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Abstract

Transformers have been shown to be able to
perform deductive reasoning on a logical rule-
base containing rules and statements written
in natural language. Recent works show that
such models can also produce the reasoning
steps (i.e., the proof graph) that emulate the
model’s logical reasoning process. But these
models behave as a black-box unit that emu-
lates the reasoning process without any causal
constraints in the reasoning steps, thus ques-
tioning the faithfulness. In this work, we frame
the deductive logical reasoning task as a causal
process by defining three modular components:
rule selection, fact selection, and knowledge
composition. The rule and fact selection steps
select the candidate rule and facts to be used
and then the knowledge composition combines
them to generate new inferences. This ensures
model faithfulness by assured causal relation
from the proof step to the inference reasoning.
To test our causal reasoning framework, we
propose CAUSALR where the above three com-
ponents are independently modeled by trans-
formers. We observe that CAUSALR is robust
to novel language perturbations, and is com-
petitive with previous works on existing rea-
soning datasets. Furthermore, the errors made
by CAUSALR are more interpretable due to
the multi-modular approach compared to black-
box generative models. !

1 Introduction

The field of Al has long pursued the goal of build-
ing systems that can automatically reason over
some given explicit knowledge to generate con-
clusions and provide the reasoning steps involved
in the process (McCarthy, 1959; Newell and Simon,
1956). However, systems built on formal represen-
tation of knowledge has sometimes found this to
been challenging (Musen and Van der Lei, 1988).

!Code to reproducte the results have been uploaded and
will be published.

Charlie is blue.
Charlie is round.
Erin is kind.
Dave is round.

factl:
fact2:
fact3:
fact4:

rulel:
rule2:

If someone is blue then they are kind.
Round, kind people are white.

statement: Charlie is white.

conc2: Charlie
is white.

_______________________

Figure 1: Example of a theory, a statement, and a
valid proof graph - An instance contains multiple facts
and rules in blue and yellow respectively, followed by
a statement in red. The proof graph describes how the
statement can be generated using the theory.

Recently, Clark et al. (2020) proposed a mod-
ern version of the problem, where the formal rep-
resentation of knowledge is replaced by natural
language statements in English. Further, they pro-
posed a transformer-based model (Vaswani et al.,
2017) RuleTaker, that can predict if a candidate
statement is entailed by the natural language state-
ments, by emulating deductive reasoning. While
this capability is impressive, it is unclear if such
models are also capable of generating the reason-
ing steps involved in the process (i.e., proof graph
generation).

Recent works (Saha et al., 2020; Tafjord et al.,
2020) have developed systems that can generate
the reasoning steps while predicting the statement
entailment. However, these systems do not ensure
causality between generating the proof and predict-
ing the entailment. Since the systems are inherently
black-box models, this questions the faithfulness
of the model’s reasoning process (Lipton, 2018).

In this paper, we look to address these shortcom-
ings by developing a causal framework to solve the
deductive reasoning task. While existing methods
generate proofs in a single step, in our causal frame-
work we break this process into three steps: rule



selection, fact selection, and knowledge composi-
tion. The rule selection step decides the relevant
rule to use for an iterative inference step and fact se-
lection explicitly uses this rule to select the relevant
facts. Then, the knowledge composition step uses
the selected rule and facts to reason and generate
the next intermediate inference. In Figure 2, we
show the model schematics for our system and con-
trast it with previous methods. Notably, we strictly
restrict the information accessible at each step of
our framework to make the reasoning process more
faithful. For example, in our framework, the fact se-
lection step depends on only the selected rule from
the rule selection step, instead of the complete set
of rules. Additionally, since we constrain the inputs
to each step, this makes each sub-problem easier to
learn, leading to an overall more robust reasoning
model.

Generative models such as ProofWriter (Tafjord
et al., 2020) suffer from another issue that the in-
termediate proof generation is conditioned on the
conclusion (Figure 2 (b)). This is counterintuitive
since the model can learn to use the conclusion to
generate the corresponding proof, which breaks the
causal reasoning chain. This issue is resolved in
our framework as we explicitly select the rule and
facts required for the inference generation. Thus,
proof graphs in our framework are a by-product of
the selection steps, and the intermediate inference
depends directly on the proof. This is a major ben-
efit of using our causal framework for reasoning.

To model these three steps, we develop
CAUSALR, in which each component is a
transformer-based model learning to perform the
modular tasks. Specifically, we use RoBERTa-
based models (Liu et al., 2019) for the two selection
tasks and a T5-based model (Raffel et al., 2019)
for the composition task. Similar to ProofWriter,
we use synthetic rulebases to train CAUSALR. Al-
though our model is not end-to-end trainable for
proof generation due to explicit selection of rules
and facts, this assures a causal relation from proof
graph to inference deduction, which is desirable.
We experiment with CAUSALR on standard de-
ductive reasoning datasets and multiple robustness
datasets. Overall, we find that CAUSALR is more
robust to novel language perturbations than base-
lines, and requires less additional data to generalize
to out-of-distribution reasoning tasks. Additionally,
our model is up to three times faster at inference
due to the constrained input and outputs of differ-
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Figure 2: Reasoning process in different models. (a):
ProofWriter (“All”’) directly output the entailment prediction
and proof graph for given input. (b): ProofWriter (“Iter”)
iteratively generates the one-step intermediate conclusions
and their proofs. (¢): CAUSALR selects a rule, then a fact, and
finally combines them to generate an intermediate inference.
Please refer to Section 3.1 for details.

ent modules. Lastly, we find that the errors made
by our model is more interpretable and easier to de-
bug compared to baseline generative models. This
further demonstrates the faithfulness of our modu-
larized reasoning framework.

2 Problem Definition

Notations A theory T consists of a set of facts
F ={fi,fo,...,fo} and rules R = {ri,72,...,7m}
expressed in natural language. An example of a
theory is depicted in Figure 1. Here, the sentences
in the blue and yellow boxes are facts and rules,
respectively. Further, a proof graph is a directed
graph connecting facts and rules that describe how
a specific inference can be obtained from the the-
ory. In Figure 1, the proof graph shows the steps
involved in generating the inference “Charlie is
white.”. To generate the proof graph we may need
to infer some intermediate conclusions c;. These
inferences are considered as part of the extended
facts in the theory. For example, in Fig. 1, “Charlie
is kind” is an intermediate inference required to
generate the correct proof graph.

