting the supernodes, allowing us to refine
the local placements. This iterative refinement continues until we reach the finest coarsening level,
which corresponds to the original graph. This global-first strategy enables us to generate rough
initial graph drawings and then iteratively optimize them, all while keeping essential information
pathways short and effective. Within each coarsening level, we employ Graph Neural Networks
(GNNs). To enhance communication between nodes that might be far apart in the original graph
but are close in the current visualization, we introduce additional message-passing steps. This ad-
justment is made because nodes placed far apart in the visualization, despite being nearby in the
original graph, can lead to a loss in quality due to the discrepancies between their shortest-path dis-
tances and their current spatial separation. Therefore, these supplementary message-passing steps
facilitate better message flow to improve the layout.

Our contributions can be summarized as follows:

1. We introduce CoRe-GD, a scalable neural framework for graph visualization based on
coarsened graph hierarchies.

2. We present a novel positional rewiring technique that leverages intermediate decoded em-
beddings for better information flow.

3. We perform extensive experiments on various datasets, showcasing state-of-the-art perfor-
mance, even compared to sophisticated handcrafted algorithms.

2 RELATED WORK

Graph Drawing. Given an undirected and connected graph G = (V,E), we are concerned with
finding an embedding Γ : V → Rd such that Γ(v) represents the position of node v in a node-
link diagram. In the graph drawing literature, many metrics have been introduced to judge the
performance of these layouts (Purchase, 2002). One commonly used formulation is the notion of
stress, which can be traced back to Kruskal (1964) and was first used by Kamada & Kawai (1989)
to generate aesthetically pleasing layouts for the class of general graphs. It is defined as:

stress(G,Γ) :=
∑

u,v∈V,u ̸=v

wuv(∥Γ(u)− Γ(v)∥2 − duv)
2

where duv refers to the shortest path distance between node u and v, ∥x∥2 is the Euclidean norm
of x, and wuv := d−2

uv . Here, the graph can also be interpreted as a physical system with springs
between all node pairs that pull or push nodes apart such that an equilibrium is reached when their
distance is close to their shortest path distance in the graph. The algorithm falls into the category
of force-directed graph drawing, which was previously popularized by Eades (1984) and further
studied by Fruchterman & Reingold (1991). These algorithms can be improved using a variety
of heuristics (Frick et al., 1995). Another line of research uses multi-dimensional scaling (Torg-
erson, 1952) for graph drawing, improved upon by using landmarks (Silva & Tenenbaum, 2002)
and pivots (Brandes & Pich, 2007). De Leeuw (1988) introduced majorization to tackle the scal-
ing problem and Gansner et al. (2005) used it directly for graph drawing. More recently, Ahmed
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et al. (2020) used Gradient Descent on the stress function, with Ahmed et al. (2022) extending the
approach to stochastic GD. For very large graphs, maxent-stress was proposed by Gansner et al.
(2012). Meyerhenke et al. (2017) use this to draw very large graphs based on a multi-level coars-
ening, which largely motivates our approach. The results for classical algorithms motivated a line
of learning-based techniques. Wang et al. (2020) use a bidirectional graph LSTM to process the
graph, while Giovannangeli et al. (2021) use a U-net like architecture. Other approaches use a fully
connected graph where edges are annotated with precomputed shortest path distances between node
pairs (Wang et al., 2021), positional encodings together with a Graph Neural Network (Tiezzi et al.,
2022) or Generative Adversarial Networks to learn from examples (Wang et al., 2022b).

Graph Neural Networks. Introduced by Scarselli et al. (2008), Graph Neural Networks (GNNs)
have become state-of-the-art for many tasks in graph learning. There are two common problems
with GNNs that follow the original purely message-passing-based approach: Their expressivity is
bounded by the Weisfeiler-Lehman (WL) algorithm (Xu et al., 2018), and message-exchange over
many rounds is susceptible to oversmoothing (Chen et al., 2020) and oversquashing (Alon & Yahav,
2020). To address the first problem and to make GNNs more expressive, one can endow nodes with
additional features such as random bits (Sato et al., 2021) or subgraph isomorphisms (Bouritsas et al.,
2022). Another solution to facilitate information exchange between all nodes, even without using
many rounds, is to allow message exchange between all nodes in the last layer (Alon & Yahav, 2020).
For some architectures, positional encodings are used to give nodes a relative sense of where they are
located. They range from Laplacian PE’s (Wang et al., 2022a; Dwivedi et al., 2022), shortest path
encodings (Li et al., 2020; Ying et al., 2021) and random walks (Dwivedi et al., 2021) to structural
features (Chen et al., 2022). To further improve the flow of messages in the graph and alleviate
the aforementioned problems, rewiring approaches change the topology of the graph that is used for
message-passing. Metrics such as the Ricci flow (Topping et al., 2021) or spectral features (Koutis &
Le, 2019) can be used to decide which edges to rewire. Pei et al. (2020) propose a learnable module
that determines the rewired edges based on distances in a latent embedding space. Furthermore,
graph coarsening approaches have also been used for GNNs (Huang et al., 2021).

3 THE CORE-GD FRAMEWORK

Figure 2 provides an overview of the CoRe-GD architecture. CoRe-GD employs a coarsening hierar-
chy to optimize layouts, starting from coarser representations and progressing to the original graph.
At each level, a recurrent layout optimization module refines the layout via positional rewiring.

Hierarchical Optimization. The coarsening hierarchy (see Section 3.2) is computed to generate
a series of graphs with fewer nodes and projections from coarser to finer levels. On the coarsest
graph, node initialization is performed (see Section 3.1), followed by embedding through an encoder
network. These embeddings undergo layout optimization that improves the positioning of nodes, and
the refined embeddings are transferred to the next level. The process continues until the finest level
is reached, representing the original graph, where a final layout optimization is conducted, and node
embeddings are decoded to positions.

Layout Optimization with Positional Rewiring. Nodes in the graph that are connected over
many hops can lead to high stress when they are positioned too close to each other. As these nodes
need many message-passing rounds to communicate with each other, we rewire the graph and add
edges between nodes in close proximity. We focus on efficient rewiring methods, adding only a
linear overhead in message-passing complexity. We experiment with three rewiring techniques: (1)
K-Nearest-Neighbor graphs, (2) Delaunay triangulations (Delaunay et al., 1934), and (3) Radius
graphs. These techniques are computationally efficient, with (1) and (2) introducing only a linear
number of edges. In Figure 2 (bottom part), we exemplify the utility of the rewiring for the node
surrounded by a dotted cycle. This node is close to a node below it but not directly connected to
it. For a stress-optimized drawing, where distances should approximate shortest path distances, this
leads to a high loss. However, in the rewiring that was computed based on the closeness of nodes,
they become connected, letting them exchange messages through a differently parametrized graph
convolution ConvR. More motivation and examples for the rewiring can be found in Appendix A.3.
The output is then passed to the convolution on the original topology ConvE again, and this alterna-
tion of layers continues for r rounds. Notably, the same decoder is used to predict final positions,
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Figure 2: Architecture overview of CoRe-GD: On top: (a) An encoder creates initial embeddings
for nodes on the coarsest level (see Section 3.1). (b) The embeddings are then successively refined
in the layout optimization module (depiction below) before the graph is (c) uncontracted and em-
beddings are projected to the new nodes (see Section 3.2). After c− 1 repetitions (with c being the
number of coarsening levels), the original graph is recovered, and (d) the layout is optimized one
final time before (e) being decoded into the final node positions. On the bottom: Overview of the
layout optimization: To refine the latent embeddings of a given graph, we (1) execute a GNN convo-
lution on the original topology. (2) The resulting embeddings are then decoded into node positions
that undergo the rewiring procedure (3), resulting in a new set of edges E′ for the rewired graph.
(4) These edges are then used for another GNN convolution on E′ to enhance information exchange
between far-away nodes. The two convolutions are alternated, and the rewiring is re-computed r
times before (5) one last convolution on the original topology is applied.

