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Abstract

Transformers have been shown to be able to001
perform deductive reasoning on a logical rule-002
base containing rules and statements written003
in natural language. Recent works show that004
such models can also produce the reasoning005
steps (i.e., the proof graph) that emulate the006
model’s logical reasoning process. But these007
models behave as a black-box unit that emu-008
lates the reasoning process without any causal009
constraints in the reasoning steps, thus ques-010
tioning the faithfulness. In this work, we frame011
the deductive logical reasoning task as a causal012
process by defining three modular components:013
rule selection, fact selection, and knowledge014
composition. The rule and fact selection steps015
select the candidate rule and facts to be used016
and then the knowledge composition combines017
them to generate new inferences. This ensures018
model faithfulness by assured causal relation019
from the proof step to the inference reasoning.020
To test our causal reasoning framework, we021
propose CAUSALR where the above three com-022
ponents are independently modeled by trans-023
formers. We observe that CAUSALR is robust024
to novel language perturbations, and is com-025
petitive with previous works on existing rea-026
soning datasets. Furthermore, the errors made027
by CAUSALR are more interpretable due to028
the multi-modular approach compared to black-029
box generative models. 1030

1 Introduction031

The field of AI has long pursued the goal of build-032

ing systems that can automatically reason over033

some given explicit knowledge to generate con-034

clusions and provide the reasoning steps involved035

in the process (McCarthy, 1959; Newell and Simon,036

1956). However, systems built on formal represen-037

tation of knowledge has sometimes found this to038

been challenging (Musen and Van der Lei, 1988).039

1Code to reproducte the results have been uploaded and
will be published.

fact1: Charlie is blue.
fact2: Charlie is round.
fact3: Erin is kind.
fact4: Dave is round.

rule1: If someone is blue then they are kind.
rule2: Round, kind people are white.

statement: Charlie is white.

conc1: Charlie is kind.

conc2: Charlie 
is white.

fact1 rule1

fact2

conc1

rule2 conc2

Figure 1: Example of a theory, a statement, and a
valid proof graph - An instance contains multiple facts
and rules in blue and yellow respectively, followed by
a statement in red. The proof graph describes how the
statement can be generated using the theory.

Recently, Clark et al. (2020) proposed a mod- 040

ern version of the problem, where the formal rep- 041

resentation of knowledge is replaced by natural 042

language statements in English. Further, they pro- 043

posed a transformer-based model (Vaswani et al., 044

2017) RuleTaker, that can predict if a candidate 045

statement is entailed by the natural language state- 046

ments, by emulating deductive reasoning. While 047

this capability is impressive, it is unclear if such 048

models are also capable of generating the reason- 049

ing steps involved in the process (i.e., proof graph 050

generation). 051

Recent works (Saha et al., 2020; Tafjord et al., 052

2020) have developed systems that can generate 053

the reasoning steps while predicting the statement 054

entailment. However, these systems do not ensure 055

causality between generating the proof and predict- 056

ing the entailment. Since the systems are inherently 057

black-box models, this questions the faithfulness 058

of the model’s reasoning process (Lipton, 2018). 059

In this paper, we look to address these shortcom- 060

ings by developing a causal framework to solve the 061

deductive reasoning task. While existing methods 062

generate proofs in a single step, in our causal frame- 063

work we break this process into three steps: rule 064
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selection, fact selection, and knowledge composi-065

tion. The rule selection step decides the relevant066

rule to use for an iterative inference step and fact se-067

lection explicitly uses this rule to select the relevant068

facts. Then, the knowledge composition step uses069

the selected rule and facts to reason and generate070

the next intermediate inference. In Figure 2, we071

show the model schematics for our system and con-072

trast it with previous methods. Notably, we strictly073

restrict the information accessible at each step of074

our framework to make the reasoning process more075

faithful. For example, in our framework, the fact se-076

lection step depends on only the selected rule from077

the rule selection step, instead of the complete set078

of rules. Additionally, since we constrain the inputs079

to each step, this makes each sub-problem easier to080

learn, leading to an overall more robust reasoning081

model.082

Generative models such as ProofWriter (Tafjord083

et al., 2020) suffer from another issue that the in-084

termediate proof generation is conditioned on the085

conclusion (Figure 2 (b)). This is counterintuitive086

since the model can learn to use the conclusion to087

generate the corresponding proof, which breaks the088

causal reasoning chain. This issue is resolved in089

our framework as we explicitly select the rule and090

facts required for the inference generation. Thus,091

proof graphs in our framework are a by-product of092

the selection steps, and the intermediate inference093

depends directly on the proof. This is a major ben-094

efit of using our causal framework for reasoning.095

To model these three steps, we develop096

CAUSALR, in which each component is a097

transformer-based model learning to perform the098

modular tasks. Specifically, we use RoBERTa-099

based models (Liu et al., 2019) for the two selection100

tasks and a T5-based model (Raffel et al., 2019)101

for the composition task. Similar to ProofWriter,102

we use synthetic rulebases to train CAUSALR. Al-103

though our model is not end-to-end trainable for104

proof generation due to explicit selection of rules105

and facts, this assures a causal relation from proof106

graph to inference deduction, which is desirable.107

We experiment with CAUSALR on standard de-108

ductive reasoning datasets and multiple robustness109

datasets. Overall, we find that CAUSALR is more110

robust to novel language perturbations than base-111

lines, and requires less additional data to generalize112

to out-of-distribution reasoning tasks. Additionally,113

our model is up to three times faster at inference114

due to the constrained input and outputs of differ-115

All-at-
once Model

statement

ans; proof

rules facts

conc

Rule 
Selector

Knowledge 
Composer

rules

rule

statement facts

Fact 
Selector

fact

Iterative 
Model

Iterative 
Model

conc; proof

rules facts
(a) (b)

(c)

Figure 2: Reasoning process in different models. (a):
ProofWriter (“All”) directly output the entailment prediction
and proof graph for given input. (b): ProofWriter (“Iter”)
iteratively generates the one-step intermediate conclusions
and their proofs. (c): CAUSALR selects a rule, then a fact, and
finally combines them to generate an intermediate inference.
Please refer to Section 3.1 for details.

