Integrating Common Sense and Planning with Large
Language Models for Room Tidying

Zhanxin Wu, Bo Ai, and David Hsu
National University of Singapore
{zhanxinwu, bo.ai, dcsdavid} @u.nus.edu

Abstract—Do you want a personal housekeeper robot? This
project seeks to endow robots with the capability of tidying
up messy rooms with brief natural language descriptions of the
environment. We address three key challenges: (i) incomplete map
information in the description, (ii) commonsense understanding
of object locations, and (iii) long-horizon planning and acting
to achieve the objective. To tackle these challenges, we leverage
Large Language Models’ (LLMs) understanding of typical layouts
of human-living environments and object locations, as well as
programming and control skills for action execution. Specifically,
we prompt ChatGPT to reconstruct complete map representations
from partial descriptions, then generate a high-level action plan
in the form of Python functions, and finally refine the plans
with atomic actions executable by the robot. We show that our
framework enables effective room tidying with limited human
instruction guidance. On simulation and real-world maps, it is
able to find a place missing out from human description within
three interactions with humans. In the simulation environment,
it is capable of putting more than 80% household objects in
their desired place. This study provides preliminary evidence that
LLMs have common sense about the spatial layout of human-
living environments and object arrangements, and this work
connects this knowledge to robotics tasks.

I. INTRODUCTION

Imagine a robot housekeeper that can operate in any house
in the world, and you invite it to your messy home to put
things back in place. The robot has no idea of the layout of
your room, though it would be better if it knew how to perform
the task once you briefly describe your house. However, this
seemingly easy task has a plethora of challenges, such as:

i. Your description might not contain the complete informa-
tion for the robot to navigate between two locations. For
example, you may miss out bathroom in your description,
then the robot has to infer the location of the bathroom
in order to put a toothbrush in place. This common sense
is absent in many existing robotic systems.

ii. The robot may not know where the misplaced objects
should be, as this involves understanding the functionality
of objects and human living habits. For instance, typical
robots should know that a cup cannot float in the air, but
they may not comprehend why the cup should not be
placed on a sofa.

iii. The robot needs to reason about the actions to put the
objects pack in place. This involves both navigation and
manipulation at a potentially long horizon.

In this project, we examine these three key issues by
exploiting the commonsense and planning capabilities that

Large Language Models (LLMs) embody. Specifically, our
approach involves exploiting the knowledge from LLMs at
three levels, i.e., spatial layout understanding, commonsense
reasoning, and programming and control skills. First, LLMs are
utilized to construct comprehensive map representations from
incomplete textual descriptions of the environment. Then, we
use LLMs to generate high-level task plans for room tidying.
Finally, these high-level plans are refined to atomic actions
that are executable by a robot. Our system is illustrated in
Figure

Experimentally, our approach shows promising results in
typical human-living environments. To evaluate LLMs’ under-
standing of spatial layout, we designed a task where LLMs
are asked to recover a full map representation from a partial
human language description. We show that LLMs have a
decent understanding of typical layouts and can recover map
information with a small amount of human guidance. Then,
we evaluate LLMs’ capability on object re-arrangement in
a simulated household environment. We discovered that our
framework enables it to put more than 80% of objects back
in the correct places. These findings demonstrate that LLMs
have the common sense knowledge that is critical to household
tasks but has not been fully explored by existing work.

II. RELATED WORK

Task and Motion Planning. Task and Motion planning [15]]
[7] is a principled framework that allows robots to perform
long-horizon tasks. Previous work utilizes symbolic planning
and pre-defined domains as underlying action languages [3|]
[LO] [4] [6]. The development of LLMs has exhibited significant
potential in planning and reasoning for simple tasks [14] [5]
[9] [8]]. Previous works studies fine-tune LLMs with addi-
tional environment inputs [[12]] or directly output actions [16].
However, these studies solely depend on language instructions
using an open-world vocabulary, which may potentially result
in ungrounded plans. Recent work used programmatic LLMs
prompts for multi-task planning [[13]. Our framework adopts
the Pythonic program representation from [13] to interact with
LLMs. However, our task has a much longer horizon as it
involves both navigation and manipulation, and we not only
exploit LLM’s actionable knowledge but also their common
sense understanding of spatial layout and object locations.

