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Figure 1: Our decoder reconstructs data from Riemannian manifolds where representations are learned as
model parameters via maximum a posteriori.

Abstract

Euclidean representations inevitably distort data with intrinsic non-Euclidean structure.
While Riemannian representation learning offers a solution by embedding data onto matching
manifolds, it typically relies on an encoder to estimate densities on chosen manifolds. This
involves optimizing numerically brittle objectives, potentially harming model training and
quality. To completely circumvent this issue, we introduce the Riemannian generative
decoder, a unifying approach for finding manifold-valued latents on any Riemannian manifold.
Latents are learned with a Riemannian optimizer while jointly training a decoder network.
By discarding the encoder, we vastly simplify the manifold constraint compared to current
approaches which often only handle few specific manifolds. We validate our approach on
three case studies — a synthetic branching diffusion process, human migrations inferred
from mitochondrial DNA, and cells undergoing a cell division cycle — each showing that
learned representations respect the prescribed geometry and capture intrinsic non-Euclidean
structure. Our method requires only a decoder, is compatible with existing architectures,
and yields interpretable latent spaces aligned with data geometry. A temporarily anonymized
codebase is available on: https://anonymous.4open.science/r/rgd-4gkL/.

1 Introduction

Real-world data often lie on non-Euclidean manifolds — e.g., evolutionary trees, social-network graphs,
or periodic signals — yet most models assume Rd latent variables. While flexible, this forces data with
intrinsic geometrical structure into distorted configurations. Euclidean methods hence often fail to provide
visualizations rooted in the geometry which underlies the data, completely missing clear signals (Section 4.3).
Meanwhile, low-dimensional projections directly guide how practitioners interpret their data in various
fields. While non-linear projections like UMAP (McInnes et al., 2018) are greatly used despite dangers of
misinterpretations (Huang et al., 2022), having more control over the projection facilitates a hypothesis-based
exploration of data. For this, Riemannian manifolds — spaces that are locally Euclidean but endowed with
a smoothly varying inner product (metric) defining lengths, angles, geodesics, and curvature — provide a

1

https://anonymous.4open.science/r/rgd-4gkL/


Under review as submission to TMLR

general framework for modeling geometry. Existing works have adjusted variational autoencoders (VAEs) for
embedding data onto various geometries. However, despite the flexibility of VAEs, enforcing manifold priors
(e.g., von Mises–Fisher on spheres or Riemannian normals in hyperbolic spaces) requires complex densities
and Monte Carlo estimates of normalizing constants, limiting scalability for general manifolds.

We therefore propose the Riemannian generative decoder: we discard the encoder and directly learn manifold-
valued latents with a Riemannian optimizer while training a decoder network. This encoderless scheme
removes the need for approximate densities on the manifold, and handles any Riemannian manifold —
including products of heterogeneous manifolds. With a geometry-aware regularization through input noise,
our model is further encouraged to penalize sharpness relative to the local curvature. We analyze this form of
regularization and see its importance in preserving geometric structure during dimensionality reduction. Our
contributions are as follows,

• We introduce a unifying framework for representation learning on any Riemannian manifold
by combining Riemannian optimization with an encoder-less generative model,

• We introduce a highly scalable geometric regularization, promoting coherency between a decoder
function and a chosen manifold’s metric through noise perturbation,

• We explore various real-world biological datasets and find our approach to match or improve a
diverse set of metrics; all while being much stabler in high dimensions where other methods fail.

2 Background

Learned representations often reveal the driving patterns of the data-generating phenomenon. Much of com-
putational biology — and especially data-driven fields like transcriptomics — greatly relies on dimensionality
reduction techniques to understand the underlying factors of their experiments (Becht et al., 2019). Unfortu-
nately, a lack of statistical identifiability implies that such representations need not be unique (Locatello
et al., 2019). Therefore, it is common practice to inject various inductive biases that reflect prior beliefs or
hypotheses about the analyzed problem. One way is to impose a specific geometry on the latent space.

2.1 Latent Variable Models

Autoencoders (AEs) learn a deterministic mapping x 7→ z 7→ x̂ by minimizing a reconstruction loss

min
θ,ϕ

N∑
i=1

L
(
xi, fθ(gϕ(xi))

)
(1)

where x1, . . . , xN are the training samples, L is the loss function, e.g. the squared error, gϕ is the encoder and
fθ the decoder. Because fθ is typically smooth, nearby latent codes produce similar reconstructions. This
imposes a smoothness bias on the representation: distances in latent space are tied to distances in data space.

The variational autoencoder (VAE) by Kingma & Welling (2013) extends this by introducing a prior p(z), a
stochastic encoder qϕ(z | x) as a variational distribution, and a stochastic decoder pθ(x | z). The marginal
likelihood

p(x|θ) =
∫

p(x|z, θ)p(z)dz (2)

is intractable, but is lower bounded by the evidence lower bound (ELBO):

log p(x|θ) ≥ Eqϕ(z|x)
[
log pθ(x | z)

]︸ ︷︷ ︸
data reconstruction

− DKL
(
qϕ(z | x) ∥ p(z)

)︸ ︷︷ ︸
latent regularization

, (3)

where DKL is the Kullback-Leibler divergence. The decoder is trained by maximizing the ELBO to reconstruct
x from samples of z ∼ qϕ(z | x). The KL term encourages the encoding distribution to match the prior,
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typically N (0, I), while the stochasticity of qϕ forces the decoder to be robust to perturbations in z. Together,
these constraints strengthen the smoothness bias across the encoder distribution.