ent modules. Lastly, we find that the errors made 116

by our model is more interpretable and easier to de- 117

bug compared to baseline generative models. This 118

further demonstrates the faithfulness of our modu- 119

larized reasoning framework. 120

2 Problem Definition 121

Notations A theory T consists of a set of facts 122

F = {f1, f2, . . . , fn} and rules R = {r1, r2, . . . , rm} 123

expressed in natural language. An example of a 124

theory is depicted in Figure 1. Here, the sentences 125

in the blue and yellow boxes are facts and rules, 126

respectively. Further, a proof graph is a directed 127

graph connecting facts and rules that describe how 128

a specific inference can be obtained from the the- 129

ory. In Figure 1, the proof graph shows the steps 130

involved in generating the inference “Charlie is 131

white.”. To generate the proof graph we may need 132

to infer some intermediate conclusions ci. These 133

inferences are considered as part of the extended 134

facts in the theory. For example, in Fig. 1, “Charlie 135

is kind” is an intermediate inference required to 136

generate the correct proof graph. 137

Deductive Reasoning The task of deductive rea- 138

soning is described as follows: given a theory T , 139

and a statement s, predict if the theory supports the 140

statement (entailment prediction) and if so, gen- 141

erate the proof graph that supports the statement 142

(proof generation). For the example theory and 143

statement in Figure 1, we see that the statement is 144

indeed entailed by the theory and the valid proof 145
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graph is shown for the same. The main goal of this146

task is to evaluate if a model can generate valid rea-147

soning chains in the form of proof graphs to justify148

its entailment prediction.149

Reasoning Robustness We consider an auxiliary150

task that evaluates the robustness of the reason-151

ing abilities used by the model. Let P be a per-152

turbation function that modifies a given theory T153

(statement s) to a theory T ′ (statement s′), such154

that (T ′, s′) just has some surface changes in the155

natural language form but still requires the sim-156

ilar reasoning process as required for (T, s). A157

function that alters the subjects in the theory to158

unseen subjects is an example of such perturba-159

tion function. We perturb each theory statement160

pair (T, s) to create an equivalence set defined as161

the set E(T,s) = {(T ′
1, s

′
1) . . . (T

′
N , s′N )}, where162

each (T ′
k, s

′
k) is derived by perturbing the original163

theory, and N is the total such perturbations per164

theory. Note that it is possible to generate different165

(T ′
k, s

′
k) pairs by controlling the stochasticity of P .166

The main goal of of this task is to evaluate the con-167

sistency of the model’s predictions with minimal168

variations in the input theory.169

Evaluation Protocol We consider three main as-170

pects for evaluating the model performance in our171

study: (1) Entailment accuracy measures how ac-172

curately the model is able to predict the true state-173

ment entailment. (2) Proof accuracy measures174

how accurately the model can predict a valid proof175

for the statement. Following Saha et al. (2020);176

Tafjord et al. (2020), we use the strict metric for177

proof evaluation, i.e., for a match to count, both178

the predicted proof should exactly match a gold179

proof and the entailment should be correctly pre-180

dicted. (3) Consistency measures if the models181

are consistent in the entailment and proof predic-182

tion for different perturbation functions. For a183

theory statement pair (T, s) and its corresponding184

equivalence set E(T,s), consistency is defined as185

C = 1
N

∑N
k=1 1[f(T, s) = f(Tk, sk)], where f(·)186

is the model’s prediction. We compute the average187

consistency for both entailment and proof predic-188

tions on an equivalence set and further average189

across the dataset to report the consistency.190

3 The CAUSALR Method191

3.1 Approach Overview192

As illustrated by the example in Figure 1, to reliably193

generate a proof graph through deductive reason-194

ing, a model needs to generate multiple one-hop 195

intermediate conclusions. This is the major limita- 196

tion of models that use the theory to directly predict 197

the proof (Figure 2 (a)), thus questioning the trust- 198

worthiness of the reasoning process. Next, it is also 199

intuitive to see that in order to faithfully generate 200

these intermediate inferences, a model should first 201

determine the proof (i.e., know the rules and facts 202

to use) and then use them to infer the conclusion. 203

That is, there is a causal step between determin- 204

ing the proof and then generating the conclusion. 205

We note that ProofWriter (“Iter”) lacks in this as- 206

pect. As shown in Figure 2 (b), it first generates 207

the conclusion and then the corresponding proof. 208

Motivated by these points, we propose our causal 209

reasoning framework which breaks the reasoning 210

process into three desirable steps. As shown in Fig- 211

ure 2 (c), in our framework, first a rule r is selected 212

using the rules and facts in the theory. Following 213

that, some relevant facts are selected from the fact 214

list based on the selected rule r. This step does not 215

use the other rules R\{r} in the theory. Finally, the 216

selected rule and facts are jointly used to generate a 217

new conclusion ci. In this framework, the one-step 218

proof is explicitly determined first via the selection 219

steps followed by the inference generation, making 220

the proof a by-product of the whole process. In 221

contrast, prior works learned to generate the proof 222

along with intermediate conclusion. 223

3.2 CAUSALR Modules 224

At a high level, CAUSALR is an iterative model 225

in which the one-hop intermediate conclusions are 226

generated step-by-step. To model our causal rea- 227

soning framework described in Sec. 3.1, we have 228

four components in CAUSALR as follows. 229

Rule Selector (RS) The rule selector is a 230

RoBERTa-based (Liu et al., 2019) classification 231

model that takes the concatenated statement, facts, 232

and rules as input, and selects a rule that is used 233

to generate an intermediate conclusion in the cur- 234

rent iterative step. It takes the input of the form 235

[CLS] s [SEP ] F [[SEP ] ri ]m [SEP ] , and generates 236

a one-hot output vector by classifying the token em- 237

bedding from the [CLS] token and [SEP] tokens in 238

front of the rules, via a linear classifier layer. Each 239

classification is a binary classification, but overall 240

only one of the tokens has the positive class. Here 241

s denotes the statement, F is the facts and concate- 242

nated with any intermediate conclusions generated 243

in a prior iteration, and {ri} denotes the ith rule in 244
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the theory that contains a total of m rules. [ ]m de-245

