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Abstract
Adaptive gradient optimizers like Adam(W) are
the default training algorithms for many deep
learning architectures, such as transformers. Their
diagonal preconditioner is based on the gradi-
ent outer product which is incorporated into
the parameter update via a square root. While
these methods are often motivated as approximate
second-order methods, the square root represents
a fundamental difference. In this work, we in-
vestigate how the behavior of adaptive methods
changes when we remove the root, i.e. strengthen
their second-order motivation. Surprisingly, we
find that such square-root-free adaptive methods
close the generalization gap to SGD on convolu-
tional architectures, while maintaining their root-
based counterpart’s performance on transform-
ers. The second-order perspective also has practi-
cal benefits for the development of non-diagonal
adaptive methods through the concept of precondi-
tioner invariance. In contrast to root-based meth-
ods like Shampoo, the root-free counterparts do
not require numerically unstable matrix root de-
compositions and inversions, thus work well in
half precision. Our findings provide new insights
into the development of adaptive methods and
raise important questions regarding the currently
overlooked role of adaptivity for their success.

1. Introduction
Adaptive gradient-based methods like Adam (Kingma & Ba,
2015) play a significant role in training modern deep learn-
ing models such as transformers. A better understanding
of these methods allows us to address their shortcomings
and develop new adaptive methods to reduce training time
and improve performance. This is essential as deep learning
models become increasingly large and complex to train.
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Despite their success on architectures like transformers,
adaptive methods tend to generalize worse than stochas-
tic gradient descent (SGD) on convolutional architectures
(Wilson et al., 2017). Our understanding of this discrepancy
is limited. Balles & Hennig (2018) dissect Adam into two
concepts, sign descent and adaptive step sizes, and hypothe-
size that the connection to sign descent causes the gap with
SGD on CNNs. Similarly, Kunstner et al. (2023); Chen
et al. (2023) argue that adaptive methods outperform SGD
on transformers due to their connection to sign descent.

It is challenging to isolate the sign descent component of
adaptive methods like Adam or RMSProp (Tieleman & Hin-
ton, 2012), as they typically introduce a square root to the
preconditioner, which conflates the sign and adaptivity as-
pects and hinders our comprehension of the role of the
adaptivity. The root is motivated by reports of improved
performance (Tieleman & Hinton, 2012) and to stabilize
convergence near the optimum (Kingma & Ba, 2015; Kun-
stner et al., 2019; Martens, 2020). However, it conflicts
with the motivation of adaptive methods as approximate
second-order methods based on the empirical Fisher, which
is also commonly mentioned in works introducing adaptive
methods (e.g. Kingma & Ba, 2015).

Here, we investigate how the behavior of adaptive methods
changes when we remove the root. Our idea is to strengthen
the often-mentioned link to second-order methods that is
weakened by the root. Conceptually, this cleanly disen-
tangles the aforementioned adaptivity aspect from the sign
aspect. Practically, it provides an opportunity to revisit the
root’s role in the context of modern training strategies, like
non-constant learning rate schedules (Loshchilov & Hut-
ter, 2016) and hyperparameter tuning schemes (Choi et al.,
2019), that differ from the original pipelines in which the
square root was introduced. Computationally, removing the
root is beneficial for bridging the computation gap (Figure 3)
between diagonal and non-diagonal matrix adaptive meth-
ods and lowering the per-iteration cost of matrix methods
by removing matrix root decompositions that need to be
carried out in high precision to avoid numerical instabilities
(Gupta et al., 2018; Anil et al., 2020).

There are some challenges to establishing a rigorous second-
order perspective on adaptive methods; one cannot just re-
move the root. We overcome those challenges and make the
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Figure 1. In modern (pre-)training setups (learning rate schedule, random search using 200 runs), square-root-free (RF) adaptive methods
close the generalization gap between their root-based counterparts and SGD on CNNs (CIFAR-100), while maintaining their performance
on vision transformers (ImageWoof10). They work well on other problems, like training a 3-layer LSTM, and a GNN with attention (Zhang
et al., 2022). Experimental setup, performance measurements, and fine-tuning experiments on vision models are described in Appendix J.

following contributions:

• We establish a rigorous second-order view of adaptive
methods: we remove the root (Sec. 2), show how to
interpret the gradient outer product as a new empirical
Fisher variant (Sec. 3), adjust the preconditioner initial-
ization (Sec. 4), and emphasize the importance of incor-
porating mini-batch curvature approximations (e.g., the
outer products) from previous iterations (Secs. 2,3,4).

• Empirically, we show that—surprisingly—removing
the root not only closes the generalization gap between
adaptive methods and SGD on convolutional neural
networks, but maintains the performance of square-
root-based methods on vision transformers (Sec. 2).

• Conceptually, we introduce preconditioner invariance
(Sec. 4) through the second-order view to incorporate
arbitrary curvature approximations, remove inverses
in root-free matrix adaptive methods, and bridge the
computation gap between diagonal and matrix adap-
tive methods by developing new inverse- and root-free
matrix methods that can train in low precision (Fig. 3).

• Consequently, we propose root-free RMSProp (Fig. 4)
and root- and inverse-free Shampoo (Fig. 5) which are
invariant to scaling the loss and affine reparametriza-
tion (Sec. 3), and work well on a variety of models
(CNNs, LSTMs, GNNs, ViTs, and VMambas).

2. First-order View of Adaptive Methods
For many deep learning tasks, training a neural network
(NN) means solving an unconstrained optimization problem.
For simplicity, consider a supervised learning task with a set
of N data points {yi,xi}Ni=1, where yi and xi represent a
label and a feature vector. Given a NN f(·;µ) with learnable
weights µ, the optimization problem is

minµ ℓ(µ) :=
∑N

i=1 c(yi, f(xi;µ)) , (1)

where ŷi := f(xi;µ) is a predicted label of a feature vector
xi and c(yi, ŷi) is a loss function that measures the discrep-
ancy between a true (yi) and predicted (ŷi) label.

To minimize (1), we can use adaptive gradient methods,
which use the following preconditioned gradient update

µ← µ− β1S
−1∇µℓ(µ) , (2)

where β1 is an (initial) learning rate, ∇µℓ(µ) is a gradient
vector, and S is a preconditioning matrix. When S is the
Hessian and β1 = 1, this becomes Newton’s method. In
adaptive gradient methods, the preconditioning matrix S is
estimated by using only gradient information.

To estimate the preconditioner S, many adaptive methods
employ an outer product H := gg⊤ of a gradient vector
g that is usually the mini-batch gradient of Equation (1):
Diagonal adaptive methods such as RMSProp (Tieleman
& Hinton, 2012), diag-AdaGrad (Duchi et al., 2011), and
Adam (Kingma & Ba, 2015), only use the diagonal entries
diag(H) = g ⊙ g where ⊙ denotes element-wise multi-
plication. Full matrix adaptive methods like full-AdaGrad
(Duchi et al., 2011) and its variants (Agarwal et al., 2019)
use the gradient outer product H. Structured matrix methods
like Shampoo (Gupta et al., 2018) use a Kronecker-factored
approximation of the gradient outer product H.

All of these methods apply a square root to the precondi-
tioner in their update, and we will refer to them as square-
root-based methods. For example, RMSProp updates its
preconditioner S = diag(

√
ŝ) and parameters according to

ŝ← (1− β2)ŝ+ β2h , µ← µ− β1S
−1g = µ− β1

g√
ŝ
, (3)

where h := diag(H), β1 is the learning rate, and β2 is the
weight to incorporate new outer products. In full-matrix
cases, adding the root requires matrix root decomposition.
For example, full-AdaGrad computes the matrix root for its
preconditioner S = Ŝ

1/2
and updates parameters as

Ŝ← Ŝ+ β2gg
⊤ , µ← µ− β1S

−1g . (4)
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Figure 2. Comparison of root-based versus square-root-free (RF) methods in the original (outdated) training setup the root was introduced
in (see Appendix J for details). Adaptive methods with the root work better than their root-free counterparts when using (1) a constant
learning rate schedule, (2) default zero initialization for the preconditioner, (3) default scaling for an averaged mini-batch loss.

2.1. Benefits and Results of Removing the Square Root
It is unclear how exactly the square root emerged in adap-
tive methods. Here, we hypothesize how it got introduced,
critically assess why it may be desirable to remove, and
highlight connections to our experimental results. We find
that few works study square-root-free adaptive methods, and
that benefits of removing the root are often overlooked. Our
work fills in this gap, which we think is crucial to better un-
derstand these methods and our empirical results underline
the great potential of square-root-free adaptive methods.

Empirical performance & training schemes The most
important motivation in favor of the square root is the strong
empirical performance of square-root-based methods that
has been demonstrated in various works and rightfully es-
tablished them as state-of-the-art for training transform-
ers. However, the context in which the root was introduced
significantly differed from the training schemes that are
used nowadays. Original works such as Tieleman & Hin-
ton (2012) show that including the square root improves
the performance of adaptive methods when only tuning a
learning rate that is fixed throughout training (Bottou et al.,
2018). Beyond this original setting, square-root-based meth-
ods have demonstrated great capabilities to train a wide
range of NNs, e.g. when using a non-constant learning rate
(Loshchilov & Hutter, 2016) and random search (Bergstra &
Bengio, 2012; Choi et al., 2019) to tune all available hyper-
parameters. We wonder whether the square root, while
necessary to achieve good performance in outdated training
schemes, might not be required in contemporary schemes.
To investigate this hypothesis, we conducted an experiment
that compares square-root-based and square-root-free meth-
ods using the original training scheme in which the square
root was introduced (Figure 2). Indeed, we find that the
square root is beneficial in the original context.