and while ConvE and ConvR do not share their parameters, there only exists one parametrization
of each that is applied recurrently. The GNN convolutions make use of a Gated Recurrent Unit
(GRU) (Huang & Carley, 2019; Grötschla et al., 2022) that was shown to be beneficial for recurrent
graph neural networks. Moreover, the convolutions incorporate the embeddings of both endpoints
u and v when sending a message along the edge (u, v). For a formal definition of the tested graph
convolutions, we refer to Appendix A.2.1. The embeddings h that are indexed in both figures are
consistent in their usage with the provided pseudocode for both modules (see Appendix A.2).

3.1 NODE INITIALIZATION

To motivate the use of initial features, we first analyze the requirements for Graph Drawing in terms
of WL-expressiveness. The following lemma provides a first insight:

Lemma 1 To minimize stress for arbitrary graphs, the distinguishability power for nodes has to
exceed that of the k-WL algorithm for any k.

This follows directly from the fact that there exist graphs with several nodes in the same orbit, i.e.,
in the same equivalence class under graph automorphism. These nodes can not be distinguished by
k-WL for any k as they are structurally the same. One example is cycle graphs, where all nodes
are part of the same orbit. Therefore, a GNN that is limited by any k-WL algorithm will map these
nodes to the same embeddings and thus node positions (if we assume that node positions are com-
puted from the node embeddings directly). For a cycle graph, this is clearly not desirable and will
end in a drawing that is far from optimal. A common way to enrich existing architectures with more
expressive power is adding node features, for example, in the form of positional or structural en-
codings (Rampášek et al., 2022). These features not only help to distinguish nodes but also provide
helpful information on the graph topology that can help solve the task at hand. Thus, CoRe-GD ini-
tializes node embeddings with a combination of features. While the framework allows for the use of
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any features, we further choose initializations that have been proven to work well in existing Graph
Drawing algorithms and models. We use (1) Laplacian Positional Encodings, (2) Distance encodings
to beacon nodes, and (3) random features. Random features and laplacian PE’s have been used in
prior work for graph drawing (Ahmed et al., 2022; Tiezzi et al., 2022). The reasoning for the usage
of distance encodings is that while knowing all-pairs-shortest-path distances would be preferred and
has been shown to be generally useful to enhance the performance of GNNs (Zhang et al., 2023), the
computation and memory overhead make them infeasible for large instances. Knowing the distances
to a constant number of nodes in the graph can serve as a surrogate (Ahmed et al., 2022). This idea
has been shown to be effective for graph drawing, e.g., in Landmark MDS (Silva & Tenenbaum,
2002) or Pivot MDS (Brandes & Pich, 2007), and similar ideas were used for GNNs (You et al.,
2019). More formally, we choose nb beacon nodes Vb = {v0b , . . . , v

nb−1
b } uniformly at random and

compute du,v for every node u to every beacon v using separate breadth first searches. Once com-
puted, we assign every node u a vector with distances to all beacon nodes (du,v0

b
, . . . , d

u,v
nb−1

b

)T .
These distance values are represented using sine-cosine positional encodings in a transformer-style
fashion (Vaswani et al., 2017) and can thus be seen as a generalization of sequential positional en-
codings. In general graphs, a single beacon may not suffice to uniquely identify each node. Previous
work on routing protocols (Wattenhofer et al., 2005) provides an analysis for selecting the necessary
number and type of nodes in various graph classes to ensure unique identification. We employ ran-
dom selection to minimize additional overhead and recompute all features between training epochs.

3.2 GRAPH COARSENING

The coarsening hierarchy aims for a global-first layout optimization strategy before transitioning to
progressively finer local placements. Beginning with the original graph G = (V,E), the coarsening
process generates a partition P = p1, . . . , pk of the node set V . This partitioning optimizes specific
criteria, such as edge-cut minimization or graph spectrum preservation (Jin et al., 2020). It results
in a new graph G′ = (V ′, E′), where nodes v′ ∈ V ′ correspond to partition elements p ∈ P . A
mapping function f : V → V ′ assigns nodes to their respective partition (termed “supernode”). This
coarsening can be iteratively applied until the graph becomes sufficiently small. In our experiments,
we employ spectral-preserving coarsening (Jin et al., 2020) with a constant reduction factor to yield
a sequence of coarsened graphs G1, . . . ,Gc, where Gc matches the original graph. This hierarchy
requires approximately c ∈ O(log |V |) levels. In the CoRe-GD framework, layout optimization
begins at the coarsest level G1 before progressing to finer levels. Transitioning from layer i to i+ 1
we apply the inverse mapping f−1 to the embeddings of the current graph Gi, i.e., for nodes within
the same supernode, we set the finer layer’s embeddings to that of the coarser layer’s supernode:
hl+1
(v) = hl

(f−1(v)), for every node v ∈ V . To distinguish these nodes further, we randomly sample
noise from a normal distribution and add it to the embeddings.

3.3 TRAINING

Scale-Invariant Stress. Previous works (Wang et al., 2021; Giovannangeli et al., 2021) apply the
stress metric directly as the loss for self-supervised training, which we find to have difficulties with
when working with graphs of varying sizes. Especially when scaling to bigger instances, graphs
might need a larger drawing area than smaller ones. However, for training our model, we prefer for
the generated values to stay within the same numerical range. Therefore, we restrict the layout to
[0, 1]d by applying a sigmoid activation. Unfortunately, this has the adverse effect that stress optimal
layouts can have different geometries when restricted to this area: Consider the path graph with three
nodes as depicted in Figure 3. When restricted to [0, 1]2, the optimal layout has a 90-degree angle
at the center node, while the optimal layout that can be achieved in the unrestricted domain aligns
all nodes on a line. Thus, we rescale node positions by finding the optimal scaling factor α for node
positions P , such that the scaled layout Pα := {α · p | p ∈ P} has optimal stress among all α.
This allows us to predict values in [0, 1]d that represent an optimal layout when scaled to a larger
area. In this sense, the drawings we generate are scale-invariant. The following lemma provides a
closed-form solution. A proof can be found in Appendix A.5.

Lemma 2 The scaling factor α can be calculated in a closed-form solution:

αG,Γ =

∑
u ̸=v wuv∥Γ(u)− Γ(v)∥2duv∑

u̸=v wuv∥Γ(u)− Γ(v)∥22
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and is unique, as the stress is convex with regard to the scaling factor.

Figure 3: Part a)
shows the best draw-
ing inside a [0, 1]2

bounding box and
b) one best drawing
without restrictions.

