
Published as a conference paper at ICLR 2023

MINIMUM VARIANCE UNBIASED N:M SPARSITY FOR
THE NEURAL GRADIENTS

Brian Chmiel †◦∗ Itay Hubara †◦∗ Ron Banner † Daniel Soudry ◦

†Habana Labs – An Intel company, Caesarea, Israel,
◦Department of Electrical Engineering - Technion, Haifa, Israel

{bchmiel, ihubara, rbanner}@habana.ai
daniel.soudry@gmail.com

ABSTRACT

In deep learning, fine-grained N:M sparsity reduces the data footprint and band-
width of a General Matrix multiply (GEMM) up to x2, and doubles throughput
by skipping computation of zero values. So far, it was mainly only used to prune
weights to accelerate the forward and backward phases. We examine how this
method can be used also for the neural gradients (i.e., loss gradients with respect
to the intermediate neural layer outputs). To this end, we first establish a tensor-
level optimality criteria. Previous works aimed to minimize the mean-square-error
(MSE) of each pruned block. We show that while minimization of the MSE works
fine for pruning the weights and activations, it catastrophically fails for the neural
gradients. Instead, we show that accurate pruning of the neural gradients requires
an unbiased minimum-variance pruning mask. We design such specialized masks,
and find that in most cases, 1:2 sparsity is sufficient for training, and 2:4 sparsity is
usually enough when this is not the case. Further, we suggest combining several
such methods together in order to potentially speed up training even more. A
reference implementation is supplied in the supplementary material.

1 INTRODUCTION

Pruning Deep Neural Networks (DNNs) is one of the most effective and widely studied methods to
improve DNN resource efficiency. Since DNNs are over-parametrized, most researchers focused on
weights pruning. Yet, recently researchers suggested that sparsity of activations (Jaszczur et al., 2021;
Kurtz et al., 2020) and gradients (Chmiel et al., 2021b) could be exploited as well. However, all these
types of unstructured pruning only reduce the memory footprint (Frankle & Carbin, 2018; Evci et al.,
2020). It is possible to also reduce the compute footprint by enforcing some structure on the pruning
mask, such as block sparsity (Wen et al., 2016), filter sparsity (Li et al., 2017), or N:M fine-grained
sparsity (Nvidia, 2020; Hubara et al., 2021; Mishra et al., 2021).

We focus on N:M fine-grained sparsity, in which, N out of every M contiguous elements would be
pruned, for at least one of the two matrices involved in the matrix multiplication. Nvidia’s sparse
tensor cores (Nvidia, 2020; Mishra et al., 2021) can use N:M fine-grained sparsity to accelerate matrix
multiplication. Specifically, Nvidia (2020) used a 2:4 format to accelerate inference up to x2. They
suggested using a three-step scheme: (a) train a dense model, (b) prune weights to obtain a 2:4 fixed
mask, and (c) use the original training regime to retrain with the masked weights.

Following works suggested methods to accelerate different parts of this scheme. First, Zhou et al.
(2021) was able to omit steps (a) and (b) by training with an N:M mask from scratch using a straight-
through estimator (STE) and additional regularization. Specifically, they keep a dense copy of the
weights and set different weight decays rates to the masked and unmasked weights. Next, Hubara
et al. (2021) focused on accelerating the remaining step (c), i.e., sparse training, as we do here.

∗Equal contribution.

1

mailto:bchmiel@habana.ai
mailto:ihubara@habana.ai
mailto:rbanner@habana.ai
mailto:daniel.soudry@gmail.com

Published as a conference paper at ICLR 2023

Table 1: Exploring fine-grained sparsity on different training phases with different sampling methods
(MVUE, MSE). While previous methods aim to accelerate the forward and backward phases, we
focus on accelerating the update phase. The combination of all methods allows us to accelerate all
training phases.

Tensor

Phase Weights T-Weights Gradients Training

(Nvidia, 2020) (Hubara et al., 2021) (ours) T-Weights +
Gradients

Forward ✓(MSE) ✓(MSE) ✗ ✓(MSE)
Backward ✗ ✓(MSE) ✗ ✓(MSE)
Update ✗ ✗ ✓(MVUE) ✓(MVUE)

Recall that in each training step we use Backpropagation, which has three phases. Generally, each
phase requires a General Matrix Multiplication (GEMM) for each DNN layer l:

[Forward] zl = Wlhl−1; hl = fl(zl) (1)

[Backward] gl = Diag(f ′
l (zl))W

T
l+1gl+1 (2)

[Update]
∂C

∂Wl
= glh

T
l−1 , (3)

where C is the loss function, and in each layer l, fl is a non-linear activation function, Wl represents
the weights, zl the pre-activations, hl the post-activations and gl =

∂C
∂zl

is the neural gradient.

Nvidia suggested accelerating only the inference phase (i.e., the forward pass in eq. Equation (1)),
while the backward and update passes were kept dense. Noting that the backward phase uses the
transposed (sparse) weight matrix, Hubara et al. (2021) used a transposable mask, i.e., a mask that
can be transposed and still match the N:M fine-grained structure. This enabled the acceleration of
the backward phase. Although Hubara et al. (2021) suggested different methods to find the optimal
transposable mask efficiently, they did not suggest how to accelerate the update phase.