LLMs for Robotics Tasks. Previous research has integrated
commonsense knowledge into robot tasks [S]] [1] [19]. Some
work extracts commonsense knowledge on object configurations

Stage1: Map Reconstruction Stage2: High-level Planning

Partial Map Description

When you are facing the living room,
the kitchen is to the right and there's a

/ Programming Prompt \
Environment Map

hallway. On the left side, there's a closed
door. Please tell me potential positions

for Goal Object Location Description:
or Goa

In the living room, we observe objects
including a book on the floor, apples and a

sofa

pillow on the table, and a toothbrush on the

Recoverd Topological Graph

Import networkx as nx
G = nx.Graph()
G.add edqe(PORTICO",
G.add_edge(
G.add e-ig&'(3
G.add_edge("W
G (

(

"ENTRY")

SLINEN")
"DINING ROOM")

ENTRY"
LINEN"

.add_edge
G.add_edge

Stage3: Action Grounding
(Import action [put, grab,] \

Import objects [apple, toothbrush ...]
Example tasks(s)

-%_

Low-Level Actions

Execution: VirtualHome

def grab L.)t\es ile frtu Livingroom_sofa():
valk 1

Fa: find a spot to pza e the clothes pile
ind('empty spot or)
#5: put clothes pllc on sofa

uton('clothespile’, 'empty
6 done

pot on sofa')

_/

Fig. 1: The proposed system architecture. We exploit LLM’s commonsense reasoning capability to construct maps from partial
descriptions, identify misplaced objects in the first two stages, and eventually use LLM to complete the action plan for execution.

from LLMs and applies it to various scene geometries for object
rearrangement [2] [9], whereas others focus on the common
sense of object relationships in the environment for efficient
object-goal navigation [18]. Another recent work [17] seeks to
learn user preference with LLMs for object re-arrangements.
Our work is different from these prior works in that, we study
LLMs’ common sense knowledge of spatial layouts and object
placements in typical human-living environments, and integrate
it with planning to achieve both navigation and object re-
arrangement with partial description of the environment.

III. METHODOLOGY
A. Problem Formulation

In this task, we focus on putting misplaced objects back to
their typical locations with a partial prior map, e.g., returning
a book on the sofa to the shelf, and we assume only partial
map information of the environment and flawless execution of
low-level actions. Ideally, the task consists of three stages.

i. Model initialization. The user provides a description of
the environment’s layout, which could only be partial, as
well as descriptions of the objects in the room.

ii. Planning and model update. The agent generates a high-
level plan for re-arranging the objects, e.g., "move the book
on the living room sofa to the study room bookshelf." If the
target location is not in the given partial map description,
the LLM would propose a potential position for the study
room and add it to the current map representation.

iii. Repeat the previous stage for every misplaced object.

However, this formulation makes it hard to evaluate a
system’s performance, as the model update and planning are
intervened. Here we make a simplifying assumption that the
agent should recover the complete map information before
planning. The actual formulation is as follows.

i. Model initialization. This step remains the same.

ii. Map recovery. Given the partial description of the envi-

ronment, the agent interacts with the user to recover a

full map representation. The challenge is that the agent
should have commonsense understanding of the typical
spatial layouts of household environments to minimize
interactions with the user.

Planning. Given the description of objects in the scene
from the user and the map representation, the agent returns
misplaced objects to their desired locations. The challenges
are to identify the misplaced objects and their desirable
locations, and to generate executable plans.

iv. Repeat the previous stage for every misplaced object.

iii.