notes continued concatenation. An example input246

and output of the rule selector is shown in Figure247

3. If a [SEP] token is selected, we select the rule248

sentence following the corresponding [SEP] token,249

otherwise if the [CLS] token is selected, we decide250

to stop the iteration. That is, the [CLS] selection251

acts as a stop signal for our iterative model. We252

note that it is possible to have more than one likely253

candidate rule since there can be multiple one-hop254

inferences possible for a given theory. Following255

Tafjord et al. (2020), we randomly select one of the256

possible candidate rules at each iteration.257

Fact Selector (FS) The fact selector is RoBERTa-258

based (Liu et al., 2019) token classification model259

that takes the statement, the rule selected by260

the rule selector, and facts in the theory, and261

then predicts a set of candidate facts that can262

be used with the rule to generate an intermedi-263

ate conclusion. It takes the input of the form264

[CLS] s [SEP ] r [[SEP ] fi]n [SEP ] , where s is265

the statement, r is the selected rule, and {fi} is the266

ith fact in the theory containing n total facts. Note267

that facts also include any previously generated268

intermediate conclusions. [ ]n denotes continued269

concatenation. The output is generated by classify-270

ing each [SEP] token embedding in front of a fact271

using a linear layer, to determine if the correspond-272

ing fact is selected or not. An example input and273

output for the fact selector is depicted in Figure274

3. We note that it is possible to have some rules275

can reason over multiple facts jointly to generate276

a conclusion. An example of such a rule is “rule2”277

in Figure 1. Hence, this component has the ability278

to select multiple facts.279

Knowledge Composer (KC) The knowledge280

composer is a generative text-to-text transformer281

T5 (Raffel et al., 2019) (T5-large) that can compose282

a set of facts and a rule to output a novel conclu-283

sion. The input to the model is the selected facts284

and rule concatenated together, and the output is285

the intermediate conclusion. An example input and286

output for knowledge composer is shown in Fig. 3.287

Solver The final component is the solver that op-288

erates after all iterations have finished (i.e., once289

the rule selector selects the [CLS] token indicat-290

ing to stop the iterative inference generation pro-291

cess). Similar to ProofWriter, our solver currently292

searches for the statement in the generated inter-293

mediate inferences (string matching). If found, it294

[CLS] s [SEP] f1 f2 f3 [SEP] r1 [SEP] r2 [SEP]

0 1 0

Rule Selector

[CLS] s [SEP] r1 [SEP] f1 [SEP] f2 [SEP] f3 [SEP]

1 1 0

Fact Selector

f1 f2 r1 <eos>

c1

Knowledge Composer

Figure 3: Overview of components of CAUSALR - The rule
selector and fact selectors are classification models whereas
the knowledge composer is a generation model. The input
tokens used for classification by the selectors are highlighted.
Rule selector decides to stop based on the output prediction of
[CLS] token (highlighted in green). Here, rule r1, and facts
f1 and f2 are used to generate the conclusion c1. Please refer
to Section 3.2 for more details.

predicts that the statement is entailed by the theory. 295

It also search for the negation of the statement 2, 296

and if found, it predicts not entailed. If none of 297

these are present, it predicts “Unknown” since it 298

cannot prove or disprove the statement. The proof 299

graph is constructed by using the one-hop proofs 300

generated by the selected rule and facts at each step. 301

For example, in Figure 1, the red dotted boxes (one- 302

hop proofs) are stitched together to assemble the 303

complete proof. For cases where the entailment 304

is “Unknown”, the proof returned is “None”, since 305

no proof for the statement exists in the theory. We 306

note that our solver is not a learnable module. 307

3.3 Training and Inference 308

Each component of our model (except the solver, 309

which is deterministic) is trained separately. We 310

use the same dataset as ProofWriter to train these 311

models, but process it such that each model re- 312

ceives only the relevant inputs according to our 313

causal framework. More concretely, suppose for a 314

given theory T = R+ F , a possible intermediate 315

inference is c obtained by using a rule r and a fact 316

f . Then, a training instance of ProofWriter, which 317

is a T5 (Raffel et al., 2019) model, uses the input 318

{R,F} and output {c, r, f}. We process the same 319

instance to generate three training instances, one 320

for each of rule selector, fact selector, and knowl- 321

2Following ProofWriter, we perform regex to add/remove
“not” which suffices for this dataset.
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edge composer, respectively, as follows:322

RS Input = {R,F}; RS Output = {r},323

FS Input = {r, F}; FS Output = {f},324

KC Input = {r, f}; KC Output = {c}.325

Our selector models have the statement s as in-326

put to the model. Also, the outputs of rule selector327

and fact selectors are converted to class labels in-328

stead of text since our selectors are classification329

models. We use cross entropy loss to train the rule330

selector, and binary cross entropy loss to train the331

fact selector. The knowledge composer is trained332

on language modeling loss.333

At inference time, the rule selector selects a334

rule to be used for generating one-step conclusions.335

Then, the fact selector selects some facts based on336

the selected rule, which is then collectively passed337

on to the knowledge composer to generate a conclu-338

sion. This three-step pipeline is run iteratively until339

the rule selector predicts a stop signal by selecting340

the [CLS] token which exits the iteration. Once341

the iteration finishes, the solver uses the generated342

intermediate inferences to decide if the statement is343

entailed or not, and generates a proof accordingly.344

Remark on Computational Complexity A prac-345

tical limitation of ProofWriter is that it performs346

an exhaustive forward search by enumerating all347

possible inferences from a given theory. This leads348

to redundant inferences being generated for prov-349

ing a particular statement. Additionally, using a350

text-to-text transformer model adds to the problem351

since they are usually quite expensive to run at in-352

ference time. In CAUSALR, we alleviate this by353

introducing two changes. First, our causal frame-354

work allows only limited information (selected rule355

and facts) as input to the knowledge composer,356

thus restricting the input length significantly. Sec-357

ond, augmenting the question to our selector inputs358

helps reduce the candidate space because these359

models can learn to prioritize the selection based360

on the relevance to both the question and the theory.361

This ensures that CAUSALR does not perform an362

exhaustive forward search and prioritizes generat-363

ing relevant inferences over the others. Both these364

changes lead to an overall improvement in infer-365

ence speed. We perform more quantitative analysis366

on this later in Section 5.3.367

4 Experimental Setup368

Datasets Following (Tafjord et al., 2020; Clark369

et al., 2020), we use the D* datasets for our experi-370

ments. These are a set of multiple datasets - namely 371

D0, D1, D2, D3, D0-D3, and D5. The theory in 372

these datasets are synthetically generated with in- 373

creasing reasoning depths. For example, D3 dataset 374

contains statements that require at most 3-hop rea- 375

soning steps. The D0-D3 contains all theories in 376

D3 plus ∼ 20% of the D0-D2 training set theories. 377

We also use the ParaRules dataset (Clark et al., 378

2020) that contains around 2k theories expressed 379

in paraphrased natural language. 380

Additionally, we generate three datasets that 381

evaluate the robustness of the reasoning models 382

as follows: 383

• Subject robustness: Here, subjects in a 384

theory are perturbed by using some out-of- 385

distribution proper and common names. For 386

example, in Figure 1, “Charlie” can be re- 387

placed with “Paul” which is not used in the D* 388

datasets. We generate five new theories cor- 389

responding to each theory of the D3 dataset, 390

by repeatedly perturbing all the proper and 391

common names in the theory. 392

• Attribute robustness: Here we sample out- 393

of-distribution attributes. For example, “blue” 394

in Figure 1 can be replaced with “soft”. As 395

above, we generate five new theories for each 396

theory of the D3 dataset. 397

• Subject+Attribute robustness: This is a com- 398

bination of subject and attribute robustness 399

to study model performance when most of 400

the training vocabulary is replaced by out- 401

of-distribution words. Each theory has both 402

novel subject and attribute. 403

We include more details on the perturbation sets 404

used in our experiments in Appendix A. 405

Baselines We compare CAUSALR (CAUSALR) 406

with two variants of ProofWriter (Tafjord et al., 407

2020): All-at-once (PW (“All”)) and Iterative (PW 408

(“Iter”)), wherever applicable 3. The PW (“All”) 409

model is trained to predict the entailment and gen- 410

erate proof graph directly from the theory and state- 411

ment in a single step. The PW (“Iter”) generates 412

one-step inferences and corresponding proofs iter- 413

atively, until all possible inferences are generated, 414

and then stitches the proof graph similar to our 415

method. If not mentioned otherwise, ProofWriter 416

uses a T5-large (Raffel et al., 2019) model. 417

3The code to reproduce numbers of ProofWriter is not publicly available.
We either copy results directly from the paper or run our own inference on
model checkpoints made available by the authors.
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Entailment Accuracy Proof Accuracy