Replay Buffer. To incentivize steady improvements for every round of
layout optimization, we randomize the number of rounds that we execute
before backpropagating the loss through time (Werbos, 1988) during train-
ing. We thus avoid training the network for the number of rounds that are
used during inference, as training deep GNNs tends to become unstable and
requires a higher memory footprint. Instead, we use a replay buffer, simi-
lar to what is commonly used in Reinforcement Learning (Lin, 1992). The
buffer contains a fixed number of graphs and their respective node embed-
dings that were generated during previous runs. We then interleave batches
from the original dataset and batches from the replay buffer during training.
After training a complete batch of graphs, every graph and its generated
embeddings can randomly replace an element in the buffer. We store latent
embeddings in the buffer instead of positions to seamlessly continue the
training from a previous state in the execution. By doing so, we only have
to backpropagate the loss through a few rounds at a time but expose the
network to embeddings that were generated after more rounds during the
training. While replay techniques have been used for GNNs before (Grat-
tarola et al., 2021), to the best of our knowledge, we are the first to use in-
termediate latent embeddings. With this method, our trained models used in
Section 4 run hundreds of GNN-convolutions without destabilizing. More
details and pseudocode for the training can be found in Appendix A.2.

3.4 TIME COMPLEXITY

CoRe-GD was designed with scalability in mind. Apart from an efficient and practical implemen-
tation, good time-complexity bounds are thus crucial, especially for larger instances. We show that
the complexity of our instantiation is sub-quadratic.

Lemma 3 Let Tcoarsen, Tinitial and Trewire be the runtime complexities for coarsening, initial feature
computation and rewiring of a connected graph G = (V,E). Further, let Erewire be the upper bound
for the number of edges added through the rewiring. Then the following time complexity upper-
bound holds for CoRe-GD without hierarchical coarsening:

TCoRe-GD ∈ O
(
Tinitial(|V |, |E|) + Trewire(|V |) + Erewire(|V |) + |E|

)
For CoRe-GD with hierarchical coarsening, it becomes:

T hierarchical
CoRe-GD ∈ O

(
Tcoarsen(|V |, |E|) + log |V | ·

(
Trewire(|V |) + Erewire(|V |) + |E|

))
Notice that the term for computing the initial features disappears if we use a hierarchical coarsening
as the initial features are only computed on the coarsest graph, which has a constant size. This has
the practical implication that features requiring more heavy precomputation can be used with the
hierarchical approach. The log term stems from the number of coarsening levels.

We now turn our attention toward the instantiations of the CoRe-GD framework we use in our experi-
ments. Namely, we use laplacian PEs, beacon distances, random features as initializations, the coars-
ening borrowed from Jin et al. (2020) to compute the hierarchy, and k-nearest-neighbor rewiring.
Laplacian PEs can be computed in O(|E| 32 ) (Dwivedi et al., 2022), with further improvements
possible (Fowlkes et al., 2004). Beacon distances can be computed with a Breadth-First-Search
(BFS) starting from every beacon node, which is in O(|E|) as the number of beacons is constant.
In practice, we can efficiently compute distances on the GPU using the Bellman-Ford (Bellman,
1958; Ford Jr, 1956) algorithm with unit edge lengths. Random features only require an overhead
of O(|V |). The coarsening can be computed in sub-quadratic time (Jin et al., 2020). K-Nearest-
Neighbor graphs can be computed inO(|V | log |V |) using K-d-trees and only add a number of edges
linear in the number of nodes for fixed K. We thus conclude that CoRe-GD runs in sub-quadratic
time overall both for the hierarchical and non-hierarchical approach when using our instantiation.
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Table 1: Comparison of scale-invariant stress between classical Graph Drawing methods, learned
models, and our proposed framework. Bold numbers mark the best result, underlined numbers the
second best. We train all models on the individual datasets for each reported score, except CoRe-
GD-mix, which was trained on a mix of all datasets. Our model achieves or matches state-of-the-art
on all datasets, including Rome, a popular benchmark in Graph Drawing.

Model Rome ZINC MNIST CIFAR10 PATTERN CLUSTER
PivotMDS 388.77 ± 1.02 29.85 ± 0.00 173.32 ± 0.12 384.64 ± 0.20 3813.30 ± 1.89 3538.25 ± 0.73
neato 244.22 ± 0.55 5.76 ± 0.05 129.87 ± 0.19 263.44 ± 0.20 3188.34 ± 0.59 2920.30 ± 0.75
sfdp 296.05 ± 1.16 20.02 ± 0.27 172.63 ± 0.11 377.97 ± 0.11 3219.23 ± 1.31 2952.95 ± 1.81
(sgd)2 233.49 ± 0.22 5.14 ± 0.01 129.19 ± 0.00 262.52 ± 0.00 3181.51 ± 0.05 2920.36 ± 0.78

(DNN)2 248.56 ± 3.01 9.61 ± 1.62 147.70 ± 6.93 264.52 ± 0.32 3100.07 ± 4.59 2862.95 ± 16.17
DeepGD 235.22 ± 0.71 6.19 ± 0.07 129.23 ± 0.03 262.91 ± 0.13 3080.70 ± 0.24 2838.13 ± 0.08
CoRe-GD (ours) 233.17 ± 0.13 5.11 ± 0.02 129.10 ± 0.02 262.68 ± 0.08 3067.02 ± 0.79 2827.81 ± 0.36
CoRe-GD-mix (ours) 234.60 ± 0.10 5.21 ± 0.02 129.24 ± 0.01 262.90 ± 0.02 3066.31 ± 0.20 2828.13 ± 0.12

4 EMPIRICAL EVALUATION

Our empirical study is split in two: We first demonstrate the effectiveness of the CoRe-GD frame-
work on the Rome dataset, a common benchmark in the Graph Drawing community. We further add
more datasets of similar sizes, as these allow us to train and evaluate all models but also let us assess
their performance on different graph distributions. As these graphs are rather small (∼ 100 nodes),
we do not need to employ the coarsening yet. Instead, we can focus on the improvements that can be
made on a single level. For a study of scalability and the application of CoRe-GD to larger graphs,
we later use a subset of graphs from the suitesparse matrix collection and generate random graphs
to compare the runtime and quality of layouts. Code for CoRe-GD is available online 1. For more
background information on benchmarking for Graph Drawing tasks, we refer to Appendix A.7.4.

To quantify the quality of drawings for a dataset D, we report two metrics: The mean scale-invariant
stress over all graph instances and the mean of scale-invariant stresses normalized by the number of
node pairs in the graph:

1

|D|
∑
G∈D

stress(G,αG,ΓG
· ΓG), and

1

|D|
∑

G=(V,E)∈D

|V |−2stress(G,αG,ΓG
· ΓG).

We report both the normalized and unnormalized stress as bigger graphs usually incur higher stress,
which distorts the mean for mixed-size datasets (Giovannangeli et al., 2021; Tiezzi et al., 2022).
Standard deviation is reported over 5 different random seeds in all runs. Our baseline for CoRe-GD
uses random, distance beacons and laplacian PEs as well as KNN rewiring. We further investigate
these choices with an ablation study in Appendix A.4, where we test different convolutions, rewiring
methods, and initial features. Notably, the positional rewiring method improves performance. Fur-
ther, we also train models without latent embeddings where only the positions are passed between
layers and observe considerably worse performance. An application of the latent node embeddings
generated by CoRe-GD as positional encodings for graph transformers is investigated as a down-
stream task in Appendix A.6.