Interpretability & generalization Square-root-based
methods are state-of-the-art for training attention-based
models (Zhang et al., 2020), but exhibit a generalization
gap with SGD on CNNs (Wilson et al., 2017). The square
root complicates the understanding of this phenomenon

since adding the root conflates sign descent and adaptivity.
The sign-based component is often considered as a salient
feature of adaptive methods while adaptivity is not. For
example, recent studies attribute the superior performance
of adaptive methods over SGD on attention models to their
sign-based update rules (Kunstner et al., 2023; Chen et al.,
2023). On the other hand, Balles & Hennig (2018) hypoth-
esize that sign descent may cause poor generalization of
Adam on CNNs. However, they neither consider the direct
effect of the square root nor remove it from an existing
method. Therefore, the role of adaptivity is overlooked
when it comes to understanding the gap between adaptive
methods and SGD. Removing the square root could clarify
this issue, as a root-free method no longer performs sign
descent while preserving adaptivity. To investigate the role
of adaptivity, we experiment with root-free RMSProp (Fig-
ure 4) on attention and convolutional models (Figure 1). For
attention architectures, we find that removing the root does
not harm the performance of RMSProp. Root-free methods
with update clipping (Liu et al., 2023) also perform well on
large transformer-based language models. These findings
suggest that adaptivity is equally important as sign descent
to explain the performance gap between adaptive methods
and SGD on transformers. For convolutional architectures,
removing the root closes the generalization gap between
RMSProp and SGD. This suggests that root-free adaptive
methods can generalize well, and raises novel questions on
the understanding of the role of adaptivity.
Computational cost As noted by Duchi et al. (2011), the
root poses numerical and computational challenges on ma-
trix methods like Eq. (4) as it requires matrix roots which
must be carried out in high precision to avoid numerical
instabilities. This increases the run time and memory foot-
print and complicates the implementation (Anil et al., 2020;
Shi et al., 2023). Using low-precision data types (Micikevi-
cius et al., 2017) is a key technique to boost training speed
and reduce memory. The square root makes matrix meth-
ods undesirable for modern low-precision training schemes
even when we can use iterative solvers (Anil et al., 2020)
to compute matrix roots. By removing the matrix roots,
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Figure 3. Comparison of matrix root-free versus root-based methods on GCViT (Hatamizadeh et al., 2023), SwinViT (Liu et al., 2021),
FocalNet (Yang et al., 2022), and VMamba (Liu et al., 2024). Both matrix methods (Shampoo, IF-Shampoo) outperform diagonal methods
on modern vision models such as transformers using modern training strategies. In contrast to Shampoo, our inverse-free matrix method,
IF-Shampoo, runs in BFP-16 and trains twice as fast, while using less memory. All models are trained for 300 epochs. We update matrix
preconditioners at every 2 iterations and can reduce the clock time by updating them less frequently. See App. J for more details.

and using advances on second-order methods (Lin et al.,
2023b), we develop inverse-free matrix methods (Sec. 4.3)
that are suitable for mixed-precision training. We present
empirical results for the low-precision setting in Fig. 3. By
removing the roots, we can consistently train in BFP-16,
whereas root-based matrix methods like Shampoo need
single—sometimes even double—precision. On modern
vision models, we find that root-free methods outperform
diagonal methods and perform similarly to Shampoo while
requiring less time and memory (see Fig. 3) due to low-
precision training. This shows that removing the roots al-
lows us to overcome the challenges of existing matrix meth-
ods, bridge the computation gap with diagonal methods, and
expand their applicability to modern training pipelines.

Theoretical considerations Invariances. Adding the root
makes a descent step invariant to the scale of the loss – the
square root adjusts the scale of the “squared” gradient to be
consistent with the gradient when the loss function is scaled.
This is useful as there is no need for users to pay attention to
whether the loss function is averaged or summed over data
points. While adding the square root fixes the scaling issue,
it breaks the affine reparameterization invariance (Nesterov
& Nemirovskii, 1994). We can fix the scaling issue and
preserve the affine invariance without the square root, as will
be shown in Section 3; see Appendix A for an example of
the affine invariance of square-root-free methods. Moreover,
removing the root makes it easy to introduce a new kind of
invariance for preconditioning matrices (Section 4).

Convergence analysis. Theoretical works such as Duchi et al.
(2011); Reddi et al. (2019) and many others suggest that
adding the square root is useful to prove convergence bounds
for convex loss functions. Convergence analysis for square-
root-based methods is also extended to non-convex settings
under certain assumptions such as gradient Lipschitz and
Polyak-Łojasiewicz conditions. However, compared to the
regret bound of AdaGrad (Duchi et al., 2011) studied in con-
vex settings, Hazan et al. (2006) give a better regret bound
in strongly-convex cases without introducing the square root.

Recent works like Mukkamala & Hein (2017); Wang et al.
(2020) prove similar bounds for square-root-free methods
on convex problems. Thus, square-root-free methods are
theoretically grounded—at least in convex settings.

Behavior near optimum. The square root is often introduced
to avoid oscillation near an optimal solution where the pre-
conditioner can be ill-conditioned. For example, in one
dimension, the descent direction s−1g can be unbounded
near the optimum when we use the outer product as the pre-
conditioner s = g2. This is because the gradient g is close
to 0 near the optimum and the outer product as a ‘squared’
gradient decreases much faster than the gradient g. Thus, the
update without the square root can lead to oscillation when
using a constant learning rate. However, even without the
square root, a preconditioner can still be well-conditioned
when incorporating outer products from previous iterations
(Roux et al., 2007) and using Tikhonov damping (Becker
et al., 1988; Martens & Sutskever, 2012). For example, the
descent direction s−1g can be bounded without the square
root even when near an optimal solution, where g is a gradi-
ent and s = (1− β2)s+ β2g

2 is a preconditioner estimated
by an exponentially moving average when 0 < β2 < 1.

3. A Second-order Perspective
Here, we describe a second-order perspective on adaptive
methods when the root is removed. This naturally resolves
the scaling issue and is coherent with the original motivation
to develop these methods.

Without the square root, an adaptive method takes a step

S← (1− β2γ)S+ β2H , µ← µ− β1S
−1g , (5)

where γ ∈ {0, 1} and the outer product H = gg⊤ is used as
a curvature approximation. Note that we incorporate outer
products from previous iterations as β2 > 0. For example,
when γ = 0 and S is a full matrix, we obtain the update of
full-AdaGrad without the square root.

The above update resembles a second-order method. How-
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RMSProp
1: Compute gradient g := ∇ℓscaled(µ)

ŝ← (1− β2)ŝ+ β2g
2

2: µ← µ− β1g/
√
ŝ

Square-root-free RMSProp (Ours)
1: Compute gradient g := ∇ℓscaled(µ)

s← (1− β2)s+ β2Bg2

2: µ← µ− β1g/s

Figure 4. Diagonal adaptive methods for a (scaled) loss function ℓscaled(µ) defined by averaging over B data points in a mini-batch case.
We initialize s to 1 in the square-free method in our square-root-free method while ŝ is initialized to 0 in the original RMSProp. For
simplicity, we do not include damping, weight decay, and momentum. A full-fledged version can be found in the Appendix, Figure 6.

ever, it is not invariant to the scale of the loss, unlike New-
ton’s method: Scaling the loss by a constant c scales the
gradient and Hessian by c, but the gradient outer product
by c2, which is inconsistent with its role as a Hessian ap-
proximation and therefore conflicts with the second-order
interpretation. We will resolve this particular conflict and
improve the justification of square-root-free adaptive meth-
ods through an approximate second-order view.

The key step is to view the outer product as a novel empirical
Fisher that differs from the standard empirical Fisher dis-
cussed in the DL literature (Kingma & Ba, 2015; Kunstner
et al., 2019; Martens, 2020). Our empirical Fisher relies on
the aggregated mini-batch gradient rather than per-sample
gradients. Since the Fisher is tied to a probability distribu-
tion that must be normalized, this provides a gauge to make
updates invariant to the scale of the loss automatically.

3.1. New Fisher Matrices as Hessian Approximations
Recall the objective function ℓ(µ) =

∑N
i=1 c(yi, f(xi;µ)) de-

fined in (1). Given a datum xi, we can define a
per-example probability distribution over label yi as
p(yi | xi;µ) = exp(−c(yi, f(xi;µ))) by using the loss func-
tion c(yi, f(xi;µ)) (e.g., cross-entropy or square loss).
We denote an individual gradient for datum xi by
gi := ∇µc(yi, f(xi;µ)) = −∇µ log p(yi|xi;µ) .

(1) Standard empirical Fisher matrices
Definition 1. The empirical Fisher information (FIM) matrix
(Pascanu & Bengio, 2013; Kingma & Ba, 2015; Kunstner
et al., 2019; Martens, 2020) F̃standard(µ) is defined by replac-
ing the expectation in the standard FIM Fstandard(µ) with
observed labels.
Fstandard(µ) :=

N∑
i=1

Eyi∼p(yi|xi;µ)

[
∇µ log p(yi | xi;µ)∇⊤

µ log p(yi | xi;µ)
]

F̃standard(µ) :=

N∑
i=1

∇µ log p(yi | xi;µ)∇⊤
µ log p(yi | xi;µ) =

N∑
i=1

gig
⊤
i

Now, we introduce a new Fisher matrix as a FIM over a
joint distribution of labels.

(2) Our Fisher matrices for the original (unscaled) loss
Definition 2. Our Fisher matrix is defined as

Fnew(µ) := Ey∼p(y|X;µ)

[
∇µ log p(y | X;µ)∇⊤

µ log p(y | X;µ)
]

= −Ey∼p(y|X;µ)

[
∇2

µ log p(y | X;µ)
]
,

(6)

where the labels y = (y1, . . . , yN ) are considered jointly
as a random vector, p(y|X;µ) :=

∏N
i=1 p(yi | xi;µ) is its

joint distribution, and X = (x1, . . . ,xN ) is a feature matrix.
Importantly, the joint distribution must be normalized.
Definition 3. Our empirical Fisher matrix is defined by
replacing the expectation in Fnew(µ) with observed labels.

F̃new(µ) := ∇µ log p(y | X;µ)∇⊤
µ log p(y | X;µ) = H

≈ −∇2
µ log p(y | X;µ) = ∇2

µℓ(µ) ,
(7)

with ∇µ log p(y | X;µ) =
∑

i∇µ log p(yi | xi;µ) = −
∑

i gi = −g.

From (7), we see that the outer product H = gg⊤ coincides
with this empirical Fisher matrix F̃new(µ).
Definition 4. In a mini-batch case, we can define a Fisher
matrix for a mini-batch with B data points as

Fmini(µ) := Eymini∼p

[
∇µ log p(ymini | Xmini;µ)∇⊤

µ log p(ymini | Xmini;µ)
] (8)

where ymini := (y1, . . . , yB) is a label vector, Xmini :=
(x1, . . . ,xB) a feature matrix for the mini-batch, and
p(ymini | Xmini;µ) :=

∏B
i=1p(yi | xi,µ) the joint distribu-

tion over labels for the mini-batch. This distribution can
also be obtained by marginalizing unseen labels in the origi-
nal joint distribution p(y | X;µ) defined for the full-batch.
This Fisher is an unbiased estimation of our full-batch Fisher
as the claim—proof in Appendix B—is stated below.
Claim 1. Our mini-batch Fisher 1/BFmini(µ) is an unbiased
estimation of the full-batch Fisher 1/NFnew(µ).

When we replace the expectation with observed labels, we
obtain our empirical Fisher for the mini-batch. Note that
this empirical Fisher is not an unbiased estimator of the full-
batch empirical Fisher. However, we often do not consider
the unbiasedness when we incorporate empirical Fisher ma-
trices from previous iterations. Moreover, our interpretation
provides the direct link to the Hessian as we can view the
outer product as a Hessian approximation (see (7)) when
the product corresponds to our Fisher. This interpretation
allows us to preserve the scale-invariance to the loss and the
affine reparametrization invariance.

