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Abstract
Diffusion based generative models achieve un-
precedented image quality but are known to leak
private information about the training data. Our
goal is to provide provable guarantees on privacy
leakage of training data while simultaneously en-
abling generation of high-fidelity samples. Our
proposed approach first non-privately trains an
ensemble of diffusion models and then aggregates
their prediction to provide privacy guarantees for
generated samples. We demonstrate the success
of our approach on the MNIST and CIFAR-10.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song & Ermon, 2019; Song et al., 2021) have emerged
as a powerful class of generative models, with publicly avail-
able pretrained models (Dhariwal & Nichol, 2021; Rom-
bach et al., 2022) being fine-tuned on potentially sensitive
datasets such as chest X-rays (Wang et al., 2017) and brain
MRIs (Royer et al., 2022). This is concerning because recent
work (Carlini et al., 2023; Somepalli et al., 2022) has shown
that diffusion models can directly produce memorized train-
ing data during inference, completely violating the privacy
of sensitive data. Differential Privacy (DP) is the gold stan-
dard for quantifying privacy risks and providing provable
guarantees against attacks (Dwork, 2006). When applied to
diffusion models, DP guarantees provide a provable upper
bound on the privacy leakage from samples.

In this work, we generate high-quality images with DP
guarantees from diffusion models by proposing a novel dif-
ferentially private generation process based on an ensemble
of diffusion models. We provide the key aspects of our DP
generation process and our particular contributions below.

• We show that sampling from diffusion models via DP
generation prevents attackers from extracting private
data through observed samples, by ensuring that a gen-
erated sample cannot depend too much on any single
datapoint in the training dataset.

• We find that the stochastic sampling process is inher-
ently DP as long as we clip the model predictions at

(a) MNIST (b) CIFAR-10

Figure 1. High fidelity images synthesized using our proposed dif-
ferentially private generation process for diffusion models.

each sampling timestep, albeit with a large privacy
cost.

• We propose amplifying the inherent privacy of the sam-
pling process by training a non-private ensemble of
models on disjoint subsets of the training dataset. Dur-
ing sampling, we clip and average the predictions of
all models to generate samples from the ensemble.

• We exploit the few-shot learning abilities of diffusion
models to generate high quality samples. Specifically,
when each model in the ensemble is trained on as little
as 1/100 of the private training data, we generate high
fidelity samples from an ensemble of models.

• We analyze the noise schedule and find that privacy
leakage is highest in the final steps of sampling where
we add little noise. We find that replacing the ensemble
with a publicly available diffusion model for these
steps in the sampling process reduces the privacy cost
without degrading utility. Our analysis demonstrates
that, surprisingly, the steps with the highest privacy
cost are actually the least dependent on the data.

• We demonstrate that the end-to-end process generates
high fidelity synthetic samples (Fig. 1).
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Differentially Private Generation From Diffusion Models

2. Background
Diffusion Models. Diffusion models progressively per-
turb images by adding an increasing amount of Gaussian
noise and generate images by reversing this process through
sequential denoising. Specifically, Denoising Diffusion
Probabilistic Models (DDPM) (Ho et al., 2020) are Markov
chains with the following joint distribution:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt)

where each marginal pθ(xt−1|xt) is parametrized as a Gaus-
sian distribution with learnable mean and a fixed (scaled)
variance, x0 ∼ q(x0) that is the target data distribution, and
p(xT ) is a standard Gaussian N (0, I). The corresponding
forward process is a Markov chain given by:

qθ(x1:T |x0) =

T∏
t=1

qθ(xt|xt−1)

where qθ(xt|xt−1) = N (xt;
√
1− βtxt−1,

√
βtI)) for

some fixed variance schedule β1, . . . , βT ∈ (0, 1).

The sampling process in diffusion model starts with xT ∼
N (0, I), that is iteratively refined to obtain the fully de-
noised sample x0.

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

fθ(xt, t)

)
+ σtz (1)

where αt = 1 − βt, ᾱt =
∏t

s=1 αs, z ∼ N (0, I), fθ is
parameterized as neural network that predicts noise in xt

in the forward process. We will refer to the predicted noise
nt = fθ(xt, t) as predicted perturbation.

Differential Privacy (DP). Differential privacy implies
that the outputs of an algorithm do not change much (mea-
sured by the privacy budget ε) across two neighboring
datasets D and D′, where we can go from D to D′ by
adding, removing, or replacing (remove + add) a single
element. We provide the definition below.