An alternative to the VAE is the Deep Generative Decoder (DGD; Schuster & Krogh 2023), avoiding an
encoder entirely. Each latent zi is treated as a free parameter, and the model uses MAP estimation by
maximizing P (z, θ, ϕ|x), corresponding to maximizing the following in z, θ and ϕ:

(ẑ, θ̂, ϕ̂) = arg max
z,θ,ϕ

N∑
i=1

(
log pθ(xi | zi) + log p(zi | ϕ)

)
+ log

(
P (θ)P (ϕ)

)
(4)

The last term contains priors on θ and ϕ. A parameterized distribution p(zi | ϕ) on latent space, such as a
Gaussian mixture model, can introduce inductive bias. The decoder smoothness imposes again a continuity
constraint on z 7→ x, as reconstructions must interpolate well across learned codes. Unlike the VAE, no
amortized inference is used, but the same decoder regularization implicitly shapes the latent geometry.

In all three frameworks — AE, VAE, and DGD — the smoothness of the decoder function acts as a regularizer
on latent codes. Since nearby z produce similar outputs, the learned representations inherit geometric
continuity. The VAE further strengthens this bias through stochastic encodings and KL regularization. The
DGD enforces it by directly optimizing per-sample codes under a smooth decoder. These smoothness priors
play a central role in learning meaningful low-dimensional structure.

2.2 Geometric Inductive Biases

Most learned representations are assumed to be Euclidean. This implies a simple, unbounded topological
structure for the representations. This is a flexible and not very informative inductive bias. In scientific
settings, however, practitioners often possess explicit knowledge regarding the underlying topology of their
data, allowing for direct hypothesis testing via geometric constraints. Selecting a latent manifold is an
inductive bias that acts as a constraining regularizer, effectively guiding the learning process towards a more
controlled and explainable local minimum.

We briefly survey parts of the literature and generally find that existing approaches involve layers of complexity
that potentially limit their performance.

Spherical representation spaces encode compactness and periodicity. Davidson et al. (2018) and Xu &
Durrett (2018) define latents on Sd−1 via a von Mises–Fisher prior:

p(z | µ, κ) = Cd(κ) exp(κ µ⊤z) with Cd(κ) = κd/2−1

(2π)d/2Id/2−1(κ)
, (5)

where µ ∈ Sd−1 and κ > 0. Sampling uses rejection or implicit reparameterization and KL terms involve
Bessel functions, complicating Equation 3 while adding computational overhead and bias.

Hyperbolic representation spaces effectively capture hierarchical data structures (Krioukov et al., 2010).
A popular choice (used for, e.g., the P-VAE (Mathieu et al., 2019)) is the Poincaré ball Bd, with metric
gz = λ(z)2I, where λ(z) = 2/(1 − ∥z∥2), and distance

dB(u, v) = arcosh
(

1 + 2 ∥u − v∥2

(1 − ∥u∥2)(1 − ∥v∥2)

)
. (6)

One typically uses the Riemannian normal prior

p(z) ∝ exp
(
−dB(z, µ)2/(2σ2)

)
. (7)

The ELBO then requires approximating both the intractable normalizing constant of the prior and volume
corrections, typically via Monte Carlo or series-expansion methods. Alternative hyperbolic embeddings like
the Lorentz (Nickel & Kiela, 2018) or stereographic projections (Skopek et al., 2019) improve computational
stability and flexibility but face analogous challenges.
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General geometries can represent different inductive biases (Kalatzis et al., 2020; Connor et al., 2021; Falorsi
et al., 2018; Grattarola et al., 2019). Current literature is based on encoders whose densities generally lack
closed-form formulas on arbitrary manifolds M. They rely on approximations like Monte Carlo importance
sampling, truncated wrapped normals

q(z|µ, Σ) ≈
∑

k∈Zd

exp(− 1
2 ∥ Logµ(z) + 2πk∥2

Σ−1)
(2π)d/2|Σ|1/2 , (8)

or random-walk reparameterization encoders such as ∆VAE (Rey et al., 2019), that simulates Brownian
motion using the manifold exponential map: z = Expµ(

∑
i ξi), ξi ∼ N (0, t

steps I).

Related approaches focus on specific geometries or tasks: scPhere (Ding & Regev, 2021) is an application
study of spherical and hyperbolic VAEs to biological data, while Nickel & Kiela (2017) learn Poincaré
embeddings from supervised relations. Others, like GAGA, assume pre-learned latent structures (Sun et al.,
2024). More classical non-linear methods such as Isomap, diffusion maps, or UMAP (Tenenbaum et al.,
2000; Coifman & Lafon, 2006; McInnes et al., 2018) visualize intrinsic geometry but do not explicitly learn
Riemannian latent variables nor a generative model.

Curvature regularization. Independent of encoder–decoder choices, Lee & Park (2023) propose adding
explicit intrinsic and extrinsic curvature penalties of the learned manifold. This is similar in nature to one of
our contributions. They derive regularizers that depend on second-order derivatives of the decoder — e.g.,
for intrinsic curvature:

ICapprox(z) =
(

1
2 (w·∇)

(
w⊤G−2

f (v ·∇)(Gf v)
)

− 1
2 (v ·∇)

(
w⊤G−2

f (v ·∇)(Gf w)
)

+ 1
4 w⊤G−3

f (v ·∇Gf ) (v ·∇)(Gf w) − 1
4 w⊤G−2

f (v ·∇Gf ) G−1
f (v ·∇)(Gf w)

− 1
4 w⊤G−2

f (v ·∇Gf ) G−1
f (w·∇)(Gf v) + 1

4 w⊤G−1
f (v ·∇Gf ) G−2

f (w·∇)(Gf v)
)2

.

(9)

where v, w∼N (0, I), Gf = Jf (z)⊤Jf (z), and (a·∇) is a directional derivative. Computationally challenging
second-order terms enter via (a·∇)Gf since ∂Jf are Hessian–vector products of f . Their objective encourages
globally “flat” embeddings in a Riemannian sense. In contrast, our geometry-aware noise induces a first-order
Jacobian penalty which aligns local decoder smoothness with the chosen geometry while avoiding challenging
computations (Section 3).