Baseline comparison. We compare the performance of CoRe-GD on the Rome dataset, a popular
benchmark in the Graph Drawing community that consists of graphs curated by the University of
Rome (Di Battista et al., 1997) and use the same data split as introduced by Wang et al. (2021).
We further extend the evaluation by including datasets from different application domains such as
molecular graphs, superpixel graphs for images, and graphs that were generated with a stochastic
block model that we take from Dwivedi et al. (2022) (originally proposed for GNN benchmarking).
This new benchmarking framework allows us to test the performance of all algorithms on a diverse
set of tasks. We use the same hyperparameter configuration that achieved the best performance on
Rome for all other datasets.

PivotMDS (Brandes & Pich, 2007), neato (Kamada & Kawai, 1989), sfdp (Hu, 2005) and
(sgd)2 (Ahmed et al., 2022) are included in the comparison as classical, non-learning-based draw-
ing techniques. For learning-based approaches, we compare to DeepGD (Wang et al., 2021) and

1https://github.com/floriangroetschla/CoRe-GD
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108.14

PivotMDS

52.50

neato

54.56

sfdp

50.17

(sgd)2

54.35

(DNN)2

54.36

DeepGD

48.65

CoRe-GD

19.53 13.23 14.38 13.24 13.61 15.33 13.24

35.03 32.54 31.86 32.47 32.25 35.07 31.81

Figure 4: Visual comparison of Graph Drawings between classical algorithms, learned models, and
CoRe-GD. Below each drawing, we report the scale-invariant stress. All neural models were trained
on the Rome dataset. CoRe-GD generates good layouts across the board, even for regular graphs.

Table 2: Comparison on a subset of graphs from the suitesparse matrix collection. We note that
CoRe-GD maintains competitive performance with classical baselines and underscore the necessity
of coarsening in achieving such results.

CoRe-GD
Metric coarsening no coarsening PivotMDS neato sfdp (sgd)2

stress 42639 ± 313 45573 ± 844 65404 ± 907 43110 ± 274 48386 ± 321 42435 ± 149

(DNN)2 (Giovannangeli et al., 2021). Further training details and dataset information can be found
in Appendix A.7.4. Table 1 summarizes the results. CoRe-GD, (sgd)2 and DeepGD are trained on
each respective dataset, while CoRe-GD-mix was trained on a combination of all datasets by taking
the first 10k graphs from each training set. CoRe-GD outperforms all other methods on all datasets
except CIFAR10, where it is slightly outperformed by (sgd)2, the best-performing classical algo-
rithm. Even though DeepGD uses message-passing on the fully connected graph with pre-computed
pairwise node distances, it always performs worse than CoRe-GD. CoRe-GD-mix performs well
overall, albeit a bit worse than CoRe-GD trained on the respective datasets, except for PATTERN,
where it outperforms all other models. This demonstrates that while CoRe-GD can beat other mod-
els on data trained from the same distribution, it is also possible to train a general-purpose version
of CoRe-GD that can be used for a wide variety of graphs from different distributions. A table re-
porting the normalized stress values can be found in Appendix A.7.2. We do not observe any major
differences between normalized and non-normalized stress. For a qualitative comparison, Figure 4
depicts graph samples drawn with all methods. The differences become most apparent for the grid
graph, where it is optimal to position nodes as a rectangular grid. CoRe-GD approximates this well,
while especially PivotMDS and DeepGD generate distorted drawings.

Scalability. To demonstrate that CoRe-GD can scale beyond small graphs, we create a new dataset
by sampling graphs from the suitesparse matrix collection. These graphs represent real-world in-
stances stemming from fields such as power network problems, structural problems, circuit simu-
lation, and more. We apply hierarchical coarsening and investigate its impact on CoRe-GD. We
were not able to train DeepGD due to memory limitations on the GPU, as message passing on the
fully connected graph leads to too many gradients that accumulate on the device. Similarly, while
already lagging behind on the smaller datasets, we did not manage to get the training of (DNN)2 to
converge. Results are shown in Table 2. We can observe that CoRe-GD performs competitively to
existing baselines and that the coarsening is crucial to achieving that performance.
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Figure 5: Normalized stress and runtimes on randomly generated sparse graphs (Delaunay triangula-
tions of random point clouds). The green vertical line at 200 marks the train limit of DeepGD, while
the blue line at 1,000 marks the limit of CoRe-GD. DeepGD could only be executed for graphs up to
size 5,000 before running out of GPU memory. DeepGD becomes unstable under out-of-distribution
data, whereas CoRe-GD slightly degrades but still keeps up with the other baselines. The runtimes
show that CoRe-GD scales better than most baselines. Further, coarsening aids with scalability for
larger graphs, as the initial feature computation, which becomes progressively more expensive, only
has to be done for the coarsest graph. See Appendix A.7.3 for more details on the used setup.

We further test the scaling behavior of the models when presented with sparse graphs from the same
distribution but of increasing sizes. We train CoRe-GD on sparse Delaunay triangulations of random
point clouds up to size 1,000. DeepGD was trained on graphs up to size 200, as bigger graphs result
in the aforementioned memory problems. This also happened in inference when presented with
graphs of size 5,000 or bigger, due to the all-pairs-shortest-path information that has to be computed
and kept in memory. In Figure 5 (left), we can observe that the training size is clearly visible
for DeepGD, which does not generalize well beyond its training distribution. CoRe-GD without
coarsening suffers to a lesser degree, whereas CoRe-GD with coarsening manages to compete with
the other baselines, albeit degrading for graphs beyond its training distribution. Computing the stress
of a layout is slow and memory-intensive, which is why we cap the analysis at 5,000 nodes. As
inference can be done without stress computation, we measure the real-world runtime of all models
on graphs up to size 25,000. We notice that, initially, CoRe-GD performs faster without coarsening
compared to its coarsened counterpart. However, as the graph size increases, the computation of
initial features scales with the graph size in the absence of coarsening. In contrast, when coarsening
is employed, this initial feature computation is only required for the coarsest, smaller graph. Overall,
CoRe-GD scales well when compared to other baselines, with PivotMDS being the clear exception.