d PW (“Iter”) CAUSALR PW (“Iter”) CAUSALR

N/A 99.7 99.6 99.7 99.6
0 100.0 100.0 100.0 100.0
1 99.9 99.7 99.9 99.5
2 99.7 98.9 99.4 97.2
3 99.7 96.6 99.1 95.3

All 99.8 99.2 99.7 98.8

Table 1: Comparison of CAUSALR with ProofWriter (“Iter”)
trained and tested on D0-D3. Baseline results are generated
using the checkpoint provided by the authors. For more details
please refer to Section 5.1.

Robustness
PW (“Iter”) CAUSALR

EA PA C EA PA C

Subject 89.6 88.4 87.6 96.8 95.9 96.4
Attribute 89.2 88.8 87.2 88.5 87.3 86.8
Subject+Attribute 86.0 85.7 83.3 88.1 86.9 86.3

Average 88.3 87.6 86.0 91.1 90.0 89.9

Table 2: Comparison of CAUSALR with ProofWriter (“Iter”)
when trained on D0-D3 dataset and tested on different robust-
ness datasets. EA, PA, and C refers to entailment accuracy,
proof accuracy, and consistency, respectively. Please refer to
Section 5.2 for more details.

5 Experiment Results418

We compare CAUSALR with ProofWriter variants419

on three settings: generalization on D* datasets,420

robustness to perturbed theories, efficiency in infer-421

ence computation. We further conduct qualitative422

analysis to understand the inference errors.423

5.1 Performance on Same Depth Reasoning424

In this setting, we train and test both models on425

D0-D3 dataset. Note, D0-D3 contains statements426

with reasoning depths up to 3. This compares the427

ability of the models to generalize to seen reason-428

ing depths at train time. The results with increasing429

depths of reasoning are shown in Table 1. Here,430

depth “N/A” refers to statements that cannot be431

proven and hence don’t have an exact proof depth432

associated with it. We observe that overall both433

CAUSALR and ProofWriter (“Iter”) performs com-434

parably (last row with depth ’All’). Further, we find435

that our model’s performance is lower on d = 3,436

indicating that our models tend to perform weaker437

with increasing depths. This happens majorly be-438

cause the rule selector in CAUSALR tends to in-439

correctly select the [CLS] token to indicate a stop440

signal instead of generating more possible inter-441

mediate inferences. We discuss more about this in442

Sections 5.3 and 5.4. Please refer to Appendix B443

for more results on unseen reasoning depths.444

Entailment Accuracy Proof Accuracy

d PW (“Iter”) CAUSALR PW (“Iter”) CAUSALR

N/A 98.9 99.3 98.9 99.3
0 99.9 100.0 99.9 100.0
1 79.1 96.0 78.8 95.7
2 76.6 93.4 73.4 91.4
3 72.7 89.8 67.8 85.7

All 89.6 96.8 88.4 95.9

Table 3: Comparison of CAUSALR with ProofWriter (“Iter”)
trained on D0-D3 and tested on subject robustness dataset.
Baseline results are generated using the checkpoint provided
by the authors. For more details please refer to Section 5.2.

5.2 Robustness to Perturbed Theories 445

In this section, we test the robustness of 446

ProofWriter (“Iter”) and CAUSALR on different 447

perturbed theories. As described in Section 4, we 448

test the robustness on three different perturbations: 449

subject, attribute, and subject+attribute. We com- 450

pare the performance of both models after training 451

on D0-D3 dataset. The consolidated results are 452

shown in Table 2 and depth-wise results for subject 453

robustness are shown in Table 3. We report the en- 454

tailment accuracy, proof accuracy, and consistency 455

as defined in Section 2. Please refer to appendix 456

C for the depth-wise breakdown of all the datasets. 457

We observe that on subject and subject+attribute 458

robustness, our models are consistently better than 459

ProofWriter whereas on attribute robustness both 460

models perform similarly. Further, we find that on 461

average, CAUSALR is both more accurate and con- 462

sistent than the baseline. From this, we conclude 463

that our model relies less on spurious correlations 464

based on the subject while both models likely suffer 465

from similar issues on object perturbations. Since 466

ProofWriter uses the theory to generate the inter- 467

mediate conclusion and proofs, it has the capacity 468

to exploit some spurious patterns that can inflate 469

performance. In contrast, our causal framework 470

restricts this capacity by constraining the inputs to 471

each component as described in Section 3.1. Hence, 472

these robustness evaluations demonstrate one of the 473

prime benefits of our causal and modular approach. 474

5.3 Study on Inference Efficiency 475

Here we perform several analysis to evaluate the 476

computational benefits of our method as described 477

in Section 3.3. Inference efficiency is an impor- 478

tant aspect of this problem for real-world scenarios 479

where compute can be limited. 480

Relevance of generated inferences Here, we 481

study the relevance of the intermediate inferences 482

generated by CAUSALR and ProofWriter (“Iter”). 483
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Figure 4: Comparison of ProofWriter (“Iter”) and CAUSALR
on precision and recall of generated inferences with increasing
reasoning depths.