B. Proposed Framework

Given the partial human description of the map 7, language
description of scene S, and description of locations of all
movable objects O in the scene, our framework consists of
three stages.

1) Stage 1: Construct Map Representation from Partial
Information: We iteratively recover a full map representation
G from the partial language description 7" with an LLM, i.e.,

Go=LLM(T, Py) €))
G; =LLM(Gi-1,P1,),i1=1,2,3,... 2)
where G;_ is an intermediate map representation, and P, ; is
a prompt provided by the human indicating the correctness of
the map so that the LLM can update it in the next round. The

iteration stops when the complete graph has been obtained.
The final map G is the last map generated by the LLM, i.e.,

G =Gy 3)
where N is the number of iterations taken. Here we use a
Pythonic topological graph representation for G where each
node is a subspace of the environment with a distinct semantic
meaning, e.g., living room. We use such a representation for
two reasons: (i) Topological structure is sufficient to enable the
agent to navigate across places, assuming low-level navigation
skills are provided by the simulator; (ii) Pythonic programming
language offers a concise and structured description of the

TABLE I: Results on the map reconstruction task.

Interaction Rounds

Environment # Places Left-Out Places

Ours Random Guess

Bathroom 1.20 + 045 2.82 + 1.50

VH Apartment 3 Bedroom 160 £ 0.55 332 + 143

Bathroom 3.20 £ 1.30 8.00 &+ 4.56

Real Apartment 15 Bedroom 240 £ 055 7.20 £ 4.01

Hospital 20 Nurse’s Station 1.40 £ 0.55 7.60 £+ 5.64

SP Bathroom 2.20 £ 2.17 5.60 £+ 2.93

School 17 IT Service 340 + 3.13 6.60 + 3.39

choo Bathroom 3.60 + 134 5.00 £ 5.10

Immigration 1.80 £ 0.45 7.20 £+ 6.85

Airport 25 Bathroom 1.60 £ 0.55 6.20 £ 5.23

Info Desk 1.60 + 1.34 8.20 4+ 3.31

Mall 18 Bathroom 5.80 £+ 0.83 7.40 + 3.38

topological graph, compared to free-form natural language.

To illustrate, an example is presented in Appendix [VI-C]

2) Stage 2: Generate High-level Action Plan: In this stage,
we generate a high-level action plan ¢ from map representation
G and the description of the location of objects O, i.e.,

¢(=LLM(G,0,P,))
where P, is a prompt stating the objective of generating a
high-level plan.

Here (¢ is in the form of a list of Pythonic func-
tion skeletons that achieve the objective at the high
level, e.g., move_object_from _placeA_to_placeB.
The challenge here is identifying misplaced objects and
providing a sketch solution accordingly. The high-level plans
will be grounded into executable actions in the next stage.
We disentangle stage 2 and stage 3 because we found that
this progressive-style query allows the LLM to produce more
sensible outputs. This is similar to humans, who may better
solve a problem if guidance is given along the way.

3) Stage 3: Generate Executable Actions: Finally, we
generate an executable action plan £ from (, i.e.,

§=LLM((, Ps) ®)
where Ps is a prompt specifying the set of executable actions
and asking for a concrete action plan. Here, LLM needs to
understand the capabilities of our agent and complete the
skeletal program ¢ with actions executable by our agent.

The full system architecture is illustrated in Figure [I]

IV. EXPERIMENTS

In this subsection, we seek to verify the following hypotheses
for our framework:

H;. LLMs embody commonsense knowledge about spatial
layouts of typical human-living environments, enabling
map construction with only partial descriptions.

LLMs have commonsense knowledge about the typical
placement of common objects.

Hierarchical planning enables LLMs to better reason at a
long horizon, compared to "end-to-end" planning.

As[H] focuses on map representation construction while
and are related to object manipulation, we will use separate

H,.

H;.