Deductive Reasoning The task of deductive rea-
soning is described as follows: given a theory T,
and a statement s, predict if the theory supports the
statement (entailment prediction) and if so, gen-
erate the proof graph that supports the statement
(proof generation). For the example theory and
statement in Figure 1, we see that the statement is
indeed entailed by the theory and the valid proof



graph is shown for the same. The main goal of this
task is to evaluate if a model can generate valid rea-
soning chains in the form of proof graphs to justify
its entailment prediction.

Reasoning Robustness We consider an auxiliary
task that evaluates the robustness of the reason-
ing abilities used by the model. Let P be a per-
turbation function that modifies a given theory T'
(statement s) to a theory 71" (statement s’), such
that (77, s") just has some surface changes in the
natural language form but still requires the sim-
ilar reasoning process as required for (7', s). A
function that alters the subjects in the theory to
unseen subjects is an example of such perturba-
tion function. We perturb each theory statement
pair (T, s) to create an equivalence set defined as
the set Ep g = {(T7,57)...(Ty,sy)}, where
each (717, s}.) is derived by perturbing the original
theory, and N is the total such perturbations per
theory. Note that it is possible to generate different
(Ty,, s},) pairs by controlling the stochasticity of P.
The main goal of of this task is to evaluate the con-
sistency of the model’s predictions with minimal
variations in the input theory.

Evaluation Protocol We consider three main as-
pects for evaluating the model performance in our
study: (1) Entailment accuracy measures how ac-
curately the model is able to predict the true state-
ment entailment. (2) Proof accuracy measures
how accurately the model can predict a valid proof
for the statement. Following Saha et al. (2020);
Tafjord et al. (2020), we use the strict metric for
proof evaluation, i.e., for a match to count, both
the predicted proof should exactly match a gold
proof and the entailment should be correctly pre-
dicted. (3) Consistency measures if the models
are consistent in the entailment and proof predic-
tion for different perturbation functions. For a
theory statement pair (7', s) and its corresponding
equivalence set E (7 ), consistency is defined as
C =5 Ypot US(T,5) = [(Ti, s1,)], where f(:)
is the model’s prediction. We compute the average
consistency for both entailment and proof predic-
tions on an equivalence set and further average
across the dataset to report the consistency.

3 The CAUSALR Method
3.1 Approach Overview

As illustrated by the example in Figure 1, to reliably
generate a proof graph through deductive reason-

ing, a model needs to generate multiple one-hop
intermediate conclusions. This is the major limita-
tion of models that use the theory to directly predict
the proof (Figure 2 (a)), thus questioning the trust-
worthiness of the reasoning process. Next, it is also
intuitive to see that in order to faithfully generate
these intermediate inferences, a model should first
determine the proof (i.e., know the rules and facts
to use) and then use them to infer the conclusion.
That is, there is a causal step between determin-
ing the proof and then generating the conclusion.
We note that ProofWriter (“Iter”) lacks in this as-
pect. As shown in Figure 2 (b), it first generates
the conclusion and then the corresponding proof.

Motivated by these points, we propose our causal
reasoning framework which breaks the reasoning
process into three desirable steps. As shown in Fig-
ure 2 (c), in our framework, first a rule r is selected
using the rules and facts in the theory. Following
that, some relevant facts are selected from the fact
list based on the selected rule 7. This step does not
use the other rules R\ {r} in the theory. Finally, the
selected rule and facts are jointly used to generate a
new conclusion ¢;. In this framework, the one-step
proof is explicitly determined first via the selection
steps followed by the inference generation, making
the proof a by-product of the whole process. In
contrast, prior works learned to generate the proof
along with intermediate conclusion.

3.2 CAUSALR Modules

At a high level, CAUSALR is an iterative model
in which the one-hop intermediate conclusions are
generated step-by-step. To model our causal rea-
soning framework described in Sec. 3.1, we have
four components in CAUSALR as follows.

Rule Selector (RS) The rule selector is a
RoBERTa-based (Liu et al., 2019) classification
model that takes the concatenated statement, facts,
and rules as input, and selects a rule that is used
to generate an intermediate conclusion in the cur-
rent iterative step. It takes the input of the form
[CLS) s [SEP]) F [[SEP] 7 ]m [SEP], and generates
a one-hot output vector by classifying the token em-
bedding from the [CLS] token and [SEP] tokens in
front of the rules, via a linear classifier layer. Each
classification is a binary classification, but overall
only one of the tokens has the positive class. Here
s denotes the statement, I is the facts and concate-
nated with any intermediate conclusions generated
in a prior iteration, and {r;} denotes the i* rule in



the theory that contains a total of m rules. [ |,,, de-
notes continued concatenation. An example input
and output of the rule selector is shown in Figure
3. If a [SEP] token is selected, we select the rule
sentence following the corresponding [SEP] token,
otherwise if the [CLS] token is selected, we decide
to stop the iteration. That is, the [CLS] selection
acts as a stop signal for our iterative model. We
note that it is possible to have more than one likely
candidate rule since there can be multiple one-hop
inferences possible for a given theory. Following
Tafjord et al. (2020), we randomly select one of the
possible candidate rules at each iteration.

Fact Selector (FS) The fact selector is ROBERTa-
based (Liu et al., 2019) token classification model
that takes the statement, the rule selected by
the rule selector, and facts in the theory, and
then predicts a set of candidate facts that can
be used with the rule to generate an intermedi-
ate conclusion. It takes the input of the form
[CLS] s [SEP] r [[SEP] fi]» [SEP], where s is
the statement, r is the selected rule, and { f;} is the
ith fact in the theory containing n total facts. Note
that facts also include any previously generated
intermediate conclusions. | |,, denotes continued
concatenation. The output is generated by classify-
ing each [SEP] token embedding in front of a fact
using a linear layer, to determine if the correspond-
ing fact is selected or not. An example input and
output for the fact selector is depicted in Figure
3. We note that it is possible to have some rules
can reason over multiple facts jointly to generate
a conclusion. An example of such a rule is “rule2”
in Figure 1. Hence, this component has the ability
to select multiple facts.