Let T be the set of intermediate inferences required484

for generating the proof graph for the statement.485

Further, let G be the set of intermediate inferences486

actually generated by a model. Then, the precision487

and recall are defined as P = |T∩G|
|G| , and R =488

|T∩G|
|T | In Figure 4, we plot the precision and re-489

call for both CAUSALR and ProofWriter (“Iter”)490

with increasing reasoning depths. We find that491

our model has close to 1.0 precision at all depths,492

whereas ProofWriter has low precision. This493

demonstrates that our model is able to success-494

fully prune the candidate inference space to gener-495

ate relevant candidate inferences almost perfectly.496

In contrast, we see that with increasing depths,497

our model’s recall reduces from close to 1.0 to498

≈ 0.95 whereas ProofWriter has a perfect recall499

at all depths. While the drop is not very drastic, it500

indicates that our model fails to generate some es-501

sential inferences at higher depths. This is mainly502

because our rule selector decides to stop early and503

not generate further relevant inferences for some504

provable statements. Overall, we conclude that505

CAUSALR always generates inferences that are rel-506

evant to solving the instance, although at higher507

depths it can miss some relevant conclusions.508

Performance under inference budget constraints509

We analyze the performance of CAUSALR and510

ProofWriter under a fixed inference budget con-511

straint by restricting the total number of conclu-512

sions that can be generated. We perform this anal-513

ysis for different reasoning depths and depict the514

results in Figure 5. We observe that CAUSALR515

consistently outperforms ProofWriter on lower bud-516

gets. This shows that CAUSALR performs a prior-517

itized generation of conclusions that are relevant518

to the statement, which can be useful in scenarios519

with limited inference budgets. See Appendix D520

for more comparisons.521

Inference runtime analysis We next compare522

the time taken by both the models to solve the com-523

plete D5 dev set. Although CAUSALR has three524

Proof Depth Budget

0
25
50
75

100

1 3 5 7 10

ProofWriter CausalR

(a) Depth 1

Proof Depth Budget

0
25
50
75

100

3 5 7 10

ProofWriter CausalR

(b) Depth 3
Figure 5: Depth-wise comparison of ProofWriter (“Iter”)
and CAUSALR on limited inference budgets. Please refer to
Section 5.3 for details.

separate modules that run sequentially, it is 3.5 525

times faster than ProofWriter (“Iter”) at inference 526

time on average. We attribute this to the reduced 527

inference candidate search space due to question 528

augmentation, and smaller input size to the T5 com- 529

ponent (refer to Section 3.3 for details). Please refer 530

to Appendix E for more details. 531

5.4 Error Analysis 532

We further analyze the different errors made by 533

CAUSALR and ProofWriter (“Iter”) on 50 ran- 534

domly sampled errors for each model, from the 535

D0-D3 and the subject robustness dev splits. We 536

manually inspect the proof inferences and compare 537

it with the gold proof to classify the failures. The 538

errors are broadly categorized as follows: 539

Early stop errors: This is the most frequent er- 540

ror type for both models, accounting for 80% and 541

50% errors in CAUSALR and ProofWriter, respec- 542

tively. This occurs when a model incorrectly gen- 543

erates the stop signal and fails to generate all the 544

required inference to prove a statement. We find 545

that our model makes the majority of the mistakes 546

due to early stopping. This can be possibly fixed 547

by improving the rule selector architecture to better 548

model the stop criteria. 549

Wrong inference: This is the second error type, 550

where the proofs look correct, but the inferred con- 551

clusion is incorrect. This accounts for 20% and 552

30% errors in CAUSALR and ProofWriter, respec- 553

tively. We observe that our knowledge composer 554

is makes lesser errors on average compared to the 555

ProofWriter generative model. 556

Other generation errors: ProofWriter makes 557

around 20% errors where the model generated out- 558

put does not make sense. For example, it can hal- 559

lucinate facts that are not present in the theory. 560

Such errors are not interpretable and questions the 561

model’s inner-working. CAUSALR shows no such 562

error, since the proofs are always interpretable in 563

our model due to the causal framework. 564
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Figure 6: Proof Accuracy of CAUSALR when tested on
ParaRules while using limited amount of ParaRules along
with D0-D3 for training. See Sec. 5.5 for more details.

Overall, we find that the errors made by565

CAUSALR are more interpretable than ProofWriter,566

since we can pin-point which module is at fault.567

Whereas, in ProofWriter, it is sometimes hard to568

understand the source of errors due to entangled569

reasoning and proof generation process. This fea-570

ture also makes our framework easy to debug to571

potentially fix some components with techniques572

like data augmentation. Please refer to Appendix573

G for more discussion and examples of errors.574

5.5 Generalization to paraphrased theories575

Next, we test the ability of our model to gener-576

alize to unseen language in ParaRules by using577

limited training supervision. To test this, we first578

train our model on D0-D3 dataset and test it on579

the ParaRules dataset. This is a zero-shot evalu-580

ation on an unseen language form. In Figure 6581

we observe that the performance is significantly582

worse on this setting as expected. We also evalu-583

ated a checkpoint of ProofWriter (“Iter”) trained584

on D0-D3 which achieves a similar performance of585

62.13% entailment accuracy 4. Next, we gradually586

start adding portions of ParaRules, along with the587

D0-D3 data, to the training dataset. We find that588

CAUSALR can quickly achieve reasonable perfor-589

mance using even 10% additional data. This shows590

that our modularized approach is also efficient in591

adapting to unseen theories with limited data su-592

pervision. For more comparisons with ParaRules593

trained models, please refer to Appendix F.594

6 Related Works595

Reasoning in Text Reasoning in text is a well596

studied problem in NLP. Natural Language Infer-597

ence (NLI) (MacCartney and Manning, 2014) is598

one of the most prominent datasets that require599

reasoning over text to answer if a statement is en-600

4data-augmented training results for ProofWriter are not
reported in the figure since the training code is not available

tailed, contradicted, or neutral, given a hypothe- 601

sis. More recently, datasets like HotpotQA (Yang 602

et al., 2018), bAbI (Weston et al., 2016), QuaRTz 603

(Tafjord et al., 2019), ROPES (Lin et al., 2019), 604

CLUTRR (Sinha et al., 2019), etc. have stud- 605

ied different aspects of reasoning over textual in- 606

puts. These tasks usually require implicit reasoning, 607

where the model needs to internally infer the rules 608

required to solve the task. In contrast, RuleTaker 609

(Clark et al., 2020) deals with explicit reasoning 610

(also known as deductive reasoning). 611

Proof Generation Recently, some works have 612

been addressing the problem of proof generation 613

from an NL-based theory. Prover (Saha et al., 2020) 614

trains a RoBERTa-based model that predicts nodes 615

and edges of the proof graph. ProofWriter (Tafjord 616

et al., 2020) is a T5-based (Raffel et al., 2019) 617

model, that iteratively generates one-hop conclu- 618

sions and proofs from a theory. Another work Mul- 619

tiProver (Saha et al., 2021), generates multiple pos- 620

sible proofs for a statement. While we study the 621

same problem of proof generation similar to these 622

works, we focus on the causal reasoning process 623

and design a modular system for proof generation. 624

Formal Reasoning There are some prior works 625

that try to solve the problem of entailment predic- 626

tion by first parsing the formal language from text. 627

Neural Theorem Prover (Rocktäschel and Riedel, 628

2017; Weber et al., 2019) uses neural networks to 629

parse the formal logic from natural language and 630

then reason over them. While this approach is more 631

symbolic, it can lead to many challenges while pars- 632

ing (Kamath and Das, 2018). The proof generation 633

setting considered here bypasses this step and di- 634

rectly reasons over the given natural language text 635

making it more useful in downstream applications. 636

7 Conclusion 637

In this paper, we proposed CAUSALR, a causal rea- 638

soning model based on three modular components: 639

rule selection, fact selection, and knowledge com- 640

position. CAUSALR ensures causality from proof 641

graph generation to entailment prediction by design. 642

We established the effectiveness of our approach 643

through experiments on testing reasoning robust- 644

ness to language variations, verifying the ability to 645

quickly generalize to unseen language forms, and 646

analyzing the interpretability of the errors made by 647

our model. We also demonstrate that CAUSALR is 648

faster and more precise at deductive reasoning than 649

existing baselines. 650
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A Robustness dataset details754