In this work we explore different methods to accelerate the update phase as well using N:M sparsity.
We need to decide in Equation (3) if we want to prune the activations (hl) or the neural gradients (gl).
In order to avoid a mismatch with the forward phase in Equation (1), where the activations are not
pruned, we decided in this work to focus on the neural gradient for the update phase. To that end, we
examine gradients with fine-grained pruning and establish a tensor-level optimality criteria. So far,
N:M sparsity in the weights was obtained by minimizing the Mean Square Error (MSE). We explain
(Section 3) that, while this MSE criterion can also be used for the N:M sparsity in activations (which
can be useful for inference, as we discuss in Section 6), for N:M sparsity in the neural gradients it is
better to use a Minimum Variance Unbiased Estimate (MVUE).

We develop (in Section 4) such MVUE pruning methods for 1:2 and 2:4 sparsity in the neural gradients.
Our experiments (in Section 5) suggest that while the traditional minimum MSE method crashed, our
MVUE method with 1:2 sparsity is usually sufficient for training, and 2:4 sparsity is enough when this
is not the case. Moreover, we suggest to combine several such methods together (fine-grained sparse
neural gradients and sparse transposable fine-grained weights) in order to potentially speed up training
even more and be able to accelerate all training phases with N:M fine-grained sparsity. In Table 1
we present all the N:M fine-grained structured sparsity methods, which part of the network they
accelerate, the relevant optimality criteria we use, and the configurations we use to fully accelerate
training.

In summary, this paper makes the following contributions:

• We developed an unbiased minimum variance optimality criteria for pruning neural gradients with
N:M structured sparsity.

• We propose 1:2 and 2:4 unbiased minimum variance methods to prune the neural gradients and
demonstrate that they achieve small or no degradation, where previous methods failed.

• We combine these methods with previous methods for N:M structured sparsity in the weights,
and observe small or no degradation. Thus, the GEMMs in all training phases can potentially be
accelerated by x2.

2

Published as a conference paper at ICLR 2023

2 RELATED WORKS

Pruning has been extensively investigated in the last few years. Most of the pruning methods focus
on pruning the weights (Evci et al., 2020; Frankle & Carbin, 2018; Janowsky, 1989; Liu et al.,
2018). Unstructured pruning methods achieved impressive sparsity ratio with minimal or no accuracy
degradation, e.g. Renda et al. (2020) achieved over 80% sparsity in ResNet50 over the ImageNet
dataset without sacrificing accuracy. Despite this impressive achievement, the ability of unstructured
pruning methods to actually reduce computational resources of modern hardware is limited (Nvidia,
2020; Mishra et al., 2021).

Structured pruning methods vary between coarse-grained and fine-grained methods. Coarse-grained
methods such as filter-wise or layer-wise pruning (Li et al., 2017; Luo et al., 2017; Wen et al., 2016)
are naturally supported by hardware and software but these methods were only able to maintain
the test accuracy for sparsity ratio significantly lower than 50%. Recently, Nvidia introduced the
Ampere GPU architecture (Nvidia, 2020; Mishra et al., 2021) hardware with software support for
N:M fine-grained structured sparsity. Specifically, they showed that 2:4 fine-grained structured
sparsity, where two of every four contiguous elements are zero, achieves up to x2 improvement in
the GEMM operation. They suggested a three-step scheme to accelerate inference. Later, Zhou
et al. (2021) accelerated their method by avoiding the first two steps. Next, Hubara et al. (2021)
accelerated the remaining training step by suggesting transposable mask, which accelerates both the
forward and backward phases (23 of the training). Stosic & Stosic (2021) further demonstrated the
transposable mask can accelerate training with minimal accuracy degradation on 20 different models
for various tasks and datasets. Pool & Yu (2021) suggested permuting the weight matrices to improve
accuracy of sparse models for inference. Sun et al. (2021) suggested a mixed layer-wise N:M sparsity
schemes to improve the uniform sparsity scheme with similar complexity constraints. Holmes et al.
(2021) suggests a new learning framework to improve the performance of N:M sparse NLP models
on downstream tasks.

Beyond pruning the weights, recent work also focuses on unstructured sparsity of the activations or
neural gradients. Kurtz et al. (2020) suggested a parametrized activations function called Forced-
Activation-Threshold Rectified Linear Unit (FATReLU) which increases the naturally sparse of
ReLU with any accuracy loss. Jaszczur et al. (2021) studied the sparsification of the activations in
Transfomer-based models. "MeProp" (Sun et al., 2017) prunes the K smallest absolute-valued entries
of the neural gradients on the fly, using the top-k algorithm. Aamir Raihan & Aamodt (2020) used
top-k pruning on the copies of weights and activations used in the backpropagation. Ye et al. (2019),
suggested "stochastic pruning", reaching higher sparsity levels on the neural gradient. Chmiel et al.
(2021b) improved their results with a lognormal distribution approximation for the neural gradient
achieving more than 80% sparsity on the neural gradients without accuracy degradation.

In parallel to our work, two additional works suggested to use N:M structured sparsity to be able to
accelerate training: In the first, McDanel et al. (2022) suggested a method to use N:M structured
data pruning for the neural gradients to accelerate the backward phase, which was also accelerated in
Hubara et al. (2021). In Appendix B.3 we show the degradation of applying McDanel et al. (2022)
method also in the update phase. In the second, Weixiang et al. (2022) suggested to use the spatial
similarity in vision models to fix the loss of information after applying the N:M mask. Their mask is
applied on the weights and activations, while keeping the neural gradients in full precison. However,
this spatial similarity can not be exploited in other domains such as natural language processing. As
far as we know, no previous work suggested using N:M fine-grained sparsity to accelerate the update
phase, by pruning the neural gradients.