Knowledge Composer (KC) The knowledge
composer is a generative text-to-text transformer
TS5 (Raffel et al., 2019) (T5-large) that can compose
a set of facts and a rule to output a novel conclu-
sion. The input to the model is the selected facts
and rule concatenated together, and the output is
the intermediate conclusion. An example input and
output for knowledge composer is shown in Fig. 3.

Solver The final component is the solver that op-
erates after all iterations have finished (i.e., once
the rule selector selects the [CLS] token indicat-
ing to stop the iterative inference generation pro-
cess). Similar to Proof Writer, our solver currently
searches for the statement in the generated inter-
mediate inferences (string matching). If found, it
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Figure 3: Overview of components of CAUSALR - The rule
selector and fact selectors are classification models whereas
the knowledge composer is a generation model. The input
tokens used for classification by the selectors are highlighted.
Rule selector decides to stop based on the output prediction of
[CLS] token (highlighted in green). Here, rule r1, and facts
f1 and f> are used to generate the conclusion c;. Please refer
to Section 3.2 for more details.

predicts that the statement is entailed by the theory.
It also search for the negation of the statement 2,
and if found, it predicts not entailed. If none of
these are present, it predicts “Unknown” since it
cannot prove or disprove the statement. The proof
graph is constructed by using the one-hop proofs
generated by the selected rule and facts at each step.
For example, in Figure 1, the red dotted boxes (one-
hop proofs) are stitched together to assemble the
complete proof. For cases where the entailment
is “Unknown”, the proof returned is “None”, since
no proof for the statement exists in the theory. We
note that our solver is not a learnable module.

3.3 Training and Inference

Each component of our model (except the solver,
which is deterministic) is trained separately. We
use the same dataset as ProofWriter to train these
models, but process it such that each model re-
ceives only the relevant inputs according to our
causal framework. More concretely, suppose for a
given theory T' = R + F', a possible intermediate
inference is c obtained by using a rule r and a fact
f. Then, a training instance of ProofWriter, which
is a TS5 (Raffel et al., 2019) model, uses the input
{R, F'} and output {c, r, f}. We process the same
instance to generate three training instances, one
for each of rule selector, fact selector, and knowl-

“Following ProofWriter, we perform regex to add/remove
“not” which suffices for this dataset.



edge composer, respectively, as follows:

RS Input = {R,F}; RS Output = {r},
FS Input = {r,F}; FS Output ={f},
KC Input = {r, f}; KC Output = {c}.

Our selector models have the statement s as in-
put to the model. Also, the outputs of rule selector
and fact selectors are converted to class labels in-
stead of text since our selectors are classification
models. We use cross entropy loss to train the rule
selector, and binary cross entropy loss to train the
fact selector. The knowledge composer is trained
on language modeling loss.

At inference time, the rule selector selects a
rule to be used for generating one-step conclusions.
Then, the fact selector selects some facts based on
the selected rule, which is then collectively passed
on to the knowledge composer to generate a conclu-
sion. This three-step pipeline is run iteratively until
the rule selector predicts a stop signal by selecting
the [CLS] token which exits the iteration. Once
the iteration finishes, the solver uses the generated
intermediate inferences to decide if the statement is
entailed or not, and generates a proof accordingly.

Remark on Computational Complexity A prac-
tical limitation of ProofWriter is that it performs
an exhaustive forward search by enumerating all
possible inferences from a given theory. This leads
to redundant inferences being generated for prov-
ing a particular statement. Additionally, using a
text-to-text transformer model adds to the problem
since they are usually quite expensive to run at in-
ference time. In CAUSALR, we alleviate this by
introducing two changes. First, our causal frame-
work allows only limited information (selected rule
and facts) as input to the knowledge composer,
thus restricting the input length significantly. Sec-
ond, augmenting the question to our selector inputs
helps reduce the candidate space because these
models can learn to prioritize the selection based
on the relevance to both the question and the theory.
This ensures that CAUSALR does not perform an
exhaustive forward search and prioritizes generat-
ing relevant inferences over the others. Both these
changes lead to an overall improvement in infer-
ence speed. We perform more quantitative analysis
on this later in Section 5.3.

4 Experimental Setup

Datasets Following (Tafjord et al., 2020; Clark
et al., 2020), we use the D* datasets for our experi-

ments. These are a set of multiple datasets - namely
DO, D1, D2, D3, D0O-D3, and D5. The theory in
these datasets are synthetically generated with in-
creasing reasoning depths. For example, D3 dataset
contains statements that require at most 3-hop rea-
soning steps. The DO-D3 contains all theories in
D3 plus ~ 20% of the DO-D2 training set theories.
We also use the ParaRules dataset (Clark et al.,
2020) that contains around 2k theories expressed
in paraphrased natural language.

Additionally, we generate three datasets that
evaluate the robustness of the reasoning models
as follows:

* Subject robustness: Here, subjects in a
theory are perturbed by using some out-of-
distribution proper and common names. For
example, in Figure 1, “Charlie” can be re-
placed with “Paul” which is not used in the D*
datasets. We generate five new theories cor-
responding to each theory of the D3 dataset,
by repeatedly perturbing all the proper and
common names in the theory.

* Attribute robustness: Here we sample out-
of-distribution attributes. For example, “blue”
in Figure 1 can be replaced with “soft”. As
above, we generate five new theories for each
theory of the D3 dataset.

* Subject+Attribute robustness: This is a com-
bination of subject and attribute robustness
to study model performance when most of
the training vocabulary is replaced by out-
of-distribution words. Each theory has both
novel subject and attribute.

We include more details on the perturbation sets
used in our experiments in Appendix A.

Baselines We compare CAUSALR (CAUSALR)
with two variants of ProofWriter (Tafjord et al.,
2020): All-at-once (PW (“All”")) and Iterative (PW
(“Iter”)), wherever applicable 3. The PW (“All”)
model is trained to predict the entailment and gen-
erate proof graph directly from the theory and state-
ment in a single step. The PW (“Iter”’) generates
one-step inferences and corresponding proofs iter-
atively, until all possible inferences are generated,
and then stitches the proof graph similar to our
method. If not mentioned otherwise, Proof Writer
uses a T5-large (Raffel et al., 2019) model.

3The code to reproduce numbers of ProofWriter is not publicly available.
We either copy results directly from the paper or run our own inference on
model checkpoints made available by the authors.