E’Z\rwuv
i [
] NN
[ensume 1
BED 1\ |
{
=
i 3smx4im
ks ¥
PORCH

Fig. 2: Example of a real-world map. The regions marked
by the blue boxes represent the areas missing from the user
descriptions, which are subsequently recovered by the LLM.

experiments to verify the hypotheses. In all experiments, we
use GPT-3.5-turbo, 2023 March 23 version from OpenAl.

A. Experiments on Map Construction

This subsection focuses on [H[] We use simulation environ-
ments and real-world scenes to test the model’s capability of
recovering the full map representation from partial information.
For simulation environments, we will be using maps from
the VirtualHome (VH) [[L1l]. The platform simulates diverse
household scenes, which suits our intended application sce-
narios. Moreover, we use real-world maps of diverse places
to better understand LLM’s capability. We choose common
public and private places, including hospitals, malls, airports,
and apartments, to cover diverse human-living environments.

1) Metrics:

i. Number of Interaction Rounds: The number of rounds
required to recover one missing place on average. This
number quantifies the amount of human effort required
to exploit such common sense for map recovery.

2) Results: Results are presented in Table [l It can be
observed that LLMs are capable of suggesting the correct
location for unseen places within three interaction rounds.
However, our method performs less well on a mall layout, due
to a non-typical layout in one of the test cases: a bathroom is
next to a health store. Nevertheless, compared to the random
guesser, our framework reduces interactions by up to 80% and
has a much smaller variance in performance, supporting

One example of a real-world map is presented in Figure [2}
More examples are given in Appendix [VI-C|

B. Experiments on Room Tidying

This subsection focuses on and [Hz] As object relocation
involves actions and executions, we perform our evaluation in
purely simulation environments, i.e., VirtualHome [11]. The
simulator contains models for approximately 130 kinds of
common household objects, which makes the task challenging.

TABLE II: Results on the room arrangement task. The full table with standard deviations is in Appendix

I-D

Number of Misplaced Objects

Room Method 2 4 8 12
SRC ER GCR SRC ER GCR SRC ER GCR SRC ER GCR
Livine Room Our Method 1.00 1.00 1.00 080 076 0.95 060 083 073 040 070 0.69
& ProgPrompt 0.60 1.00 070 040 092 070 0.00 098 020 000 079 0.15
Kitchen Our Method 0.60 1.00 070 0.60 090 083 0.60 093 085 020 076 0.78
ProgPrompt 0.60 096 070 0.20 0.97 0.65 020 098 050 000 094 0.17
Bathroom Our Method 1.00 1.00 1.00 0.60 100 090 040 100 090 040 096 0.57
ProgPrompt 040 0.89 050 020 093 045 0.00 0.89 0.35 0.00 0.81 0.20
Bedroom Our Method 0.80 090 090 080 096 1.00 040 096 093 060 098 0.65
ProgPrompt 040 091 060 020 0.82 035 0.00 096 0.25 0.00 094 022

To initialize the environment, we randomly place k£ movable
objects at locations where they typically do not appear, e.g., we
could place a cup on a sofa. Then we execute our framework
as described in Section However, as we now focus on
room tidying only, we will ensure that the recovered map
representation is correct.

1) Metrics:

i. Success Rate (SR): One success is an indicator variable
that takes the value one only if all objects are returned

to their desired places, as deemed appropriate by humans.

The success rate is the fraction of success among all trials,
reflecting the overall system performance.

ii. Execution Rate (ER): ER is defined as the fraction of
atomic actions in the action plan executable by the agent,
regardless of whether or not it contributes to the task
objective (return objects to their desired places). This
metric reflects the LLM’s ability to understand the agent’s
capability and perform planning and control.

iii. Goal Condition Rate (GCR): GCR is the fraction of the
objects returned to their desired places over the total
number of misplaced objects. This metric measures the
extent to which the agent can complete the task and can
be viewed as a more granular metric compared to SR.