The robustness dataset is created by replacing all755

subjects (attributes) in the D3 dataset with unseen756

subjects (attributes) to create the subject (attribute)757

robustness set. For this, we first curate new sets of758

subjects and attributes to be used as a global pool to759

sample from while replacing existing subjects and760

attributes from the theory. These sets are detailed761

below:762

Subject proper name pool: {‘George’, ‘Paul’,763

‘Ronald’, ‘Emma’, ‘Magnus’, ‘Timothy’, ‘Chris’,764

‘Molly’, ‘Diana’, ‘Joseph’, ‘Becky’, ‘Kurt’, ‘Ivan’,765

‘Steve’, ‘Laura’, ‘Oliver’, ‘Adam’, ‘Larry’}766

Subject common name pool: {‘mother’, ‘fa-767

ther’, ‘baby’, ‘child’, ‘toddler’, ‘teenager’, ‘grand-768

mother’, ‘student’, ‘teacher’, ‘alligator’, ‘cricket’,769

‘bird’, ‘wolf’, ‘giraffe’, ‘dinosaur’, ‘thief’, ‘soldier’,770

‘officer’, ‘artist’, ‘shopkeeper’, ‘caretaker’, ‘jani-771

tor’, ‘minister’, ‘salesman’, ‘saleswoman’, ‘run-772

ner’, ‘racer’, ‘painter’, ‘dresser’, ‘shoplifter’}773

Attribute pool: {‘maroon’, ‘brown’, ‘black’,774

‘orange’, ‘cordial’, ‘friendly’, ‘adorable’, ‘old’,775

‘soft’, ‘violent’, ‘intelligent’, ‘square’, ‘warm’,776

‘large’, ‘cylindrical’, ‘spherical’, ‘tiny’, ‘micro-777

scopic’, ‘brilliant’, ‘noisy’, ‘playful’, ‘tender’, ‘gra-778

cious’, ‘patient’, ‘funny’, ‘hilarious’, ‘thorny’, ‘sen-779

sitive’, ‘diplomatic’, ‘thoughtful’}780

Then, for each theory in the D3 dataset, we re-781

place all the subjects in the theory with randomly782

sampled subjects (without replacement) from the783

candidate set to create a perturbed theory. We per-784

form this replacement operation to generate five785

different perturbed theories. These perturbed theo-786

ries are called equivalence set. Note that the only787

change in each theory in an equivalence set is the788

subjects being replaced by some randomly sampled789

subjects. For example, “cat” in the original theory790

might be replaced by “child” in one perturbation,791

and with “teacher” in yet another perturbation. We792

follow the same procedure to create attribute and793

subject+attribute robustness sets.794

B Generalization to reasoning depths795

In this section, we experiment with a setting where796

models are trained on depths less than or equal to 3797

(i.e., d ≤ 3) and tested on D5 dataset that contains798

statements that require reasoning up to depth 5 (i.e.,799

d ≤ 5). Here, we test the generalization of the800

Entailment Accuracy Proof Accuracy

d PW (“All”) PW (“Iter”) CAUSALR PW (“All”) PW (“Iter”) CAUSALR

N/A 97.4 99.2 99.4 97.4 99.2 99.4
0 100.0 100.0 100.0 100.0 100.0 100.0
1 99.9 99.1 99.5 99.3 97.5 99.2
2 99.7 98.9 98.5 97.6 96.4 96.1
3 99.7 98.4 93.4 91.2 95.5 85.5
4 99.5 97.5 88.8 46.9 93.4 77.4
5 98.9 96.5 79.2 24.4 82.3 68.1

All 98.7 98.8 95.9 85.6 96.4 92.7

Table 4: D5 dataset depth-wise performance compari-
son of CAUSALR trained on D0-D3 with ProofWriter
(“All”) and ProofWriter (“Iter”) trained on D3 and
D0-D3 respectively. Baseline results are copied from
Tafjord et al. (2020). Refer to Section 5.1 and Appendix
B for more details.

models to reasoning depths that are unseen at train- 801

ing time. These results are shown in Table 4. From 802

this table, we observe that overall our model per- 803

forms significantly better than ProofWriter (“All”) 804

on proof accuracy (+7.5%), but has a lower per- 805

formance compared to ProofWriter (“Iter”) (−3%). 806

This shows that compared to ProofWriter (“Iter”), 807

our models are weaker at generalizing to unseen 808

reasoning depths. This happens majorly because 809

our rule selector tends to stop the inference iter- 810

ations earlier, which means some essential infer- 811

ences are not generated by the model. Thus, this 812

leads to lower performance with increasing reason- 813

ing depths. 814

But, we make another interesting observation 815

here. The drops in entailment and proof accuracy 816

with increasing depths are similar for CAUSALR. 817

For instance, considering the performance drops 818

between d = 4 to d = 5, CAUSALR has ∼ 9.5% 819

drop in both entailment and proof accuracy. In con- 820

trast, ProofWriter (“All”) and ProofWriter (“Iter”) 821

drops approximately 22% and 11%, respectively in 822

proof accuracy for a mere 1% drop in entailment 823

accuracy. This raises some concern on the causal- 824

ity of the proof generation process used for entail- 825

ment prediction in these models, since it seems 826

like the answer prediction and proof generation are 827

not dependent via the same reasoning paths. In 828

contrast, our causal framework grounds the entail- 829

ment prediction to the proofs and this leads to more 830

consistent performance variations in CAUSALR. 831

C Robustness to Perturbed Theories 832

Here, we show the detailed depth-wise perfor- 833

mance of CAUSALR and ProofWriter (“Iter”) 834

trained on D0-D3 dataset and evaluated on different 835

robustness datasets as described in Section 4. The 836
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Entailment Accuracy Proof Accuracy

d PW (“Iter”) CAUSALR PW (“Iter”) CAUSALR

N/A 98.9 99.3 98.9 99.3
0 99.9 100.0 99.9 100.0
1 79.1 96.0 78.8 95.7
2 76.6 93.4 73.4 91.4
3 72.7 89.8 67.8 85.7

All 89.6 96.8 88.4 95.9

Table 5: Comparison of CAUSALR with ProofWriter
(“Iter”) trained on D0-D3 and tested on subject robust-
ness dataset. Baseline results are generated using the
checkpoint provided by the authors. For more details,
please refer to Appendix C.

