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Abstract

We tested over 20 Transformer models for001
ranking of long documents (including recent002
LongP models trained with FlashAttention and003
RankGPT models “powered” by OpenAI and004
Anthropic cloud APIs). We compared them005
with a simple FirstP baselines, which applied006
the same model to the truncated input (at most007
512 tokens). On MS MARCO, TREC DL,008
and Robust04 no long-document model outper-009
formed FirstP by more than 5% (on average).010
We hypothesized that the lack of improvement011
by long-context models is not due to inherent012
model limitations, but due to benchmark po-013
sitional bias (most relevant passages tend to014
occur early in documents). To further confirm015
this we analyzed positional relevance distribu-016
tions across five corpora and six query sets017
and observed the same early-position bias. We018
then introduced a new diagnostic dataset, MS019
MARCO FarRelevant, where relevant spans020
were deliberately placed beyond the first 512021
tokens. On this dataset, many long-context022
models—including RankGPT—failed to gen-023
eralize and performed near the random base-024
line, suggesting overfitting to positional bias.025
Finally, we experimented with de-biasing the026
training data, but the success of this approach027
was mixed. Our findings (1) highlight the need028
for careful benchmark design in evaluating029
long-context models for document ranking, (2)030
identify model types that are more robust to po-031
sitional bias, and (3) motivate further work on032
approaches to de-bias training data. We release033
our code and data to support further research.1034

1 Introduction035

Various advances in Transformer architectures—036

including sparse attention (Zaheer et al., 2020; Belt-037

agy et al., 2020) and FlashAttention (Dao et al.,038

2022)—have motivated a growing interest in long-039

1https://anonymous.4open.science/r/long_doc_
rank_model_analysis_v2-78E9/.

Robust04

ClueWeb12 (WebTrack)

TREC DL 2019-2021 (combined)

Figure 1: Illustration of relevant passage bias for three
document collections: A distribution of first relevant
passage positions (red bars) vs. relevant document
lengths (blue bars). Lengths and offsets are measured in
the number of subword tokens (BERT-base tokenizer).
Best viewed in color. See more results in Table 7 in
§ B.1)
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document ranking and retrieval. However, de-040