Entailment Accuracy Proof Accuracy
d PW (“Iter”) CAUSALR PW (“Iter”) CAUSALR
N/A 99.7 99.6 99.7 99.6
0 100.0 100.0 100.0 100.0
1 99.9 99.7 99.9 99.5
2 99.7 98.9 99.4 97.2
3 99.7 96.6 99.1 95.3
All 99.8 99.2 99.7 98.8

Table 1: Comparison of CAUSALR with ProofWriter (“Iter””)
trained and tested on DO-D3. Baseline results are generated
using the checkpoint provided by the authors. For more details
please refer to Section 5.1.

PW (“Iter”) CAUSALR
Robustness
EA PA C EA PA C
Subject 890.6 88.4 876 968 959 96.4
Attribute 89.2 88.8 872 885 873 86.8
Subject+Attribute  86.0 85.7 83.3 88.1 869 86.3
Average 883 87.6 86.0 91.1 90.0 89.9

Table 2: Comparison of CAUSALR with ProofWriter (“Iter”)
when trained on D0O-D3 dataset and tested on different robust-
ness datasets. EA, PA, and C refers to entailment accuracy,
proof accuracy, and consistency, respectively. Please refer to
Section 5.2 for more details.

5 Experiment Results

We compare CAUSALR with ProofWriter variants
on three settings: generalization on D* datasets,
robustness to perturbed theories, efficiency in infer-
ence computation. We further conduct qualitative
analysis to understand the inference errors.

5.1 Performance on Same Depth Reasoning

In this setting, we train and test both models on
DO0-D3 dataset. Note, DO-D3 contains statements
with reasoning depths up to 3. This compares the
ability of the models to generalize to seen reason-
ing depths at train time. The results with increasing
depths of reasoning are shown in Table 1. Here,
depth “N/A” refers to statements that cannot be
proven and hence don’t have an exact proof depth
associated with it. We observe that overall both
CAUSALR and ProofWriter (“Iter””) performs com-
parably (last row with depth *All’). Further, we find
that our model’s performance is lower on d = 3,
indicating that our models tend to perform weaker
with increasing depths. This happens majorly be-
cause the rule selector in CAUSALR tends to in-
correctly select the [CLS] token to indicate a stop
signal instead of generating more possible inter-
mediate inferences. We discuss more about this in
Sections 5.3 and 5.4. Please refer to Appendix B
for more results on unseen reasoning depths.

Entailment Accuracy Proof Accuracy

d PW (“Iter”) CAUSALR PW (“Iter”) CAUSALR

N/A 98.9 99.3 98.9 99.3
99.9 100.0 99.9 100.0

1 79.1 96.0 78.8 95.7

2 76.6 934 73.4 914

3 72.7 89.8 67.8 85.7

All 89.6 96.8 88.4 95.9

Table 3: Comparison of CAUSALR with ProofWriter (“Iter”)
trained on DO-D3 and tested on subject robustness dataset.
Baseline results are generated using the checkpoint provided
by the authors. For more details please refer to Section 5.2.

5.2 Robustness to Perturbed Theories

In this section, we test the robustness of
ProofWriter (“Iter”) and CAUSALR on different
perturbed theories. As described in Section 4, we
test the robustness on three different perturbations:
subject, attribute, and subject+attribute. We com-
pare the performance of both models after training
on DO-D3 dataset. The consolidated results are
shown in Table 2 and depth-wise results for subject
robustness are shown in Table 3. We report the en-
tailment accuracy, proof accuracy, and consistency
as defined in Section 2. Please refer to appendix
C for the depth-wise breakdown of all the datasets.
We observe that on subject and subject+attribute
robustness, our models are consistently better than
ProofWriter whereas on attribute robustness both
models perform similarly. Further, we find that on
average, CAUSALR is both more accurate and con-
sistent than the baseline. From this, we conclude
that our model relies less on spurious correlations
based on the subject while both models likely suffer
from similar issues on object perturbations. Since
ProofWriter uses the theory to generate the inter-
mediate conclusion and proofs, it has the capacity
to exploit some spurious patterns that can inflate
performance. In contrast, our causal framework
restricts this capacity by constraining the inputs to
each component as described in Section 3.1. Hence,
these robustness evaluations demonstrate one of the
prime benefits of our causal and modular approach.

5.3 Study on Inference Efficiency

Here we perform several analysis to evaluate the
computational benefits of our method as described
in Section 3.3. Inference efficiency is an impor-
tant aspect of this problem for real-world scenarios
where compute can be limited.

Relevance of generated inferences Here, we
study the relevance of the intermediate inferences
generated by CAUSALR and ProofWriter (“Iter”).
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Figure 4: Comparison of ProofWriter (“Iter””) and CAUSALR
on precision and recall of generated inferences with increasing
reasoning depths.

(a) Precision

Let T be the set of intermediate inferences required
for generating the proof graph for the statement.
Further, let GG be the set of intermediate inferences
actually generated by a model. Then, the precision
and recall are defined as P = ‘TﬁG|, and R =

1G]
|T‘;G‘ In Figure 4, we plot the precision and re-

call for both CAUSALR and ProofWriter (“Iter’”)
with increasing reasoning depths. We find that
our model has close to 1.0 precision at all depths,
whereas ProofWriter has low precision. This
demonstrates that our model is able to success-
fully prune the candidate inference space to gener-
ate relevant candidate inferences almost perfectly.
In contrast, we see that with increasing depths,
our model’s recall reduces from close to 1.0 to
~ 0.95 whereas ProofWriter has a perfect recall
at all depths. While the drop is not very drastic, it
indicates that our model fails to generate some es-
sential inferences at higher depths. This is mainly
because our rule selector decides to stop early and
not generate further relevant inferences for some
provable statements. Overall, we conclude that
CAUSALR always generates inferences that are rel-
evant to solving the instance, although at higher
depths it can miss some relevant conclusions.

Performance under inference budget constraints
We analyze the performance of CAUSALR and
ProofWriter under a fixed inference budget con-
straint by restricting the total number of conclu-
sions that can be generated. We perform this anal-
ysis for different reasoning depths and depict the
results in Figure 5. We observe that CAUSALR
consistently outperforms ProofWriter on lower bud-
gets. This shows that CAUSALR performs a prior-
itized generation of conclusions that are relevant
to the statement, which can be useful in scenarios
with limited inference budgets. See Appendix D
for more comparisons.