3 WHICH OPTIMALITY CRITERIA TO USE?

When pruning weights during training, we require a local (tensor level) criterion to select which
weights to prune. A popular criterion is minimizing the Mean Square Error (MSE). For a deterministic
vector a and a random pruning operator θ we can write the MSE of pruning as

MSE[θ(a)] = E||θ(a)− a||2 = E||θ(a)−Eθ(a)||2 + ||E[θ(a)]− a||2 ≜ Var[θ(a)] + Bias2[θ(a)] ,

where E denotes an expectation over the randomness of θ(a).

3

Published as a conference paper at ICLR 2023

Recently, Chmiel et al. (2021a) investigated which optimality criteria to use, but in the context of
quantization (i.e., there θ(a) was a quantizer). They found that, when quantizing the weights or
activations, we should indeed minimize the MSE of the quantization error. In contrast, for the neural
gradients, they found that it is critical to use unbiased quantization (i.e., Bias[θ(a)] = 0) such as
stochastic rounding. Specifically, Chmiel et al. (2021a) showed that unbiasedness in the neural
gradient leads to an unbiased estimator of the weight mini-batch gradient, which enables proper
convergence of SGD, according to standard SGD analysis (e.g. Bottou et al. (2018)). Therefore, we
suggest to apply N:M fine-grained sparsity on the neural gradients using the same optimality criteria
and focus on finding an unbiased estimator. From all the possible unbiased estimators, we will prefer
the one that reduce the MSE. Since we focus on an unbiased estimator (i.e., Bias[θ(a)] = 0), all that
remains is to minimize the variance Var[θ(a)]. Therefore, we conclude that the Minimum Variance
Unbiased Estimator (MVUE) is optimal for the neural gradients.

4 MINIMUM VARIANCE UNBIASED ESTIMATOR FOR N:M SPARSITY

In this section, we propose two unbiased estimators with minimum variance: one for the 1:2 case
and then another to the 2:4 case. Given a block of entries (i.e. a vector) a, each estimator produces
another block θ(a) with the relevant N : M sparsity pattern.

4.1 MINIMUM VARIANCE UNBIASED ESTIMATOR FOR 1:2 SPARSITY

For a block a ≜ [a1, a2], one entry needs to be pruned, so any 1:2 method has the following form

θ (a) =
{
[v1, 0] ,w.p. p
[0, v2] ,w.p. 1− p

. (4)

We wish to design an unbiased estimator for this pruning method, so
E[θ (a)] = [a1, a2] . (5)

To find an unbiased estimator which minimizes the total block variance, using equations 4 and 5 we
calculate the total variance of a block, as the sum of its element variances:

VarB [θ(a)] ≜
∑
i

Var [θi(a)] =
∑
i

(
E
[
θ2i (a)

]
− E [θi(a)]

2
)
= v21p−a21+v22(1−p)−a22 . (6)

Using equations 4, 5, and 6 together we obtain the following expression for the total variance in the
block, as a function of v1 alone (for more information, see Appendix A.1):

VarB [θ(a)] = v1 · a1 − a21 +
a22 · v1
v1 − a1

− a22 . (7)

Since we wish to minimize this quantity, we differentiate equation 7 with respect to v1, and equate to
zero to obtain following unbiased estimator, which has the lowest variance of all unbiased estimators
(full details in Appendix A.1):

θ (a) =

{
[sign(a1) · (|a1|+ |a2|), 0] ,w.p. |a1|

|a1|+|a2|
[0, sign(a2) · (|a1|+ |a2|)] ,w.p. |a2|

|a1|+|a2|
. (8)

Let us calculate the mean MSE of this unbiased method. By substituting into Equation 7 the optimal
solution for v1, the optimal estimator in Equation 8 has a variance of 2a1a2. Therefore, since the
method is unbiased we obtain MSE = Bias2 + Var = 0 + 2a1a2 = 2a1a2 . In Figure 1 we present
an illustration of the proposed MVUE 1:2. Table 2 compares different methods for 1:2 structured
pruning of the neural gradients, on ResNet18 Cifar10 dataset. Notice, the proposed MVUE method
has the best accuracy, although it does not minimize the MSE, as done by the ‘greedy’ method.

4.2 OPTIMALITY CRITERIA FOR 2:4

We now extend the results from the previous section to 2:4 pruning. With a block a ≜ [a1, a2, a3, a4],
we construct an unbiased 2:4 block pruning method θ(a) with minimum variance. First, we note the
method must satisfy the following condition

θi(a) =
ai
pi

with probability pi (9)

4

Published as a conference paper at ICLR 2023

Table 2: 1:2 sparsity on the neural gradients of ResNet18 cifar10 dataset. ‘Greedy’ is the traditional
minimum MSE method of choosing the smallest element for each block. ‘Biased’ refers to the case
[v1, v2] = [a1, a2] in Equation (4) for p = |a1|/|a1|+ |a2|. ‘Uniform’ refers to uniform sample,
i.e. p = 0.5, [v1, v2] = [a1, a2]. ’Unbiased’ refers to unbiased uniform sampling, i.e p = 0.5,
[v1, v2] = [2a1, 2a2]. ‘MVUE’ refers to the minimimum variance unbiased estimator in Equation (8).