spite the ability of these models to process sub-041

stantially more text, on popular retrieval bench-042

marks, the improvements of these models over043

simpler truncation-based approaches remain sur-044

prisingly modest (Dai and Callan, 2019; Gao and045

Callan, 2022; Coelho et al., 2024). A widely used046

truncation-based FirstP baseline (Dai and Callan,047

2019)—where models score only the first 512 to-048

kens of each document—often performs competi-049

tively, or sometimes even better, than long-context050

counterparts (see, e.g., Table 1).051

Despite anecdotal knowledge about the presence052

of this phenomenon in the MS MARCO document-053

retrieval collection among TREC Deep Learning054

track participants and some early reports (Hofstät-055

ter et al., 2020b, 2021a) the available evidence056

has been scattered and incomplete. In particu-057

lar, despite the track’s five-year history, none of058

the track’s overview papers mentioned this issue059

(Craswell et al., 2020, 2021a,b, 2022, 2023).060

Moreover, it remains unclear whether these limi-061

tations stem from model deficiencies or from char-062

acteristics of the benchmarks themselves. In this063

paper, we initially hypothesized that both factors—064

model robustness and benchmark design—may be065

responsible for the limited gains of long-document066

models over FirstP baselines. However, our find-067

ings suggest that benchmark design, particularly068

positional relevance bias, is the dominating factor.069

To verify our research hypotheses, we first con-070

ducted a large-scale, systematic study of over071

20 Transformer-based ranking models (Devlin072

et al., 2019; Vaswani et al., 2017) for long-073

document retrieval. This was done using three074

popular document collections—MS MARCO Doc-075

uments v1/v2 (Craswell et al., 2021a) and Ro-076

bust04 (Clarke et al., 2004)—along with diverse077

query sets (both large and small) several Trans-078

former backbones and multiple training seeds. In079

addition to locally trained models, we also assessed080

a listwise LLM ranker RankGPT (Sun et al., 2023)081

“powered” by OpenAI (OpenAI, 2023) and An-082

thropic (Anthropic, 2024) cloud APIs. Despite083

the increased context capacity of long-document084

models, we found that none of them consistently085

outperformed their FirstP baselines by more than086

5% on average.087

Next, we estimated positional relevance bias088

across five document collections (including MS089

MARCO v2) and more than six query sets. As090

can be seen in Fig. 1, in the vast majority of cases 091

the first relevant passage occurred within the initial 092

512 tokens. In contrast, the distribution of passage 093

positions is more uniform and has a long tail. This 094

confirms the presence of positional bias not only in 095

MS MARCO, but also in other TREC collections 096

(a complete set of plots is provided in Fig. 7 of 097

Appendix § B.4). 098

Our initial exploration prompted two broad re- 099

search questions: 100

• RQ1: How robust are long-document models 101

to the positional-bias of relevant passages? 102

• RQ2: How much progress has the community 103

made in improving long-document ranking 104

models? Do we really improve upon FirstP 105

baselines? Given that all long-document mod- 106

els are at least 2× slower than respective 107

FirstP baselines (see Figure 3, § A.4), one 108

could question practicality of such models and 109

suggest using FirstP variants instead. 110

To answer these questions, we constructed a new 111

diagnostic synthetic collection MS MARCO Far- 112

Relevant where relevant passages were not present 113

among the first 512 tokens. On this dataset, many 114

long-context models—including RankGPT (Sun 115

et al., 2023)—failed to generalize and performed 116

at a random baseline level, suggesting overfitting 117

to positional bias. Poor performance of models 118

on our new synthetic collection prompted another 119

important question RQ3: Can de-biasing training 120

data mitigate model overfitting to positional bias? 121

In summary our paper makes the following con- 122

tributions: 123

• We re-examined the issue of positional rele- 124

vance bias, gathered extensive evidence con- 125

firming its presence, and evaluated the robust- 126

ness of ranking models against this bias; 127

• Our work highlights the need for careful 128

benchmark design in evaluating long-context 129

models for document ranking, which do not 130

mask the benefits of long-context models and 131

identifies model types that are more robust to 132

positional bias; 133

• We perform an extensive reproduction study 134

of over 20 ranking models using two es- 135

tablished benchmark collections for long- 136

document retrieval and ranking; 137
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• We experiment with de-biasing training data138

and motivate further research in this area.139

We release our code and data to support further140

research.2141

2 Related Work142

Neural Ranking models have been a widely stud-143

ied topic in recent years (Guo et al., 2019), though144

the success of early approaches was debated (Lin,145

2019). This changed with the introduction of146

BERT, a bi-directional encoder-only Transformer147

model (Devlin et al., 2019), which significantly out-148

performed previous methods in both NLP (Devlin149

et al., 2019) and information retrieval (IR) tasks150

(Nogueira et al., 2019; Craswell et al., 2021a).151

Several Transformer-based models, such as152

ELECTRA (Clark et al., 2020) and DEBERTA (He153

et al., 2021), have improved upon BERT through154

different training strategies and datasets. How-155

ever, due to their architectural similarities, we—156

following Lin et al. (2021)—refer to these collec-157

tively as BERT models.158

Despite their strong performance, neural models159

are vulnerable to distribution shifts, often relying160

on superficial features and exhibiting various bi-161

ases. They do not consistently outperform BM25162

on out-of-domain data (Thakur et al., 2021; Mokrii163

et al., 2021), can be misled by minor text modifi-164

cations and distractor sentences (MacAvaney et al.,165

2022), or reformulated queries (Penha et al., 2022).166

They also struggle to effectively utilize information167

located in the middle of long input contexts (Liu168

et al., 2024).169

A seemingly similar yet distinct issue of posi-170

tional relevance bias has been identified in infor-171

mation retrieval settings, particularly within the172

MS MARCO document-retrieval collection (Hof-173

stätter et al., 2020b; Coelho et al., 2024). Some174

studies have reported strong performance of FirstP175

baselines on long-document retrieval collections,176

interpreting this as evidence of benchmark-induced177

positional bias (Zhu et al., 2024). However, strong178

performance of FirstP baseline is only indirect179

evidence, potentially resulting from implementa-180

tion bugs, suboptimal training methods, or model-181

inherent biases. (Coelho et al., 2024) found that182

embedding models trained on MS MARCO “dwell”183

in the beginning and are somewhat less effective184

when relevant information is present elsewhere in185

2https://anonymous.4open.science/r/long_doc_
rank_model_analysis_v2-78E9/.