(3) Our Fisher matrices for a scaled loss

Now, we consider a scaled loss function. Then, the outer
product H no longer coincides with a Fisher matrix. As an
example, we consider averaging a loss over N > 1 data
points, as it is often done in mini-batch settings. The loss is

ℓscaled(µ) :=
1
N ℓ(µ) = 1

N

∑N
i=1 c(yi, f(xi;µ)),
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with gradient gscaled := 1/N
∑N

i=1∇µc(yi, f(xi;µ)) = 1/N
∑N

i=1 gi

and outer product and Hscaled := gscaledg
⊤
scaled = 1/N2H.

In this case, the empirical Fisher matrix should be defined
using the same joint distribution as

F̃scaled(µ) :=
1

N
∇µ log p(y | X;µ)∇⊤

µ log p(y | X;µ) = NHscaled

=
1

N
F̃new(µ) ≈ −

1

N
∇2

µ log p(y | X;µ) = ∇2
µℓscaled(µ) .

(9)

According to (9), the outer product Hscaled no longer coin-
cides with this empirical Fisher matrix F̃scaled(µ). When
using F̃scaled(µ) as the Hessian approximation, the update
of a square-root-free adaptive method is

S← (1− β2γ)S+ β2

=NHscaled︷ ︸︸ ︷
F̃scaled(µ), µ← µ− β1S

−1gscaled

This update is scale-invariant since gradient gscaled = 1/Ng and
empirical Fisher F̃scaled(µ) = NHscaled = 1/NH scale identically.

Affine reparametrization invariance Our fix does not
break the affine invariance of a square-root-free method. A
square-root-free method is affine invariant when using our
scaled empirical Fisher matrix (see Appx. C for a proof).
Claim 2. Our square-root-free update is affine invariant.

By using our empirical Fisher matrices, our square-root-free
methods like Newton’s method not only is scale-invariant
when we scale a loss function but also preserves the affine
reparametrization invariance. Thus, we consider our meth-
ods as approximate second-order (quasi-Newton) methods.

3.2. Difference to the Standard Empirical Fisher

Existing works (Kingma & Ba, 2015; Kunstner et al., 2019;
Martens, 2020) do not distinguish the standard empirical
Fisher denoted by F̃standard(µ) from the outer product H corre-
sponding to our empirical Fisher F̃new(µ). They differ when
N > 1 since

F̃standard(µ) =

N∑
i=1

(
gig

⊤
i

)
̸=

(
N∑
i=1

gi

) N∑
j=1

gj

⊤

= H = F̃new(µ) . (10)

The standard empirical Fisher on the left is not rank-one,
while our empirical Fisher on the right is.

This misconception can impede our understanding of these
methods. The outer product H corresponding to our em-
pirical Fisher F̃new(µ) is different from the standard empir-
ical Fisher considered by Kunstner et al. (2019). Indeed,
some limitations in Kunstner et al. (2019) are due to the ill-
conditioning issue mentioned in Sec. 2. Importantly, we es-
timate a preconditioner S and overcome the ill-conditioning
issue by incorporating outer products from previous itera-
tions (e.g., by a moving average) – even in the full-batch
setting as shown in (5). Aggregating these previous outer

products makes our approximation distinct from the approx-
imation considered by Kunstner et al. (2019) where the
authors do not make use of previous products. As shown in
Fig. 10, our estimation works well in both convex examples
constructed by Kunstner et al. (2019) and non-convex re-
gression. Furthermore, our estimation has been theoretically
justified (Hazan et al., 2006; Mukkamala & Hein, 2017;
Wang et al., 2020) for root-free methods in (convex) settings
similar to Kunstner et al. (2019). Thus, our empirical Fisher
does not suffer from limitations of the standard empirical
Fisher considered in Kunstner et al. (2019) when using our
Fisher in the preconditioner update scheme.

3.3. Disentangling the Outer Product from the Fisher

At first glance, the outer product Hscaled

coincides with another empirical Fisher
F̃incorrect(µ) = ∇µ log pscaled(y | X;µ)∇⊤

µ log pscaled(y | X;µ) in
the scaled case. This Fisher is defined over a different joint
distribution pscaled(y | X;µ) =

∏N
i=1pscaled(yi | xi;µ) and depends

on a scaled per-sample probability distribution over label
yi as pscaled(yi | xi;µ) = exp(−1/Nc(yi, f(xi;µ))). However, this
scaled distribution is not normalized. Therefore, we cannot
define a valid FIM that corresponds to the outer product. In
other words, the outer product is not an empirical Fisher
matrix. The normalization condition of a per-sample
distribution is often overlooked in the literature when
considering a gradient outer product as an empirical Fisher.

4. Matrix Adaptive Methods
We develop a class of matrix adaptive methods without us-
ing matrix decompositions for training with mini-batches.
This introduces another challenge: a dense matrix-valued
preconditioner may be too costly to store. We address this
by enforcing the preconditioner to be structured; specifi-
cally, Kronecker-factored. We use Eq. (5) to incorporate
curvature information from previous iterations, especially
for training with mini-batches. This is needed as we want to
approximate full-batch curvature information. This curva-
ture aggregation is also useful to handle the ill-conditioning
issue mentioned in Sec. 2 when mini-batch curvature de-
noted by H is a gradient outer product H. Unfortunately,
Eq. (5) suggests that the optimizer’s preconditioner S must
have the same structure as the curvature approximationH,
so that the structure is maintained under the update. Thus, an
additional projection step is needed whenH has an incom-
patible structure. For instance, the outer product structure
in H when H = H is incompatible with the Kronecker-
factored structure in S. It is common practice to introduce a
sequential inner loop to solve an optimization sub-problem
at the projection step. However, this increases the itera-
tion cost. Prime examples are the Frank-Wolfe method and
Newton-CG (Martens & Sutskever, 2012). One idea to avoid
using such an inner loop is to use a customized approxima-
tion such as Shampoo (Gupta et al., 2018) on a case-by-case
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Shampoo
1: Compute G := Mat(∇ℓscaled(µ))

ŜC ← (1− β2γ)ŜC + β2GG⊤

ŜK ← (1− β2γ)ŜK + β2G
⊤G

2: Mat(µ)← Mat(µ)− β1Ŝ
−1/4

C GŜ
−1/4

K

Square-root-free Shampoo (Ours)
1: Compute G := Mat(∇ℓscaled(µ))

SC ← (1− β2γ)SC + β2
d
(BGS−1

K G⊤)

SK ← (1− β2γ)SK + β2
p
(BG⊤S−1

C G)

2: Mat(µ)← Mat(µ)− β1S
−1
C GS−1

K

Inverse&root-free Shampoo (Ours)
1: Compute G := Mat(∇ℓscaled(µ))

C← C exp(−β2
2d

(BC⊤GKK⊤G⊤C− γdI))

K← K exp(−β2
2p

(BK⊤G⊤CC⊤GK− γpI))

2: Mat(µ)← Mat(µ)− β1CC⊤GKK⊤

Figure 5. Structured matrix adaptive methods for a (scaled) loss function ℓscaled(µ) defined by averaging over B data points in a mini-batch
case. For simplicity, we assume Mat(µ) ∈ Rp×d is a weight matrix in a layer. ŜC ,SC ,C ∈ Rp×p and ŜK ,SK ,K ∈ Rd×d are
non-singular matrices. In the inverse-free method, we directly update C and K, and approximate the matrix exponential exp(N) by its
first-order truncation exp(N) ≈ I+N, where C and SC are related as S−1

C = CC⊤ (c.f. Claim 10). SK and K are similarly related.
We initialize each of C, SC , SK , and K to an identity matrix in our methods while each of ŜC and ŜK is initialized to zero (Gupta et al.,
2018) . For simplicity, we do not include damping, weight decay, and momentum. See Fig. 7 in the Appendix for a full-fledged version.

basis. Instead, our generic approach aggregates arbitrary
curvature information without an inner loop.

4.1. Square-root-free Methods through Gaussian
Variational Approximations

We start with a dense preconditioner S to introduce the
concept of preconditioner invariance which enables us to
efficiently ‘project’ an arbitrary curvature approximation
onto a flexible class of pre-conditioner parameterizations
via the Bayesian learning rule (BLR, Khan et al., 2018; Lin
et al., 2020; Khan & Rue, 2023) and the chain rule.

As discussed in Sec. 3, if the gradient outer product coin-
cides with our empirical Fisher, we can view it as a Hessian
approximation. This view allows us to extend the BLR orig-
inally developed for Newton’s method. According to the
BLR, we consider the preconditioner S in Equation (5) as an
inverse covariance of a Gaussian, and the curvature approxi-
mationH as a partial derivative. By viewing the precondi-
tioner as the inverse covariance, we gain new reparametriza-
tion invariance for the preconditioner S while preserving
the affine invariance in µ (c.f. Claim 2). This invariance
allows us to reparameterize the preconditioner and obtain
an equivalent update up to a first-order accuracy. One imme-
diate application is to make matrix adaptive methods such
as square-root-free full-AdaGrad inverse-free (see Eq. (18))
by reparameterizing the preconditioner, which is helpful for
low-precision training. Thanks to the invariance, we can
later impose sparse structures on the preconditioner (Lin
et al., 2023a). This is flexible since preconditioner and
curvature approximation can have independent structures.

Now, we describe the BLR. We consider a Bayesian problem
formulation and solve a variational inference (VI) problem
with a Gaussian variational approximation. In this setting,
we consider NN weights as random variables and use a new
symbol w to denote these weights as they are no longer
learnable. We refer to µ and S as the mean and the inverse
covariance of the Gaussian q(w | µ,S) over weights w.
This VI problem (Barber & Bishop, 1997) (with γ = 1) is

min
µ,S≻0

L(µ,S) := Ew∼q

[
ℓ(w)

]
− γQq , (11)

where ℓ(w) is the same loss defined in (1), S ≻ 0 must

be positive-definite (PD), γ is the same hyperparameter
as in (5), q(w | µ,S) is a Gaussian approximation with
mean µ and covariance S−1, and Qq := Ew∼q[− log q(w |
µ,S)] = −1/2 log det(S) is the Gaussian’s entropy. When
γ = 0, problem in Eq. (11) becomes a variational optimiza-
tion (VO) problem (Staines & Barber, 2012; Khan et al.,
2017) or a Gaussian adaptation problem1 (Taxén & Kjell-
ström, 1992; Bäck & Schwefel, 1993). Thus, the VI problem
can be viewed as an entropy-regularized VO problem.

The FIM of the Gaussian q(w | θ) under parameter θ is
Fgauss(θ) := −Ew∼q[∇2

θ log q(w | θ)] , (12)

has a closed-form expression and is PD whenever θ is a
valid parameterization. E.g., θ := (µ,S) is a valid param-
eterization iff the inverse covariance S is PD. This FIM
should not be confused with other Fisher matrices in Sec. 3.