Method Baseline Greedy Biased Uniform Unbiased MVUE (Ours)

Accuracy (%) 90.02 85.5 71.8 85.8 87.2 89.8

0.00 0.25 0.50 0.75 1.00
a1

0.00

0.25

0.50

0.75

1.00

a 2

Greedy

(a)

0.00 0.25 0.50 0.75 1.00
a2

0.00

0.25

0.50

0.75

1.00
Unbiased

(b)

0.00 0.25 0.50 0.75 1.00
a2

0.00

0.25

0.50

0.75

1.00
MVUE (Ours)

(c)

Figure 1: Fine-grained 1:2 Sparsity for blocks located on the first quarter of the unit circle. The
blocks [a1, a2] (represented by red dots) are sampled 100 times each, and then averaged (green dots)
using one of three methods: (a) greedy is the traditional method that generates the block [0, a2] if
a1 ≤ a2, or [a1, 0] otherwise. In this method, all 100 samples are the same for each block, resulting
in a biased average. (b) unbiased - each block [a1, a2] is equally likely to be pruned to [2a1, 0] or
[0, 2a2]. Although the average of the 100 samples is unbiased, it does not have minimum variance.
(c) Our unbiased method with minimum variance (Equation 8), has a smaller spread here than in (b).

since then, and only then, we get an unbiased estimate:

E[θi(a)] =
ai
pi
· pi + 0 · (1− pi) = ai, ,∀i ∈ {1, 2, 3, 4} . (10)

In this case, the variance of each element in the pruned block is:

Var [θi(a)] = E
[
θ2i (a)

]
− E [θi(a)]

2
=

(
ai
pi

)2

· pi + 02 · (1− pi)− a2 =
a2i
pi
− a2i . (11)

Then, the total variance in the pruned block is

VarB [θ(a)] ≜
∑
i

Var [θi (a)] =
∑
i

(
a2i
pi
− a2i

)
. (12)

We wish to minimize this quantity under the following equality and inequality constraints∑
i

pi − 2 = 0 ; pi − 1 ≤ 0 ,∀i ∈ {1, 2, 3, 4} . (13)

Therefore, to find pi, we need to apply the KKT conditions on the following Lagrangian:

L =
∑
j

(
a2j
pj
− a2j

)
+
∑
j

λj(pj − 1) + µ
∑
j

(pj − 2) . (14)

Differentiating the Lagrangian with respect to pi, we obtain

∂L

∂pi
= −a2i

p2i
+ λi + µ = 0 ,∀i ∈ {1, 2, 3, 4} , (15)

5

Published as a conference paper at ICLR 2023

where, for each i, the constant λi could be zero or positive. Using Equation 15 for the case λi = 0
we get that pi = ai/

√
µ. This, coupled with the normalization constraint (

∑
i pi = 2) implies that

pi =
2ai∑
j aj

,∀i ∈ {1, 2, 3, 4} . (16)

Turning to the case where λi > 0 for some specific i, we have pi = 1 because of the complementary
slackness condition in KKT. The normalization constraint (

∑
j pj = 2) therefore guarantees that∑

k ̸=i pk = 1. This implies all other pk (for k ̸= i) are in the range [0, 1], so the constraint pk ≤ 1 is
slack, and therefore λk = 0 for every k ̸= i. Therefore, from equation 15 we have that

∂L

∂pk
= −a2k

p2k
+ µ = 0⇒ pk =

ak√
µ

, ∀k ̸= i (17)

Since
∑

k ̸=i pk = 1 we conclude that the optimality criterion is

∃i : pi = 1 and pk =
ak∑
k ̸=i ai

, ∀k ̸= i (18)

Thus, a 2:4 fine-grained pruning method can be optimal only if it always satisfies either Equation
18 or 16. We provide such a method in Appendix A.2. This method allows us to sample pairs of
elements for a 2:4 policy that always satisfies one of the criteria stated in Equations 18 and 16.

4.3 A COMPARISON OF THE OPTIMAL 1:2 AND OPTIMAL 2:4 METHODS

Given a block a = [a1, a2, a3, a4], we can either apply optimal 2:4 method directly on that block
θ2:4(a) or we can break it into two sub-blocks [a1, a2] and [a3, a4], and apply optimal 1:2 method
twice i.e., θ1:2([a1, a2]) and θ1:2([a3, a4]). We can show (proof in Appendix A.3) that the former
alternative is preferable and introduces less variance, i.e.,

Var[θ2:4(a)] ≤ Var[θ1:2([a1, a2])] + Var[θ1:2([a3, a4])] (19)

4.4 APPROXIMATELY OPTIMAL 2:4 METHOD

1.0

1.2

1.4

1.6

1.8

2.0

Va
ria

nc
e

ra
tio

Figure 2: Ratio between the variance (Equa-
tion (12)) of the approx-MVUE 2:4 and MVUE 2:4
when scanning (step size 0.005 all possible values
of a block [a1, a2, a3, 1], where 0 ≤ a1, a2, a3 ≤
1. Notice that ratio is bounded below 2. The
maximum is achieved near the left edge, when
a4≫max(a1, a2, a3).

As shown in Table 3, in terms of time complex-
ity, the optimal 2:4 method might not be fea-
sible. Using insights gained from the optimal
solution, we now present a simple near-optimal
2:4 method called approx-MVUE. The idea is
simple. We first remove from the block one
element ai, where i is chosen with probability

pi =
ai

a1 + a2 + a3 + a4
.

In order to select a second element, we repeat the
same procedure for the three remaining elements
with probability

pj =
aj

a1 + a2 + a3 + a4 − ai
.