a document. The study used only two embedding 186

models and has additional limitations: (1) it is un- 187

clear if the bias is fully attributable to data (2) the 188

models were not tested under conditions of extreme 189

positional bias, (3) no mitigation strategy was eval- 190

uated. 191

To address the issue with existing benchmarks, 192

(Zhu et al., 2024) proposed a LongEmbed bench- 193

mark with two synthetic tasks where relevant mini- 194

passages were scattered uniformly across docu- 195

ments whose lengths varied from 256 to 32768 196

tokens. However, as discussed in §B.3 of the Ap- 197

pendix, these synthetic sets are quite unnatural and 198

lack diversity. Furthermore, Zhu et al. (2024) pro- 199

vide only small query sets and no in-domain train- 200

ing data, making it difficult to assess the upper 201

performance bound that models can achieve on this 202

dataset. As another important limitation Zhu et al. 203

(2024), only explored training-free extensions of 204

positional encoding and did not investigate meth- 205

ods to de-bias training data. In contrast, Hofstätter 206

et al. (2021a) proposed to de-bias training data us- 207

ing a simple-yet-effective approach. However, they 208

did not evaluate it on challenging long-document 209

datasets. 210

Due to the quadratic complexity of the Trans- 211

former’s attention mechanism (Vaswani et al., 212

2017; Bahdanau et al., 2015), early Transformer 213

models restricted input length to a maximum of 214

512 (subword) tokens. Until around 2022, two 215

main strategies were used to process long docu- 216

ments: (1) localizing attention and (2) splitting 217

documents into smaller, independently processed 218

chunks. Attention-localization methods apply a 219

limited-span (sliding window) attention with selec- 220

tive global attention. Given the vast number of such 221

approaches (see Tay et al. 2020), evaluating all of 222

them is impractical. Therefore, we focus on two 223

popular models: Longformer (Beltagy et al., 2020) 224

and BigBird (Zaheer et al., 2020). More recently, it 225

has also become feasible to train long-context mod- 226

els with (an IO-efficient) FlashAttention algorithm 227

without sparsifying attention (Dao et al., 2022). In 228

our work we use two such models: JINA (Günther 229

et al., 2023) and MOSAIC (Portes et al., 2023). 230

In summary, the methods to tackle longer doc- 231

uments are divided into LongP methods—where 232

longer document lengths are “natively” supported 233

and SplitP methods—where the longer document 234

cannot be processed as a whole and needs to be 235

processed in chunks. The results of each chunk 236
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Figure 2: Zero-shot vs. fine-tuned performance on MS
MARCO FarRelevant for a representative set of models.