We exploit a Riemannian geometric structure of the proba-
bilistic (Gaussian) surrogate q(w | θ) and, thus, use natu-
ral gradient descent (NGD) to solve the problem in Equa-
tion (11). An NGD step in parameterization θ is

θ ← θ − β1(Fgauss(θ))
−1∇θL . (13)

Khan et al. (2018) show that this update is equivalent to

S← S+ 2β1∂S−1L = (1− β1γ)S+ β1Ew∼q[∇2
wℓ(w)]

µ← µ− β1S
−1∂µL = µ− β1S

−1Ew∼q[∇wℓ(w)] ,
(14)

where we use the following identities2 for the Gaussian
q(w | θ) (Opper & Archambeau, 2009; Lin et al., 2019b),

∂µL = Ew∼q[∇wℓ(w)], 2∂S−1L = Ew∼q[∇2
wℓ(w)]− γS . (15)

To recover the root-free update in Equation (5), we approxi-
mate the update in Equation (14) with

S← (1− β2γ)S+ β2

≈∇2
µℓ(µ)︷︸︸︷
H , µ← µ− β1S

−1

=∇µℓ(µ)︷︸︸︷
g , (16)

1See Lin et al. (2021) for connections to gradient-free evolution
methods (Wierstra et al., 2008; Glasmachers et al., 2010).

2See Lin et al. (2021) for sampling-based estimations to remove
the need of computing∇wℓ(w) and∇2

wℓ(w). They are often used
in gradient-free optimization and VI.
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by [1] using a delta approximation at µ to approximate the
expectations highlighted in red, [2] replacing the Hessian
with the outer product H as it is a Hessian approximation
(e.g., H = H) in the unscaled case shown in Eq. (7), and
[3] introducing an extra learning rate β2 to compensate for
the error of the curvature approximation. By using the delta
approximation, we can use the NGD update derived for the
Bayesian problem in Eq. (11) to solve the non-Bayesian
problem in Eq. (1). This formulation3 unveils the Gaussian
approximation hidden in square-root-free updates as the
NGD update recovers the square-root-free method. If the
loss is scaled, we can replace the outer product with our
empirical Fisher as a proper curvature approximation such
as H = F̃scaled (c.f. Sec. 3). Moreover, we recover the
update rule (Eq. (16)) to incorporate curvature information
from previous iterations (e.g., by an exponentially moving
average when γ = 1) for mini-batch training.

Examples Many square-root-free adaptive gradient meth-
ods can be derived from this update rule when the curvature
approximation is the outer product (i.e.,H = H). For exam-
ple, Equation (16) becomes the update of square-root-free
full-AdaGrad when γ = 0:

S← S+ β2H, µ← µ− β1S
−1g . (17)

When S = diag(s) is diagonal, the update of (16) becomes

s← (1− β2γ)s+ β2diag(H), µ← µ− β1S
−1g .

We obtain the root-free RMSProp update when γ = 1; like-
wise, the root-free diag-AdaGrad update when γ = 0.

Non-zero initialization The preconditioner S is often ini-
tialized to zero in adaptive methods. An immediate con-
sequence of the BLR is that S should be initialized to a
non-zero value because we view it as an inverse covariance.
As shown in Fig. 2, this is important for the performance of
root-free methods. Moreover, the updated S in Eq. (16) is
guaranteed to be PD when S is initialized to a PD matrix
since the product H = gg⊤ is positive semi-definite. When
H is an arbitrary approximation, we add a correction term
to handle the PD constraint of S (Lin et al., 2020).
Inverse-free update via preconditioner invariance The
BLR preserves the scale-invariance to the loss and affine
reparametrization invariance in µ. The scale invariance
comes from a proper Hessian approximationH. The affine
invariance in µ is inherited from invariance of natural-
gradients in the parameter space (e.g., θ = (µ,S)) of the
Gaussian. Importantly, the BLR also introduces a new in-
variance to reparametrize preconditioner S thanks to the
same invariance of natural-gradients of the Gaussian.

3See Lin et al. (2023b) for a manifold optimization formulation,
where a Gaussian approximation with a non-constant mean is
viewed as a PD submanifold. Newton’s method can be viewed as
Riemannian gradient descent on an augmented PD submanifold.

By exploiting this preconditioner invariance, we can eas-
ily make the root-free full-AdaGrad update inverse-free by
performing NGD in another parameter space (e.g., η :=
(µ,S−1)). As shown in App. D, the update of S−1 is

S−1 ← S−1 − β2S
−1HS−1 +

β2
2

2 S−1HS−1HS−1 , (18)
where we introduce a correction term highlighted in red to
satisfy the PD constraint of S−1 (Lin et al., 2020). This up-
date is inverse-free since it directly updates S−1. Moreover,
it is scale and affine invariant, like the root-free AdaGrad
update (c.f. Appx. F). We illustrate this preconditioner in-
variance by showing that the update for S−1, the root-free
full-AdaGrad update for S, and another inverse-free update
for A (Lin et al., 2023b) are equivalent up to a first-order
accuracy (c.f. Appx. E), where S−1 = AA⊤. We can use
this result to incorporate mini-batch curvature information
(e.g.,H = H) in a reparametrized space (e.g., S−1 or A).

4.2. Decoupling Preconditioner & Curvature
We can further exploit the preconditioner invariance to al-
low preconditioner S and curvature H to have their own
structures. From Eq. (14), we see that preconditioner S is
the inverse covariance while the curvature approximationH
appears as a term of partial derivative 2∂S−1L ≈ H − γS
due to Eq. (15). If a sparse pattern in S can be obtained
via reparameterization, we can perform NGD in this repa-
rameterized space due to the parameterization invariance of
NGs. This allows the curvature approximationH to have an
independent structure and using the chain rule to ‘project’
the curvature approximation (as a partial derivative) onto
the (sparse) reparameterized space of S. Importantly, this
neither introduces an inner loop nor significantly increases
computational overhead. We will see an example next.

4.3. Kronecker-factored Adaptive Methods
Shampoo is a square-root-based Kronecker-factored method,
where the inner (matrix) square roots are introduced due to a
structural approximation and the outer (matrix) square root
is inherited from full-AdaGrad. Shampoo’s preconditioner
S is coupled to its curvature approximationH ≡ H = gg⊤.
Thus, it approximates the outer product H ≈ Ŝ

1/2

C ⊗ Ŝ
1/2

K and
uses S =

(
Ŝ

1/2

C ⊗ Ŝ
1/2

K

)1/2

as preconditioner to ensure they have
the same structure. Because an exponential moving average
on S is infeasible due to the structural incompatibility be-
tween H and S, Shampoo uses exponential moving averages
over SC and SK as heuristics. Its update is

ŜC ← (1− β2γ)ŜC + β2GG⊤, ŜK ← (1− β2γ)ŜK + β2G
⊤G

µ← µ− β1S
−1g ⇐⇒ M←M− β1Ŝ

−1/4

C GŜ
−1/4

K ,

where G := Mat(g) and M := Mat(µ). This does not
generalize to curvature approximations different from gg⊤.

In contrast, we consider a structural reparameterization of
the inverse covariance S = SC ⊗ SK as the preconditioner
and perform NGD to update SC and SK . We treat a curva-
ture approximationH, such as the gradient outer product H,
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as a partial derivative and use it to update SC and SK by
the chain rule. We do not require the approximation H to
have the same structure as the preconditioner S. Thus, we
decouple the preconditioner from the curvature approxima-
tion. Notably, our approach is root-free and does not require
H to be an outer product—a key assumption of Shampoo.
For example, we can use other inexpensive approximations
H such as KFAC (Martens & Grosse, 2015).

Concretely, consider a parameterization τ := (µ,SC ,SK)
of the Gaussian, where SC ∈ Rp×p and SK ∈ Rd×d are PD.
This Gaussian is known as a matrix Gaussian4. The exact

FIM Fgauss(τ ) =

Fµµ 0 0
0 FCC FCK

0 FKC FKK

 under this parameterization

is singular since the Kronecker product is not unique. We
consider a block-diagonal approximated FIM of the Gaus-

sian denoted by F̃gauss(τ ) =

Fµµ 0 0
0 FCC 0
0 0 FKK

 so that we can

use other approximationsH beyond the outer product. This
approximate FIM is non-singular and well-defined by ig-
noring cross-terms FCK and FKC in the original FIM. We
propose to perform approximate NGD with F̃gauss(τ ) µ

SC

SK

←
 µ
SC

SK

− β1


S 0 0

0 −d
2
∂S−1

C

∂SC
0

0 0 −p
2
∂S−1

K

∂SK


−1  ∂µL

∂SC
L

∂SK
L



=

 µ− β1S
−1∂µL

SC + 2β1

d ∂S−1
C
L

SK + 2β1

p ∂S−1
K
L

 ,

where Fµµ = S = SC ⊗ SK , FCC = −d
2
∂S−1

C /∂SC ,
FKK = −p

2
∂S−1

K /∂SK are computed according to Eq.(12)
or block-wise Bregman duality (Lin et al., 2019a). Then, we
can use the chain rule to project the curvatureH as a term
of derivatives highlighted in blue

2∂S−1
C
L = 2

∂S−1

∂S−1
C

∂S−1L ≈ ∂S−1

∂S−1
C

[H− γSC ⊗ SK ]

2∂S−1
K
L = 2

∂S−1

∂S−1
K

∂S−1L ≈ ∂S−1

∂S−1
K

[H− γSC ⊗ SK ],

and update a Kronecker-factored preconditioner S without
square-roots, where 2∂S−1L ≈ H− γS = H− γSC ⊗ SK is due
to Eq. 15. When H = H, we obtain a root-free Shampoo-
like update rule due to the simplification of the derivatives:

2∂S−1
C
L ≈ ∂S−1

∂S−1
C

[H− γSC ⊗ SK ] = GS−1
K G⊤ − γdSC

2∂S−1
K
L ≈ ∂S−1

∂S−1
K

[H− γSC ⊗ SK ] = G⊤S−1
C G− γpSK ,

Notably, our root-free updates for SK and SC (c.f. Fig. 5)
are correlated while Shampoo’s updates for ŜK and ŜC are
uncorrelated due to Shampoo’s block-diagonal approxima-
tion of H. When the loss is scaled, we obtain a similar
update using our empirical Fisher (c.f. Sec. 3).

4We can also generalize our update to n-dimensional tensors
using a tensor Gaussian (Ohlson et al., 2013).

This update is similar to other root-free second-order meth-
ods based on a multi-linear exponential family (Lin et al.,
2019a) or a tensor Gaussian distribution (Ren & Goldfarb,
2021) when using the outer product as a curvature approx-
imation. Unlike these works, our update is both affine-
invariant and scale-invariant of the loss, and is applicable
for other curvature approximationsH.