Inference runtime analysis We next compare
the time taken by both the models to solve the com-
plete D5 dev set. Although CAUSALR has three
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Figure 5: Depth-wise comparison of ProofWriter (“Iter”)
and CAUSALR on limited inference budgets. Please refer to
Section 5.3 for details.

separate modules that run sequentially, it is 3.5
times faster than ProofWriter (“Iter”’) at inference
time on average. We attribute this to the reduced
inference candidate search space due to question
augmentation, and smaller input size to the TS5 com-
ponent (refer to Section 3.3 for details). Please refer
to Appendix E for more details.

5.4 Error Analysis

We further analyze the different errors made by
CAUSALR and ProofWriter (“Iter’”) on 50 ran-
domly sampled errors for each model, from the
DO0-D3 and the subject robustness dev splits. We
manually inspect the proof inferences and compare
it with the gold proof to classify the failures. The
errors are broadly categorized as follows:

Early stop errors: This is the most frequent er-
ror type for both models, accounting for 80% and
50% errors in CAUSALR and ProofWriter, respec-
tively. This occurs when a model incorrectly gen-
erates the stop signal and fails to generate all the
required inference to prove a statement. We find
that our model makes the majority of the mistakes
due to early stopping. This can be possibly fixed
by improving the rule selector architecture to better
model the stop criteria.

Wrong inference: This is the second error type,
where the proofs look correct, but the inferred con-
clusion is incorrect. This accounts for 20% and
30% errors in CAUSALR and ProofWriter, respec-
tively. We observe that our knowledge composer
is makes lesser errors on average compared to the
ProofWriter generative model.

Other generation errors: ProofWriter makes
around 20% errors where the model generated out-
put does not make sense. For example, it can hal-
lucinate facts that are not present in the theory.
Such errors are not interpretable and questions the
model’s inner-working. CAUSALR shows no such
error, since the proofs are always interpretable in
our model due to the causal framework.
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Figure 6: Proof Accuracy of CAUSALR when tested on
ParaRules while using limited amount of ParaRules along
with DO-D3 for training. See Sec. 5.5 for more details.

Overall, we find that the errors made by
CAUSALR are more interpretable than ProofWriter,
since we can pin-point which module is at fault.
Whereas, in ProofWriter, it is sometimes hard to
understand the source of errors due to entangled
reasoning and proof generation process. This fea-
ture also makes our framework easy to debug to
potentially fix some components with techniques
like data augmentation. Please refer to Appendix
G for more discussion and examples of errors.

5.5 Generalization to paraphrased theories

Next, we test the ability of our model to gener-
alize to unseen language in ParaRules by using
limited training supervision. To test this, we first
train our model on DO-D3 dataset and test it on
the ParaRules dataset. This is a zero-shot evalu-
ation on an unseen language form. In Figure 6
we observe that the performance is significantly
worse on this setting as expected. We also evalu-
ated a checkpoint of ProofWriter (“Iter”) trained
on D0-D3 which achieves a similar performance of
62.13% entailment accuracy 4. Next, we gradually
start adding portions of ParaRules, along with the
DO0-D3 data, to the training dataset. We find that
CAUSALR can quickly achieve reasonable perfor-
mance using even 10% additional data. This shows
that our modularized approach is also efficient in
adapting to unseen theories with limited data su-
pervision. For more comparisons with ParaRules
trained models, please refer to Appendix F.

6 Related Works

Reasoning in Text Reasoning in text is a well
studied problem in NLP. Natural Language Infer-
ence (NLI) (MacCartney and Manning, 2014) is
one of the most prominent datasets that require
reasoning over text to answer if a statement is en-

4data-augmented training results for ProofWriter are not
reported in the figure since the training code is not available

tailed, contradicted, or neutral, given a hypothe-
sis. More recently, datasets like HotpotQA (Yang
et al., 2018), bAbI (Weston et al., 2016), QuaRTz
(Tafjord et al., 2019), ROPES (Lin et al., 2019),
CLUTRR (Sinha et al., 2019), etc. have stud-
ied different aspects of reasoning over textual in-
puts. These tasks usually require implicit reasoning,
where the model needs to internally infer the rules
required to solve the task. In contrast, RuleTaker
(Clark et al., 2020) deals with explicit reasoning
(also known as deductive reasoning).

Proof Generation Recently, some works have
been addressing the problem of proof generation
from an NL-based theory. Prover (Saha et al., 2020)
trains a RoOBERTa-based model that predicts nodes
and edges of the proof graph. ProofWriter (Tafjord
et al., 2020) is a T5-based (Raffel et al., 2019)
model, that iteratively generates one-hop conclu-
sions and proofs from a theory. Another work Mul-
tiProver (Saha et al., 2021), generates multiple pos-
sible proofs for a statement. While we study the
same problem of proof generation similar to these
works, we focus on the causal reasoning process
and design a modular system for proof generation.

Formal Reasoning There are some prior works
that try to solve the problem of entailment predic-
tion by first parsing the formal language from text.
Neural Theorem Prover (Rocktidschel and Riedel,
2017; Weber et al., 2019) uses neural networks to
parse the formal logic from natural language and
then reason over them. While this approach is more
symbolic, it can lead to many challenges while pars-
ing (Kamath and Das, 2018). The proof generation
setting considered here bypasses this step and di-
rectly reasons over the given natural language text
making it more useful in downstream applications.