5 CONCLUSION

We introduce CoRe-GD, a neural framework for Graph Drawing. Our approach incorporates coars-
ening and a novel positional rewiring technique to achieve scalability and maintain computational
efficiency. To judge the performance of CoRe-GD, we conducted an evaluation encompassing estab-
lished benchmark datasets such as the Rome dataset, datasets from the graph learning community,
and real-world graphs sourced from the suitesparse matrix collection. The results demonstrate that
CoRe-GD consistently delivers good performance and extends its capabilities to graph sizes not
encountered during training. CoRe-GD’s generation of latent node embeddings, rather than solely
computing positions, expands its potential applications. Notably, CoRe-GD also stands out as the
first neural architecture capable of achieving this level of scalability, otherwise only known from
sophisticated handcrafted algorithms. To accomplish this objective, we introduced encoded beacon
distances as node features and employed a replay buffer to store latent embeddings for training deep
recurrent GNNs, which lets us run hundreds of graph convolutions recurrently to improve the lay-
out without destabilizing. Both methods might hold the potential for addressing a broader range of
geometric graph-related problems beyond traditional graph visualization.
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A APPENDIX

A.1 BASELINE ALGORITHMS

Table 3: Comparison of classical and learned graph drawing algorithms. Our method can facilitate
information exchange in the graph while maintaining an efficient runtime and achieving state-of-
the-art on the Rome dataset. For (sgd)2, a sparse approximation with sub-quadratic runtime ex-
ists. (Ahmed et al., 2022)

Model Learned Sub-Quadratic
Runtime

Global
Message Passing

Mean Stress
on Rome Dataset↓

PivotMDS (Brandes & Pich, 2007) × ✓ N/A 388.77
neato (Kamada & Kawai, 1989) × × N/A 244.22
sfdp (Hu, 2005) × ✓ N/A 296.05
(sgd)2 (Ahmed et al., 2022) × (×) N/A 233.49

(DNN)2 (Giovannangeli et al., 2021) ✓ ✓ × 248.56
DeepGD (Wang et al., 2021) ✓ × ✓ 235.22

CoRe-GD (ours) ✓ ✓ ✓ 233.17

An overview of the used baselines and their complexities is given in Table 3. CoRe-GD is the only
algorithm that (1) is learnable, i.e., can be adapted to different graph distributions by training on
them, (2) has sub-quadratic runtime complexity, thus scaling well when applied to bigger graphs,
and (3) allows for global message exchange by alleviating potential information bottlenecks with
positional rewiring. Notably, CoRe-GD outperforms prior work on the Rome dataset and generally
performs better than all learned baselines.

A.2 ARCHITECTURE DETAILS

Algorithm 1 CoRe-GD
1: procedure LAYOUT OPTIMIZATION(Gl = (Vl, El), h

l
1, r) ▷ Figure 2 top

2: for i = 1 to r do ▷ Optimize layout for r rounds
3: hl

i∗ ← ConvE(El, h
l
1) ▷ Convolution on Gl

4: Γl
i ← Dec(hl

i∗) ▷ Decode node positions
5: ER ← Rewiring based on Γl

i

6: hl
i+1 ← ConvR(ER, h

l
i∗)

7: end for
8: hl∗

r+1 ← ConvE(El, h
l
r+1) ▷ Finish with convolution on original topology

9: return hl∗
r+1

10: end procedure

11: procedure CORE-GD(G) ▷ Figure 2 bottom
12: G1 = (V1, E1), . . . ,Gc = (Vc, Ec)← Coarsen G into hierarchy ▷ Gc = G
13: h1

1 ← Compute and encode initial features for G1
14: for l = 1 to c− 1 do ▷ Iterate through coarsening levels l
15: hl

r+1 ← LAYOUT OPTIMIZATION(Gl, hl
1, r)

16: hl+1
1 ← Project embeddings hl∗

r+1 to Gl+1 and add noise
17: end for
18: hc+1

r+1 ← LAYOUT OPTIMIZATION(Gc, hc+1
1 , r)

19: Γc+1
r+1 ← Dec(hc+1

r+1)

20: return Γc+1
r+1 ▷ Return final positions

21: end procedure

Algorithm 1 provides further details on the modules depicted in Figure 2, with the same notation
for intermediate states h. The projection of embeddings is done with a sparse matrix multiplication
and first sets embeddings for all nodes to the embedding of their supernode. As this means that
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multiple nodes can receive the same embeddings, we add noise from a normal distribution to change
them slightly. It should be noted that CoRe-GD only decodes latent embeddings to positions for the
purpose of computing the rewiring or to get the final output of the network. In all other steps, we
pass the latent embeddings to let nodes maintain more information than just their current position.

Algorithm 2 CoRe-GD Training
1: procedure CORE-GD TRAIN(Batch B = ((G1, h1), . . . , (GB , hB), replay bufferR)
2: if puncoarsen ≥ X ∼ U(0, 1) then ▷ Uncoarsen graphs with probability puncoarsen
3: rpre ← N (0, σpre)
4: rpost ← N (0, σpost)
5: for (G, h) in B do ▷ in parallel
6: hnew ← LAYOUT OPTIMIZATION(G, h, rpre)
7: if G can be uncoarsened then
8: Gnew ← Next graph in the coarsening hierarchy
9: hnew ← Project embeddings hnew to Gnew and add noise

10: end if
11: hnew ← LAYOUT OPTIMIZATION(Gnew, hnew, rpost)
12: end for
13: elsed
14: r ← N (0, σ)
15: for (G, h) in B do ▷ in parallel
16: hnew ← LAYOUT OPTIMIZATION(G, h, rpost)
17: Gnew ← G
18: end for
19: end if
20: for (G, hnew) in B do
21: Γ← Dec(h)
22: Compute and collect loss for layout Γ
23: Randomly replace elements inR with (G, hnew)
24: end for
25: Do backpropagation on collected losses
26: end procedure

Training and backpropagating through all layers at once is costly (in terms of memory) and tends
to become unstable. Still, we want the trained network to be able to run hundreds of the same
parametrized GNN-convolutions during inference to optimize the layout of a big graph. We achieve
this goal by training only with few rounds of the layout optimization, but storing the resulting latent
embeddings together with the graph in a replay buffer R such that they can be used in a future
training batch. Doing so, we only backpropagate through a small (randomized) number of layers
at a time. Pseudocode for the training of a batch is provided in Algorithm 2. Batches are drawn
alternating from replay buffer R and original graphs with the encoder Enc applied before being
passed to the procedure.

A.2.1 GRAPH CONVOLUTION

We use an adapted version of the GIN and GRU convolution. Assuming that ht
v is the embedding of

node v at step t, the GRU convolution looks as follows:

ht+1
v = GRU

 ∑
w∈N(v)

Θ(ht
v∥ht

w)

 , ht
v

 ,

where GRU is a Gated Recurrent Unit and, Θ a learnable MLP and ∥ the concatenation operation.
We can observe that instead of only aggregating node features from neighbors, they are first com-
bined with the embedding of the target node that receives the message. We do the same adaption for
the GIN convolution:

ht+1
v = Θ1

(1 + ϵ) · ht
v +

∑
w∈N(v)

Θ2(h
t
v∥ht

w)

 .
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The GAT convolution is not adapted that way, as it already incorporates this relative information.
For the GNN convolution on the input graph topology, we use two layers of the same convolution,
i.e., do two rounds of message passing before interleaving it with one round of message-passing on
the rewired topology.

A.2.2 LAPLACIAN PE COMPUTATION

We apply the same Laplacian eigenvector positional encodings as Dwivedi et al. (2022), via the
factorization of the graph Laplacian:

∆ = I −D−1/2AD−1/2 = UTΛU,

with A being the adjacency matrix of the graph, D the degree matrix and U and Λ the eigenvectors
and eigenvalues of the eigen-decomposition. We always take the smallest Laplacian eigenvectors,
denoted in 7 as “Number of Laplacian eigenvectors”.

A.3 REWIRING

Figure 6: Motivation for the positional rewiring. Two nodes that are far apart in the graph are
positioned close together in the drawing. To let them exchange information directly, we rewire the
graph based on intermediate node positions. After the layout is optimized, the nodes are moved
further apart from each other.