Thus, each element is chosen with probability:

pi =
|ai|∑
j |aj |

+
∑
k ̸=i

|ak|∑
j |aj |

|ai|∑
j ̸=k |aj |

(20)

The effect of this approximated method on the variance of the estimator is presented in Figure 2 by
the ratio of the variance between the two methods:

Var(θapprox2:4)

Var(θopt2:4)
,

6

Published as a conference paper at ICLR 2023

where both variances are calculated analytically using Equation (12). Without loss of generality
for a block [a1, a2, a3, a4] where a1 ≤ a2 ≤ a3 ≤ a4, we set a4 = 1 and scan with small steps all
combinations of a1, a2, a3. The scan suggests the variance ratio is bounded below two1, and therefore
the approximate method is a 2-approximation of the old method. As can be seen in Table 3 the
approximated method reduces the complexity time of MVUE 2:4 by ∼ 70%, in our non-optimized
implementation. Moreover, in Appendix B we give additional details on this experiment and compare
the number of operations required for finding MVUE mask with the computation gain achieved.
Based on that we derive a simple rule to decide for each layer when neural gradient pruning is
efficient.

5 EXPERIMENTS

Table 3: Overhead of different algorithms for find-
ing the required masks: ratio of their running time
over regular training (ResNet50). Notice the over-
head reduction in the Approx-MVUE 2:4 in com-
parison to MVUE 2:4. All experiments were run
in FP32 without sparse-tensor cores and in a non-
optimized implementation.

Method Overhead (%)

MVUE 1:2 1 %
MVUE 2:4 95 %
Approx-MVUE 2:4 3 %

In this section, we demonstrate the effective-
ness of our proposed method over several vision
and language models. First we show the ef-
fect of the proposed method for the fine-grained
N:M structured sparsity on the neural gradi-
ents. Then we combine this method with the
fine-grained N:M transposable-weights method
(Hubara et al., 2021), allowing the accelera-
tion with N:M structured sparsity in all training
GEMM. Moreover, we show the combination of
N:M structured sparsity in all training GEMM
with 8-bit quantization achieving non or small
accuracy degradation. Experimental details ap-
pear in Appendix A.4.

Notice that, while the Nvidia A100 tensor core
supports sparse GEMM operation with 2:4 struc-
tured pruning, their software only supports it for inference (weights pruning) and not for training.
Since there is currently no support for our method in any AI accelerator, we cannot show an actual
training time reduction. Therefore, in Appendix B, we attempt to estimate when neural gradient
pruning is efficient by comparing the number of operations required for finding MVUE mask with
the computation gain achieved. We note, that this is the common practice in the neural network
compression literature, where the algorithms often appear before the hardware that can support them.
For example, though we can find FP8 training publications since 2019 (Sun et al., 2019), only recently
did Nvidia announce their first GPU that supports the FP8 format (H100).

N:M structured sparsity on the neural gradients In Table 4 we show the results of applying the
suggested N:M structured sparsity for various models and datasets. The 1:2 results refer to the MVUE
method (Section 4.1) while the 2:4 results refer to the approximate-MVUE method (Section 4.4).
Notice the comparison with the traditional greedy method of keeping the largest elements in each
block. While the greedy method has a very significant degradation, the proposed method achieved
small or no degradation with the proposed methods.

Accelerating all training phases In Table 5 we showed the results of the combination between
the proposed N:M MVUE for the neural gradients and the N:M transposable weights presented in
Hubara et al. (2021). The combination between both methods allows to be able to accelerate with
N:M structured sparsity all training GEMM operations with minimal or no accuracy degradation.
Moreover, in Table 6 we show the combination of N:M sparsity in all training GEMM with 8-bit
quantization. For the quantization we used INT8 (Choi et al., 2018a) in the weights and activations
and FP8 (Chmiel et al., 2021b) in the neural gradients.

1The largest values are near the left edge of the scan, which represents the limit where a4 ≫ max(a1, a2, a3).
Near this edge, we additionally checked with very small (logarithmically spaced) step sizes that the variance
ratio is bounded below two.

7

Published as a conference paper at ICLR 2023

Table 4: Effect of applying the proposed MVUE 1:2 and approx-MVUE 2:4 on the neural gradients
for different models and datasets. Notice that in most cases MVUE 1:2 achieved full precision
accuracy and when it did not, the approx-MVUE 2:4 method closed the gap. ‘Greedy’ refers to the
traditional method of keeping the N largest elements in each block (minimum MSE) which suffers
from a significant degradation.

Model Dataset FP32 MVUE 1:2 Approx-2:4 Greedy

ResNet18 ImageNet 70.6 % 70.58 % 70.6 % 48.2 %
ResNet50 ImageNet 77.2 % 76.4 % 77.12 % 59.3 %
ResNext50 ImageNet 77.61 % 76.05 % 77.55 % 60.7 %
DenseNet-121 ImageNet 74.4 % 74.1 % 74.4 % 70.3 %
ViT-B16 Cifar10 98.8 % 98.4 % 98.7 % 96.7 %

Bert finetune Squad 79.38 (EM) 78.55 79.15 66.2
87.03 (F1) 86.41 86.82 70.2

Bert pretrain Wiki 0.72 (MLM) 0.718 0.72 0.68
Transformer WMT En-De 27.5 (BLUE) 27.32 27.44 25.55

Table 5: Effect of applying N:M structured sparsity in all training phases. We combine the suggested
MVUE 1:2 and approx-MVUE 2:4 for the neural gradients in the update phase with the transposable
weights of Hubara et al. (2021) in the forward and backward phases.