results for subject, attribute, and subject+attribute837

robustness evaluations are shown in Tables 5, 6,838

and 7, respectively. We observe that ProofWriter839

(“Iter”) performs significantly worse compared to840

CAUSALR on subject robustness. The results on841

subject+attribute robustness are mostly compara-842

ble, while in attribute robustness our model per-843

forms worse. The drop in performance show that844

both the models are sensitive to attributes in the845

theory to varying degree. But the strong sensitivity846

of ProofWriter (“Iter”) to the subject perturbations847

is questionable, since the causality of the model’s848

reasoning process seems to be compromised be-849

cause the model learns some spurious correlations850

using the subjects.851

In another setting, we train different components852

of our model on the robustness data and check if853

that leads to some performance gains. These re-854

sults are reported in Table 8. We find that it is855

indeed possible to improve the performance of in-856

dividual components of our model by robust data857

augmentation. This also indicates that our indi-858

vidual components are flexible to intervention by859

data augmentation. Such abilities are lacking in860

ProofWriter.861

D Inference Budget Analysis862

In the inference budget analysis, we compare the863

performance of CAUSALR and ProofWriter un-864

der an inference budget constraint, i.e., we re-865

strict the total number of intermediate conclusions866

that can be produced by both models. We per-867

form this analysis on three different depth datasets868

(d = {1, 3, 5}) and upper bound the number of869

inferences by B = {1, 3, 5, 7, 10}. We ensure that870

the budget is at least equal to the depth of the state-871

ments under consideration since proving a state-872

Entailment Accuracy Proof Accuracy

d PW (“Iter”) CAUSALR PW (“Iter”) CAUSALR

N/A 99.7 99.2 99.7 99.2
0 100.0 100.0 100.0 100.0
1 83.7 83.8 83.4 83.1
2 73.2 72.3 71.9 69.7
3 66.4 63.2 64.4 57.9

All 89.2 88.5 88.8 87.3

Table 6: Comparison of CAUSALR with ProofWriter
(“Iter”) trained on D0-D3 and tested on attribute robust-
ness dataset. Baseline results are generated using the
checkpoint provided by the authors. For more details,
please refer to Appendix C.

Entailment Accuracy Proof Accuracy

d PW (“Iter”) CAUSALR PW (“Iter”) CAUSALR

N/A 99.8 99.2 99.8 99.2
0 99.9 100.0 99.9 100.0
1 74.2 83.1 73.9 82.5
2 65.3 71.1 64.3 68.3
3 59.9 62.1 58.7 56.7

All 86.0 88.1 85.7 86.9

Table 7: Comparison of CAUSALR with ProofWriter
(“Iter”) trained on D0-D3 and tested on subject+attribute
robustness dataset. Baseline results are generated using
the checkpoint provided by the authors. For more de-
tails, please refer to Appendix C.

ment requires a model to generate inferences equal 873

to at least the depth. From Figure 7 we observe that 874

for all depths CAUSALR consistently outperforms 875

ProofWriter on lower budgets. Only when the bud- 876

get increases to 10, ProofWriter compares with or 877

sometimes outperforms our model. This analysis 878

demonstrates that CAUSALR performs a prioritized 879

generation of conclusions that are relevant to the 880

statement, which can be useful in scenarios with 881

limited inference budgets. 882

E Runtime Analysis 883

For inference runtime analysis, we time the evalu- 884

ation of both CAUSALR and ProofWriter (“Iter”) 885

on D5 dev set. Note that D5 dataset contains state- 886

ments that require at most five reasoning steps to 887

generate an answer. The runtime for both methods 888

are shown in Table 9. These results were obtained 889

by running the inference algorithm on NVIDIA 890

GeForce RTX 2080 Ti GPUs for both models. We 891

observe that ProofWriter (“Iter”) has an almost con- 892

stant runtime since it always generates all possible 893

inferences for a theory. In contrast, our runtime 894
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Figure 7: Depth-wise comparison of ProofWriter
(“Iter”) and CAUSALR (both trained on D0-3 dataset)
on limited inference budgets. Please refer to Appendix
D for details.

Trained module Subj Perturbation Attr Perturbation

EA PA EA PA

Base (trained on D0-D3) 96.8 95.9 88.5 87.3

Rule selector (RS) 97.3 96.7 89.6 86.8
Fact selector (FS) 96.7 95.8 88.6 87.1
Knowledge composer (KC) 98.5 97.6 89.4 88.1
RS + FS + KC 99.1 98.5 97.1 91.0

Table 8: Comparison of variants of CAUSALR where
different components (RS, FS, KC) and their combi-
nations are trained and tested on robustness datasets.
Please refer to Appendix C for more details.

d ProofWriter (“Iter”) CAUSALR

0 1.01 0.12
1 1.01 0.20
2 1.00 0.28
3 1.01 0.36
4 1.01 0.46

Avg 1.01 0.28

Table 9: Evaluation runtime (in hours) of CAUSALR
and ProofWriter (“Iter”). Please refer to Appendix E for
more details.

increases almost linearly with increasing depth. On 895

average, CAUSALR is 3.5 times faster at inference 896

than ProofWriter (“Iter”). 897

F Results on ParaRules training 898

Following (Tafjord et al., 2020), we compare the 899

performance of ProofWriter (“All”) and CAUSALR 900

on the ParaRules dataset, when trained on a com- 901

bined partition of D3 and ParaRules train set. The 902

ParaRules dataset contains complex linguistic ex- 903

pressions in the theories that are more realistic than 904

D* dataset theories, making it a more challenging 905

dataset. These results are shown in Table 10, with 906

a reasoning depth breakdown as before. We note 907

that numbers for ProofWriter (“Iter”) are not re- 908

ported in the paper, and no trained checkpoint is 909

available either, so we omit it from our compar- 910

isons. Also, the reported results for ProofWriter 911

(“All”) are from evaluating a T5-11B model while 912

ours is a T5-large model. Here, we see that our 913

model performs better at higher depths compared 914

to the baseline which demonstrates that CAUSALR 915

is better at handling paraphrases. 916

G Error Analysis 917

This is a follow-up of Section 5.4, where we delve 918

deeper into the error analysis by discussing dif- 919

ferent error examples and their potential reasons. 920

First, the stop errors are easy to understand. These 921

12



Entailment Accuracy Proof Accuracy

d PW (“All”) [T5-11B] CAUSALR PW (“All”) [T5-11B] CAUSALR

0 99.9 100.0 99.9 100.0
1 99.3 99.6 99.3 99.6
2 98.3 97.6 97.7 97.4
3 98.2 95.4 96.5 95.1
4 91.5 91.6 83.1 91.6