Definition 2.1 (Differential Privacy). A randomized mech-
anism M with domain D and range R preserves (ε, δ)-
differential privacy iff for any two neighboring datasets
D,D′ ∈ D and for any subset S ⊆ R we have Pr[M(D) ∈
S] ≤ eε Pr[M(D′) ∈ S] + δ.

Thus, differential privacy requires that for all adjacent
datasets D,D′, the output distribution M(D) and M(D′)
are close, where the closeness is measured by the param-
eters ε and δ. The parameter ε is a ‘privacy budget’: as ε
increases, our method is able to produce samples that reveal
more information about the training data.

3. Methods
3.1. Quantifying the privacy risks of diffusion models

We first define the threat model used in this work. We con-
sider a system that provides black-box query access1 to the
generative model, that was trained on potentially sensitive
private data. The attacker’s goal is to extract information
about the underlying private training data of the model from
samples that they generate by querying the model. Car-
lini et al. (2023) proposes an example of this attacker who
queries a diffusion model a number of times with a specific
prompt, and with some probability can induce the model to
generate a copy of an image from the training dataset. The
goal of the defense is to prevent the attacker from recon-
structing, extracting, or otherwise learning anything about
the private data, while generating high fidelity samples.

Definition 3.1 (Private generation). A generative model
G trained on datasets D is a (ε, δ)-DP generator if for all
neighboring datasets D and D′, all subset S of objects and
all conditions c, the sampled images o satisfy:

Pr
o∼G(c;D)

[o ∈ S] ≤ eε Pr
o∼G(c;D′)

[o ∈ S] + δ.

Consider a system that satisfies Definition 3.1. In such a
system, the attacker will not be able to recover an image X
from the private data by using a single instance generated
by the model. The generated sample also cannot violate the
copyright protections of an image in the model’s training
set, for the same reasons. Prior work (Ghalebikesabi et al.,
2023) satisfies Definition 3.1 by training generative models
with DP-SGD (Abadi et al., 2016) so that images generated
by the final model are also DP. However, this is not the
only way to satisfy Definition 3.1. We now introduce a
DP sampling method that satisfies Definition 3.1 without
DP-SGD.

3.2. Differentially private sample generation from
diffusion models

At a high level, we implement the sample and aggregate
framework (Nissim et al., 2007) to ensure DP by bounding
the sensitivity of the predictions of the diffusion model.

Definition 3.2 (Sample and Aggregate ( Nissim et al.
(2007))). Let the sample and aggregate framework be de-
fined as the following. Given a function f and database
D, we randomly partition the database into k disjoint sub-
sets, where k is a user-chosen parameter. Let these small
databases of size |D|/k be {D0, . . . , Dk−1}. We evaluate
f on {D0, . . . , Dk−1} to obtain predictions z0, . . . , zk ∈ S

1Black-box query access is often provided through APIs to
provide users with access to generative models (Ramesh et al.,
2022) for multiple reasons, e.g., the model is too large for users to
run or the developer does not want to release the model weights.
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Differentially Private Generation From Diffusion Models

where S is the support of f . We explicitly bound the ℓ2
norm of these predictions to a scalar C/2. Therefore the
sensitivity for one prediction zi is C because in the worst
case when we add, remove, or replace a datapoint in Di

the prediction will change from C/2 to −C/2. We aggre-
gate the bounded predictions by averaging z = 1/k

∑
k zi,

reducing the sensitivity to C/k. We finally add noise cali-
brated to the sensitivity using some mechanism M . If M is
(ε, δ)-DP, then sample and aggregate is (ε, δ)-DP.

We also consider following two formulations of sampling
process which are equivalent for image generation but differ
significantly in their privacy analysis across steps.

Formulation-A:

xt−1 =
1

√
αt

xt −
1− αt√
αt

√
1− ᾱt

fθ(xt, t) + σtz

Formulation-B:

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x̃0 + σtz

While the underlying diffusion model predicts fθ(xt, t), x̃0

in formulation-B can be easily derived with a simple alge-
bric operation, i.e., x̃0 =

(
xt −

√
1− ᾱtfθ(xt, t)

)
/
√
ᾱt

Our proposed approach makes the following crucial changes
to the training and sampling process of diffusion models.

Training a non-private ensemble. Given a dataset D, we
partition it into k disjoint subsets {D0, . . . , Dk−1} of size
|D|/k, and non-privately train k distinct diffusion models
f
(i)
θ , i ∈ [k] on each of these subsets Di. These k distinct

non-private DDPM models form an ensemble of diffusion
models that is used for DP-enabled sampling.