are aggregated together using various aggregation237

techniques, including a computation of a maxi-238

mum or a weighted-sum prediction score (Yilmaz239

et al., 2019; Dai and Callan, 2019; MacAvaney240

et al., 2019). This includes MaxP (Dai and Callan,241

2019), AvgP, SumP (MacAvaney et al., 2019), as242

well as PARADE Avg and PARADE Max mod-243

els (MacAvaney et al., 2019). Some SplitP ap-244

proaches aggregate using simple neural networks.245

This includes all CEDR (MacAvaney et al., 2019)246

models, the Neural Model 1 (Boytsov and Kolter,247

2021), and the PARADE Attention model (Li et al.,248

2024). In contrast, PARADE Transformer (Li et al.,249

2024) models’ aggregator network is an additional250

Transformer model. Due to space constraints, a251

detailed description of document-splitting (SplitP)252

approaches is provided in the Appendix § C.253

The recent success of decoder-only models—254

commonly known as LLMs—has led to a new gen-255

eration of cross-encoding LongP models that na-256

tively support longer contexts. First, a pre-trained257

cross-encoding decoder-only model can be directly258

fine-tuned in a ranking or embedding task (Ma259

et al., 2023). Second, the RankGPT approach (Sun260

et al., 2023) formulates document ranking as a261

generation task: The model is prompted with a262

list of documents and an instruction to generate263

their ranking—an ability made possible through264

instruction-tuning and/or alignment (Wei et al.,265

2022; Ouyang et al., 2022). When the combined266

length of concatenated documents exceeds the in-267

put context size, RankGPT employs an overlapping268

sliding window strategy, followed by aggregation269

of the results.270

3 Experiments 271

3.1 Data 272

Our primary datasets, used for both training and 273

evaluation, consist of several realistic collections 274

(along with their respective query sets) and syn- 275

thetic data. All datasets are in English. Document 276

and query statistics are provided in Appendix § B.1 277

Tables 9 and 10. 278

The realistic datasets include two versions of the 279

MS MARCO Documents collection (v1 and v2), 280

MS MARCO Passages collection (v1), (Bajaj et al., 281

2016; Craswell et al., 2020, 2021b), Robust04 282

(Voorhees, 2004), and the NQ BEIR, which is a 283

Natural Question (Kwiatkowski et al., 2019) sub- 284

set incorporated into the BEIR benchmark (Thakur 285

et al., 2021). 286

Following Hofstätter et al. (2021a), we created 287

a de-biased version of MS MARCO by randomly 288

splitting documents at word boundaries and then 289

concatenating the shuffled segments. This de- 290

biasing process is only partial, as shorter docu- 291

ments remain more frequent. To address this imbal- 292

ance, we experimented with oversampling longer 293

documents, but this approach did not yield improve- 294

ments. 295

Our synthetic data consists of two subsets from 296

LongEmbed (Zhu et al., 2024) and our newly cre- 297

ated MS MARCO FarRelevant collection. All these 298

can be considered a variant of the needle-in-the- 299

haystack tests, where an informational “nugget” is 300

randomly embedded within unrelated text (Saad- 301

Falcon et al., 2024; Zhu et al., 2024; Liu et al., 302

2024). We use two LongEmbed subsets: Nee- 303

dle and Passkey: Each has 800 question-document 304

pairs with document lengths varying from (approx- 305

imately) 256 to 32768 tokens. 306

MS MARCO FarRelevant was created by ran- 307

domly mixing relevant and non-relevant pas- 308

sages from the MS MARCO Passage collection 309

(Craswell et al., 2020) in such a way that (1) each 310

document contained exactly one relevant passage, 311

(2) this passage did not start before token 512, and 312

(3) the document length was at most 1431 tokens 313

with (see an algorithm in the Appendix § B.2). 314

It has about 0.5 million documents with an aver- 315

age length of 1.1K tokens. Due to MS MARCO 316

datasets having a non-commercial license, MS 317

MARCO FarRelevant has the same licensing re- 318

striction. In Appendix § B.3, we present dataset 319

examples and argue that—while all these collec- 320

tions share the limitation of not resembling natu- 321
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Retriever / Ranker MS MARCO TREC DL Robust04 Avg. gain
dev (2019-2021) title description over FirstP

MRR NDCG@10 NDCG@20

retriever 0.312 0.629 0.428 0.402 –

FirstP (BERT) 0.394 0.632 0.475 0.527 –
FirstP (Longformer) 0.404 0.643 0.483 0.540 –
FirstP (ELECTRA) 0.417 0.662 0.492 0.552 –
FirstP (DEBERTA) 0.415 0.672 0.534 0.596 –
FirstP (Big-Bird) 0.408 0.656 0.507 0.560 –
FirstP (JINA) 0.422 0.654 0.488 0.532 –
FirstP (MOSAIC) 0.423 0.643 0.453 0.538 –
FirstP (TinyLLAMA) 0.395 0.615 0.431 0.473 –
FirstP (E5-4K) zero-shot 0.380 0.641 0.438 0.429 –
FirstP RankGPT (GPT-4o-mini) – 0.708 – 0.562

AvgP 0.389 (−1.3%) 0.642 (+1.5%) 0.478 (+0.5%) 0.531 (+0.9%) +0.4%

MaxP 0.392 (−0.4%) 0.644a (+1.9%) 0.488a (+2.6%) 0.544a (+3.3%) +1.9%
MaxP (ELECTRA) 0.414 (−0.6%) 0.659 (−0.5%) 0.502 (+2.0%) 0.563 (+2.1%) +0.8%
MaxP (DEBERTA) 0.402a (−3.2%) 0.671 (−0.1%) 0.535 (+0.2%) 0.609a (+2.2%) -0.2%
SumP 0.390 (−1.0%) 0.639 (+1.0%) 0.486 (+2.2%) 0.538 (+2.1%) +1.1%

CEDR-DRMM 0.385a (−2.3%) 0.629 (−0.5%) 0.466 (−2.0%) 0.533 (+1.3%) -0.9%
CEDR-KNRM 0.379a (−3.8%) 0.630 (−0.3%) 0.483 (+1.7%) 0.535 (+1.7%) -0.2%
CEDR-PACRR 0.395 (+0.3%) 0.643a (+1.6%) 0.496a (+4.3%) 0.549a (+4.2%) +2.6%

Neural Model1 0.398 (+0.9%) 0.650a (+2.8%) 0.484 (+1.8%) 0.537 (+1.9%) +1.8%

PARADE Attn 0.416a (+5.5%) 0.652a (+3.1%) 0.503a (+5.7%) 0.556a (+5.6%) +5.0%
PARADE Attn (ELECTRA) 0.431a (+3.3%) 0.680a (+2.7%) 0.523a (+6.4%) 0.581a (+5.3%) +4.4%
PARADE Attn (DEBERTA) 0.422a (+1.6%) 0.688a (+2.4%) 0.549a (+2.9%) 0.615a (+3.2%) +2.5%
PARADE Avg 0.392 (−0.6%) 0.646a (+2.1%) 0.483 (+1.5%) 0.534 (+1.5%) +1.1%
PARADE Max 0.405a (+2.7%) 0.655a (+3.5%) 0.489a (+2.8%) 0.548a (+4.0%) +3.3%