7 Conclusion

In this paper, we proposed CAUSALR, a causal rea-
soning model based on three modular components:
rule selection, fact selection, and knowledge com-
position. CAUSALR ensures causality from proof
graph generation to entailment prediction by design.
We established the effectiveness of our approach
through experiments on testing reasoning robust-
ness to language variations, verifying the ability to
quickly generalize to unseen language forms, and
analyzing the interpretability of the errors made by
our model. We also demonstrate that CAUSALR is
faster and more precise at deductive reasoning than
existing baselines.
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A Robustness dataset details

The robustness dataset is created by replacing all
subjects (attributes) in the D3 dataset with unseen
subjects (attributes) to create the subject (attribute)
robustness set. For this, we first curate new sets of
subjects and attributes to be used as a global pool to
sample from while replacing existing subjects and
attributes from the theory. These sets are detailed
below:

Subject proper name pool: {‘George’, ‘Paul’,
‘Ronald’, ‘Emma’, ‘Magnus’, ‘Timothy’, ‘Chris’,
‘Molly’, ‘Diana’, ‘Joseph’, ‘Becky’, ‘Kurt’, ‘Ivan’,
‘Steve’, ‘Laura’, ‘Oliver’, ‘Adam’, ‘Larry’ }

Subject common name pool: {‘mother’, ‘fa-
ther’, ‘baby’, ‘child’, ‘toddler’, ‘teenager’, ‘grand-
mother’, ‘student’, ‘teacher’, ‘alligator’, ‘cricket’,
‘bird’, ‘wolf’, ‘giraffe’, ‘dinosaur’, ‘thief’, ‘soldier’,
‘officer’, ‘artist’, ‘shopkeeper’, ‘caretaker’, ‘jani-
tor’, ‘minister’, ‘salesman’, ‘saleswoman’, ‘run-

ner’, ‘racer’, ‘painter’, ‘dresser’, ‘shoplifter’}

Attribute pool: {‘maroon’, ‘brown’, ‘black’,
‘orange’, ‘cordial’, ‘friendly’, ‘adorable’, ‘old’,
‘soft’, ‘violent’, ‘intelligent’, ‘square’, ‘warm’,
‘large’, ‘cylindrical’, ‘spherical’, ‘tiny’, ‘micro-
scopic’, ‘brilliant’, ‘noisy’, ‘playful’, ‘tender’, ‘gra-
cious’, ‘patient’, ‘funny’, ‘hilarious’, ‘thorny’, ‘sen-
sitive’, ‘diplomatic’, ‘thoughtful’ }

Then, for each theory in the D3 dataset, we re-
place all the subjects in the theory with randomly
sampled subjects (without replacement) from the
candidate set to create a perturbed theory. We per-
form this replacement operation to generate five
different perturbed theories. These perturbed theo-
ries are called equivalence set. Note that the only
change in each theory in an equivalence set is the
subjects being replaced by some randomly sampled
subjects. For example, “cat” in the original theory
might be replaced by “child” in one perturbation,
and with “teacher” in yet another perturbation. We
follow the same procedure to create attribute and
subject+attribute robustness sets.

B Generalization to reasoning depths

In this section, we experiment with a setting where
models are trained on depths less than or equal to 3
(i.e., d < 3) and tested on D5 dataset that contains
statements that require reasoning up to depth 5 (i.e.,
d < 5). Here, we test the generalization of the
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Entailment Accuracy
PW (“All") PW (“Iter”) CAUSALR PW (“All”) PW (“Iter”) CAUSALR

97.4 99.2 99.4 97.4 99.2 99.4
0 100.0 100.0 100.0 100.0 100.0 100.0

99.9 99.1 99.5 99.3 975 99.2
2 99.7 98.9 98.5 97.6 96.4 96.1

99.7 98.4 934 91.2 95.5 855
4 99.5 97.5 88.8 46.9 93.4 714
5 98.9 96.5 79.2 24.4 823 68.1

All 98.7 98.8 95.9 85.6 96.4 92.7

Proof Accuracy

d
N/A
1

3
5

Table 4: D5 dataset depth-wise performance compari-
son of CAUSALR trained on D0-D3 with ProofWriter
(“All”) and ProofWriter (“Iter”) trained on D3 and
DO0-D3 respectively. Baseline results are copied from
Tafjord et al. (2020). Refer to Section 5.1 and Appendix
B for more details.

models to reasoning depths that are unseen at train-
ing time. These results are shown in Table 4. From
this table, we observe that overall our model per-
forms significantly better than ProofWriter (“All”)
on proof accuracy (+7.5%), but has a lower per-
formance compared to ProofWriter (“Iter”) (—3%).
This shows that compared to ProofWriter (“Iter”),
our models are weaker at generalizing to unseen
reasoning depths. This happens majorly because
our rule selector tends to stop the inference iter-
ations earlier, which means some essential infer-
ences are not generated by the model. Thus, this
leads to lower performance with increasing reason-
ing depths.

But, we make another interesting observation
here. The drops in entailment and proof accuracy
with increasing depths are similar for CAUSALR.
For instance, considering the performance drops
between d = 4 to d = 5, CAUSALR has ~ 9.5%
drop in both entailment and proof accuracy. In con-
trast, Proof Writer (“All”’) and ProofWriter (“Iter”)
drops approximately 22% and 11%, respectively in
proof accuracy for a mere 1% drop in entailment
accuracy. This raises some concern on the causal-
ity of the proof generation process used for entail-
ment prediction in these models, since it seems
like the answer prediction and proof generation are
not dependent via the same reasoning paths. In
contrast, our causal framework grounds the entail-
ment prediction to the proofs and this leads to more
consistent performance variations in CAUSALR.

C Robustness to Perturbed Theories

Here, we show the detailed depth-wise perfor-
mance of CAUSALR and ProofWriter (“Iter”)
trained on DO-D3 dataset and evaluated on different
robustness datasets as described in Section 4. The



Entailment Accuracy Proof Accuracy Entailment Accuracy Proof Accuracy

d PW (“Iter”) CAUSALR PW (“Iter”) CAUSALR d PW (“Iter”) CAUSALR PW (“Iter”) CAUSALR
N/A 98.9 99.3 98.9 99.3 N/A 99.7 99.2 99.7 99.2

0 99.9 100.0 99.9 100.0 0 100.0 100.0 100.0 100.0

1 79.1 96.0 78.8 95.7 1 83.7 83.8 83.4 83.1

2 76.6 93.4 73.4 91.4 2 73.2 72.3 71.9 69.7

3 72.7 89.8 67.8 85.7 3 66.4 63.2 64.4 57.9
All 89.6 96.8 88.4 95.9 All 89.2 88.5 88.8 87.3

Table 5: Comparison of CAUSALR with ProofWriter
(“Iter”) trained on DO-D3 and tested on subject robust-
ness dataset. Baseline results are generated using the
checkpoint provided by the authors. For more details,
please refer to Appendix C.

results for subject, attribute, and subject+attribute
robustness evaluations are shown in Tables 5, 6,
and 7, respectively. We observe that ProofWriter
(“Iter”) performs significantly worse compared to
CAUSALR on subject robustness. The results on
subject+attribute robustness are mostly compara-
ble, while in attribute robustness our model per-
forms worse. The drop in performance show that
both the models are sensitive to attributes in the
theory to varying degree. But the strong sensitivity
of ProofWriter (“Iter”) to the subject perturbations
is questionable, since the causality of the model’s
reasoning process seems to be compromised be-
cause the model learns some spurious correlations
using the subjects.