Sampling privately from the non-privately trained en-
semble. At the start of the sampling process, we sample
xT ∼ N (0, I), and iteratively refine it to generate x0. We
modify the individual step of the sampling process (Equa-
tion 1) by clipping and averaging the model prediction,
which is fθ(xt, t) in formulation-A and x̃0 in formulation-
B. For example, in formulation-A, we modify the update
step as following.

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

f̄θ(xt, t)

)
+ σtz (2)

f̄θ(xt, t) =
1

k

k−1∑
i=0

clipC/2

(
f
(i)
θ (xt, t)

)
(3)

where clipC/2(v) :7→ min
{
1, C/2

∥v∥2

}
· v ∈ Rd. Our pro-

posed modification simply clips and averages the predicted
perturbation from each non-private model and keeps all
other components intact. The hyperparameter C bounds
the sensitivity of xt to predictions from individual models.

Our formulation is motivated by the sample and aggregate
framework (Nissim et al., 2007).
Theorem 3.3 (Privacy). Our method is (ε, δ(ε))-DP, where

δ(ε) = Φ

(
− ε

µ
+

µ

2

)
− eεΦ

(
− ε

µ
− µ

2

)

µa =

√√√√∑
t

(
C

k
/

√
αt

√
1− ᾱtσt

1− αt

)2

µb =

√√√√∑
t

(
C

k
/
1− ᾱtσt√
ᾱt−1βt

)2

For formulations A and B respectively

Proof. See Appendix 6.

Better privacy guarantees with ensembling of sampling
mechanisms. In each sampling formulation, the relative
standard deviation of noise (z) varies with timesteps. Higher
noise standard deviation implies lower privacy expenditure
(ε) per sampling step. We observe a trade-off between
both mechanisms over timesteps and opt to switch from
sampling-B to sampling-A when the latter leads to lower
privacy expenditure (fig. 2).
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Figure 2. We observe that the privacy expenditure at each sampling
step in both diffusion process formulations provides a trade-off,
where switching from formulation-B to formulation-A near the
end of sampling process reduces overall privacy expenditure.

4. Experimental results
Setup. We train convolutional UNet architecture based
diffusion models on MNIST (Deng, 2012) and CIFAR-
10 (Krizhevsky et al., 2009). We provide all training hy-
perparameters in Table 1 in the appendix. We consider 250
sampling steps to preserve image fidelity and enable faster
sampling over 1000 sampling steps. By default, we use
the linear noise schedule. We set the ensemble size to 100
models on both datasets. We set the clipping norm to 35 and
55, respectively, as a loose upper bound that avoids clipping
any predictions during sampling to avoid introducing bias.
To achieve better generalization on CIFAR-10, we finetune
diffusion models pretrained on 32×32 resolution ImageNet-
blurred (Chrabaszcz et al., 2017; Yang et al., 2022) dataset.

We find that both t = T − 1 and t = 0 sampling steps add
noise with a very small noise multiplier (σ) in formulation-
A, while near t = 0 sampling steps add very small noise in
formulation-B. Since we use formulation-B at the start of
sampling process, we only skip steps near end of sampling,
i.e., denoise with a diffusion model trained on public data.
We investigate the effect of skipping later in this section.
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Figure 3. Disentangling the effect of different factors on our privacy bounds in formulation-A. (a) Length of sampling process.
Shorter schedules provides faster sampling and better ε (b) Skipping timesteps. Leads to large reduction in ε (c) Effect of noise schedule.
When skipping last 25 timesteps, cosine schedule provides lower ε (d) Effect of image resolution. Modelling higher resolution datasets
leads to higher ε. We conduct this analysis with Formulation-A of diffusion process and cosine noise schedule, since cosine noise schedule
performs better with this formulation (subfig. c).

Using pretrained models. We use ImageNet-
blurred2 (Yang et al., 2022) and Fashion-mnist (Xiao et al.,
2017) as public datasets for CIFAR-10 and MNIST datasets,
respectively. We make use of public datasets and models
pretrained on these datasets in two scenarios: 1) we finetune
the pretrained models on disjoint subsets of the private
dataset (only for CIFAR-10), 2) we use pretrained models
as public models to denoise a fraction of steps near the end
of sampling process (for both CIFAR-10 and MNIST).

Disentangling the effect of diffusion process parameters
on privacy guarantees.