Structured inverse-free (IF) update To enable our up-
date in half-precision, we consider an IF update by repa-
rameterizing S−1 = S−1

C ⊗ S−1
K = (CC⊤)⊗ (KK⊤) and updating

C and K instead of SC and SK (Lin et al., 2023b) and
exploit the preconditioner invariance. This update is IF and
root-free (c.f. Fig. 5), avoiding numerically unstable matrix
inversions and decompositions (c.f. Appx. G for a deriva-
tion). Moreover, this update is equivalent to updating SC

and SK up to a first-order accuracy (c.f. Appx. I). Last
but not least, this update also allows the use of sparse fac-
tors C and K (Lin et al., 2023a) to further lower memory
consumption. We can construct an expressive structured
preconditioner SC or its inverse S−1

C using a sparse C.

We find that IF-Shampoo performs similarly to Shampoo
regarding per-iteration progress on modern vision models
such as vision transformers and mambas (see Fig. 8). How-
ever, our method can run in BFP-16, in contrast to Shampoo.
We observe that one step of IF-Shampoo takes less than half
the time of Shampoo (see Fig. 3) and requires less memory.
This promising result will make matrix adaptive methods
more prominent in modern large-scale training.

5. Conclusion
We investigated root-free adaptive methods and strength-
ened their motivation from a second-order perspective. Sur-
prisingly, we found empirically that removing the root not
only closes the generalization gap between adaptive meth-
ods and SGD on CNNs, but also maintains the performance
of root-based methods on vision attention models. Remov-
ing the root eliminates the connection to sign descent which
has been hypothesized to cause the gap on convolutional
NNs and transformers. However, our findings highlight
that adaptivity might be an important concept for the suc-
cess of such methods that is currently overlooked, which
poses new questions regarding the role of adaptivity and
the understanding of adaptive methods. Conceptually, we
established a second-order view on root-free methods by
viewing their gradient outer product as a novel empirical
Fisher that preserves scale-invariance of the loss and affine
invariance. Computationally, we introduced the concept
of preconditioner invariance to reparametrize precondition-
ers and developed matrix adaptive, inverse-free methods
that stably work in BFP-16 and train faster than their root-
based counterpart. By using low-precision training, our
IF-Shampoo has a similar iteration cost as diagonal methods
while achieving better performance on modern NN models.

9



Can We Remove the Square-Root in Adaptive Gradient Methods?

Acknowledgements
We thank Emtiyaz Khan, Mark Schmidt, Kirill Neklyudov,
and Roger Grosse for helpful discussions at the early stage
of this work. Resources used in preparing this research were
provided, in part, by the Province of Ontario, the Govern-
ment of Canada through CIFAR, and companies sponsoring
the Vector Institute. Runa Eschenhagen is supported by
ARM and the Cambridge Trust. Richard E. Turner is sup-
ported by Google, Amazon, ARM, Improbable and EPSRC
grant EP/T005386/1.

Impact Statement
This paper introduces research aimed at improving deep
learning optimization. While there are numerous poten-
tial societal implications stemming from our work, such as
giving the ability to train neural networks more efficiently,
we believe that none warrant specific emphasis within this
context.

References
Agarwal, N., Bullins, B., Chen, X., Hazan, E., Singh, K.,

Zhang, C., and Zhang, Y. Efficient full-matrix adaptive
regularization. In International Conference on Machine
Learning, pp. 102–110. PMLR, 2019.

Anil, R., Gupta, V., Koren, T., Regan, K., and Singer, Y.
Scalable second order optimization for deep learning.
arXiv preprint arXiv:2002.09018, 2020.
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Square-root-free RMSProp
1: Compute gradient g := ∇ℓscaled(µ)

s← (1− β2)s+ β2Bg2

2: m← α1m+ g/(s+ λ) + κµ
3: µ← µ− β1m

Figure 6. A full-fledged version of our square-root-free RMSProp, where α1, λ, κ are the weight to include momentum, damping, weight
decay, respectively. The preconditioner s is initialized with 1.

Square-root-free Shampoo (Ours)
1: Compute G := Mat(∇ℓscaled(µ))

SC ← (1− β2γ)SC + β2
d
(BGS−1

K G⊤ + λTr(S−1
K )Ip)

SK ← (1− β2γ)SK + β2
p
(BG⊤S−1

C G+ λTr(S−1
C )Id)

2: M← α1M+ S−1
C GS−1

K + κMat(µ)

3: Mat(µ)← Mat(µ)− β1M

Inverse-free Shampoo (Ours)
1: Compute G := Mat(∇ℓscaled(µ))

mC ← α2mC + (1−α2)
2d

(BC⊤GKK⊤G⊤C+ λTr(KK⊤)C⊤C− dγIp)

mK ← α2mK + (1−α2)
2p

(BK⊤G⊤CC⊤GK+ λTr(CC⊤)K⊤K− pγId)

C← C exp(−β2mC)

K← K exp(−β2mK)

2: M← α1M+CC⊤GKKT + κMat(µ)

3: Mat(µ)← Mat(µ)− β1M

Figure 7. A full-fledged version of our matrix methods, where α1, λ, κ are the weight to include momentum, damping, weight decay,
respectively. We also include weight α2 for Riemannian momentum suggested by Lin et al. (2023b). We approximate the matrix
exponential exp(N) by its first-order truncation exp(N) ≈ I+N as suggested by Lin et al. (2023b). For our inverse-free Shampoo, we
store and update preconditioner factors C, mC , K, mK in half precision. For numerical stability in half precision, we update C and K
as C← C− βmC

max{∥mC∥,1} and K← K− βmK
max{∥mK∥,1} , where ∥ · ∥ denotes the Frobenius norm. Using the matrix norm also allows

us to make discretization errors (e.g., the term O(β2
2) in Claim 10) in the updates negligible, where β2 := β

max{∥mC∥,1} and α2 = 0 is
the case considered in the Claim.

A. Example: Affine Invariance of Root-Free Methods
We demonstrate the affine invariance by an example and show how adding the root breaks the invariance. Consider a
loss function la(a) =

1
2a

2 with an initial point a0 = 2 , a root-based update is anew = a0 − s−1
a ga = 2− 1 = 1, where gradient

ga = ∇ala(a) = a0 = 2 and preconditioner sa =
√

g2a = |a0| = 2. Now, consider a reparameterized loss as l2(b) = 1
2 (2b)

2

with an initial point b0, where a = 2b. Thus, b0 = 1 when a0 = 2. The update becomes bnew = b0 − s−1
b gb = 1− 1 = 0, where

gradient gb = ∇blb(b) = 4b0 = 4 and preconditioner sb =
√
g2b = 4|b0| = 4. Unfortunately, the updated anew = 1 is not

equivalent to the updated bnew = 0 since anew ̸= 2bnew.

Now, consider a square-root-free update for the original loss as anew = a0 − s−1
a ga = 2 − 0.5 = 1.5, where gradient

ga = ∇ala(a) = a0 = 2 and preconditioner sa = g2a = a20 = 4. Similarly, the update for the reparameterized loss is
bnew = b0 − s−1

b gb = 1− 0.25 = 0.75, where gradient gb = ∇blb(b) = 4b0 = 4 and preconditioner sb = g2b = 16b20 = 16.
Note that the updated anew = 1.5 is equivalent to the updated bnew = 0.75 since anew = 2bnew. Thus, removing the root
preserves the affine invariance.

B. Proof of Claim 1
We first show that our Fisher matrix coincides with the standard Fisher.

Fnew(µ) = Fstandard(µ) =

N∑
i=1

Eyi∼p

[
∇µ log p(yi|xi;µ)∇⊤

µ log p(yi|xi;µ)
]

(19)
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Similarly, we can show our mini-batch Fisher coincides with the standard mini-batch Fisher.

Fmini(µ) = Fstandard-mini(µ) :=

B∑
i=1

Eyi∼p

[
∇µ log p(yi|xi;µ)∇⊤

µ log p(yi|xi;µ)
]

(20)

Thus, it is easy to see that 1
BFmini(µ) is an unbiased estimation of 1

NFnew(µ) since the standard mini-batch Fisher is an
unbiased estimation of the standard full-batch Fisher.

Now, we show that our Fisher matrix coincides with the standard Fisher. Recall that we define the joint distribution over
labels is p(y|X;µ) =

∏N
i=1 p(yi|xi;µ)

Fnew(µ)

=Ey∼p

[
∇µ log p(y|X;µ)∇⊤

µ log p(y|X;µ)
]

=Ey∼p

[∑
i

(
∇µ log p(yi|xi;µ)

)(∑
j

∇⊤
µ log p(yj |xj ;µ)

)]
=Ey∼p

[∑
i=j

(
∇µ log p(yi|xi;µ)

)(
∇⊤

µ log p(yj |xj ;µ)
)]

+ Ey∼p

[∑
i ̸=j

(
∇µ log p(yi|xi;µ)

)(
∇⊤

µ log p(yj |xj ;µ)
)]

=
∑
i

Eyi∼p

[(
∇µ log p(yi|xi;µ)

)(
∇⊤

µ log p(yi|xi;µ)
)]

+ Ey∼p

[∑
i ̸=j

(
∇µ log p(yi|xi;µ)

)(
∇⊤

µ log p(yj |xj ;µ)
)]

=Fstandard(µ) +
∑
i̸=j

Ey∼p

[(
∇µ log p(yi|xi;µ)

)(
∇⊤

µ log p(yj |xj ;µ)
)]

=Fstandard(µ)

where the last line is due to the independence and normalization of per-sample distributions as shown below.

Since each per-sample distribution is independent, we have∑
i ̸=j

Ey∼p

[(
∇µ log p(yi|xi;µ)

)(
∇⊤

µ log p(yj |xj ;µ)
)]

=
∑
i ̸=j

Eyi∼p

[
∇µ log p(yi|xi;µ)

]︸ ︷︷ ︸
=0

Eyj∼p

[
∇⊤

µ log p(yj |xj ;µ)
)]

= 0

where we make use of the following result as the per-sample distribution is normalized.

Eyi∼p

[
∇µ log p(yi|xi;µ)

]
=

∫
∇µp(yi|xi;µ)dyi = ∇µ

∫
p(yi|xi;µ)dyi︸ ︷︷ ︸

=1

= 0.

C. Proof of Claim 2
Recall that the (unscaled) optimization problem in (1) is

min
µ

ℓ(µ) (21)

Now, consider reparametrizing µ with a known non-singular matrix A and a constant vector c as µ = Am+ c. In this
case, the optimization problem becomes

min
m

ℓrep(m) := ℓ(Am+ c) (22)

We will show that a square-root-free method is affine invariant at each step. In other words, if we use the same square-root-
free method to solve these two problems, they are equivalent.