PARADE Transf-RAND-L2 0.419a (+6.3%) 0.655a (+3.6%) 0.488a (+2.8%) 0.548a (+4.1%) +4.2%
PARADE Transf-RAND-L2 (ELECTRA) 0.433a (+3.9%) 0.670 (+1.2%) 0.523a (+6.3%) 0.574a (+3.9%) +3.8%
PARADE Transf-PRETR-L6 0.402a (+1.9%) 0.643 (+1.6%) 0.494a (+4.0%) 0.554a (+5.1%) +3.2%

LongP (Longformer) 0.412a (+1.9%) 0.668a (+3.9%) 0.500a (+3.6%) 0.568a (+5.1%) +3.6%
LongP (Big-Bird) 0.397a (−2.9%) 0.651 (−0.7%) 0.452a (−10.9%) 0.477a (−14.9%) -7.3%
LongP (JINA) 0.416a (−1.5%) 0.665a (+1.7%) 0.503a (+2.9%) 0.558a (+4.9%) +2.0%
LongP (MOSAIC) 0.421 (−0.4%) 0.664a (+3.3%) 0.456 (+0.6%) 0.570a (+6.0%) +2.4%
LongP (TinyLLAMA) 0.402a (+1.7%) 0.608 (−1.1%) 0.452a (+4.8%) 0.505a (+6.7%) +3.0%
LongP (E5-4K) zero-shot 0.353a (−7.1%) 0.649 (+1.3%) 0.439 (+0.1%) 0.434 (+1.1%) -1.1%
LongP RankGPT (GPT-4o-mini) – 0.706 (−0.3%) – 0.562 (+0.0%) -0.1%

In each column we show a relative gain with respect model’s respective FirstP baseline: The last column shows the average
relative gain over FirstP baselines. Best numbers are in bold: Results are averaged over three seeds. Unless specified
explicitly, the backbone is BERT-base. Statistical significant differences with respect to this baseline are denoted using the
superscript a. p-value threshold is 0.01 for an MS MARCO development collection and 0.05 otherwise.

Table 1: Ranking Performance on MS MARCO, TREC DL, and Robust04.

ral documents—MS MARCO FarRelevant offers322

greater diversity and serves as a more suitable323

benchmark for evaluating text retrieval systems.324

Robust04 is another relatively small dataset con-325

taining 0.5 million documents, comprising a mix326

of news articles and government records, some of327

which are quite lengthy. However, it includes only328

a limited number of queries (250), making it a chal-329

lenging benchmark for training models in low-data330

scenarios. Each query consists of a title and de-331

scription: the title expresses a concise information332

need, while the description provides a more de-333

tailed request, often written in proper English prose.334

We use Robust04 in a cross-validation setting with335

folds created by Huston and Croft (2014) provided336

via IR-datasets (MacAvaney et al., 2021).3337

3In that we do not train Robust04 models from scratch, but

MS MARCO v1 was created from the MS 338

MARCO reading comprehension dataset (Bajaj 339

et al., 2016) and consist of two related collec- 340

tions: MS MARCO Passages and MS MARCO 341

Documents. MS MARCO v1 comes with large 342

query sets, which is particularly useful for training 343

and testing models in the big-data regime. These 344

query sets consist of question-like queries sam- 345

pled from the Bing search engine log with subse- 346

quent filtering (Craswell et al., 2021b). Note that 347

queries are not necessarily proper English ques- 348

tions, e.g., “lyme disease symptoms mood”, but 349

they are answerable by a short passage retrieved 350

from a set of about 3.6M Web documents (Bajaj 351

et al., 2016). MS MARCO v1 test sets were created 352

in two stages, where initially relevance judgments 353

rather fine-tune models trained on MS MARCO Documents.
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Ranker MS MARCO TREC DL FarRelevant LongEmbed
dev (2019-2021) zero-shot transf. fine-tuned Needle Passkey

MRR NDCG@10 MRR MRR MRR MRR

Original MS MARCO training set

FirstP (ELECTRA) 0.417 0.662 0.019 0.089 0.205 0.235

MaxP (ELECTRA) 0.414 0.659 0.328 0.349 0.331 0.338
PARADE Attn (ELECTRA) 0.431 0.680 0.338 0.354 0.270 0.334
PARADE Transf-RAND-L2 (ELECTRA) 0.433 0.670 0.229 0.432 0.321 0.333
CEDR-KNRM 0.379 0.630 0.055 0.382 0.129 0.166

De-biased MS MARCO (Hofstätter et al., 2021a)