Our positional rewiring technique is based on decoding intermediate embeddings to get current
positions. Figure 6 motivates the rewiring further. Here, two nodes are positioned close to each
other in the current drawing, while they should have a distance proportional to their shortest path
length, which is large in this case. The two nodes are not able to exchange information directly with
each other, and message-passing would take many rounds to propagate the positioning sufficiently.
The positional rewiring counters this by directly connecting these nodes and letting them optimize
their relative positioning.

KNN with K=2 Delaunay RadiusInput point cloud

Figure 7: The same point cloud rewired with three techniques.

Without considering the underlying graph topology, one can consider these positions Γ(V ) as a
point cloud in a n-dimensional space. The point clouds are then converted into a graph for local-
ized message passing. We experimented with three rewiring methods: K-nearest-neighbor graphs,
Delaunay triangulations, and radius graphs. Figure 7 shows the same point cloud, rewired with the
three methods.
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Table 4: Ablation study on CoRe-GD. Each row reports the scale-invariant stress corresponding to a
single change of the architecture or training configuration. All runs were done on the Rome dataset.

Ablation Stress Normalized Stress ×103

Baseline 233.17 ± 0.13 57.61 ± 0.03

C
on

v GIN conv 238.53 ± 1.43 59.17 ± 0.41
GAT conv 270.83 ± 8.45 70.27 ± 2.10

In
iti

al
fe

at
ur

es No beacons 233.39 ± 0.30 57.65 ± 0.07
No laplacian PE 234.65 ± 0.33 57.91 ± 0.08
No random features 233.24 ± 0.17 57.64 ± 0.05

R
ew

ir
in

g No rewiring 236.38 ± 0.12 58.50 ± 0.02
Delaunay 233.40 ± 0.67 57.69 ± 0.19
Radius 234.14 ± 0.68 57.81 ± 0.17
Random 236.01 ± 0.08 58.38 ± 0.03

No replay buffer 236.65 ± 1.75 58.61 ± 0.50

Scale-dependent stress 234.04 ± 0.82 57.83 ± 0.21

Table 5: Ablation study for different coarsening approaches, taken from Jin et al. (2020), on the
suitesparse dataset.

Metric heavy edge affinity GS kron variation neighborhoods
stress 42800 ± 422 42639 ± 313 42699 ± 248 42935 ± 319
normalized stress (×103) 96.7 ± 0.6 96.4 ± 0.7 96.6 ± 0.3 97.7 ± 1.5

KNN For the KNN graph we add an edge (u, v) for the K closest points u to v regarding Euclidean
distance. This means the graph is directed and every node has an in-degree of exactly K. In the
message-passing step, messages are only sent along the directed edges, letting every node know
about its K nearest neighbors.

Delaunay Triangulation The Delaunay triangulation is the dual graph of the Voronoi diagram. In
a Delaunay triangulation, it holds that given any triangle, no vertex lies inside its circumcircle. As
we have a triangulation, the number of edges is linear in the number of nodes. Moreover, the fast
sequential computation time of O(|V |log|V |) makes it an ideal fit for our rewiring technique. The
downside of this approach is that it is hard to parallelize the computation, making it slow in practice.
This is also what we observed during our testing.

Radius Graph In the Radius graph, two nodes are connected if the Euclidean distance between
them is smaller or equal to a predefined threshold. For the testing in our ablation study, we set this
value to 0.05. Setting a good radius is hard, and choosing a bad value can lead to bad performance
as the number of edges is not bounded with this approach, and we can get a fully connected graph in
the worst case. The radius can also be sensitive to the graph size we want to draw, especially as we
restrict the drawing area to [0, 1]d. Here, bigger graphs will populate the space more densely. For
these reasons we prefer the KNN or Delaunay based rewiring over the Radius graph.

A.4 ABLATION STUDY

We corroborate our architectural choices with an ablation study on the Rome dataset. As can be
deduced from Table 4, every component contributes to the performance of CoRe-GD. Most notably,
the chosen convolution plays a major role, while the chosen rewiring method and the usage of the
replay buffer also make a significant impact. This supports the claim that the GRU convolution is
well-suited for recurrent GNNs. While the Delaunay rewiring performed similarly to KNN, training
time is much longer for Delaunay as the triangulation is computed on the CPU. A GPU-optimized
implementation could help to make it more viable in practice.
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A.5 SCALE-INVARIANT STRESS

Restricting the domain of the graph layout can limit the solution space to become suboptimal. There-
fore, we want to rescale node positions using a scaling factor α for node positions P such that the
scaled layout Pα := {α · p | p ∈ P} has optimal stress among all α. Therefore, the stress we report
throughout the paper becomes scale-invariant. Recall the definition of stress:

stress(G,Γ) :=
∑

u,v∈V,u ̸=v

wuv(∥Γ(u)− Γ(v)∥2 − duv)
2

We want to find the optimal αG,Γ which minimizes the stress loss:

αG,Γ = argmin
α∈R

stress(G,Γ, α) = argmin
α∈R

∑
u,v∈V,u ̸=v

wuv(∥αΓ(u)− αΓ(v)∥2 − duv)
2

To find the optimal α, we take the first derivative with respect to α and solve it to be 0.

0
!
=

∂

∂α
stress(G,Γ, α)

0 =
∂

∂α

∑
u,v∈V,u ̸=v

wuv(∥αΓ(u)− αΓ(v)∥2 − duv)
2

0 =
∂

∂α

∑
u,v∈V,u ̸=v

wuv(α∥Γ(u)− Γ(v)∥2 − duv)
2

0 =
∑

u,v∈V,u ̸=v

wuv(2α∥Γ(u)− Γ(v)∥22 − 2∥Γ(u)− Γ(v)∥2duv)∑
u,v∈V,u̸=v

wuv2∥Γ(u)− Γ(v)∥2duv =
∑

u,v∈V,u ̸=v

wuv2α∥Γ(u)− Γ(v)∥22∑
u,v∈V,u̸=v

wuv∥Γ(u)− Γ(v)∥2duv = α
∑

u,v∈V,u̸=v

wuv∥Γ(u)− Γ(v)∥22

α =

∑
u,v∈V,u̸=v wuv∥Γ(u)− Γ(v)∥2duv∑

u,v∈V,u ̸=v wuv∥Γ(u)− Γ(v)∥22

Moreover, we can verify that the solution is the unique minimum by checking if the second derivative
with respect to α is positive.

∂2

∂2α

∑
u,v∈V,u ̸=v

wuv(α∥Γ(u)− Γ(v)∥2 − duv)
2 =

∑
u,v∈V,u ̸=v

wuv(2∥Γ(u)− Γ(v)∥22)2 > 0

Therefore, the following closed form solution defines the optimal αG,Γ:

αG,Γ = argmin
α∈R

stress(G,Γ, α) =

∑
u,v∈V,u̸=v wuv∥Γ(u)− Γ(v)∥2duv∑

u,v∈V,u ̸=v wuv∥Γ(u)− Γ(v)∥22

A.6 CORE-GD AS POSITIONAL ENCODING

By utilizing stress as the loss, we can train CoRe-GD in an unsupervised fashion to generate node
embeddings that capture pair-wise node distances in the graph. In the case of graph drawing, we
usually use latent embeddings to find a good layout in a low-dimensional space. However, these
latent embeddings capture inherent structural information of the graph, which might be useful for
other learning applications, e.g., in improving the performance of downstream tasks. We test the
downstream performance using the GPS framework (Rampášek et al., 2022), where we run base-
lines using initial features consisting of laplacian eigenvectors, random-walk structural encodings
(RWSE), and beacon encodings to test CoRe-GD’s latent embeddings as well as the derived posi-
tions. As seen in Table 6, CoRe-GD embeddings admit competitive performance, outperforming
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Table 6: Performance using the GPS framework using different types of positional embeddings.
Models marked with a * were trained by us.