Length of diffusion process (Figure 3a). Short diffusion
process during sampling enables faster sampling. We ablate
the number of sampling steps and measure the cumulative
epsilon as the sampling process progresses. With shorter
schedules, the noise multiplier magnitude becomes smaller
leading to higher ε for individual steps. The cumulative
ε for all steps tends to be better for the shorter 250 steps
schedule than the longer 1000 steps schedule.

Skipping timesteps to improve ε (Figure 3b). Figure 3a
clearly shows that both early (t → 0) and later timesteps
(t → T ) have the highest privacy cost for formulation-A. We
recommend replacing the denoising model for these steps
with a public model to significantly reduce the privacy cost.

Effect of noise schedules (Figure 3c). While the cosine
noise schedule adds more noise than the linear schedule
for most timesteps, it adds significantly less noise at the
start of sampling in formulation-A. In contrast, linear noise
schedule adds more noise in formulation-B (Figure 6).

Effect of Image resolution (Figure 3d). An increase in image
resolution significantly increases ε, e.g., ε increases from
16.7 to 48.4 when increasing image resolution from 32 ×
32 to 64 × 64 pixels in formulation-A (similar trend in
formulation-B). This is because the ℓ2 norm of predicted
perturbation scales linearly with image resolution, and as

2ImageNet-blurred dataset blurs faces of individuals in the
popular ImageNet-1K dataset.

per Theorem 3.3 ε increases as the sensitivity increases.

Analyzing synthetic images generated by our approach.
We first experimentally validate the effect of skipping
timesteps with a public model. Based on our analysis in (Fig-
ure 3b, 3c), we skip 25 initial and 25 final timesteps when
only sampling with formulation-A, and 50 final steps when
using formulation-A in combination with formulation-B. We
find that doing so doesn’t degrade the fidelity of generated
synthetic images (Figure 7). This demonstrates that, surpris-
ingly, the steps with the highest privacy cost are actually the
least dependent on the data. Next, we visualize the images
generated by state-of-the-art DP-training (Ghalebikesabi
et al., 2023) and our proposed DP-generation approach.

5. Discussion and Limitations
We demonstrate differentially private generation of high
fidelity samples from diffusion based generative models.
Our approach provides privacy guarantees by sampling from
an ensemble of diffusion models, where individual models
are trained on small subsets of the training data. Critical
factors in the success of our approach in generating high
fidelity samples are transfer learning from pretrained models
and the few-shot learning capability of diffusion models.

While our approach enjoys multiple benefits over DP train-
ing, such as low training compute cost and the ability
to leverage non-private training techniques, it provides a
weaker threat model. In particular, DP training enables gen-
erating synthetic datasets for downstream analysis without
additional privacy cost. However, DP generation requires
composing privacy costs for each generation; the total pri-
vacy cost quickly becomes unreasonable for large datasets.
Our sampling cost is also higher than DP training, though
easily parallelized, as we require sampling from an ensem-
ble of models. The threat model of private generation is
analogous to private prediction (Dwork & Feldman, 2018;
Papernot et al., 2017; 2018) in the context of classification.
Specifically, we assume that downstream users cannot view
the model, do not combine information across samples, and
do not share their results with each other or collude.
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6. Theory
Proof of privacy. We prove the privacy guarantee of our
method, and introduce any necessary notation along the way.
We prove the privacy guarantee for Formulation A, where
the only modification for Formulation B is simply in the ξt
term.

Theorem 6.1 (GDP of Gaussian Mechanism (Dong et al.,
2019)). Let the Gaussian mechanism that operates on func-
tion f by defined as M(D) = f(S) +N(0,∆2/µ2) where
∆ is the sensitivity of f . Then, M is µ-GDP.

Proposition 6.2. Equation (2) is C
k /

√
αt

√
1−ᾱtσt

1−αt
-GDP for

Formulation A.