MaxP (ELECTRA) 0.377a (−9.1%) 0.665 (+0.8%) 0.321 (−2.1%) 0.349 0.316 (−4.6%) 0.325 (−3.9%)
PARADE Attn (ELECTRA) 0.390a (−9.4%) 0.653a (−3.9%) 0.326 (−3.6%) 0.354 0.251 (−7.1%) 0.330 (−1.0%)
PARADE Transf-RAND-L2 (ELECTRA) 0.410a (−5.4%) 0.677 (+1.0%) 0.328a (+43.5%) 0.432 0.259a (−19.4%) 0.331 (−0.7%)
CEDR-KNRM 0.269a (−29.0%) 0.503a (−20.2%) 0.202a (+268.8%) 0.382 0.121 (−5.8%) 0.181 (+8.6%)

Except FirstP we train each model using the original and the de-biased MS MARCO. For each model trained on the de-biased dataset, we
compute a gain (or loss) compared to the same model trained on the original training set. Statistical significance of the differences are denoted
using the superscript superscript a (p-value threshold is 0.05 for TREC DL and 0.01 for other collections). Best numbers are in bold: Results
are averaged over three seeds.

Table 2: Performance of (Selected) Rankers Trained on Original and De-biased MS MARCO

were created for the passage variant of the dataset.354

Then, document-level relevance labels were created355

by transferring passage-level relevance to original356

documents from which passages were extracted.357

Relevance labels in the training and develop-358

ment sets are “sparse”: There is about one positive359

example per query without explicit negatives. In360

addition to sparse relevance judgments—separated361

into training and developments subsets—there is362

a small number (98) of queries that have “dense”363

judgments provided by NIST assessors for TREC364

2019 and 2020 deep learning (DL) tracks (Craswell365

et al., 2021a).366

The MS MARCO v2 collection was created367

for the TREC 2021 Deep Learning (DL) track368

(Craswell et al., 2021b). It is an expanded ver-369

sion of MS MARCO v1 and incorporates a subset370

of sparse relevance judgments from MS MARCO371

v1. In the training set, newly added documents lack372

both positive and negative judgments, introducing373

a bias where many relevant documents are mistak-374

enly considered non-relevant. As a result, we do375

not train on v2 data and only use it for testing.376

3.2 Setup377

We focus cross-encoding rankers, which process378

queries concatenated with documents (Nogueira379

and Cho, 2019). This includes various SplitP and380

LongP models discussed in § 2 and in the Ap-381

pendix § C. As a reference point we also tested382

a bi-encoder embedding E5-4K model, which had383

strong performance on LongEmbed benchmark384

with context sizes under 4K tokens (Zhu et al.,385

2024). E5-4K was tested as a ranking model and386

only in the zero-shot mode (without fine-tuning). 387

Nearly all rankers are based on BERT models (bi- 388

directional encoder-only Transformer) with 100M– 389

200M parameters (see Table 11). Additionally, we 390

evaluated two types of LLM rankers: (1) a fine- 391

tuned TinyLLAMA model which delivers strong 392

performance relative to is compact size (Zhang 393

et al., 2024) and (2) generative black-box LLMs. 394

For (2), we used OpenAI’s GPT-4o-mini (OpenAI, 395

2023) and Anthropic’s Claude Haiku-3 (Anthropic, 396

2024), both of which support at least a 128K-token 397

input context. 398

We trained each model using three seeds, except 399

the bi-encoder model E5 (Zhu et al., 2024) and 400

RankGPT (Sun et al., 2023), which were evaluated 401

only in the zero-shot mode. Due to the high evalua- 402

tion cost, we also did not test RankGPT on some 403

query sets, in particular, excluding MS MARCO 404

dev set, as it is quite large. 405

To compute statistical significance, we averaged 406

query-specific metric values over these seeds. Due 407

to space constraints, additional experimental details 408

are provided in the Appendix § A.1. Moreover, in 409

the main part of the paper we only show results 410

for the mean reciprocal rank (MRR) and the non- 411

discounted cumulative gain at rank k (NDCG@K). 412

Additional precision-based metrics are presented 413

in the Appendix (see § A.5). 414

3.3 Results 415

Realistic Datasets. Our main experimental re- 416

sults for MS MARCO, TREC DL 2019-2021, and 417

Robust04 are presented in Table 1. Fig. 2 and Ta- 418

ble 4 (in the Appendix § A.5) show results for MS 419
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MARCO FarRelevant. In the Appendix (see A.3)420