Model ZINC ↓ MNIST ↑ CIFAR10 ↑ PATTERN ↑ CLUSTER ↑
DGN (Beaini et al., 2021) 0.168 ± 0.003 - 72.838 ± 0.417 86.680 ± 0.034 -
CIN (Bodnar et al., 2021) 0.079 ± 0.006 - - - -
GIN-AK+ (Zhao et al., 2021) 0.080 ± 0.001 - 72.19 ± 0.13 86.850 ± 0.057
K-Subgraph SAT (Chen et al., 2022) 0.094 ± 0.008 - - 86.848 ± 0.037 77.856 ± 0.104
EGT (Hussain et al., 2022) 0.108 ± 0.009 98.173 ± 0.087 68.702 ± 0.409 86.821 ± 0.020 79.232 ± 0.348
GPS+LapPE (Rampášek et al., 2022) 0.116 ± 0.009 98.051 ± 0.126 72.298 ± 0.356 86.685 ± 0.059 78.016 ± 0.180
GPS+RWSE (Rampášek et al., 2022) 0.070 ± 0.004 - 71.958 ± 0.398 - -
GPS+CoRe-GD* 0.126 ± 0.010 97.876 ± 0.140 72.494 ± 0.340 86.522 ± 0.405 77.454± 0.157

GPS+CoRe-GD* 0.089 ± 0.006 97.970 ± 0.190 71.614 ± 0.608 86.769 ± 0.045 78.316 ± 0.169
GPS+CoRe-GD-pos* 0.122 ± 0.009 97.884 ± 0.154 72.296 ± 0.286 86.721 ± 0.020 77.722 ± 0.168

Table 7: Final hyperparameter settings and tested configurations for CoRe-GD.
Hyperparameter Baselines Tested for baselines suitesparse Delaunay graphs
Hidden dimension 64 {32, 64, 128} 64 64
Dropout 0.0 {0.0, 0.1} 0.0 0.0
Mean number of rounds 5 {4, 5, 6} 5 5
Variance of round number 1 {1} 1 1
Batch size 16/32 {16, 32, 64} 4 4
Convolution GRU {GIN, GAT, GRU} GRU GRU
# Laplacian eigenvectors 8 {4, 6, 8} 8 8
# Random inputs 1 {0, 1} 1 1
# Beacons 2 {1, 2, 4, 8} 2 2
Encoding size per beacon 8 {2, 4, 8, 16} 8 8
Rewiring KNN {KNN, Delaunay, Radius} KNN KNN
K for KNN 8 {4, 6, 8} 8 8
Replay buffer size 4096 {2048, 4096} 1024 1024
Coarsen algorithm - - affinity GS heavy edge
Coarsen reduction factor - - 0.8 0.8

laplacian and beacon embeddings on ZINC, PATTERN, and CLUSTER, which indicates that CoRe-
GD adds additional value to these embeddings through unsupervised stress minimization. Latent
embeddings perform better than positions overall, indicating that they contain additional structural
information. This hints at the potential of CoRe-GD embeddings for downstream tasks.

A.7 EXPERIMENTAL SETUP

A.7.1 TRAINING DETAILS

The final version of CoRe-GD was trained with the same hyperparameters (except batch size) on all
datasets. Table 7 lists the setup and tested hyperparameters for the final model we conducted our
experiments with. Due to computational constraints, a full grid search of all hyperparameters was
infeasible. Therefore, we tuned by running a line search amongst one of the dimensions. We used
the Adam optimizer with an initial learning rate of 0.0002 scheduled with the Plateau technique and
patience of 12, threshold of 2, and factor of 0.7. Model selection was done by choosing the epoch
with the best validation score, and we trained for 200 epochs in total. Elements in the replay buffer
were replaced with a probability of 50% if the batch was part of the original dataset and a probability
of 100% if the batch was sampled from the replay buffer. All training was done on an RTX 3090
with 24GB of VRAM. For all results reported in the paper we use an output dimension of d = 2.

For DeepGD, we used the same configuration as provided by the authors, except for a reduced batch
size of 16 for PATTERN, CLUSTER, and CIFAR10 due to the increased size of the graphs in the
dataset. The values reported in the paper were produced with PivotMDS initializations, and the
number of pivots was set to 10. We used the recommended epoch number of around 600, except
when we hit the timeout of 48 hours. The model with the best validation loss was selected. All
training was done on an A6000 with 48GB of VRAM.
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Table 8: Comparison of scale-invariant stress between classical Graph Drawing methods, learned
models, and our proposed model CoRe-GD. We train all models on the individual datasets for each
reported score, except CoRe-GD-mix which was trained on a mix of all datasets. Our model achieves
or matches state-of-the-art on all datasets, including Rome, a popular benchmark in Graph Drawing.
The reported score is the scale-invariant normalized stress multiplied by 1000.

Model Rome ZINC MNIST CIFAR10 PATTERN CLUSTER
PivotMDS 105.12 ± 0.13 54.46 ± 0.00 34.92 ± 0.02 27.81 ± 0.01 257.62 ± 0.09 249.87 ± 0.11
neato 61.31 ± 0.10 10.39 ± 0.09 26.26 ± 0.04 19.04 ± 0.01 215.61 ± 0.03 206.33 ± 0.07
sfdp 77.06 ± 0.30 35.58 ± 0.49 34.72 ± 0.02 27.33 ± 0.01 217.81 ± 0.10 208.73 ± 0.15
(sgd)2 58.01 ± 0.03 9.30 ± 0.03 26.13 ± 0.00 18.98 ± 0.00 215.31 ± 0.01 206.50 ± 0.05

(DNN)2 62.71 ± 0.91 17.06 ± 3.05 30.06 ± 1.51 19.12 ± 0.02 209.58 ± 0.34 202.33 ± 1.28
DeepGD 58.55 ± 0.25 11.21 ± 0.14 26.13 ± 0.01 19.01 ± 0.01 208.28 ± 0.04 200.43 ± 0.01

CoRe-GD (ours) 57.61 ± 0.03 9.26 ± 0.02 26.10 ± 0.00 18.99 ± 0.01 207.27 ± 0.04 199.65 ± 0.02
CoRe-GD-mix (ours) 57.95 ± 0.04 9.42 ± 0.04 26.13 ± 0.00 19.01 ± 0.00 207.26 ± 0.02 199.71 ± 0.01
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Figure 8: Non-normalized stress for performance and runtimes of the scaling measurements. Other-
wise, the same as Figure 5.