2) Results: Full results are presented in Table [II, Across all
environments and the number of misplaced objects, our method
can return most of the objects (GCR > 60%). In environments
with fewer misplaced objects, our SR and GCR are close to 1.
This shows that LLMs have common sense knowledge about
object placement, supporting

The GCR of our method exceeds 60% for all setups, and
sometimes 80% for scenarios with a small number of misplaced
objects, such as 2 or 4. It shows the ability of LLMs to identify
misplaced objects and their proper locations, supporting

Compared to ProgPrompt, our approach exhibits significant
improvements in SR and GCR. In particular, when there are a
large number of misplaced objects, e.g., 8 and 12, the baseline
ProgPrompt almost never completes a trial (SR ~ 0). This
shows that our hierarchical planning is effective in enabling
LLMs to reason about action plans. It is interesting to see
that ProgPrompt has a high ER even when the SR is zero,
suggesting that ProgPrompt tends to generate executable but
irrelevant actions for the task, such as picking up an object

and then putting it back in the same location. This supports
that our hierarchical planning enables LLMs to better reason
about action plans. In fact, this result is rather intuitive, just
like humans who write better articles with an outline. We hope
this finding to be transferable to other tasks.

However, one common failure case of our method is its
tendency to put objects in one place regardless of their
functionality and desirable locations. For example, when there
are clothes, fruits, and plates on a sofa, LLMs may move all the
items inside the kitchen cabinet. We conjecture that this is due
to its limitation in understanding the physical and functional
structure of human-living environments.

V. DISCUSSION

In this paper, we presented a framework that enables an
agent to perform room tidying with a partial map description.
Specifically, we exploit LLMs’ common sense about spatial
layout and object arrangements to recover map information and
generate high-level plans to return misplaced objects. Then,
we exploit its capability of planning to ground the high-level
task plans into low-level actions for execution. We show that
our framework enables successful map recovery and object
re-arrangement with limited human guidance.

Apart from the results, there are several key takeaways. First,
LLMs have a common-sense understanding of typical human-
living environments, which could be useful for robot navigation
tasks, especially when the map information is incomplete.
Second, LLMs understand typical object placement, which is
important for housekeeping tasks. Third, hierarchical planning
allows LLMs to better reason about action plans. We hope
these insights to be useful in future research.

While our approach shows promising results, our system has
some limitations. First, it does not have a recovery mechanism
for cases where the objects are returned to the wrong place.
Second, this framework requires humans to be in the loop,
which might be inconvenient for users in practice. Moreover,
common sense is only applicable to typical scenarios, but there
might be variance in user preference in reality. We acknowledge
the limitations, but we hope this work provides insights into
exploiting LLMs for household tasks.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

REFERENCES

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi. Comet:
Commonsense transformers for automatic knowledge
graph construction. arXiv preprint arXiv:1906.05317,
2019.

Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi Zhang.
Task and motion planning with large language models for
object rearrangement. arXiv preprint arXiv:2303.06247,
2023.

Richard E Fikes and Nils J Nilsson. Strips: A new
approach to the application of theorem proving to problem
solving. Artificial intelligence, 2(3-4):189-208, 1971.
Caelan Reed Garrett, Tomdas Lozano-Pérez, and
Leslie Pack Kaelbling. Pddlstream: Integrating symbolic
planners and blackbox samplers via optimistic adaptive
planning. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 30, pages
440-448, 2020.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents,
2022.

Yu-qian Jiang, Shi-qi Zhang, Piyush Khandelwal, and
Peter Stone. Task planning in robotics: an empirical
comparison of pddl-and asp-based systems. Frontiers of
Information Technology & Electronic Engineering, 20:
363-373, 2019.

Leslie Pack Kaelbling and Tomas Lozano-Pérez. Hierar-
chical task and motion planning in the now. In 2011 IEEE
International Conference on Robotics and Automation,
pages 1470-1477. IEEE, 2011.