3 Methodology

We formulate representation learning as a maximum a posteriori (MAP) estimation problem where the latent
space is a Riemannian manifold. Much of the difficulty in probabilistically learning representations over
non-trivial geometries has been that their densities are notably difficult to work with. Our approach unifies the
geometric inductive bias with the generative process, discarding the need for variational approximations. We
ultimately build a simple yet effective representation learning scheme that works across different geometries.

3.1 Model Formulation

Consider a dataset X = {xi}N
i=1 in the data space X ⊆ RD. We assume each observation xi is generated by

a corresponding latent variable zi lying on a smooth d-dimensional Riemannian manifold (M, g). Instead of
amortizing inference via an encoder, we treat the latent codes Z = {zi}N

i=1 as free parameters to be optimized
directly.

We formulate the learning problem as a maximum a posteriori (MAP) estimation. Given a differentiable
decoder fθ : M → X , we jointly optimize the model parameters θ and the latent codes Z by minimizing the
negative posterior:

L(θ, Z) =
N∑

i=1

(
− log pθ(xi|zi) − log p(zi)

)
− log p(θ). (10)
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The likelihood pθ(x|z) models the observation noise; assuming isotropic Gaussian noise in the ambient space
yields log pθ(x|z) ∝ −∥x − fθ(z)∥2

2. The likelihood choice hence defines the reconstruction objective and must
be picked according to the nature of the data. The prior p(z) regularizes the latent distribution and enables
generation with our model. For compact manifolds, we employ a uniform prior p(z) = Vol(M)−1 with respect
to the Riemannian volume measure, resulting in constant p(z). For non-compact manifolds, one may utilize
wrapped distributions or Riemannian normals (explained and illustrated in, e.g., Mathieu et al. (2019)).

Optimization of Z is performed directly on the manifold using Riemannian gradient descent. At a point
z ∈ M, the Riemannian metric can be represented in local coordinates by a symmetric positive definite
matrix G(z). If ∇E

z L denotes the usual Euclidean gradient of L with respect to z in these coordinates, then
the Riemannian gradient is

∇R
z L = G(z)−1 ∇E

z L ∈ TzM, (11)

which is the direction of steepest descent measured in the manifold metric.

The update rule for a latent code z at step t is

z(t+1) = Rz(t)
(
−η ∇R

z(t)L
)

, (12)

where Rz : TzM → M is a retraction that maps tangent vectors back to the manifold (e.g., the exponential
map) and η is the learning rate. This ensures that all iterates z(t) remain on M.

In practice, we minimize Equation 10 by alternating Euclidean updates of θ with Adam (Kingma, 2014)
and Riemannian updates of Z with RiemannianAdam (Bécigneul & Ganea, 2018). This latter adaptive
variant replaces −η∇R

z(t)L by an adaptive search direction dt ∈ Tz(t)M before applying the same retraction
update. Relying on geoopt (Kochurov et al., 2020) for defining tensors and optimizing on manifolds, the
implementation becomes exceedingly simple (see Appendix A). Collectively, our setup removes the need for a
parametric encoder and the associated complexity of approximating posterior densities on curved spaces.

3.2 Geometric Regularization

For manifolds whose metric tensor varies with position, we introduce a geometry-aware regularization to inform
the model about the metric. During training, each latent z is perturbed with Gaussian noise whose covariance
is the chosen manifold’s inverse Riemannian metric G−1(z). This adapts the noise to local curvature: on
homogeneous manifolds such as the hypersphere (where curvature is constant and metric variation merely
reflects coordinate scaling) the procedure recovers nearly isotropic noise, whereas on spaces with non-uniform
curvature the noise shape is greatly adjusted by location. We outline a derivation inspired by Bishop (1995)
and An (1996) to analyze this noise:

Let ϵ ∼ N
(
0, σ2 G−1(z)

)
and define the squared-error loss L(z) =

∥∥f(z, θ) − y
∥∥2 for some target y. We

inject noise to z via the exponential map, which we approximate by the identity to O(∥ϵ∥2):

z′ = Expz(ϵ) = z + ϵ + O(∥ϵ∥2). (13)

Ignoring higher order terms o(∥ϵ∥2), a second-order Taylor expansion around z gives

L
(
z′) ≈ L(z) + ∇zL(z)⊤ ϵ + 1

2 ϵ⊤ ∇2
zL(z) ϵ, (14)

Taking expectation over ϵ and using E[ϵ] = 0, E[ϵϵ⊤] = σ2 G−1(z), we obtain

Eϵ[L
(
z′)] = L(z) + σ2

2 Tr
(
∇2

zL(z) G−1(z)
)
. (15)

For squared error, we have

∇2
zL(z) = 2 J(z)⊤J(z) + 2

∑
k

(
fk(z) − yk

)
∇2

zfk(z), (16)
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with J(z) = ∂zf(z, θ). Following Bishop (1995), we assume that the residual in the second term is usually
negligible on average, so substituting back into the expectation gives

Eϵ[ L(z′) ] ≈ L(z) + σ2

2 Tr
(

2 J(z)⊤J(z) G−1(z)
)

(17)

= L(z) + σ2 Tr
(
J(z)⊤G−1(z) J(z)

)
. (18)

where the last equality uses cyclicity of the trace. The additive term is the induced regularizer from corrupting
representations with Gaussian noise of covariance σ2G−1(z). It penalizes large output gradients weighted by
the manifold’s predefined inverse metric, aligning decoder smoothness with local curvature. We analyze its
effects further in Appendix E. Our concrete implementation mirrors a single Riemannian gradient descent
step, but here scaling and retracting a noise vector to the manifold rather than a gradient vector (see
Listing S2).

3.3 Overview of Available Manifolds

The following are manifolds implemented in geoopt (Kochurov et al., 2020), applicable for our representation
learning. Additional manifolds can readily be added. To allow heterogeneous latent geometries, geoopt
provides a ProductManifold that forms the Cartesian product M = M1 × · · · × MK of base manifolds,
equipped with the product Riemannian metric g = g1 ⊕ · · · ⊕ gK . This can be used to partition latent
coordinates into blocks, each constrained to a different geometry.