All 99.1 98.7 98.5 98.6

Table 10: Comparison of CAUSALR with ProofWriter
(“All”) [T5-11B] when trained on D3+ParaRules and
tested on ParaRules. Results for ProofWriter (“All”)
[T5-11B] are copied from the paper. Please refer to
Appendix F for more details.

are cases where the model just decides to stop in-922

stead of generating any further conclusions. For923

our model, this can happen if the rule selector is924

under confident while selecting rules and it learns925

that a safer fallback is to stop generating rules. This926

aspect can probably be improved by a better mod-927

eling of the rule selector. We plan to explore this928

in future works.929

Next we look at some of the wrong inferences930

generated by both models in Tables 11 and 12. We931

observe that errors made by CAUSALR are rather932

naive with small mistakes in the final conclusion933

(shown in red in Table 12). In contrast, ProofWriter934

tends to generate an invalid conclusion with no re-935

lation to the generated proof (rows 1 and 2 in Table936

11). It also makes many non-interpretable gener-937

ation errors where the model’s output format is938

completely violated or the model seems to hallu-939

cinate some facts (rows 3-6 in Table 11). Thus,940

we observe the benefit of our causal framework as941

the errors are interpretable and more believable. In942

contrast, errors made by ProofWriter clearly show943

that its inference reasoning process can often not944

rely on the proof at or, or even the generated proof945

sometimes doesn’t make sense.946

H Hyperparameters947

We use RoBERTa-large models (Liu et al., 2019)948

to model the rule selector and fact selector949

in CAUSALR. For selecting the best hyperpa-950

rameters for both these components, we se-951

lected the max training epochs in: {10, 15, 20},952

warmup updates in: {0.05, 0.1}, weight de-953

cay in: {0.1, 0.01, 0.001}, learning rate in:954

{3e-6, 5e-6, 1e-6}, and batch size in {16, 32}.955

We use T5 (Raffel et al., 2019) (T5-large) to956

model the knowledge composer in CAUSALR and957

train it using the default hyperparameters available958

in the Hugging Face transformers library (Wolf959

et al., 2020). 960
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Error Type Input ( format: complete theory) Output ( format: $answer$ =
conclusion ; $proof$ = # rule &
facts)

Wrong inference $answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sent1: Cold people are red. sent2: If someone
is quiet then they are cold. sent3: Smart, blue people are quiet.
sent4: If Paul is blue then Paul is furry. sent5: If someone is blue
then they are quiet. sent6: If Steve is furry and Steve is smart then
Steve is white. sent7: If Chris is red and Chris is furry then Chris
is blue. sent8: Quiet people are cold. sent9: Chris is blue. sent10:
Chris is white. sent11: Ronald is red. sent12: Paul is quiet. sent13:
Paul is smart. sent14: Steve is blue. sent15: Steve is furry. sent16:
Steve is red. sent17: Steve is smart. sent18: Steve is white.

$answer$ = Dave is quiet. ;
$proof$ = # sent5 sent9

Wrong inference $answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sent1: Cold people are red. sent2: If someone
is quiet then they are cold. sent3: Smart, blue people are quiet.
sent4: If Paul is blue then Paul is furry. sent5: If someone is blue
then they are quiet. sent6: If Steve is furry and Steve is smart
then Steve is white. sent7: If Chris is red and Chris is furry then
Chris is blue. sent8: Quiet people are cold. sent9: Chris is blue.
sent10: Chris is white. sent11: Ronald is red. sent12: Paul is quiet.
sent13: Paul is smart. sent14: Steve is blue. sent15: Steve is furry.
sent16: Steve is red. sent17: Steve is smart. sent18: Steve is white.
sent19: Dave is quiet.

$answer$ = Dave is not a cat. ;
$proof$ = # sent2 sent19

Generation error -
output format vio-
lated

$answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sent1: If someone likes the grandmother then
the grandmother eats the artist. sent2: If someone eats the artist
then the artist is young. sent3: If the artist eats the grandmother
then the artist is cold. sent4: If someone eats the artist and the
artist eats the grandmother then the grandmother eats the artist.
sent5: If someone is red and big then they like the grandmother.
sent6: If someone visits the grandmother then they are red. sent7:
If someone is rough then they eat the grandmother. sent8: If some-
one likes the artist then they visit the grandmother. sent9: The
artist likes the grandmother. sent10: The grandmother eats the
artist. sent11: The grandmother is big. sent12: The grandmother
is cold. sent13: The grandmother is young. sent14: The grand-
mother likes the artist. sent15: The grandmother visits the artist.
sent16: The artist is young.

$answer$ = The red sent6 sent15

Generation error -
hallucinating facts

$answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sent1: All young things are smart. sent2: All
smart, young things are nice. sent3: If something is young and
nice then it is quiet. sent4: Becky is big. sent5: Becky is green.
sent6: Becky is young. sent7: Larry is big. sent8: Larry is quiet.
sent9: Larry is red. sent10: Larry is young. sent11: Bob is smart.

$answer$ = Bob is nice. ;
$proof$ = # sent2 & sent11
sent16

Generation error -
repeated facts

$answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sent1: If Adam is green then Adam is big.
sent2: Green things are rough. sent3: If Joseph is cold then Joseph
is big. sent4: All blue things are cold. sent5: All green things
are rough. sent6: All big things are kind. sent7: If something is
rough and big then it is green. sent8: All kind, blue things are
cold. sent9: Joseph is blue. sent10: Adam is blue. sent11: Molly
is cold. sent12: Joseph is cold. sent13: Charlie is cold.

$answer$ = Charlie is sent13
sent13

Generation error -
output format vio-
lated

$answer$ ; $proof$ ; $question$ = What is one single-hop infer-
ence? ; $context$ = sent1: Nice things are green. sent2: If Ivan is
smart then Ivan is blue. sent3: Green things are smart. sent4: All
cold things are nice. sent5: Big things are blue. sent6: If Ronald
is nice then Ronald is big. sent7: If something is green and big
then it is not kind. sent8: If something is smart and nice then it is
kind. sent9: Ronald is smart. sent10: Larry is cold. sent11: Laura
is nice. sent12: Ivan is kind. sent13: Larry is nice. sent14: Larry
is green. sent15: Bob is smart.

$answer$ = Bob is kind. ;
$proof$ = # sent8 & sent9 sent-
nice

Table 11: Examples of inference errors made by ProofWriter (“Iter”).
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Error Type Input ( format: [facts], rule) Inference

Wrong inference [the racer needs the janitor.], if someone needs the janitor then the
janitor likes the racer.

the janitor likes the
race.

Wrong inference [oliver is big.], big people are young.
the oliver is young.

Wrong inference [the shoplifter needs the shoplifter., the shoplifter needs the di-
nosaur.], if something needs the dinosaur and it needs the shoplifter
then it is round.

the shop is round.

Table 12: Examples of inference errors made by CAUSALR while composing rules and facts using the knowledge
composer.
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