Model Update (G) Forward (W) Backward (WT) Accuracy

ResNet18

FP32 FP32 FP32 70.6 %
FP32 2:4 2:4 70.5 %

MVUE 1:2 2:4 2:4 70.4 %
Approx-2:4 2:4 2:4 70.6 %

ResNet50

FP32 FP32 FP32 77.2 %
FP32 2:4 2:4 77.1 %

MVUE 1:2 2:4 2:4 75.6 %
Approx-2:4 2:4 2:4 77.1 %

ResNext50

FP32 FP32 FP32 77.61 %
FP32 2:4 2:4 77.4 %

MVUE 1:2 2:4 2:4 75.88 %
Approx-2:4 2:4 2:4 77.37 %

Transformer

FP32 FP32 FP32 27.5 (BLUE)
FP32 2:4 2:4 27.5

MVUE 1:2 2:4 2:4 27.19
Approx-2:4 2:4 2:4 27.35

Table 6: Effect of the combination of N:M structured sparsity in all training phases with 8 bit
quantization on ResNet18/50 in ImageNet datasets. For the quantization we used INT8 (Choi et al.,
2018a) in the weights and activations and FP8 (Chmiel et al., 2021b) in the neural gradients.

Model Update (G) Forward (W) Backward (WT) Accuracy

ResNet18 FP32 FP32 FP32 70.6 %
Approx-2:4 + 8-bit 2:4 + 8-bit 2:4 + 8-bit 70.3 %

ResNet50 FP32 FP32 FP32 77.2 %
Approx-2:4 + 8-bit 2:4 + 8-bit 2:4 + 8-bit 76.48 %

6 DISCUSSION

Conclusions In this work, we studied the effect of N:M structured sparsity on the neural gradients
to accelerate the update phase. Based on a previous work (Chmiel et al., 2021b), which showed the
importance of unbiasedness of the neural gradients in quantization, we suggest an unbiased minimum
variance method for pruning the neural gradient using 1:2 and 2:4 structured sparsity. Since the
optimal 2:4 method may not be feasible in term of complexity, we suggest an approximate method

8

Published as a conference paper at ICLR 2023

which increases the variance only by a factor of 2 (making it a 2-approximation). We showed that
our methods achieved small or no degradation while the traditional greedy method completely failed.
Moreover, we combine our method with a previous method for transposable weights (Hubara et al.,
2021). This enables a potential acceleration by x2 of all GEMMs in the training process using only
N:M fine grained sparsity. In the following paragraphs we will discuss additional aspects of N:M
structured sparsity acceleration including the benefits of pruning both matrices involved in a single
matrix multiplication and the potential improvement in the inference phase (Equation (1)).

Should we prune both matrices involved in the matrix multiplication? So far, fine-grained
sparsity papers focused on pruning only one matrix in each phase (Nvidia, 2020; Zhou et al., 2021;
Hubara et al., 2021), achieving up to x2 acceleration in the corresponding phase. Since pruning the
weights is the most common approach, an interesting question is what would happen if we prune
two matrices in one GEMM, such as both the weight and activation matrices in the forward phase?
Can this accelerate the computation? Next, we explain why pruning both matrices cannot further
accelerate computation (i.e., by x4) in modern accelerators, but that it reduces the required bandwidth
and thus simplify the hardware design.
We start by analyzing what is the expected acceleration when both matrices (that are involved in the
matrix multiplication) follow N:M fine-grained sparsity. Assuming we have two N:M fine-grained
blocks bW and bH with masks MbW and MbH , the number of Multiply and Accumulate operations
(MACs) required for multiplying and accumulating the blocks may vary from zero to N. For example,
for 2:4 fine-grained sparsity, there are

(
4
2

)
= 6 possible mask configurations. Thus, the expected

number of MACs in a block, assuming uniform distribution on the non-zeros in the blocks, would be:

E[#MACs(bH,bW)] = E [E[#MACs(bH,bW)|MbH
]] =

1

6
· 0 + 1

6
· 2 + 4

6
· 1 = 1 (21)

Thus on average, for each block we get N/2 MACs. While some architectures (such as CPU)
can avoid all unnecessary multiplications, architectures with a systolic array at the core of their
matrix multiplication engine, as modern hardware accelerators, must always assume the worst case.
Therefore, for these types of architectures, we cannot achieve an additional compute reduction by
pruning both matrices involved in the matrix multiplication. Yet, the bandwidth reduction for both
matrices is the same. This property helps support sparse and dense matrix multiplication without
creating dedicated hardware which has twice the bandwidth to one of the matrices involve in the
GEMM. It is specifically important when targeting higher sparsity. For instance, if only the activations
obey 1:4 fine-grained structure then the weights bandwidth is x4 higher than the activations bandwidth
as for every single block we bring one activations and four weights to the engine. In summary, pruning
both matrices cannot accelerate modern accelerator computation, but reduces the required bandwidth,
and thus simplifies the hardware design. Next, we explain how to use such a scheme for inference
acceleration by pruning both weights and activations.