Yash Kant, Arun Ramachandran, Sriram Yenamandra,
Igor Gilitschenski, Dhruv Batra, Andrew Szot, and Harsh
Agrawal. Housekeep: Tidying virtual households using
commonsense reasoning, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka
Matsuo, and Yusuke Iwasawa. Large language models
are zero-shot reasoners. arXiv preprint arXiv:2205.11916,
2022.

Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-
Avila. Shop: Simple hierarchical ordered planner. In
Proceedings of the 16th international joint conference on
Artificial intelligence-Volume 2, pages 968-973, 1999.
Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu
Wang, Sanja Fidler, and Antonio Torralba. Virtualhome:
Simulating household activities via programs. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8494-8502, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural language
supervision. In International conference on machine
learning, pages 8748-8763. PMLR, 2021.

[13] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, and Animesh Garg. ProgPrompt: Generating
situated robot task plans using large language models.
2022.

[14] Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M. Sadler, Wei-Lun Chao, and Yu Su. Llm-planner:
Few-shot grounded planning for embodied agents with
large language models, 2023.

[15] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan
Chitnis, Stuart Russell, and Pieter Abbeel. Combined
task and motion planning through an extensible planner-
independent interface layer. In 2014 IEEE international
conference on robotics and automation (ICRA), pages
639-646. IEEE, 2014.

[16] Alessandro Suglia, Qiaozi Gao, Jesse Thomason, Govind
Thattai, and Gaurav Sukhatme. Embodied bert: A
transformer model for embodied, language-guided visual
task completion. arXiv preprint arXiv:2108.04927, 2021.

[17] Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert,
Andy Zeng, Shuran Song, Jeannette Bohg, Szymon
Rusinkiewicz, and Thomas Funkhouser. Tidybot: Per-
sonalized robot assistance with large language models.
arXiv preprint arXiv:2305.05658, 2023.

[18] Bangguo Yu, Hamidreza Kasaei, and Ming Cao. L3mvn:
Leveraging large language models for visual target navi-
gation, 2023.

[19] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin
Choi. From recognition to cognition: Visual commonsense
reasoning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 6720—
6731, 2019.

VI. APPENDIX
A. Example of Map Construction

As an illustration, the following conversation history between
a user and ChatGPT shows how we construct a complete
Pythonic topological map representation of the environment
from a partial natural language description in stage 1.

———— The conversation begins —--——-
User: I am in my apartment. Upon stepping into the
living room, the kitchen is on my right-hand side
and one study room is on my left-hand side. Please
tell me the potential position for a bedroom.

Please utilize Python to create a topological graph
of the apartment, with nodes representing rooms and
edges indicating the connections between them.

ChatGPT: Certainly! I can help you visualize the
apartment layout using Python and create a topologi-
cal graph for it. To represent the graph, we can use the
NetworkX library in Python. Here’s an example code
that creates the topological graph for your apartment
layout:

import networkx as nx

Create a directed graph

G = nx.DiGraph ()

Add nodes representing the rooms
G.add_node (' Living Room’)
G.add_node ('Kitchen’)
G.add_node (' Study Room’)
G.add_node (' Bedroom’)

Add edges representing the
connections between rooms
.add_edge (' Living Room’, ’Kitchen’)
.add_edge (' Living Room’, ’Study Room’)
.add_edge (' Living Room’, ’Bedroom’)

QO Q) H H

In this code, we create a graph from NetworkX. We
add nodes for each room (’Living Room’, "Kitchen’,
’Study Room’, and Bedroom’) using the add_node
method, and we add edges to represent the connec-
tions between the rooms using the add_edge method.
You can modify the code to add more rooms or adjust
the connections as per your apartment layout.

User: Hi, I explored the living room and discovered
that there is no bedroom connected to it. Could you
please suggest a potential position for the bedroom
and update the topological graph accordingly?