• Euclidean

• Stiefel

• CanonicalStiefel

• EuclideanStiefel

• EuclideanStiefelExact

• Sphere

• SphereExact

• Stereographic

• StereographicExact

• PoincareBall

• PoincareBallExact

• SphereProjection

• SphereProjectionExact

• Scaled

• ProductManifold

• Lorentz

• SymmetricPositiveDefinite

• UpperHalf

• BoundedDomain

Parameterization and further details appear on geoopt.readthedocs.io.

3.4 Datasets

Cell cycle stages. Measuring gene expression of individual fibroblasts with single-cell RNA sequencing
captures a continuous, asynchronous progression through the cell division cycle. Transcriptomic changes occur
through these phases, yielding cyclic patterns in gene expression. As the data is not coupled in nature (we
cannot identify and keep track of individual cells), unsupervised learning is suitable for picking up patterns
about the underlying distribution of cells.

We apply our Riemannian generative decoder to the human fibroblast scRNA-seq dataset (5 367 cells × 10 789
genes) introduced in DeepCycle (Riba et al., 2022) and archived on Zenodo (Riba, 2021). Data were already
preprocessed by scaling each cell to equal library size, log-transforming gene counts, and smoothing and
filtering using a standard single-cell pipeline. Before modeling, we subsampled to 189 genes annotated with
the cell cycle gene ontology term (GO:0007049) retrieved via QuickGO (Binns et al., 2009) in accordance
with other cell cycle studies.

Branching diffusion process. The synthetic dataset from Mathieu et al. (2019)1 simulates tree-structured
data via a hierarchical branching diffusion: from a root at the origin in Rd we grow a depth-D tree where

1Available under MIT license
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each node at depth ℓ produces C children by

xchild = xparent + ϵ, ϵ ∼ N
(

0,
σ2

b

pℓ
I

)
. (19)

For each node we also generate S noisy sibling observations xobs = xnode + ϵ′ with ϵ′ ∼ N
(

0,
σ2

b

fpℓ I
)

. The
dataset comprises all the noisy xobs and is standardized to zero mean and unit variance. We set d = 50,
D = 7, C = 2, σb = 1, p = 1, S = 50, f = 8, yielding 6 350 observations.

Human mitochondrial DNA. Human mitochondrial DNA (hmtDNA) is a small, maternally inherited
genome found in cells’ mitochondria. Its relatively compact size and stable inheritance make it a fundamental
genetic marker in studies of human evolution and population structure. A relatively rapid mutation rate has
led the genomes to distinct genetic variants, named haplogroups, which reflect evolutionary branching events.

We retrieved 67 305 complete or near-complete sequences (15 400 – 16 700 bp) from GenBank via a query
from MITOMAP (MITOMAP, 2023). Sequences were annotated with haplogroup labels using Haplogrep3
(Schönherr et al., 2023), leveraging phylogenetic trees from PhyloTree Build 17 (Van Oven, 2015). A sequence
was kept if the reported quality was higher than 0.9. In addition to haplogroup classification, Haplogrep3
identified mutations with respect to a root sequence; here, separate datasets were made using either the rCRS
(revised Cambridge reference sequence) or RSRS (reconstructed Sapiens reference sequence). Mutations were
then encoded in a one-hot scheme, removing mutations with ≤ 0.05 frequency, resulting in datasets with
shapes 61665 × 6298 (rCRS) and 57385 × 5366 (RSRS). Appendix C displays further characteristics.

4 Results and Discussion

In the following, we treat each dataset to evaluate and discuss applications of unsupervised learning on
meaningful geometries.

4.1 Cell Cycle Stages

Figure 2 shows latent representations learned with different manifolds on the scRNA-seq data containing
an underlying cyclical biological process. While we may have an idea of an explainable global optimum —
e.g., a neatly arranged circle following the cell cycle stages — optimization of the neural network does not
necessarily follow such an idea. Given a model expressive enough, representations lying in a circle could as
well be unrolled or have distinct arcs interchanged without any loss in task accuracy. To compare model
fidelity and how well manifold distances correspond to the biological geometry, Table 1 lists reconstruction

Proliferating Non-proliferating

0.0 0.2 0.4 0.6 0.8

cycle phase

(a) UMAP projection (b) Euclidean R2 (c) Spherical S2 (d) Toroidal S1× S1

Figure 2: Cell cycle phases using either (a) UMAP or (b–d) different Riemannian manifolds.
Samples are concatenated across train/validation/test sets. The phase is inferred by DeepCycle as a continuous
variable ϕ ∈ [0, 1) which wraps around such that ϕ = 0 and limϕ→1 ϕ denote the same point in the cycle.
Best viewed zoomed in.
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Table 1: Cell cycle: Correlation and reconstruction metrics across five random initializations
(formatted as mean ± std). Pearson/Spearman correlate phase distances to latent distances while MAE/MSE
measure reconstruction by L1/L2-norm. Our models in gray. Comparisons with S-VAE (Davidson et al.,
2018) and ∆VAE (Rey et al., 2019).