we also show that we can match or outperform key421

prior results, which, we believe, boosts the trust-422

worthiness of our experiments.423

We abbreviate names of several PARADE mod-424

els: Note that PARADE ATTN denotes a PARADE425

Attention model. The PARADE TRANSF or426

P. TRANSF prefix denotes PARADE Transformer427

models where an aggregator Transformer can be428

either trained from scratch (TRANSF-RAND-L2)429

or initialized with a pretrained model (TRANSF-430

PRETR-L6). L2 and L6 denote the number of431

aggregating layers (two and six, respectively).4432

Unless explicitly specified, the backbone Trans-433

former model for SplitP methods is BERT-base434

(Devlin et al., 2019). Although using other back-435

bones such as ELECTRA (Clark et al., 2020) and436

DEBERTA (He et al., 2021) can improve an overall437

accuracy, we observe a bigger gain compared to a438

FirstP baseline when we use BERT-base (see § A.3439

in the Appendix).440

To ease understanding and simplify presentation,441

we display key results for a representative sample442

of models in Fig. 3 and Fig. 2 (in § 1). Moreover,443

in Table 1 we present only a single aggregate num-444

ber for all TREC DL query sets, which is obtained445

by combining all the queries and respective rele-446

vance judgments (i.e., we post an overall average447

rather than an average over the mean values for448

2019, 2020, and 2020). More detailed results, in-449

cluding both OpenAI and Anthropic RankGPT, are450

available in Appendix A.5, specifically in Tables 7451

and 8.452

From Fig. 3 and Table 1 we learn that the max-453

imum average gain over respective FirstP base-454

lines is only 5% (when measured using MRR or455

NDCG@K). Gains are much smaller for a number456

of models, which sometimes match or underper-457

form their FirstP baselines on one or more dataset458

and some of these differences are statistically sig-459

nificant. In particular, this is true for RankGPT460

(Sun et al., 2023), CEDR-DRMM, CEDR-KNRM461

(MacAvaney et al., 2019), JINA (Günther et al.,462

2023) and MOSAIC (Portes et al., 2023).463

We can also see that the LongP variant of the464

Longformer model appears to have a relatively465

strong performance, but so does the FirstP ver-466

sion of Longformer. Thus, we think that a good467

performance of Longformer on MS MARCO and468

4Note, however, that TRANSF-PRETR-L2 has only four
attention heads.

Robust04 collections can be largely explained by 469

better pretraining compared to the original BERT- 470

base model rather than to its ability to ability to pro- 471

cess long contexts. Moreover, FirstP (ELECTRA) 472

and FirstP (DEBERTA) are even more accurate 473

than FirstP (Longformer) and perform comparably 474

well (or better) with chunk-and-aggregate docu- 475

ment models that uses BERT-base as the backbone 476

model. This is a fair comparison aiming to demon- 477

strate that on a typical test collection the benefits of 478

long-context models are so small that comparable 479

benefits can be obtained by finding or training a 480

more effective FirstP model. FirstP models are 481

more efficient during inference and they can be 482

pretrained using a larger number of tokens for the 483

same cost (so they could perform better). 484

Based on our analysis of positions of first rele- 485

vance passages, we hypothesize that limited ben- 486

efits of long-context models are not due inability 487

to process long context, but rather due to a posi- 488

tional bias of relevant passages, which tended to be 489

among the first 512 document tokens (see Figure 1 490

and Figure 7 in Appendix B.4). 491

Synthetic Data. To further support this hypoth- 492

esis, we carried out two sets of experiments us- 493

ing our new MS MARCO FarRelevant collection, 494

where a relevant passage did not start until to- 495

ken 512. We carried out both the zero-shot ex- 496

periment (evaluation of the model trained on MS 497

MARCO) as well fine-tuning experiment using 498

50K in-domain queries (from the MS MARCO 499

FarRelevant). 500

Because FirstP models perform poorly in this 501

setting our main baselines here are Longformer 502

and MaxP models. For models with ELECTRA 503

and DEBERTA backbones we compare with MaxP 504

(ELECTRA) and MaxP (DEBERTA), respectively. 505

Otherwise, the baseline is MaxP (BERT). Results 506

for key models are shown in Fig. 2 and more de- 507

tailed results can be found in Table 4 of the Ap- 508

pendix § A.5. We make the following key observa- 509

tions: 510

• The FirstP models performed roughly at the 511

random-baseline level in both zero-shot and 512

fine-tuning modes (RQ1). Surprisingly, E5- 513

4K performance is also at a random-baseline 514

level despite its competitive performance on 515

LongEmbed benchmark (Zhu et al., 2024), 516

MS MARCO, and Robust04 (see Table 1); 517

• Both GPT-4o-mini and Claude Haiku-3 518
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RankGPT perform at the random-baseline519