For the first problem, the method takes the following step at iteration t

St+1 = (1− β2γ)St + β2Ht, µt+1 = µt − β1S
−1
t+1gt (23)

where gt := ∇µℓ(µ)
∣∣
µ=µt

and Ht = gtg
⊤
t .
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For the second problem, we assume Srep
0 is initialized with A⊤S0A and A−1(µ0 − c) = m0 since A and c are known. In

this case, the square-root-free update at the first iteration becomes

Srep
1 = (1− β2γ)S

rep
0 + β2H

rep
0 = (1− β2γ)S

rep
0 + β2A

⊤H0A = A⊤ ((1− β2γ)S0 + β2H0

)︸ ︷︷ ︸
=S1

A

m1 = m0 − β1

(
Srep
1

)−1
grep
0 = m0 − β1A

−1S−1
1 A−TA⊤g0 = A−1(µ0 − c)− β1A

−1S−1
1 g0

= A−1(µ0 − c− β1S
−1
1 g0) = A−1(µ1 − c)

where we use the following identities when t = 0.

grep
t := ∇mℓrep(m)

∣∣
m=mt

=
∂µ

∂m
|m=mt

∇µℓ
rep(m)

∣∣
µ=µt

= A⊤∇µℓ(µ)|µ=µt
= A⊤gt

Hrep
t := grep

t

(
grep
t

)⊤
= A⊤HtA

From above expressions, we can see that both updates are equivalent at the first iteration since µ1 = A1m1 + c. Similarly,
we can show that both updates are equivalent at every iteration by induction.

Thus, we can see that full-matrix square-root-free method is affine invariance. For a diagonal square-root-free method,
it only preserves a reparametrization invariance with A being diagonal. Likewise, we can show that the update is affine
invariance in a scaled case when using our empirical Fisher.

D. Derivation of Our Inverse-free and Square-root-free Full-AdaGrad
We show that we can make adaptive methods inverse-free via re-parameterization. This is useful to enables matrix methods
to work in low-precision settings.

We consider performing NGD on another parametrization η := (µ,S−1) of the Gaussian, where S−1 ≻ 0 is known as the
covariance matrix and is also positive-definite. We can perform NGD under this parameterization as[

µ

S−1

]
←
[

µ

S−1

]
− β1

[
S 0

0 − 1
2

∂S
∂S−1

]−1 [
∂µL
∂S−1L

]
=

[
µ− β1S

−1∂µL
S−1 + 2β1∂SL

]
=

[
µ− β1S

−1∂µL
S−1 − 2β1S

−1[∂S−1L]S−1

]
,

where Fgauss(η) =

[
S 0

0 − 1
2

∂S
∂S−1

]
is the FIM of the Gaussian and is block-diagonal under this parameterization η, and we use

this gradient identity from matrix calculus ∂SL = −S−1[∂S−1L]S−1 in the last step.

In the above update, we use the old S−1 as a preconditioner. We can use the newly updated S−1
new as a preconditioner as

shown in the follwoing update rule

S−1
new ← (1− β1γ)S

−1 − β1S
−1∇2

µℓ(µ)S
−1, µ← µ− β1S

−1
new∇µℓ(µ), (24)

when performing NGD on parameterization (Sµ,S−1).

This above update is inverse-free since we directly update S−1 without inverting S. To obtain inverse-free adaptive methods,
we use the second moment ∇2

µℓ(µ) ≈ H as a Hessian approximation and introduce an additional learning rate β2 to
compensate this approximation.

However, the update of S−1 in (24) does not guarantee that S−1
new is positive-definite even when H = H = gg⊤ is semi-

positive-definite. Inspired by Lin et al. (2020), we propose to add a correction term highlighted in red in the update of S−1

to satisfy the constraint as

S−1
new ← (1− β2γ)S

−1 − β2S
−1HS−1 +

β2
2

2
W, (25)

where W := S−1HS−1HS−1 + 2γS−1HS−1 + γ2S−1.

By setting γ = 0, we obtain an inverse-free update for square-root-free full-AdaGrad in Eq. (18) as

S−1
new ← S−1 − β2S

−1HS−1 +
β2
2

2
S−1HS−1HS−1, µ← µ− β1S

−1
newg.
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Claim 3. The update in Eq. (18) is guaranteed to be positive-definite when the current S−1 is positive-definite.

Proof. We prove that the update in (25) is positive-definite. Therefore, the update in Eq. (18) is also positive-definite by
setting γ = 0.

When the current/initial S−1 is positive-definite, the updated S−1
new in (25) is guaranteed to be positive-definite since

(1− β2γ)S
−1 − β2S

−1HS−1 +
β2
2

2
W = A(I− β2N+

β2
2

2
N2)A⊤ = 1

2A
[
I+ (I− β2N)(I− β2N)⊤

]
A⊤ ≻ 0,

(26)
where the current S−1 can be decomposed as S−1 = AA⊤, A is a square non-singular matrix, and N := A⊤HA+ γI is a
symmetric matrix.

E. Preconditioner Invariance for Full-matrix Square-root-free Adaptive Methods
We will show that following claim to explicitly demonstrate the preconditioner invariance. This invariance allows us to
reparametrize a preconditioner S to obtain an inverse-free update scheme. In other words, the updates of S̄−1 and S are
equivalent up to a first-order accuracy thanks to this invariance.

Claim 4. Let S̄−1 be the inverse of a preconditioner updated according to the inverse-free scheme (Eq. (18)) with this
initialization S̄

−1
0 = S−1

0 . If S̄ and S are updated by using the same sequence of curvature approximations H, then S̄ has a
first-order accuracy of the root-free full-AdaGrad update of S (Eq. (17)) at each iteration, i.e., S̄ = S+O(β2

2).

Proof. We will show an equivalent relationship as S̄−1
t St = I+O(β2

2) by induction. By the initialization, we know that
this relationship holds when t = 0. Suppose that this relationship holds when t = k − 1 so that S̄−1

k−1Sk−1 = I+O(β2
2).

Now, we show that S̄−1
k Sk = I+O(β2

2). According to (18), S̄−1 is updated as

S̄
−1
k = S̄

−1
k−1 − β2S̄

−1
k−1Hk−1S̄

−1
k−1 +

β2
2

2
S̄
−1
k−1Hk−1S̄

−1
k−1Hk−1S̄

−1
k−1

According to Eq. (17), the root-free full-AdaGrad update of S is

Sk = Sk−1 + β2Hk−1.

Thus, we have

S̄
−1
k Sk = (S̄

−1
k−1 − β2S̄

−1
k−1Hk−1S̄

−1
k−1 +

β2
2

2
S̄
−1
k−1Hk−1S̄

−1
k−1Hk−1S̄

−1
k−1)(Sk−1 + β2Hk−1)

= [S̄
−1
k−1 − β2S̄

−1
k−1Hk−1S̄

−1
k−1 +O(β2

2)](Sk−1 + β2Hk−1)

= S̄
−1
k−1Sk−1︸ ︷︷ ︸
I+O(β2

2)

−β2S̄
−1
k−1Hk−1 S̄

−1
k−1Sk−1︸ ︷︷ ︸
I+O(β2

2)

+β2S̄
−1
k−1Hk−1 +O(β2

2)

= I− β2S̄
−1
k−1Hk−1 + β2S̄

−1
k−1Hk−1 +O(β2

2)

= I+O(β2)

Thus, by induction, we have S̄
−1
t St = I+O(β2

2).

As shown in Lin et al. (2023b), the update of A is

A = Aexp(−β2

2
(A⊤HA− γI)) (27)

where (AA⊤)−1 is used to approximate a preconditioner.
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Claim 5. Let (AA⊤)−1 be a preconditioner, where A is initialized so that (A0A
⊤
0 )

−1 = S0. If A is updated according
to the inverse-free scheme (Eq. (27) with γ = 0), and A and S are updated by using the same sequence of curvature
approximations H, then (AA⊤)−1 has a first-order accuracy of the root-free full-AdaGrad update of S (Eq. (17)) at each
iteration, i.e., (AA⊤)−1 = S+O(β2

2).

Proof. We will show an equivalent relationship as AtA
⊤
t St = I + O(β2

2) by induction. By the initialization, we know
that this relationship holds when t = 0. Suppose that this relationship holds when t = k − 1 so that Ak−1A

⊤
k−1Sk−1 =

I+O(β2
2).

Now, we show that AkA
⊤
k Sk = I+O(β2

2). According to the above update, A is updated as

Ak = Ak−1exp(−
β2

2
A⊤

k−1Hk−1Ak−1) (28)

and the product is

AkA
⊤
k = Ak−1exp

(
− β2A

⊤
k−1Hk−1Ak−1

)
A⊤

k−1

= Ak−1

(
I− β2A

⊤
k−1Hk−1Ak−1 +O(β2

2)
)
A⊤

k−1

= Ak−1A
⊤
k−1 − β2Ak−1A

⊤
k−1Hk−1Ak−1C

⊤
k−1 +O(β2

2)

Thus, we have

AkA
⊤
k Sk =

[
Ak−1A

⊤
k−1 − β2Ak−1A

⊤
k−1Hk−1Ak−1A

⊤
k−1 +O(β2

2)
](
Sk−1 + β2Hk−1

)
= Ak−1A

⊤
k−1Sk−1︸ ︷︷ ︸

I+O(β2
2)

−β2Ak−1A
⊤
k−1Hk−1 Ak−1A

⊤
k−1Sk−1︸ ︷︷ ︸

I+O(β2
2)

+β2Ak−1A
⊤
k−1Hk−1 +O(β2

2)

= I+O(β2
2)

Thus, by induction, we have AtA
⊤
t St = I+O(β2

2).

F. Scale-invariance and Affine-invariance of Our Inverse-free Updates
Claim 6. Our root-free update shown in Eq. (18) is invariant to a scale transformation of the loss.

Proof. Recall that the (unscaled) optimization problem in (1) is

min
µ

ℓ(µ) (29)

The scaled problem is

min
µ̄

ℓscaled(µ̄) :=
1

B
ℓ(µ̄) (30)

We will show that our update is invariant at each step. In other words, µ = µ̄ holds for every iteration. We assume µ = µ̄
holds at the initialization step.

Recall that our update rule (Eq. (18)) to solve the original problem is

S−1 = S−1 − β2S
−1F̃newS

−1 +
β2
2

2
S−1F̃newS

−1F̃newS
−1

µ = µ− β1S
−1g

where g := ∇µℓ(µ) and F̃new = H = gg⊤. Recall that the gradient outer product H coincides with our empirical Fisher
F̃new in this case.
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In the scaled case, our update is

S̄
−1

= S̄
−1 − β2S̄

−1
F̃scaledS̄

−1
+

β2
2

2
S̄
−1

F̃scaledS̄
−1

F̃scaledS̄
−1

µ̄ = µ̄− β1S̄
−1

ḡ

where ḡ := ∇µ̄ℓscaled(µ̄) =
1
Bg and F̃new = BH̄ = Bḡḡ⊤ = 1

BH

We first assume that S̄−1
= BS−1. Therefore, we can show that µ = µ̄ since their descent directions are the same as

S̄
−1

ḡ =
(
BS−1

)(
1
Bg
)
= S−1g.