Train Test
Pearson Spearman MAE MSE Pearson Spearman MAE MSE

Euclidean R2 0.47±0.03 0.50±0.03 0.31±0.00 0.17±0.00 0.52±0.03 0.53±0.03 0.31±0.00 0.18±0.00

Euclidean R3 0.50±0.05 0.54±0.04 0.30±0.00 0.16±0.00 0.55±0.04 0.57±0.03 0.31±0.00 0.17±0.00

Sphere S2 0.58±0.03 0.59±0.03 0.31±0.00 0.17±0.00 0.60±0.03 0.60±0.03 0.32±0.00 0.18±0.00

Torus S1× S1 0.50±0.07 0.51±0.07 0.31±0.00 0.17±0.00 0.52±0.07 0.53±0.08 0.32±0.00 0.18±0.00

S-VAE sphere 0.50±0.02 0.53±0.03 0.32±0.00 0.19±0.00 0.53±0.02 0.55±0.02 0.32±0.00 0.19±0.00

∆VAE sphere 0.52±0.01 0.55±0.01 0.31±0.00 0.17±0.00 0.57±0.02 0.59±0.02 0.32±0.00 0.18±0.00

∆VAE torus 0.43±0.07 0.45±0.07 0.31±0.00 0.17±0.00 0.48±0.06 0.50±0.07 0.32±0.00 0.18±0.00

fidelities and correlations of phase distances versus manifold geodesic distances. Here we compared to S-VAE
(Davidson et al., 2018) and ∆VAE (Rey et al., 2019); see Appendix B for further details. Euclidean R3 yields
best reconstructions (having more degrees of freedom), while S2 improves correlation with the geometry.
Toroidal embeddings show greater run-to-run variability, likely due to the limited expressivity of learning on
circles S1 embedded in 2D.

4.2 Branching Diffusion Process

We find that hyperbolic spaces can efficiently be used as a tool
to uncover hierarchical processes. Notably, the UMAP projection
(Figure 3a) fails to reveal any underlying tree topology, despite
clear cluster separation. In contrast, regularized hyperbolic embed-
dings in the Poincaré disk (Figure 3b) recover the tree topology.
To study the effect of geometric regularization, Figure 3c shows
models trained by fixing curvature c=5.0 and varying noise from
σ = 0 to σ = 2.6. Correlations increase sharply up to σ ≈ 0.9,
beyond which the noise completely overwhelms the decoder’s ca-
pacity to preserve pairwise distances. This highlights a tradeoff
between preserving local accuracy and enforcing global geometry.
Appendix E analyzes and shows how curvature and noise level
relate to each other. Figure 4 tracks metric coherency as correla-
tion between manifold versus data-space distance during training;
our results show that geometric noise drives correlation steadily
higher than using no noise or explicit curvature regularization.
This indicates our model succeeds in internalizing the prescribed
geometry as an inductive bias.

0 50 100 150 200 250 300 350 400
Training epoch

0.0

0.2

0.4

0.6

0.8

Pe
ar

so
n 

co
rre

la
tio

n

Ours (noise std = 0.5)
Ours (noise std = 0.0)
Explicit curvature regularizer

Figure 4: Pearson correlation of
manifold distance versus data-space
distance during training for hyper-
bolic models on the branching diffusion
dataset over 5 runs. The explicit curva-
ture model was stopped after three train-
ing days and only shows results from one
run (refer to Table 5).
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0 1 2 3 4 5 6

tree depth

(a) UMAP projection (b) Poincaré projection (σ = 0.5)

σ=0.00
ρ=0.57, MSE=0.09

σ=0.10
ρ=0.55, MSE=0.09

σ=0.40
ρ=0.72, MSE=0.20

σ=0.90
ρ=0.80, MSE=0.42

σ=1.60
ρ=0.79, MSE=0.69

σ=2.60
ρ=0.74, MSE=0.82

(c) Progressively increasing regularization noise of the training process (6 distinct models)

Figure 3: Visualizations of the branching diffusion process. Trees consist of 7 levels with color lightness
denoting depth. Each level adds Gaussian noise (in d=50 dimensions) to the previous child with a progressively
reduced variance. Visualizations show latents for siblings sampled from the tree nodes. (a) UMAP projection;
(b) Poincaré disk projection of Lorentz latents using geometric regularization (c = 5.0, σ = 0.5); (c) Ablation
study showing the influence of the noise scale σ, listing Pearson correlation ρ and mean squared error on the
training set.

Table 2: Branching diffusion: Correlation and reconstruction metrics across five random
initializations (formatted as mean ± std). Pearson and Spearman correlate all pairs of distances in the
tree structure with latent geodesic distances. Our models in gray. Comparison with P-VAE (Mathieu et al.,
2019).

Train Test
Pearson Spearman MAE MSE Pearson Spearman MAE MSE

Euclidean R2 (σ = 0.0) 0.53 ±0.01 0.49 ±0.01 0.14 ±0.00 0.03 ±0.00 0.52 ±0.02 0.49 ±0.02 0.18 ±0.01 0.06 ±0.01

Sphere S2 (σ = 0.0) 0.56 ±0.02 0.53 ±0.03 0.14 ±0.00 0.03 ±0.00 0.55 ±0.02 0.52 ±0.02 0.17 ±0.00 0.05 ±0.00

Lorentz H2 (σ = 0.1) 0.52±0.02 0.48±0.02 0.15±0.00 0.04±0.00 0.48±0.02 0.45±0.03 0.19±0.02 0.08±0.02

Lorentz H2 (σ = 0.5) 0.78±0.02 0.74±0.03 0.32±0.01 0.18±0.02 0.69±0.03 0.69±0.03 0.28±0.02 0.14±0.02

Lorentz H2 (σ = 1.0) 0.81±0.02 0.77±0.02 0.49±0.01 0.39±0.01 0.80±0.02 0.76±0.02 0.36±0.01 0.21±0.01

Lorentz H2 (σ = 2.0) 0.77±0.04 0.74±0.05 0.68±0.01 0.74±0.01 0.79±0.09 0.73±0.11 0.52±0.02 0.45±0.03

P-VAE B2 (c = 1.2) 0.68±0.03 0.54±0.07 0.42±0.02 0.30±0.02 0.68±0.04 0.54±0.09 0.42±0.02 0.31±0.02
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Figure 5: Visualizations of hmtDNA haplogroups using either (a) UMAP, (b) Euclidean latent space, or
(c–d) Poincaré projection of Lorentz latents (c = 5.0, σ = 0.5). Edges represent a simplified lineage based on
Lott et al. (2013) and Van Oven (2015), nodes indicate median haplogroup positions. Best viewed zoomed in.