ChatGPT: Certainly! If there is no bedroom con-
nected to the living room, we can consider adding
the bedroom adjacent to the kitchen. Here’s the
updated code that reflects this potential position for
the bedroom:

import networkx as nx

Create a directed graph

G = nx.DiGraph ()

Add nodes representing the rooms
G.add_node (' Living Room’)

G.add_node ('Kitchen’)
G.add_node (' Study Room’)
G.add_node (' Bedroom’)

Add edges representing the

connections between rooms
G.add_edge (' Living Room’, ’Kitchen’)
G.add_edge (' Living Room’, ’Study Room’)
G.add_edge (' "Kitchen’, ’'Bedroom’’)

In this updated code, I added a new node for
the 'Bedroom’ using the add_node method, and
I also added a new edge from the ’Kitchen’ to
the Bedroom’ using the add_edge method. This
represents the potential position for a bedroom in
your apartment layout.

Running this code will generate a topological graph
that includes the ’Bedroom’ as a node connected to
the ’Kitchen’.

User: I explored the kitchen and discovered the
bedroom. Thanks for your suggestions. Now, I am

looking for the bathroom. Could you please suggest
a potential position for bathroom and update the
topological graph accordingly?

ChatGPT: Certainly! Based on the information you
provided, we can consider adding the bathroom
adjacent to the bedroom. Here’s the updated code
that reflects this potential position for the bathroom:

import networkx as nx

Create a directed graph

G = nx.DiGraph ()

Add nodes representing the rooms
G.add_node (' Living Room’)

G.add_node ('Kitchen’)
G.add_node (" Study Room’)
G.add_node (' Bedroom’)

Add edges representing the

connections between rooms
G.add_edge (' Living Room’, ’Kitchen’)
G.add_edge (' Living Room’, ’Study Room’)
G.add_edge ("Kitchen’, ’'Bedroom’)
G.add_edge (' Bedroom’, ’"Bathroom’)

In this updated code, I added a new node for the

’Bathroom’ using the add_node method, and I added

a new edge from the 'Bedroom’ to the *Bathroom’

using the add_edge method. This represents the

potential position for the bathroom adjacent to the

bedroom.

Running this code will generate a topological graph

that includes the ’Bathroom’ as a node connected to

the "Bedroom’.

———— The conversation ends —--——-—
Remarks: In the above conversation, ChatGPT took two

rounds for the bedroom and one round for the bathroom to
complete the map construction.

B. Example of Room Tidying

As an illustration, the following conversation history between
a user and ChatGPT shows how we generate high-level plans
and ground these to executable actions in stage 2 and 3.

———— The conversation begins —--——-
User: Imagine yourself as a housekeeper in my
apartment. At the moment, you find yourself in the
living room where you observe a cupcake and a
clothes pile resting on the sofa. Additionally, on the
table, there is a mug, a book and a toothbrush on the
table. In this situation, what steps would you take?

ChatGPT: Here are the function names for the actions

I would take in this scenario:

1. put_cupcake_in_livingroom_sofa_to_kitchen_counter

. put_clothespile_in_livingroom_sofa_to_bedroom_closet

. put_plate_in_livingroom_table_to_kitchen_sink

. put_book_in_livingroom_table_to_bedroom_nightstand

. put_toothbrush_in_livingroom_table_to_bathroom_counter

W A~ W

User: Please modify the given function,
"put_toothbrush_in_livingroom_sofa_to_bathroom_counter"
as demonstrated in the example function below.
[ProgPrompt Sample tasks]

ChatGPT:

def put_toothbrush_in_livingroom_sofa_to_
bathroom_counter () :
0: walk to living room
walk (" livingroom’)
1: find sofa
find(’sofa’)
2: look for toothbrush on the sofa
lookat ("sofa’)
find (' toothbrush’)
3: grab toothbrush
assert ("close’ to ’'toothbrush’)
grab (' toothbrush’)
4: walk to bathroom
walk ("bathroom’)
5: find bathroom counter
find (" bathroomcounter’)
6: put toothbrush on counter
assert (' toothbrush’ in ’"hands’)
puton (' toothbrush’, ’'bathroomcounter’)
7: Done