Now, we show that S̄ = S
B at every iteration. We assume S̄ is initialized so that this relationship holds in the base case. Note

that we have the following relationship

S̄
−1
new = S̄

−1︸︷︷︸
BS−1

−β2S̄
−1

F̃scaledS̄
−1

+
β2
2

2
S̄
−1

F̃scaledS̄
−1

F̃scaledS̄
−1

= BS−1 − β2

(
BS−1

)H
B

(
BS−1

)
+

β2
2

2

(
BS−1

)H
B

(
BS−1

)H
B

(
BS−1

)
= B

(
S−1 − β2S

−1HS−1 +
β2
2

2
S−1HS−1HS−1

)
= BS−1

new

Thus, we can use induction to establish this relationship.

Claim 7. Our root-free update in Eq. (18) is invariant up to an affine transformation.

Proof. This proof is similar to the proof in Appx.C. Recall that the (unscaled) optimization problem in (1) is

min
µ

ℓ(µ) (31)

For simplicity, we only consider the linear transformation without a translation. Now, consider reparametrizing µ with a
known non-singular matrix A as µ = Aµ̄ . In this case, the optimization problem becomes

min
µ̄

ℓrep(µ̄) := ℓ(Aµ̄) (32)

Let S and S̄ be preconditioners for the first problem and the second problem, respectively. We will show that S̄−1
=

A−1S−1A−T . Once this relationship is established, we can use a similar proof technique in Appx. C to complete the proof.

We can establish this relationship by induction. Note that this relationship holds in the base case thanks to our initialization.

For the first problem, S−1 is updated as

S−1
new = S−1 − β2S

−1HS−1 +
β2
2

2
S−1HS−1HS−1

By induction, we know that S̄−1
= A−1S−1A−T at the current iteration. At a new iteration, the preconditioner S̄−1 for the

reparametrized problem is updated as

S̄
−1
new = S̄

−1︸︷︷︸
A−1S−1A−T

−β2S̄
−1

H̄︸︷︷︸
A⊤HA

S̄
−1

+
β2
2

2
S̄
−1

H̄S̄
−1

H̄S̄
−1

= A−1S−1A−T − β2A
−1S−1HS−1A−T +

β2
2

2
A−1S−1HS−1HS−1A−T

= A−1
[
S−1 − β2S

−1HS−1 +
β2
2

2
S−1HS−1HS−1

]
A−T

= A−1S−1
newA

−T
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where we use the following identities.

ḡ := ∇µ̄ℓ
rep(µ̄) = A⊤g

H̄ := ḡḡ⊤ = A⊤HA

Thus, by induction, this relationship holds for every iteration.

We can similarly show that another inverse-free update (Eq. (27)) is both scale and affine invariant.

G. Derivation of Our Kronecker-factored Inverse-free Methods
We consider reparametrize the inverse preconditioner (covariance) as S−1 = (CC⊤)⊗ (KK⊤). To obtain an inverse-free
update scheme, we consider directly update C and K to bypass the need for matrix inversion, where C ∈ Rp×p and
K ∈ Rd×d are square non-singular matrices. Recall that we consider the curvature approximation H = H = gg⊤ as a
term of the partial derivative as 2∂S−1L ≈ H− γS = gg⊤ − γ(CC⊤)−1 ⊗ (KK⊤)−1. We consider the local coordinates
proposed by Lin et al. (2023b). For simplicity, we only update the block C while keeping blocks µ and K frozen. Indeed,
the blocks can be updated simultaneously. To update the block C at iteration t, the local coordinate ηC associated to
Ct is defined as S−1 = (CC⊤) ⊗ (KK⊤), where C = CtExp(

ηC√
2d
). ηC is a square symmetric matrix and it can be

singular. Lin et al. (2023b) show that the block approximated FIM of the Gaussian can be orthonormal at the origin in
this local coordinate system as Fgauss(η

cur
C ) = I. Importantly, the origin in this system represents the current block Ct as

Ct ≡ CtExp(
ηcur

C√
2d
) where ηcur

C = 0. Thus, we can perform NGD in this local coordinate system as

ηnew
C ← ηcur

C − β2 (Fgauss(η
cur
C ))

−1
∂ηC
L = 0− β2∂ηC

L (33)

Ct+1 ← CtExp(
ηnew
C√
2d

) ≈ Ct(I+
ηnew
C√
2d

) (34)

where we can use the chain rule to compute the partial derivative at ηcur
C = 0 andH = H

2∂ηC
L = 2

∂S−1

∂ηC

∂S−1L ≈ ∂S−1

∂ηC

[
gg⊤ − γ(CtC

⊤
t )

−1 ⊗ (KK⊤)−1
]
=

√
2

d
C⊤G⊤KK⊤GC− γ

√
2dIp. (35)

Thus, the update for block C can be re-expressed as

Ct+1 ← CtExp(−
β2

2d

(
C⊤G⊤KK⊤GC− γdIp

)
) ≈ Ct

[
I− β2

2d

(
C⊤G⊤KK⊤GC− γdIp

)]
(36)

We also include a damping term λIdp = λId ⊗ Ip into the curvature approximation such asH = gg⊤ + λId ⊗ Ip. Recall
that we do not assume that the curvature approximationH has the same structure as the preconditioner S. We can similarly
update blocks K and µ. The deails of the complete update can be found at Fig. 7.

H. Scale-invariance and Affine-invariance of Our Kronecker-factored Updates
Claim 8. Our root-free Shampoo update shown in Fig. 5 is invariant to a scale-transformation of the loss.

Proof. We consider a matrix weight µ = vec(M). In this case, the (unscaled) optimization problem in (1) is

min
M

ℓ(M) (37)

where M ∈ Rp×d.

The scaled problem is

min
M̄

ℓscaled(M̄) :=
1

B
ℓ(M̄) (38)
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We will show that our update is invariant at each step. In other words, M = M̄ holds for every iteration. We assume
M = M̄ holds at the initialization step.

Recall that our update rule (Fig. 5) to solve the original problem is

SC = (1− β2γ)SC +
β2

d
(GS−1

K G⊤)

SK = (1− β2γ)SK +
β2

p
(G⊤S−1

C G)

M = M− β1S
−1
C GS−1

K

where G := ∇M ℓ(M) ∈ Rp×d.

In this scaled case, our update shown in Fig. 5 is

S̄C = (1− β2γ)S̄C +
β2

d
(BḠS̄

−1
K Ḡ

⊤
)

S̄K = (1− β2γ)S̄K +
β2

p
(BḠ

⊤
S̄
−1
C Ḡ)

M̄ = M̄− β1S̄
−1
C ḠS̄

−1
K

where Ḡ = ∇M̄ ℓscaled(M̄) = 1
BG.

We first assume that S̄C = SC√
B

and S̄K = SK√
B

. Therefore, we can show that M = M̄ since their descent directions are the

same as S̄−1
C ḠS̄

−1
K =

(SC√
B

)−1(G
B

)(SK√
B

)−1
= S−1

C GS−1
K .

Now, we prove that S̄C = SC√
B

and S̄K = SK√
B

. We will prove this by induction. We assume that S̄C and S̄K are initialized

so that S̄C = SC√
B

and S̄K = SK√
B

hold in the base case needed for induction. It is easy to see that

S̄
new
C = (1− β2γ)S̄C +

β2

d
(BḠS̄

−1
K Ḡ

⊤
)

= (1− β2γ)
( SC√

B

)
+

β2

d
(B

G

B

( SK√
B

)−1G

B

⊤
)

=
1√
B

[
(1− β2γ)SC +

β2

d
(GS−1

K G⊤)
]

=
Snew
C√
B

Thus, by induction, we can show S̄C = SC√
B

. We can similarly show that S̄K = SK√
B

.

Claim 9. Our root-free Shampoo update shown in Fig. 5 is affine reparametrization invariant up to an (Kronecker-factored)
affine transformation.

Proof. We consider the following unconstrained optimization problem with a matrix weight M ∈ Rp×d.

min
M

ℓ(M) (39)

Now, consider reparametrizing M with known non-singular transformation matrices E ∈ Rp×p and F ∈ Rd×d and a
constant matrix K as M = ENFT +O In this case, the optimization problem becomes

min
N

ℓrep(N) := ℓ(ENF⊤ +O) (40)
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Note that this is a Kronecker-factored affine transformation when we a vector representation. In other words, vec(M) =
(F⊗E)vec(N) + vec(O), where this transformation matrix (F⊗E) admits a Kronecker-factored structure.

We will show that our update is affine invariant for such a transformation at each step. In other words, if we use the same
update rule to solve these two problems, they are equivalent.

For the first problem, the method takes the following step at iteration t

S
(t+1)
C = (1− β2γ)S

(t)
C +

β2

d
G(t)

(
S
(t)
K

)−1(
G(t)

)⊤
,

S
(t+1)
K = (1− β2γ)S

(t)
K +

β2

p

(
G(t)

)⊤(
S
(t)
C

)−1
G(t),

M(t+1) = M(t) − β1

(
S
(t+1)
C

)−1
G(t)

(
S
(t+1)
K

)−1

where G(t) := ∇M ℓ(M)
∣∣
M=M(t) .

For the second problem, we assume SCrep , SKrep , and N are initialized so that S(0)
Crep = E−TS

(0)
C E−1, S(0)

Krep = F−TS
(0)
K F−1,

and E−1(M(0) −O)F−T = N(0).

In this case, the our update at the first iteration becomes

S
(t+1)
Crep = (1− β2γ)S

(t)
Crep +

β2

d
G(t)

rep

(
S
(t)
Krep

)−1(
G(t)

rep

)⊤
,

S
(t+1)
Krep = (1− β2γ)S

(t)
Krep +

β2

p

(
G(t)

rep

)⊤(
S
(t)
Crep

)−1
G(t)

rep,

N(t+1) = N(t) − β1

(
S
(t+1)
Crep

)−1
G(t)

rep

(
S
(t+1)
Krep

)−1

where we use the following identities when t = 0.

G(t)
rep := ∇Nℓrep(N)

∣∣
N=N(t) =

∂M

∂N
|M=M(t)∇M ℓrep(M)

∣∣
M=M(t) = E⊤∇M ℓ(M)|M=M(t)F = E⊤G(t)F (41)

It is easy to see that the following expressions hold when t = 0.