Inference acceleration with activation pruning Can we accelerate the network using N:M sparsity
on additional tensors? So far, fine-grained sparsity was applied in the forward pass (Equation (1))
only to the weight matrix. Next, we first show the effect of pruning the activations and then we
combine both weights and activations pruning to improve the inference phase.
In Appendix A.5 we demonstrate that one can also accelerate inference by applying N:M sparsity on
the activations. Specifically, in Appendix Table 7 we experimented with greedy N:M fine-grained
sparse activations on ResNet18 and ResNet50 over ImageNet dataset, wherein for each block of
size M we keep the M-N larger elements. Note that in CNNs the activations memory footprint is
much larger than the weights footprint (especially for the first set of layers), so in term of memory
reduction activations pruning is more effective than weights pruning. Throughout our experiments,
we did not change the training regime and pruned the activations from scratch. As can be seen,
applying only fine-grained sparse activations results in notable accuracy degradation. However, a
simple fix is to apply ReLU before the fine-grained sparse activations; this results in on-par accuracy
for both ResNet18 and ResNet50. In Appendix Table 8 we experimented with fine-grained N:M
structured sparsity both weights and activations. To compete with the latest inference acceleration
results based on quantization-aware techniques, we further quantize the weights and activation to 4-bit
and show better results in terms of bit-operations (BOPS) (Wang et al., 2020) to accuracy than 2-bits
inference methods. Notably, While using 2-bit for both weights and activations has the potential of
x4 acceleration, in modern hardware it would probably be only up to x2 as is simplifies the design
and reduces the die area, see Nvi where 16bit GEMM has 800 TFLOPS and 8bit GEMM has 1600
TFLOPS). Thus we argue that our 4-bit with sparse weights and activations has a similar potential.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

The research of DS was Funded by the European Union (ERC, A-B-C-Deep, 101039436). Views
and opinions expressed are however those of the author only and do not necessarily reflect those of
the European Union or the European Research Council Executive Agency (ERCEA). Neither the
European Union nor the granting authority can be held responsible for them. DS also acknowledges
the support of Schmidt Career Advancement Chair in AI.

REFERENCES

Greaphcore ipu. URL https://docs.graphcore.ai/projects/
tensorflow1-user-guide/en/latest/tensorflow/rand_and_fp.html.

Habana gaudi. URL https://docs.habana.ai/en/latest/TPC/TPC_C_Language_
Spec/Conversions_and_Type_Casting.html#rounding-modes.

Nvidia h100. URL https://developer.nvidia.com/blog/
nvidia-hopper-architecture-in-depth/.

Tesla dojo technology. URL https://tesla-cdn.thron.com/
static/SBY4B9_tesla-dojo-technology_OPNZ0M.pdf?xseo=
&response-content-disposition=inline%3Bfilename%3D%
22tesla-dojo-technology.pdf%22.

Md Aamir Raihan and Tor M. Aamodt. Sparse weight activation training. arXiv preprint
arXiv:2001.01969, 2020. URL http://arxiv.org/abs/2001.01969.

Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods for 8-bit training of
neural networks. In NeurIPS, 2018.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

Brian Chmiel, Ron Banner, Elad Hoffer, Hilla Ben Yaacov, and Daniel Soudry. Logarithmic unbiased
quantization: Simple 4-bit training in deep learning. ArXiv, abs/2112.10769, 2021a.

Brian Chmiel, Liad Ben-Uri, Moran Shkolnik, E. Hoffer, Ron Banner, and Daniel Soudry. Neural
gradients are lognormally distributed: understanding sparse and quantized training. In ICLR,
2021b.

Jungwook Choi, P. Chuang, Zhuo Wang, Swagath Venkataramani, V. Srinivasan, and K. Gopalakrish-
nan. Bridging the accuracy gap for 2-bit quantized neural networks (qnn). ArXiv, abs/1807.06964,
2018a.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, P. Chuang, V. Srinivasan, and K. Gopalakrish-
nan. Pact: Parameterized clipping activation for quantized neural networks. ArXiv, abs/1805.06085,
2018b.

Matteo Croci, Massimiliano Fasi, Nicholas Higham, Theo Mary, and Mantas Mikaitis. Stochastic
rounding: implementation, error analysis and applications. Royal Society Open Science, 9, 03
2022. doi: 10.1098/rsos.211631.

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmen-
dra S Modha. Learned step size quantization. arXiv preprint arXiv:1902.08153, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In ICLR, 2018.

10

https://docs.graphcore.ai/projects/tensorflow1-user-guide/en/latest/tensorflow/rand_and_fp.html
https://docs.graphcore.ai/projects/tensorflow1-user-guide/en/latest/tensorflow/rand_and_fp.html
https://docs.habana.ai/en/latest/TPC/TPC_C_Language_Spec/Conversions_and_Type_Casting.html#rounding-modes
https://docs.habana.ai/en/latest/TPC/TPC_C_Language_Spec/Conversions_and_Type_Casting.html#rounding-modes
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://tesla-cdn.thron.com/static/SBY4B9_tesla-dojo-technology_OPNZ0M.pdf?xseo=&response-content-disposition=inline%3Bfilename%3D%22tesla-dojo-technology.pdf%22
https://tesla-cdn.thron.com/static/SBY4B9_tesla-dojo-technology_OPNZ0M.pdf?xseo=&response-content-disposition=inline%3Bfilename%3D%22tesla-dojo-technology.pdf%22
https://tesla-cdn.thron.com/static/SBY4B9_tesla-dojo-technology_OPNZ0M.pdf?xseo=&response-content-disposition=inline%3Bfilename%3D%22tesla-dojo-technology.pdf%22
https://tesla-cdn.thron.com/static/SBY4B9_tesla-dojo-technology_OPNZ0M.pdf?xseo=&response-content-disposition=inline%3Bfilename%3D%22tesla-dojo-technology.pdf%22
http://arxiv.org/abs/2001.01969

Published as a conference paper at ICLR 2023

Connor Holmes, Minjia Zhang, Yuxiong He, and Bo Wu. Nxmtransformer: Semi-structured sparsifi-
cation for natural language understanding via admm. ArXiv, abs/2110.15766, 2021.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14.
IEEE, 2014.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Seffi Naor, and Daniel Soudry. Accelerated
sparse neural training: A provable and efficient method to find n: M transposable masks. In
NeurIPS, 2021.