———— The conversation ends ———-

C. Examples of Real-World Map Reconstruction

ENTRY

PORTICO

(a) Real-world apartment

/@%"'L

Coach Parking

(b) Real-world mall

<l
m two two Il‘wo I Admin II
room |lbedroom ||bedroom |[bedroom [[bedroom room room 25 ;‘1’0"' Future
#108 ||[#107 #106 #105 #104 103 #102 Closed Pharmacy
for v Expansion
% % Construction Office
Y LI, | Y M
L | —
- 1st Floor Med Surg ® Corridor @
o o LA 4 l
Chart || o Clean M E !
Room Utility B .
Soiled < =
U‘:lll‘ty Nurses Lobby ~ [S_; [
Person Station I
icare
room Bath — = 2] b
| .

(c) Real-world hospital

Fig. 3: Examples of real-world maps. The regions marked by the blue boxes represent the areas missing from the user
descriptions, which are subsequently recovered by the LLM.

D. Additional Results

“(e1q®) [[NJ) skl JuswaSueIIe WOOI AY) U0 SHNSAY [ATIVL

LTOF TT0 800 F #60 000 F 000 I€0F STO 900 F 960 000 F 000 LEOF SE0 0€0 F T80 OF0 F0T0 LTOF 090 T10F 160 6v0 F 0y0 1dwoigSoig wooipag
€0 F €90 v00 F 80 6V0F 090 900 F €60 SO0 F 960 60 F 0F0 000 F 00T 800 F 960 O0v0F 080 0CTO0F 060 0C0F 060 O¥'0F 080 PO InO
SI'OF 0C0 TI'0F IS0 000 F 000 +#T0F SE0 010 F 680 000 F 000 €€0F S0 600 F €60 Or0 F0T0 SHOF0S0 0T0 F 680 6v0 F 0y0 1dwoigSoig woonyeg
LEO F LSO 800 F 960 o6V0F 0F'0 600 F 060 000 F 00T 6¥0F 0F'0 0CTO0F 060 000 F 00T 6¥'0F 090 000 F 00T 000 F 00T 000 F 00T POYPIN InQ
IT0F LI0 LOO F#60 000 F 000 80 F 050 SO0 F 80 0v0F0T0 STOFSY0 900 F L60 0OF0 F 0T0 +2T0 F 0L0 900 F 960 6+'0 F 090 IdwoigSoid woyoIry
600 F8L0 IT0F9L0 OF0F0TO0 0T0F €80 600 F €60 60 F 090 1T0F €80 SI'0F 060 6V0F 090 0F0F 0L0 000F 00T 6¥0F 090 POWN InO ’
810 F S0 660 F 6L°0 000 F 000 LI'OF0TO 00 F 860 000 F 000 +T0F 0L0 LOOFT60 60 F 040 00 F 0L0 000 F 00T 640 F 090 1dwoigSord wooy Surar
970 F 690 SI'0OF 0L0 6V0F 000 910 F €L0 600 F €80 60 F 090 OI'0F €60 IT0F9L0 O0F0+F 080 000F 00T 000 F 00T 000 F 00T POWN InO o
h:803) g4 ods p: 003} qd s d0D ad Jds IO a4 ods
4! 8 14 C POUIRIN wooy

$192[qQ pade[dsIAl Jo ToquInN

	Introduction
	Related Work
	Methodology
	Problem Formulation
	Proposed Framework
	Stage 1: Construct Map Representation from Partial Information
	Stage 2: Generate High-level Action Plan
	Stage 3: Generate Executable Actions

	Experiments
	Experiments on Map Construction
	Metrics
	Results

	Experiments on Room Tidying
	Metrics
	Results

	Discussion
	Appendix
	Example of Map Construction
	Example of Room Tidying
	Examples of Real-World Map Reconstruction
	Additional Results