Proof. The sensitivity according to Definition 3.2 is
C

k
,

because we clip each model’s prediction norm to C/2 (the
total l2 norm for change of the prediction for a different
datapoint is C) and take the average prediction across k
models. To analyze the noise added to each model, we first
rewrite Equation (2) as

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

f̄θ(xt, t)

)
+ σtz (4)

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

f̂θ(xt, t)

)
(5)

f̂θ(xt, t) = f̄θ(xt, t) +

√
αt

√
1− ᾱtσt

1− αt
z (6)

ξt =

√
αt

√
1− ᾱtσt

1− αt
Formulation A (7)

ξt =
1− ᾱtσt√
ᾱt−1βt

Formulation B (8)

zt ∼ N(0, ξ2t ) (9)

f̂θ(xt, t) = f̄θ(xt, t) + zt (10)

Where in Equation (6) we applied the post-processing prop-
erty of DP. Informally, this means that if a single iteration of
our sampling method, that clips the score generated by the
diffusion model and adds noise to it, is DP, then any post-
processing applied to the score is also DP. This means that
we can use our newly DP score to generate xt−1 without
paying any additional privacy cost. Therefore we only need
to analyze the privacy cost of Equation (6), that we finally
write as Equation (10). We can see that this is a single in-
stantiation of the Gaussian mechanism. Now we can write
the equivalent value of µt =

C
k /ξt, and apply Theorem 6 to

finish the proof.(
C

k

)2

/µ2
t = ξ2t

µ2
t =

(
C

k

)2

/ξ2t

µt =
C

k
/ξt

Proposition 6.3. DP-DDPM is
√∑

t

(
C
k /ξt

)2
-GDP.

Proof. First recall the composition of Gaussians under GDP
µ =

√∑
t µ

2
t (Dong et al., 2019). We can plug in the

expression for µt.

µt =
C

k
/ξt

µ =

√√√√∑
t

(
C

k
/ξt

)2

Corollary 6.4 (Corollary 2.13 (Dong et al., 2019)). A mech-
anism is µ-GDP if and only if it is (ε, δ(ε))-DP for all ε > 0,
where

δ(ε) = Φ

(
− ε

µ
+

µ

2

)
− eεΦ

(
− ε

µ
− µ

2

)
. (11)

Now we can apply the GDP to DP conversion to obtain the
final (ε, δ)-DP guarantee for our full method.

Theorem 6.5 ((Reproduction for clarity)). DP-DDPM is
(ε, δ(ε))-DP, where

δ(ε) = Φ

(
− ε

µ
+

µ

2

)
− eεΦ

(
− ε

µ
− µ

2

)

µ =

√√√√∑
t

(
C

k
/

√
αt

√
1− ᾱtσt

1− αt

)2

7. Limitations
Differentially Private Stochastic Gradient Descent (DP-
SGD) (Song et al., 2013; Abadi et al., 2016) is the standard
privacy-preserving training algorithm for training neural
networks on private data. DP-SGD clips per-sample gra-
dients and adds Gaussian noise to them, introducing bias
and variance into SGD and therefore degrading utility. For
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(a) Differentially private training (ε = 10.0) (b) Differentially private sampling (ε = 7.3)

Figure 4. Comparing samples from differentially private training (Ghalebikesabi et al., 2023) and our proposed differentially private
generation approach.

Figure 5. We measure the effect of increasing the number of models in the ensemble on image quality. Each model is the ensemble is
trained on 500 images, i.e., 1/100 of the CIFAR-10 dataset. Even after eight models, the sample quality of the ensemble starts saturating.
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Figure 6. Disentangling the effect of different factors on our privacy bounds in formulation-B. (a) Length of sampling process.
Shorter schedules provides faster sampling and better ε (b) Skipping timesteps. Leads to large reduction in ε (c) Effect of noise schedule.
When skipping last 25 timesteps, cosine schedule provides lower ε (d) Effect of image resolution. Modelling higher resolution datasets
leads to higher ε. We conduct this analysis with Formulation-B of diffusion process and linear noise schedule, since linear noise schedule
performs better with this formulation (subfig. c).
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example, the state-of-the-art in differentially private diffu-
sion modeling on CIFAR10 with ImageNet pretraining data
achieves an FID of 7.9 at ε = 32.

DP-SGD creates such large utility degradation because it
provides an extremely strong guarantee. Even if an unlim-
ited number of adversaries collude together to deanonymize
the model, with knowledge of all model gradients, and infi-
nite computational power, DP-SGD still provides an upper
bound on how much information can be gained by observing
the model. This threat model is far too strong in practice
because it defends against an attack that is many orders of
magnitude more powerful than current attacks.

Our threat model for private generation follows the threat
model of private prediction Gaboardi et al. (2016); Dwork
& Feldman (2018); Papernot et al. (2017; 2018) that makes
realistic assumptions about adversaries’ information and
resources. Specifically, we assume that users cannot view
the model parameters, do not share their results with each
other and do not collude in coordinated attacks on individual
training samples. This allows us to independently spend pri-
vacy budget for each generated sample, leading to improved
utility without compromising data privacy.