In another setting, we train different components
of our model on the robustness data and check if
that leads to some performance gains. These re-
sults are reported in Table 8. We find that it is
indeed possible to improve the performance of in-
dividual components of our model by robust data
augmentation. This also indicates that our indi-
vidual components are flexible to intervention by
data augmentation. Such abilities are lacking in
ProofWriter.

D Inference Budget Analysis

In the inference budget analysis, we compare the
performance of CAUSALR and ProofWriter un-
der an inference budget constraint, i.e., we re-
strict the total number of intermediate conclusions
that can be produced by both models. We per-
form this analysis on three different depth datasets
(d = {1,3,5}) and upper bound the number of
inferences by B = {1,3,5,7,10}. We ensure that
the budget is at least equal to the depth of the state-
ments under consideration since proving a state-
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Table 6: Comparison of CAUSALR with ProofWriter
(“Tter”) trained on DO-D3 and tested on attribute robust-
ness dataset. Baseline results are generated using the
checkpoint provided by the authors. For more details,
please refer to Appendix C.

Entailment Accuracy Proof Accuracy
d PW (“Iter”) CAUSALR PW (“Iter”) CAUSALR
N/A 99.8 99.2 99.8 99.2
0 99.9 100.0 99.9 100.0
1 74.2 83.1 73.9 82.5
2 65.3 71.1 64.3 68.3
3 59.9 62.1 58.7 56.7
All 86.0 88.1 85.7 86.9

Table 7: Comparison of CAUSALR with ProofWriter
(“Iter”) trained on DO-D3 and tested on subject+attribute
robustness dataset. Baseline results are generated using
the checkpoint provided by the authors. For more de-
tails, please refer to Appendix C.

ment requires a model to generate inferences equal
to at least the depth. From Figure 7 we observe that
for all depths CAUSALR consistently outperforms
ProofWriter on lower budgets. Only when the bud-
get increases to 10, ProofWriter compares with or
sometimes outperforms our model. This analysis
demonstrates that CAUSALR performs a prioritized
generation of conclusions that are relevant to the
statement, which can be useful in scenarios with
limited inference budgets.

E Runtime Analysis

For inference runtime analysis, we time the evalu-
ation of both CAUSALR and ProofWriter (“Iter’)
on D5 dev set. Note that D5 dataset contains state-
ments that require at most five reasoning steps to
generate an answer. The runtime for both methods
are shown in Table 9. These results were obtained
by running the inference algorithm on NVIDIA
GeForce RTX 2080 Ti GPUs for both models. We
observe that ProofWriter (“Iter”’) has an almost con-
stant runtime since it always generates all possible
inferences for a theory. In contrast, our runtime
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Figure 7: Depth-wise comparison of ProofWriter

(“Iter”) and CAUSALR (both trained on D0-3 dataset)
on limited inference budgets. Please refer to Appendix
D for details.
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Trained module Subj Perturbation Attr Perturbation

EA PA EA PA
Base (trained on D0-D3) 96.8 95.9 88.5 87.3
Rule selector (RS) 97.3 96.7 89.6 86.8
Fact selector (FS) 96.7 95.8 88.6 87.1
Knowledge composer (KC)  98.5 97.6 89.4 88.1
RS +FS +KC 99.1 98.5 97.1 91.0

Table 8: Comparison of variants of CAUSALR where
different components (RS, FS, KC) and their combi-
nations are trained and tested on robustness datasets.
Please refer to Appendix C for more details.

d ProofWriter (“Iter”) CAUSALR
0 1.01 0.12
1 1.01 0.20
2 1.00 0.28
3 1.01 0.36
4 1.01 0.46
Avg 1.01 0.28

Table 9: Evaluation runtime (in hours) of CAUSALR
and ProofWriter (“Iter”). Please refer to Appendix E for
more details.

increases almost linearly with increasing depth. On
average, CAUSALR is 3.5 times faster at inference
than ProofWriter (“Iter”).

F Results on ParaRules training

Following (Tafjord et al., 2020), we compare the
performance of ProofWriter (“All”’) and CAUSALR
on the ParaRules dataset, when trained on a com-
bined partition of D3 and ParaRules train set. The
ParaRules dataset contains complex linguistic ex-
pressions in the theories that are more realistic than
D* dataset theories, making it a more challenging
dataset. These results are shown in Table 10, with
a reasoning depth breakdown as before. We note
that numbers for ProofWriter (“Iter”’) are not re-
ported in the paper, and no trained checkpoint is
available either, so we omit it from our compar-
isons. Also, the reported results for ProofWriter
(“All”) are from evaluating a T5-11B model while
ours is a T5-large model. Here, we see that our
model performs better at higher depths compared
to the baseline which demonstrates that CAUSALR
is better at handling paraphrases.

G Error Analysis

This is a follow-up of Section 5.4, where we delve
deeper into the error analysis by discussing dif-
ferent error examples and their potential reasons.
First, the stop errors are easy to understand. These



Entailment Accuracy Proof Accuracy

d  PW (“All”) [T5-11B] CAUSALR PW (“All”) [T5-11B] CAUSALR
0 99.9 100.0 99.9 100.0

1 99.3 99.6 99.3 99.6

2 98.3 97.6 977 97.4

3 98.2 95.4 96.5 95.1

4 91.5 91.6 83.1 91.6
All 99.1 98.7 98.5 98.6

Table 10: Comparison of CAUSALR with ProofWriter
(“All”) [T5-11B] when trained on D3+ParaRules and
tested on ParaRules. Results for ProofWriter (“All”)
[T5-11B] are copied from the paper. Please refer to
Appendix F for more details.

are cases where the model just decides to stop in-
stead of generating any further conclusions. For
our model, this can happen if the rule selector is
under confident while selecting rules and it learns
that a safer fallback is to stop generating rules. This
aspect can probably be improved by a better mod-
eling of the rule selector. We plan to explore this
in future works.