S. A. Janowsky. Pruning versus clipping in neural networks. Physical Review A, 39(12):6600–6603,
1989. URL https://link.aps.org/doi/10.1103/PhysRevA.39.6600.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mohiuddin, Lukasz Kaiser, Wojciech Gajewski,
Henryk Michalewski, and Jonni Kanerva. Sparse is enough in scaling transformers. 2021.

Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun Kwak, Sung Ju
Hwang, and Changkyu Choi. Learning to quantize deep networks by optimizing quantization
intervals with task loss. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4350–4359, 2019.

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin, William
Leiserson, Sage Moore, Nir Shavit, and Dan Alistarh. Inducing and exploiting activation sparsity
for fast inference on deep neural networks. In Hal Daumé III and Aarti Singh (eds.), Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 5533–5543. PMLR, 13–18 Jul 2020. URL https://proceedings.
mlr.press/v119/kurtz20a.html.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander
Madry. ffcv. https://github.com/libffcv/ffcv/, 2022. commit xxxxxxx.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In ICLR, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

Jian-Hao Luo, Jianxin Wu, and W. Lin. Thinet: A filter level pruning method for deep neural network
compression. 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5068–5076,
2017.

Stefan Mach, Fabian Schuiki, Florian Zaruba, and Luca Benini. Fpnew: An open-source multi-
format floating-point unit architecture for energy-proportional transprecision computing. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 29(4):774–787, 2020.

Bradley McDanel, Helia Dinh, and J. R. Magallanes. Accelerating dnn training with structured data
gradient pruning. ArXiv, abs/2202.00774, 2022.

Asit K. Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. ArXiv,
abs/2104.08378, 2021.

Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alex M. Bronstein,
and Avi Mendelson. Loss aware post-training quantization. arXiv preprint arXiv:1911.07190,
2019. URL http://arxiv.org/abs/1911.07190.

Nvidia. a100 tensor core gpu architecture. 2020. URL http://https:
//www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
nvidia-ampere-architecture-whitepaper.pdf.

Jeff Pool and Chong Yu. Channel permutations for n:m sparsity. In NeurIPS, 2021.

11

https://link.aps.org/doi/10.1103/PhysRevA.39.6600
https://proceedings.mlr.press/v119/kurtz20a.html
https://proceedings.mlr.press/v119/kurtz20a.html
https://github.com/libffcv/ffcv/
http://arxiv.org/abs/1911.07190
http://https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
http://https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
http://https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

Published as a conference paper at ICLR 2023

A. Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. ArXiv, abs/2003.02389, 2020.

Darko Stosic and Dusan Stosic. Search spaces for neural model training. ArXiv, abs/2105.12920,
2021.

Wei Sun, Aojun Zhou, Sander Stuijk, Rob G. J. Wijnhoven, Andrew Nelson, Hongsheng Li, and Henk
Corporaal. Dominosearch: Find layer-wise fine-grained n:m sparse schemes from dense neural
networks. In NeurIPS, 2021. URL https://openreview.net/forum?id=IGrC6koW_
g.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalakshmi
Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit floating point
(hfp8) training and inference for deep neural networks. In NeurIPS, 2019.

Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meprop: Sparsified back propagation
for accelerated deep learning with reduced overfitting. In ICML, 2017.

Ying Wang, Yadong Lu, and Tijmen Blankevoort. Differentiable joint pruning and quantization for
hardware efficiency. In European Conference on Computer Vision, pp. 259–277. Springer, 2020.

Xu Weixiang, Xiangyu He, Ke Cheng, Peisong Wang, and Jian Cheng. Towards fully sparse training:
Information restoration with spatial similarity. In Association for the Advancement of Artificial
Intelligence (AAAI), 2022.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In In Advances in neural information processing systems, pp. 2074–2082,
2016.

Xucheng Ye, P. Dai, J. Luo, X. Guo, Y. Qi, Jianlei Yang, and Yiran Chen. Accelerating cnn
training by pruning activation gradients. arXiv preprint arXiv:1908.00173, 2019. URL http:
//arxiv.org/abs/1908.00173.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and
Hongsheng Li. Learning n:m fine-grained structures sparse neural networks from scratch. In ICLR,
2021.

12

https://openreview.net/forum?id=IGrC6koW_g
https://openreview.net/forum?id=IGrC6koW_g
http://arxiv.org/abs/1908.00173
http://arxiv.org/abs/1908.00173

	Introduction
	Related works
	Which optimality criteria to use?
	Minimum variance unbiased estimator for N:M Sparsity
	Minimum variance unbiased estimator for 1:2 sparsity
	Optimality criteria for 2:4
	A comparison of the optimal 1:2 and optimal 2:4 methods
	Approximately optimal 2:4 method

	Experiments
	Discussion