For comparison, we also provide the definition for DP train-
ing of generative model.

Definition 7.1 (Private training of generative models). A
learning algorithm L that operates on dataset D and out-
puts a generative model G is said to be (ε, δ)-DP if for all
neighboring datasets D and D′, all subset S of objects we
have:

Pr
G∼L(D)

[G ∈ S] ≤ eε Pr
G∼L(D′)

[G ∈ S] + δ.

Note that any set of images generated by a DP-trained gen-
erative model is also DP with the same (ε, δ) by postpro-
cessing.

Challenges of private learning. DP training of a diffusion
model can be exceedingly computationally intensive. We es-
timate the compute required by Ghalebikesabi et al. (2023)
to be roughly 1000× that of training a non-private diffusion
model. One of the reasons why DP training is so computa-
tionally intensive is because models are so hard to train with
DP. The best practices for training with DP (Ghalebikesabi
et al., 2023) are to take many small steps, that is, we need to
modify the learning rate and training time from non-private
learning. And each step needs to use a large batch (indeed,
optimally we should use the full batch) so these small steps
are very slow because we will have to accumulate gradients.
And we have to compute the per-sample gradient of each dat-
apoint, that can by itself increase training time by 10× (Bu
et al., 2022). Furthermore DP training requires an immense

amount of hyperparameter tuning because adding noise to
the gradients at each step is so challenging. In order to get
an accurate estimate of the noisy gradient, Ghalebikesabi
et al. (2023) compute the gradients on as many as 256 aug-
mentations for each datapoint.

By contrast, we are able to harness the few-shot learning
capabilities of diffusion models to train k models on subsets
of the original dataset of size |D|/k, and each model is
trained for the same number of epochs on the k×-smaller
subset as we would train on the original dataset. Therefore
the compute requirement during training of our method is
the same as non-private training.

However, sampling from a DP-trained diffusion model is
identical to non-private sampling, whereas sampling from
an ensemble of k models requires running each sampling
process in parallel to run in the same time as non-private
sampling.

What does differentially private generation protect?
As is clear from the definition, Differentially private gen-
eration protects the privacy of each individual generated
sample. Note that this notion is strictly weaker than dif-
ferentially private training of generative models. This is
simply because the generation of any generative model that
is trained by a differentially private learning algorithm is
also differentially private by post-processing.

Of course, differentially private training could also achieve
these goals, but the current state of research on differential
private training of generative models suggests that training
a good generative model with differential privacy guaran-
tees is a really hard task. Private generation could be a
significantly easier task and could provide more meaningful
guarantees against the threat models of interest. As we have
seen in this work, we can achieve private generation with
very small modifications to the existing diffusion processes.
By contrast, training a private diffusion model from scratch
might require changing the architecture and optimization
algorithm all together.

We finally note that the notion of private generation is analo-
gous to the notion of private prediction (Dwork & Feldman,
2018; Papernot et al., 2017; 2018) in the context of clas-
sification. Private prediction requires that the inference
procedure on any given input is differentially private. In
comparison, differentially private training of a classification
model would guarantee that the weights of a classifier are
differentially private.
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Figure 7. Minimal effect of skipping timesteps on image qual-
ity. We skip 25 steps at the start and 25 steps at the end of a 250
timestep sampling process. We use a diffusion model pretrained
on ImageNet, that we treat as a publicly available dataset, to de-
noise images in skipped steps. We find that skipping a total of 50
timesteps does not significantly degrade image quality, but does
incur semantic changes (such as change in color) compared to the
baseline where no steps are skipped.

Table 1. Details of hyperaparameters used in training diffusion
models on both MNIST and CIFAR-10 datasets. We use ImageNet-
blurred and Fashion-mnist dataset in pretraining for CIFAR-10 and
MNIST dataset, respectively.

MNIST CIFAR-10

Diffusion steps 1000 1000
Noise Schedule linear linear

Channels 64 64
Depth 3 3

Channels multiple 1,2,2,2 1,1,2,3,4
Heads Channels 64 64

Attention resolution 32,16,8 32,16,8
BigGAN up/downsample ✓ ✓

Attention pooling ✓ ✓
Weight decay 0.01 0.01

Dropout 0.3 0.3
Batch size 128 128

Epochs 500 500
Learning rate 1e-4 5e-4
Public dataset FMNIST ImageNet-Blurred

Pretrained model None ImageNet-Blurred
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