For training the (DNN)2 models, we used the default configuration specified by Giovannangeli et al.
(2021) for stress optimization. Specifically, we train for at most 200 epochs while using early
stopping after 20 epochs if there is no improvement in the validation loss. Furthermore, training
time was limited to 48 hours. For each dataset, we trained five models, except for ZINC, which was
much more unstable. (DNN)2 on ZINC often did not improve upon the score achieved in the very
first epoch. Therefore, we trained 30 models in total to get at least five runs that exhibited a learning
behavior and improved after epoch 1. Moreover, a model on the ZINC dataset produced NaN/Inf
values in the stress computation for a single graph, which we replaced with a 0 (in favor of (DNN)2).
All training was done on CPUs.

A.7.2 NORMALIZED RESULTS

Table 8 shows normalized results for the Graph Drawing comparison. They are consistent with the
non-normalized values, thus further underlining the performance of CoRe-GD.

A.7.3 SCALING EXPERIMENTS

We run both runtime and performance experiments on 16 physical cores of an AMD EPYC 7742 and
64GB of RAM. For DeepGD and CoRe-GD, we use an RTX 3090 with 24GB VRAM in addition.
It should be noted that the preprocessing of DeepGD and the coarsening of CoRe-GD still runs on
the CPU, and times are measured, including all data transfers from and to the GPU. For the sake
of completeness, we report the non-normalized results for the plot in Figure 8, together with a full
view of the DeepGD loss.

20



Published as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Runtime [s]

50000

100000

150000

200000

250000

300000

350000
st

re
ss

n=1000

0 2 4 6 8 10
Runtime [s]

0.4

0.6

0.8

1.0

1.2

1.4

1.6

st
re

ss

1e6 n=2000

0 5 10 15 20 25 30 35
Runtime [s]

1

2

3

4

5

6

7

st
re

ss

1e6 n=4000

0 5 10 15 20 25
Runtime [s]

2.0

2.5

3.0

3.5

4.0

4.5

st
re

ss

1e6 n=5000

CoRe-GD CoRe-GD (no coarsening) DeepGD PivotMDS neato sfdp (sgd)2

Figure 9: Scatter plots depicting runtime and stress for different graph sizes n as measured for
the experiments in Figure 5. CoRe-GD is Pareot-optimal and performs considerably better than
DeepGD, which is not part of the last plot as it ran out of memory for 5000 nodes.

To evaluate the tradeoff between achieved loss and runtime further, we plot them together for fixed-
size Delaunay graphs in Figure 9. We can observe that CoRe-GD stands as being Pareto-optimal for
the four depicted graph sizes.

A.7.4 GRAPH DRAWING BENCHMARKING AND EMPLOYED DATASETS

Benchmarking for Graph Drawing is highly non-standardized. Classical algorithms like Pivot-
MDS (Brandes & Pich, 2007) or (sgd)2 (Ahmed et al., 2022) only use few graphs (some of them
usually from the suitesparse matrix collection, others synthetically generated) to evaluate perfor-
mance comparatively. While this makes it hard to judge the general performance, and the graphs
can be sampled with bias, this fails, especially when neural methods are employed that need differ-
ent sets of graphs for training, validation, and testing. Here, both DNN2 and DeepGD resort to the
Rome dataset by Di Battista et al. (1997) that was introduced for the purpose of experimental com-
parison of graph drawing algorithms. One downside of this dataset is the fact that it only contains
relatively small graphs with 52.3 nodes on average. This makes it unsuitable for testing state-of-the-
art algorithms that focus on scalability and larger graph instances. It should be noted that DNN2 and
DeepGD use different random splits of the dataset.

To overcome the limitations of existing benchmarks, we propose the following: We include the
Rome dataset with the random split specified by Wang et al. (2021) to compare our results to ex-
isting neural methods. As we also want to test the adaptability of the graph drawing algorithm
to different graph distributions, we further include the ZINC, MNIST, CIFAR10, PATTERN, and
CLUSTER datasets from Dwivedi et al. (2022) that were originally proposed for the purpose of
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Table 9: Training dataset statistics for all used benchmarks. Edge counts are for directed edges.
Dataset # Graphs # Nodes # Edges License
Rome 11531 52.3 138.1 source
ZINC 12,000 23.2 49.8 CC-BY 4.0 and MIT
MNIST 55,000 70.6 564.5 CC-BY 4.0 and MIT
CIFAR10 45.000 117.6 941.2 CC-BY 4.0 and MIT
PATTERN 10,000 118.9 6,098.9 CC-BY 4.0 and MIT
CLUSTER 10,000 117.2 4,303.9 CC-BY 4.0 and MIT
Suitesparse graphs 189 502.3 6385.6 CC-BY 4.0
Delaunay graphs 200 577.77 3428.23 MIT (self-generated)

GNN benchmarking. We chose these datasets as they have predefined training/validation/test splits
and are roughly the same size as the Rome dataset (with MNIST and CIFAR10 being a bit larger),
thus allowing us to train existing neural methods on them. While the original datasets contain labels,
we can omit those as training is done in a self-supervised way with the goal of minimizing stress.
To further evaluate scalability and performance on larger graphs, we follow (sgd)2 and PivotMDS
in taking graphs from the suitesparse matrix collection and creating our own subset with all suitable
graphs with 100 to 1000 nodes. For further evaluation of the scaling behavior, we additionally create
synthetic Delaunay triangulations. This allows us to create sparse graphs of any size that we can use
in the scalability study in Section 4.

We show dataset statistics in Table 9. For any dataset that contains directed graphs, we make them
undirected to fit the task. We further only consider connected graphs. Disconnected graphs can
always be drawn by drawing each connected component separately.

Rome (Di Battista et al., 1997) The Rome dataset is provided by graphdrawing.org and contains
graphs collected at the University of Rome. They represent Entity-Relationship diagrams and Data-
Flow graphs mainly used for database and software visualization. It is a common benchmark for
stress optimization in the graph drawing community.

Benchmarking GNNs Datasets (Dwivedi et al., 2022) ZINC contains molecular graphs from the
ZINC database of compounds for virtual screening. MNIST and CIFAR10 are generated from the
classical MNIST and CIFAR10 datasets by extracting superpixels, small regions of homogeneous
intensity in images. PATTERN and CLUSTER are synthetic tasks where graphs were generated
with the Stochastic Block Model. Statistics for all datasets are shown in Table 9.

Suitesparse Subset We select a subset of suitesparse matrices (https://sparse.tamu.edu/). We con-
sider all quadratic matrices with 100 to 1000 columns that result in an undirected, connected graph.
This results in a dataset with graphs from many different distributions and application areas, such as
power network problems, structural problems, or circuit simulation problems, to name but a few.

Random Delaunay Triangulations We randomly sample the size of the graph between 100 and
1000 and create a random 2D point cloud with that many points. A Delaunay triangulation is com-
puted on the point cloud, resulting in a graph with a planar embedding. The planarity guarantees
that the graph has a linear number of edges, keeping it sparse.

A.8 MORE COARSENING EXAMPLES

Figure 10 shows additional examples of the progressive improvement and uncontraction of CoRe-
GD drawings. The graphs are taken from the suitesparse matrix collection.
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Figure 10: More examples of the evolution of CoRe-GD drawings. The model was trained on the
suitesparse dataset and generates 3-dimensional drawings.
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