4.3 Tracing Human Migrations

By examining differences in hmtDNA sequences, it is possible to infer patterns of migration, lineage, and
ancestry. In Figure 5, we show simplified lineages based on Lott et al. (2013) and Van Oven (2015). The figure
shows how UMAP fails to uncover the hierarchical nature (panel a) while Euclidean embeddings show slight
improvement (panel b). Hyperbolic models clearly recover haplogroup hierarchies (panels c–d), regardless
of which reference sequence was used to encode the data. This choice otherwise has a big impact on the
actual sequence encodings, preprocessing and filtering (see Appendix C), but models on either set converge
at strikingly similar representations when using the same seed (panels c–d). The geographical locations of
haplogroups strongly correspond to the locations of representations when comparing with migration maps
from, e.g., Lott et al. (2013).

Appendix D lists correlation and reconstruction metrics for hmtDNA models (with one-hot data-space
distance as a proxy for tree distance). For regularized hyperbolic manifolds we found mainly Spearman
correlations to improve, denoting a non-linear correlation. Intuitively, the manifold succeeds in capturing
the hierarchical branching structure of the haplogroup tree, but absolute path lengths are rescaled by the
curvature. Figure 5 strongly suggests that hyperbolic distances better relate to the tree structure than
Euclidean ones. In Section 4.4, we treat additional quantitative results using hmtDNA metadata.

4.4 General Utility

We assess (i) generative fidelity with a discrimination test, (ii)
downstream predictive utility from learned latents, and (iii) wall
time per epoch. Since many tricks can however increase utility and
generative metrics (e.g., training with a generative adversarial loss
or engineering complex decoders), these evaluations act mainly as
sanity checks.

Matches or improves generative performance. An XG-
BoostClassifier (default parameters) is trained to distinguish (1)
optimized reconstructions of real test samples versus (2) recon-
structions obtained by sampling z ∼ p(z) and decoding p(x | z).
We use half of the cell cycle test set to train the discriminator
and the other half to evaluate it; an equal number of synthetic
samples is drawn for both splits. Our results indicate that synthetic
RGD generations are at least as hard to distinguish from real data
reconstructions as generations from VAE baselines (Table 3).

Table 3: Generative fidelity mea-
sured by XGBClassifier accuracy in dis-
criminating real reconstructions versus
synthetic reconstructions (lower is bet-
ter; perfectly indiscernible gives 0.5 in
expectation).

Manifold Accuracy
RGD Sphere S2 0.58
S-VAE Sphere S2 0.58
∆VAE Sphere S2 0.62

RGD Torus S1× S1 0.59
∆VAE Torus S1× S1 0.63

10
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Table 4: Human mitochondrial DNA: downstream utility (accuracy) for logistic regression (LR) or
XGBoostClassifier (XGB) on rCRS latents. Trends were consistent for RSRS. Our models in gray.

Region (3-way) Haplo 1 (24-way) Haplo 2 (128-way)
Manifold LR XGB LR XGB LR XGB
Hyperbolic H2

σ=0.1 0.72 0.90 0.49 0.74 0.31 0.42
Hyperbolic H2

σ=0.5 0.86 0.97 0.70 0.85 0.43 0.41
Euclidean R2 0.69 0.85 0.46 0.74 0.31 0.43

P-VAE H2 0.52 0.65 0.19 0.44 0.13 0.41

Table 5: Runtime (s) per epoch on the cell cycle dataset (all genes) for varying latent dimension (including
geometric noise); formatted as mean ± std through 100 epochs after warmup. Expl. RGD refers to explicit
intrinsic curvature regularization (Lee & Park, 2023). 1: Breaks when computing the manifold volume, which
involves a term factorial in d. 2: Breaks due to numerical instability (originally ran only at low dimensionality).
3: Computationally challenging (originally ran only at low dimensionality).

Ours
Latent d Eucl. Sphere Hyp. ∆VAE (Eucl.) ∆VAE (Sphere) P-VAE (Hyp.) Expl. RGD (Hyp.)
5D 0.21±0.01 0.23±0.02 0.25±0.00 0.41±0.02 0.60±0.06 1.70±0.11 7155±1743

50D 0.23±0.03 0.24±0.01 0.27±0.00 0.45±0.05 0.89±0.02 breaks2 infeasible3

500D 0.26±0.01 0.33±0.01 0.39±0.01 0.70±0.03 breaks1 breaks2 infeasible3

Matches or improves downstream utility. We evaluate downstream performance by fitting both a
simple model (logistic/linear regression) and a complex model (XGBClassifier/-Regressor) for classification
and regression tasks on latents, respectively. On cell cycle latents, categorical cell stage and continuous
cyclic phase yield near-identical scores across methods (Table S2). On hmtDNA latents, classification of
geographical region (3-way), haplogroup first letter (24-way), and first two letters (128-way) strongly favor
our model with a regularized hyperbolic space (Table 4).

Unlocks scalability to higher latent dimensionality. We probed feasibility at higher d on the full
cell cycle dataset (all genes; typical scRNA-seq analyses use d ≈ 50). Timing results on one Intel® Xeon®

Gold 6430 core with decoder layers [64, 128, 256] shows stable scaling across manifolds whereas variational
baselines scale poorly and become numerically brittle (Table 5).

Conclusions and Future Directions

We introduced a unifying framework for representation learning on any Riemannian manifold by combining
Riemannian optimization with an encoder-less generative model. This simplifies learning since we avoid
density estimations, challenging for a general setting of manifolds. With a novel geometric regularization based
on noise perturbation, our empirical validations demonstrated our model to successfully capture intrinsic
geometric structures across diverse datasets, substantially improving correlations between latent distances
and ground truth geometry. While we studied simple, low-dimensional manifolds in an exploratory setting,
our method unlocks higher latent dimensionality as well as heterogeneous manifold combinations, notoriously
difficult with current methods. While we currently treat manifold as a simple hyperparameter, future research
directions include automatic manifold selection, adaptive geometric regularization strategies, extensions to
manifold-valued network weights, and exploring latent manifold structures within pretrained neural networks
(e.g., generative diffusion processes or progressive generations from language models).