Next we look at some of the wrong inferences
generated by both models in Tables 11 and 12. We
observe that errors made by CAUSALR are rather
naive with small mistakes in the final conclusion
(shown in red in Table 12). In contrast, ProofWriter
tends to generate an invalid conclusion with no re-
lation to the generated proof (rows 1 and 2 in Table
11). It also makes many non-interpretable gener-
ation errors where the model’s output format is
completely violated or the model seems to hallu-
cinate some facts (rows 3-6 in Table 11). Thus,
we observe the benefit of our causal framework as
the errors are interpretable and more believable. In
contrast, errors made by ProofWriter clearly show
that its inference reasoning process can often not
rely on the proof at or, or even the generated proof
sometimes doesn’t make sense.

H Hyperparameters

We use RoBERTa-large models (Liu et al., 2019)
to model the rule selector and fact selector
in CAUSALR. For selecting the best hyperpa-
rameters for both these components, we se-
lected the max training epochs in: {10,15,20},
warmup updates in: {0.05,0.1}, weight de-
cay in: {0.1,0.01,0.001}, learning rate in:
{3e-6,5¢-6, 1e-6}, and batch size in {16, 32}.

We use T5 (Raffel et al., 2019) (T5-large) to
model the knowledge composer in CAUSALR and
train it using the default hyperparameters available
in the Hugging Face transformers library (Wolf
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et al., 2020).



Error Type

Input ( format: complete theory)

Output ( format: $answer$ =
conclusion ; $proof$ = # rule &

facts)

Wrong inference

$answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sentl: Cold people are red. sent2: If someone
is quiet then they are cold. sent3: Smart, blue people are quiet.
sent4: If Paul is blue then Paul is furry. sentS: If someone is blue
then they are quiet. sent6: If Steve is furry and Steve is smart then
Steve is white. sent7: If Chris is red and Chris is furry then Chris
is blue. sent8: Quiet people are cold. sent9: Chris is blue. sent10:
Chris is white. sentl1: Ronald is red. sent12: Paul is quiet. sent13:
Paul is smart. sent14: Steve is blue. sentl5: Steve is furry. sentl6:
Steve is red. sentl17: Steve is smart. sent18: Steve is white.

$answer$ = Dave is quiet. ;
$proof$ = # sent5 sent9

Wrong inference

$answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sentl: Cold people are red. sent2: If someone
is quiet then they are cold. sent3: Smart, blue people are quiet.
sent4: If Paul is blue then Paul is furry. sent5: If someone is blue
then they are quiet. sent6: If Steve is furry and Steve is smart
then Steve is white. sent7: If Chris is red and Chris is furry then
Chris is blue. sent8: Quiet people are cold. sent9: Chris is blue.
sent10: Chris is white. sentl1: Ronald is red. sent12: Paul is quiet.
sent13: Paul is smart. sent14: Steve is blue. sentl5: Steve is furry.
sent16: Steve is red. sentl7: Steve is smart. sent18: Steve is white.
sentl9: Dave is quiet.

$answer$ = Dave is not a cat. ;
$proof$ = # sent2 sent19

Generation error -
output format vio-
lated

$answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sentl: If someone likes the grandmother then
the grandmother eats the artist. sent2: If someone eats the artist
then the artist is young. sent3: If the artist eats the grandmother
then the artist is cold. sent4: If someone eats the artist and the
artist eats the grandmother then the grandmother eats the artist.
sent5: If someone is red and big then they like the grandmother.
sent6: If someone visits the grandmother then they are red. sent7:
If someone is rough then they eat the grandmother. sent8: If some-
one likes the artist then they visit the grandmother. sent9: The
artist likes the grandmother. sent10: The grandmother eats the
artist. sentl 1: The grandmother is big. sent12: The grandmother
is cold. sentl13: The grandmother is young. sent14: The grand-
mother likes the artist. sent15: The grandmother visits the artist.
sent16: The artist is young.

$answer$ = The red sent6 sentl5

Generation error -
hallucinating facts

$answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sentl: All young things are smart. sent2: All
smart, young things are nice. sent3: If something is young and
nice then it is quiet. sent4: Becky is big. sent5: Becky is green.
sent6: Becky is young. sent7: Larry is big. sent8: Larry is quiet.
sent9: Larry is red. sent10: Larry is young. sentl1: Bob is smart.

$answer$ = Bob is nice. ;
$proof$ = # sent2 & sentll
sent16

Generation error -
repeated facts

$answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sentl: If Adam is green then Adam is big.
sent2: Green things are rough. sent3: If Joseph is cold then Joseph
is big. sent4: All blue things are cold. sent5: All green things
are rough. sent6: All big things are kind. sent7: If something is
rough and big then it is green. sent8: All kind, blue things are
cold. sent9: Joseph is blue. sent10: Adam is blue. sentl1: Molly
is cold. sent12: Joseph is cold. sent13: Charlie is cold.

$answer$ = Charlie is sentl3
sent13

Generation error -
output format vio-
lated

$answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sentl: Nice things are green. sent2: If Ivan is
smart then Ivan is blue. sent3: Green things are smart. sent4: All
cold things are nice. sent5: Big things are blue. sent6: If Ronald
is nice then Ronald is big. sent7: If something is green and big
then it is not kind. sent8: If something is smart and nice then it is
kind. sent9: Ronald is smart. sent10: Larry is cold. sentl1: Laura
is nice. sent12: Ivan is kind. sent13: Larry is nice. sent14: Larry
is green. sentlS: Bob is smart.

$answer$ = Bob is kind. ;
$proof$ = # sent8 & sent9 sent-
nice

Table 11: Examples of inference errors made by ProofWriter (“Iter”).
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Error Type Input ( format: [facts], rule)

Inference

Wrong inference [the racer needs the janitor.], if someone needs the janitor then the
janitor likes the racer.

the janitor likes the
race.

Wrong inference [oliver is big.], big people are young.

the oliver is young.

Wrong inference [the shoplifter needs the shoplifter., the shoplifter needs the di-
nosaur.], if something needs the dinosaur and it needs the shoplifter
then it is round.

the shop is round.

Table 12: Examples of inference errors made by CAUSALR while composing rules and facts using the knowledge

composer.
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