E−TS
(t+1)
Crep E−1 = (1− β2γ)E

−TS
(t)
CrepE

−1 +
β2

d
E−T G(t)

rep︸︷︷︸
E⊤G(t)F

(
S
(t)
Krep

)−1(
G(t)

rep

)⊤
E−1,

= (1− β2γ)E
−TS

(t)
CrepE

−1︸ ︷︷ ︸
S

(t)
C

+
β2

d
G(t)

(
F−TS

(t)
KrepF

−1︸ ︷︷ ︸
S

(t)
K

)−1(
G(t)

)⊤
= (1− β2γ)S

(t)
C +

β2

d
G(t)

(
S
(t)
K

)−1(
G(t)

)⊤
= S

(t+1)
C

Similarly, we can show F−TS
(t+1)
Krep F−1 = S

(t+1)
K when t = 0.

Consequently, we have the following result when t = 0

EN(t+1)F⊤ = EN(t)F⊤ − β1E
(
S
(t+1)
Crep

)−1
G(t)

rep︸︷︷︸
E⊤G(t)F

(
S
(t+1)
Krep

)−1
F⊤

= EN(t)F⊤︸ ︷︷ ︸
M(t)−O

−β1 E
(
S
(t+1)
Crep

)−1
E⊤︸ ︷︷ ︸(

S
(t+1)
C

)−1

G(t) F
(
S
(t+1)
Krep

)−1
F⊤︸ ︷︷ ︸(

S
(t+1)
K

)−1

= M(t+1) −O.

In other words, M(t+1) = EN(t+1)F⊤ +O when t = 0. From this expression, we can see that both updates are equivalent
at the first iteration. Similarly, we can show that both updates are equivalent at every iteration by induction.

We can also show that our inverse-free Shampoo update shown in Fig. 5 is both scale and affine invariant.
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I. Preconditioner Invariance of Our Kornecker-factored Updates
We reparametrize a Kronecker-factored preconditioner S = SC⊗SK to obtain an inverse-free update scheme. The following
claim explicitly demonstrates the preconditioner invariance. In other words, the updates of C and SC are equivalent up to a
first-order accuracy.
Claim 10. Let CC⊤ be the inverse of a preconditioner updated according to the inverse-free scheme in Fig. 5 with
initialization CC = S−1

C . If C and SC are updated by using the same sequence of gradients G, then CC⊤ has a first-order
accuracy of our root-free Shampoo update of SC in Fig. 5 at each iteration, i.e., CC⊤ = S−1

C +O(β2
2). Similarly, KK⊤

has a first-order accuracy of our root-free update of SK at each iteration, i.e., KK⊤ = S−1
K +O(β2

2).

Proof. It is equivalent to show that (CC⊤)SC = I+O(β2
2) and (KK⊤)SK = I+O(β2

2). We will prove this by induction.
Thanks to the initialization, we know that the base case (t = 0) is true. Now, we assume this relationship holds when t = k.
Consider the case when t = k + 1.

For notation simplicity, we drop the index k and denote C(k+1) and S
(k+1)
C by Cnew and Snew

C . We have the following result[
Cnew(Cnew)⊤]Snew

C

=C
[
I− β2

d

(
C⊤GKK⊤G⊤C− γdI

)
+O(β2

2)
]
C⊤[(1− γβ2)SC +

β2

d
GS−1

K G⊤]
=
[
(1 + γβ2)CC⊤ − β2

d
CC⊤GKK⊤G⊤CC⊤][(1− γβ2)SC +

β2

d
GS−1

K G⊤]+O(β2
2)

=CC⊤SC︸ ︷︷ ︸
I+O(β2

2)

−β2

d
CC⊤GKK⊤G⊤ CC⊤SC︸ ︷︷ ︸

I+O(β2
2)

+
β2

d
CC⊤G S−1

K︸︷︷︸
KK⊤+O(β2

2)

G⊤ +O(β2
2)

=I+O(β2
2)

Likewise, we have
[
Knew(Knew)⊤]Snew

K = I+O(β2
2). Thus, we can use induction to show the relationship holds at every

iteration.

As discussed in the caption of Fig.7, we can make the higher order term O(β2
2) negligible when β2 is determined by the

matrix norm of 1
d

(
C⊤GKK⊤G⊤C− γdI

)
.

J. Experimental Details & Additional Experiments
We consider various NN models ranging from classical to modern models to demonstrate the effectiveness of root-free
adaptive methods. We consider the following NN models in our (pre-)training experiments.

• CNNs: ResNet34, VGG16, DenseNet121 on CIFAR100

• RNN: 3-layer LSTM on PenTree

• GNN: Graph MLP with attention on OgbnProducts

• Transformers: SwinViT, FocalNet, GCViT on ImageWoof10

• Mamba: VMamba on ImageWoof10

We train CNNs for 210 epochs, and ViTs and VMamba for 300 epochs with mini-batch size 128. For CNNs, RNN, and
GNN, we use a step decay schedule suggested by Wilson et al. (2017). For Transformers and Mamba, we use a cosine
learning rate schedule suggested by Chen et al. (2023). We will release the code to reproduce our experiments.

For fine-tuning experiments, we use pre-trained weights of a ViT model (Dosovitskiy et al., 2020) and fine-tune them on CI-
FAR100 and FOOD101 datasets. We use this implementation (https://github.com/bwconrad/vit-finetune)
in our experiments.
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Hyperparameter Tuning We use PyTorch’s built-in SGD, AdamW, and RMSProp. For Shampoo, we rely on the
state-of-the-art PyTorch implementation from Meta (Shi et al., 2023). We tune the following hyperparameters (HPs) for
each optimizer.

• SGD: initial learning rate, momentum, weight decay

• AdamW: initial learning rate, coefficients used for estimating the first and second moment, weight decay, damping

• RMSProp: initial learning rate, coefficient used for estimating the second moment, momentum, weight decay, damping

• Shampoo: initial learning rate, coefficients used for updating momentum and Kronecker factors, weight decay, damping

• RF-RMSProp (ours, c.f. Fig. 6): initial learning rate, coefficients used for estimating the second moment, momentum,
weight decay, damping

• IF-Shampoo with γ = 1 (ours, c.f. Fig. 7): initial learning rate, coefficients used for updating momentum and
Kronecker factors, weight decay, damping, Riemannian momentum

For matrix adaptive methods (Shampoo and IF-Shampoo), we update their matrix preconditioners at each 2 iterations. For
all tasks and optimizers, we employ a two-stage HP tuning protocol based on random search (Choi et al., 2019). In the first
stage, we use larger search regimes for all HPs. Based on this stage, we select a narrower HP range and re-run the search,
reporting the best run for each method. Each stage use 100 runs and we will release the code to reproduce our experiments
that contain HP search space details in the second-stage.

Mixed-precesion Training For all optimizers, only the forward pass is executed in mixed precision with BFP-16 (as
recommended by the official PyTorch guide). The gradients are automatically cast back to FP-32 by PyTorch. Shampoo uses
these FP-32 gradients for its preconditioner and is unstable when converting them to BFP-16 (Shi et al., 2023) . Instead, our
IF-Shampoo converts the gradients into BFP-16, updates the preconditioner, and even takes preconditioned gradient steps in
half precision. Our method works well in half precision without using matrix decomposition and matrix solve/inversion.
These matrix operations in half precision are not supported in PyTorch and JAX because they are numerically unstable.
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Figure 8. Comparison of matrix root-free versus root-based methods on GCViT (Hatamizadeh et al., 2023), SwinViT (Liu et al., 2021),
FocalNet (Yang et al., 2022), and VMamba (Liu et al., 2024). Both matrix methods (Shampoo, IF-Shampoo) outperform diagonal methods
on modern vision models such as transformers and mambas using modern training strategies (cosine learning rate schedule, random
search using 200 runs). In contrast to Shampoo, our inverse-free matrix method, IF-Shampoo, runs in BFP-16 and trains at least twice
as fast, while using less memory. We update matrix preconditioners at each 2 iterations and can further reduce the wall clock time by
updating them less frequently.

23



Can We Remove the Square-Root in Adaptive Gradient Methods?

Dataset Method GCViT SwinViT FocalNet VMamba

ImageWoof10

AdamW 13.48/143 13.96/162 16.58/159 10.96/315
SGD 14.74/142 17.44/161 20.22/158 12.38/314

Shampoo 9.16/550 9.97/633 14.33/716 8.25/1336
RF-RMSProp (ours) 13.37/144 15.02/162 15.39/159 11.38/315
IF-Shampoo (ours) 9.05/202 10.65/169 13.93/189 8.20/384

Table 1. Results about the performance (test error/clock time) of the optimizers on modern NN models. We train all models for 300
epochs. All methods except Shampoo support training with BFP-16. Shampoo has to use FP-32— sometimes FP-64—to update its
preconditioners to avoid numerical instabilities. For example, Shampoo has to use FP-64 on SwinViT. For matrix adaptive methods
(Shampoo, IF-Shampoo), we update their preconditioners at every 2 iterations and can further reduce the clock time by updating them less
frequently. The results are obtained by averaging over the last 10 iterations.
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Figure 9. Comparison of root-free versus root-based adaptive methods on ResNet34, DenseNet121, and VGG16 using modern training
strategies (step decay learning rate schedule, random search using 200 runs). Root-free adaptive methods close the generalization gap
between their root-based counterparts and SGD on CNNs.

Dataset Method ResNet34 DenseNet121 VGG16

CIFAR100
AdamW 24.85 23.30 27.42

SGD 20.91 19.88 24.02
RF-RMSProp (ours) 21.25 19.81 24.00

Table 2. Results about the performance (test error) of the optimizers on convolutional NN models. The results are obtained by averaging
over the last 10 iterations.

Additional Experiments We also evaluate our root-free methods on regression and fine-tuning problems (c.f. Fig. 10 and
11).
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Figure 10. Experiments demonstrating that square-root-free adaptive methods work well with both cross entropy (CE) and square error
(SE) losses. Thus, our (diagonal) empirical Fisher used in our update scheme does not suffer from the limitations of the standard empirical
Fisher (Kunstner et al., 2019). We train all models using mini-batches and use random search (200 runs) to tune these methods. In the first
two plots on the left, we consider convex problems using a constant learning rate schedule (outdated training scheme) considered by
Kunstner et al. (2019). In the remaining plots, we consider non-convex NN problems with a step decay learning rate schedule (modern
training scheme) considered by Wilson et al. (2017). We consider ResNet50 models and train them for 120 epochs with mini-batch size
128. Due to the large number of classes on the CIFAR100 dataset, we employ SE loss functions suggested by Hui & Belkin (2020) when
it comes to using SE loss functions for classification tasks.
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Figure 11. Experiments demonstrating that square-root-free adaptive methods work well in fine-tuning settings, where we use a ViT
model (Dosovitskiy et al., 2020) pretrained on ImageNet-21k and fine-tune on CIFAR100 and FOOD101 datasets.
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