The decoder-only framework stores each representation explicitly, yielding memory that grows linearly with
dataset size. This per-sample parameterization may be prohibitive for datasets of millions of points. Hybrid
schemes — such as amortized inference or low-rank factorization — could mitigate this. Lastly, our curated
hmtDNA dataset invites further empirical studies, including analyses of geographic distances, migration
patterns, or distortion-based metrics of the common consensus trees. We make the data easily available on
redacted.
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Broader Impact Statement

Our method provides a general tool for manifold-based representation learning that can aid exploratory analysis
and hypothesis testing in scientific domains. As with other representation learning methods, applications in
sensitive settings (e.g., medical or population studies) should be accompanied by appropriate oversight and
compliance with relevant data protection and ethical guidelines.
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A Training Details

1model.z := init_z(n, manifold) # initialize points on a manifold
2model_optim := Adam(model.decoder.parameters())
3rep_optim := RiemannianAdam([model.z])
4

5for each epoch:
6rep_optim.zero_grad()
7for each (i, data) in train_loader:
8model_optim.zero_grad()
9z := model.z[i]
10z := add_noise (z, manifold, std) # optional geometric noise
11y := model(z)
12loss := loss_fn(y, data)
13loss.backward()
14model_optim.step()
15rep_optim.step()

Listing S1: Pseudocode for training the Riemannian generative decoder.

1def add_noise (manifold, z, std):
2noise := sample_normal(shape=z.shape) * std
3rie_noise := manifold.egrad2rgrad(x, noise)
4z_noisy := manifold.retr(x, rie_noise)
5return z_noisy

Listing S2: Pseudocode for adding geometric noise. egrad2rgrad takes a Euclidean gradient and maps it to
the Riemannian gradient in the tangent space using the inverse metric. retr retracts a tangent vector back
onto the manifold via the exponential map if a closed form is available, otherwise a first-order approximation.
geoopt implements both functions for a wide range of manifolds.

B Experimental Details

B.1 Protocols and Reproducibility

General details. Non-overlapping train/validation/test splits were made using 82/9/9 percent of sam-
ples for each distinct dataset. Across data modalities, our models all use linear layers with hidden sizes
[16, 32, 64, 128, 256], and sigmoid linear units (SiLU) as the non-linearity between layers. Decoder parameters
were optimized via Pytorch (Paszke et al., 2019) with Adam (learning rate 2 × 10−3, β = (0.9, 0.995), weight
decay 10−3), a CosineAnnealingWarmRestarts schedule (T0 = 40 epochs) and early-stopped with patience 85,
typically resulting in approximately 500 epochs. Representations were optimized with geoopt’s Riemanni-
anAdam (learning rate 1 × 10−1, β = (0.5, 0.7), stabilization period 5). Spherical/toroidal representations
used learning rate 4 × 10−1 and decoder β = (0.7, 0.9). Representations are only updated once an epoch,
necessitating larger learning rates and less rigidity via the beta parameters. For hyperbolic manifolds, the
curvature was fixed at c = 5.0 unless stated otherwise. The cell cycle and branching diffusion models used
mean squared error as reconstruction objective, while the hmtDNA models used binary cross entropy.
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Initializing latents. Initialization strategies for traditional models have been tuned for long. We follow a
simplet yet robust strategy:

• Before training: initial guesses consist of a small degree of random noise projected to the origin of
the manifold if it exists, otherwise around a random point. Randomly covering the entire manifold is
generally not suitable, since latents cannot easily jump. The quality of both latents and decoder
parameters naturally affect each other, but training remains stable.

• After training: a number of initial guesses for each point are sampled from around the manifold, and
we continue optimization from the one with smallest loss. If there are classes or other distinct regions
on the latent manifold, sampling each region is a natural approach. This is a fast and simple variant;
one may also train shortly in each sampled location before committing to any, or use initial guesses
from a lightweight post-trained encoder.

Test-time RGD latents. Following the strategy of Schuster & Krogh (2023), test-time representations
for our model were found by freezing the model parameters and finding optimal z through maximizing the
log-likelihood of Equation 10.

UMAP parameters. For both the branching diffusion and hmtDNA UMAPs (Figure 3a and Figure 5a),
hyperparameters n_neighbors=30 and min_dist=0.99 were used to help promote global structure. For Figure 2a,
the UMAP coordinates of the original study were used.

Comparison details. We evaluated existing implementations of three baselines: the P-VAE of Mathieu
et al. (2019) (based on MIT-licensed https://github.com/emilemathieu/pvae), the S-VAE of Davidson et al.
(2018) (based on MIT-licensed https://github.com/nicola-decao/s-vae-pytorch), and the ∆VAE of Rey
et al. (2019) (based on Apache 2.0-licensed https://github.com/luis-armando-perez-rey/diffusion_vae).
Model architectures were fixed — here, implementations of earlier methods were adjusted to use the same
architectural backbone as ours (see the General details paragraph) — while hyperparameters were tuned for
each model and dataset.

B.2 Hardware

All experiments were carried out on a Dell PowerEdge R760 server running Linux kernel 4.18.0-
553.40.1.el8_10.x86_64. Key components:

• CPU: 2 × Intel® Xeon® Gold 6430 (32 cores/64 threads per CPU, 2.1 GHz base)

• Memory: 512 GiB DDR5-4800 (8 × 64 GiB RDIMMs)

• GPUs: 1 × NVIDIA A30 (24 GB HBM2e; CUDA 12.8; Driver 570.86.15)

Training single-cell and branching diffusion models takes a few minutes on our setup; models on the
mitochondrial DNA data train for around 20 minutes.
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C hmtDNA Data Distributions

Figure S1 shows the distribution of mutation counts for datasets using different reference sequences.
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Figure S1: Distributions of mutation counts for datasets using different root sequence. Sequence counts
of each dataset differ since the choice of haplo-tree changes the reported qualities from Haplogrep3, affecting
the filtering procedure. Using the revised Cambridge reference sequence (rCRS) means that most sequences
contain less mutations when compared to the reconstructed Sapiens reference sequence (RSRS).

D hmtDNA Correlations and Reconstructions

In a similar fashion to the other datasets, Table S1 lists correlation and reconstruction metrics for the
hmtDNA dataset. It however uses one-hot data-space distance as a heuristic for tree distance.

Table S1: Correlation and reconstruction metrics across three runs for the hmtDNA dataset
(mean ± std). Mean F1 scores assess reconstruction; Pearson and Spearman correlate manifold vs genetic
distance (5000 random points). RSRS/rCRS denote distinct reference sequences.

Train Test
Pearson Spearman F1 Pearson Spearman F1

rCRS H2 (σ = 0.1) 0.18±0.02 0.17±0.05 0.88±0.00 -0.00±0.08 -0.04±0.13 0.74±0.01

rCRS H2 (σ = 0.5) 0.28±0.01 0.50±0.04 0.79±0.01 0.15±0.01 0.28±0.03 0.80±0.01

rCRS R2 (σ = 0.0) 0.41±0.03 0.42±0.10 0.90±0.00 0.16±0.07 0.24±0.14 0.73±0.02

RSRS H2 (σ = 0.1) 0.15±0.01 0.12±0.04 0.93±0.00 0.04±0.10 0.04±0.23 0.83±0.02

RSRS H2 (σ = 0.5) 0.28±0.01 0.49±0.02 0.86±0.00 0.15±0.02 0.30±0.04 0.88±0.00

RSRS R2 (σ = 0.0) 0.35±0.00 0.29±0.01 0.94±0.00 0.12±0.07 0.23±0.09 0.83±0.02
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E Geometric Regularization: Curvature Versus Noise Scale

For a hyperbolic model with curvature c, the metric and its inverse carry a nontrivial, state-dependent factor
— which cannot be absorbed into a single global σ.

Concretely, for the ball of curvature c one has

G(z) = 4
(1 − c ∥z∥2)2 I, G−1(z) = (1 − c ∥z∥2)2

4 I,

Figure S2: Effects of manifold curvature and noise level for hyperbolic models on the synthetic
branching diffusion dataset. The visualization is similar to Figure 3c but contains a selection of curvatures
rather than c = 5.0. Trees consist of 7 levels; color lightness denotes depth.
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so the regularizer becomes

E[L(z′)] ≈ L(z) + σ2 (1 − c ∥z∥2)2

4 Tr
(
J(z)⊤J(z)

)
.

Changing c thus reshapes the weight (1−c ∥z∥2)2

4 across the manifold rather than rescaling a uniform noise-
variance. Only at ∥z∥ ≈ 0 does it reduce to a constant factor, but in general the curvature and noise-scale
contribute distinct effects.

The local noise standard deviation induced by this Riemannian scaling is

σ(z) = σ (1 − c ∥z∥2)
2 ,

which depends on both curvature and position. In particular,

∂σ(z)
∂c

= −σ ∥z∥2

2 < 0 (∥z∥ > 0),

so increasing c attenuates the noise magnitude as one moves away from the origin: If one fixes σ and increases
c, then for any ∥z∥ > 0 the factor (1 − c ∥z∥2) is smaller, so the actual standard deviation of the injected
noise at that point is reduced. Intuitively, points “away from the origin” (larger ∥z∥) receive less noise. By
contrast, raising the global noise scale σ amplifies noise uniformly across all z. Thus curvature c controls the
spatial profile of the perturbations, whereas σ governs their overall amplitude. Using the synthetic branching
diffusion data, Figure S2 shows the effect of curvature and noise level.

F Noise Ablation on the hmtDNA Sequences

Figure S3 shows the effect of geometry-aware regularization, now on the hmtDNA data.

Figure S3: Gradually increasing σ on the rCRS hmtDNA data, listing Spearman correlation ρs and
mean F1-score on the training set. Fixed curvature c = 5.0.
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G Relationships of Table 2

To make Table 2 more digestible, Figure S4 visualizes how the noise level σ impacts correlation and
reconstruction metrics for the synthetic branching diffusion dataset.
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Figure S4: Errorbar plots varying σ for the geometry-aware regularization; a visualization of the Lorentz
results of Table 2.

H Cell Cycle Downstream Performance

Table S2 reports downstream performances across methods for predicting categorical cell stage and continuous
cell phase from latents.

Table S2: Cell cycle: downstream utility — accuracy in predicting cell stage (3-way) or cyclic R2 in
regressing cell phase (continuous) using logistic/linear regression (LR) and XGBoost (XGB).

Cell stage (3-way) Cell phase (cont.)
Manifold LR XGB LR XGB
RGD Euclidean R2 0.89 0.90 0.41 0.86
RGD Euclidean R3 0.93 0.91 0.44 0.87
RGD Sphere S2 0.90 0.89 0.45 0.87
RGD Torus S1× S1 0.88 0.89 0.43 0.86

∆VAE Sphere S2 0.90 0.90 0.47 0.88
∆VAE Torus S1× S1 0.89 0.89 0.46 0.86
S-VAE S2 0.91 0.87 0.48 0.87

19


	Introduction
	Background
	Latent Variable Models
	Geometric Inductive Biases

	Methodology
	Model Formulation
	Geometric Regularization
	Overview of Available Manifolds
	Datasets

	Results and Discussion
	Cell Cycle Stages
	Branching Diffusion Process
	Tracing Human Migrations
	General Utility

	Training Details
	Experimental Details
	Protocols and Reproducibility
	Hardware

	hmtDNA Data Distributions
	hmtDNA Correlations and Reconstructions
	Geometric Regularization: Curvature Versus Noise Scale
	Noise Ablation on the hmtDNA Sequences
	Relationships of Table 2
	Cell Cycle Downstream Performance 