level as well! As a sanity check, and to verify520

if more accurate and expensive LLMs could521

do better, we assessed performance of GPT-4o522

for a sample of 100 queries. The respective523

RankGPT (Sun et al., 2023) ranker was still524

not better than a random baseline (RQ1).525

• Simple aggregation models including MaxP526

and PARADE Attention had good zero-shot527

accuracy, but benefited little from fine-tuning528

on MS MARCO FarRelevant (RQ1);529

• In contrast, other long-document models530

had poor zero-shot performance (sometimes531

at a a random baseline level), but out-532

stripped respective MaxP baselines by as533

much as 13.3%-27.7% after finetuning (RQ1534

and RQ2);535

• Not only positional bias diminished benefits536

of supporting longer document contexts, but it537

also lead to model overfitting to the bias and538

performing poorly in a zero-shot setting when539

the distribution of relevant passages changed540

substantially;541

• With exception of RankGPT (Sun et al., 2023)542

on TREC DL 2019-2021, PARADE Trans-543

former models were more effective than other544

models on standard collections, their advan-545

tage was small (a few %). In contrast, on MS546

MARCO FarRelevant, PARADE Transformer547

(ELECTRA) outperformed the next competi-548

tor Longformer by 8% and PARADE Max549

(ELECTRA)—an early chunk-and-aggregate550

approach—by as much as 23.8% (RQ2).551

• It is also worth highlighting the consistently552

strong performance of PARADE models on553

both standard long-document collections and554

MS MARCO FarRelevant. The best PARADE555

models substantially outperformed the best556

LongP models in both zero-shot and fine-557

tuning settings, although the specific models558

leading in each setting may differ.559

Bias Mitigation. To address RQ3, we trained560

four representative models on a de-biased version561

of MS MARCO (see Appendix § A.1.3 for selec-562

tion rationale), using the de-biasing approach by563

Hofstätter et al. (2021a), and tested them on MS564

MARCO FarRelevant as well as on Needle/Passkey565

subsets of LongEmbed (Zhu et al., 2024). We also566

evaluated four models fine-tuned on MS MARCO 567

FarRelevant on TREC DL 2019-2020 query sets. 568

Due to the substantial NDCG@10 drop (0.1–0.15) 569

observed for PARADE Transformer and CEDR- 570

KNRM, we concluded that fine-tuning on purely 571

synthetic data is not viable and did not pursue it 572

further. 573

According to Table 2, de-biasing improved per- 574

formance of CEDR-KNRM and PARADE Trans- 575

former on MS MARCO FarRelevant. Yet, it mostly 576

caused performance degradation on the original 577

MS MARCO dataset and on LongEmbed subsets. 578

It did not benefit the MaxP and PARADE Atten- 579

tion models, which were the most robust to posi- 580

tional bias. We further tested de-biased models 581

on two short-document collections and achieved 582

more favorable outcomes. According to Table 3 in 583

Appendix A, for three out of four models (except 584

PARADE Attention) de-biasing has either a neutral 585

or slightly positive effect, especially on BEIR NQ. 586

These results are promising, but they also suggest 587

that mitigating positional bias remains a challeng- 588

ing problem (RQ3). 589

4 Conclusion 590

In this work, we revisited the problem of positional 591

relevance bias in long-document retrieval and pre- 592

sented extensive evidence of its widespread impact 593

across existing benchmarks. Using both real and 594

synthetic datasets—including our new diagnostic 595

dataset, MS MARCO FarRelevant—we evaluated 596

the robustness and effectiveness of over 20 ranking 597

models. 598

Our findings highlight the importance of bench- 599

mark design that does not obscure the benefits of 600

long-context modeling. We identified model fami- 601

lies (e.g., PARADE Attention and MaxP) that are 602

more robust to positional bias, and confirmed the 603

strong performance of PARADE models (Li et al., 604

2024), which remain competitive even against re- 605

cent long-context architectures. 606

Finally, our de-biasing experiments yielded only 607

limited gains, motivating further research into more 608

effective mitigation strategies, including combining 609

de-biasing with training on well-designed synthetic 610

data. 611

5 Limitations 612

Our paper has several limitations related primarily 613

to the choice of datasets, models, and the strength 614
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of evidence for the positional bias of relevant pas-615

sages.616

First of all, our evaluation uses only cross-617

encoding ranking models. With an exception of618

E5-4K model, which is used in the zero-shot rank-619

ing mode, we do not train or evaluate bi-encoding620

models (typically used to create query and docu-621

ment embeddings for the first-stage retrieval). We622

nonetheless believe that—given a large number623

of proposals for long-document ranking—a repro-624

duction and evaluation of cross-encoding long-625

document rankers is a sufficiently important topic626

that alone warrants a publication.627

Moreover, as we explain below, we also use628

cross-encoding rankers as a tool to detect and ex-629

pose bias in the position of relevant information. In630

that, cross-encoders are easier to train using stan-631

dard (rather than high-memory) GPUs with mini-632

batch size one and gradient accumulation. They633

also typically require only one epoch to converge634

(only a few models need two or three epochs). In635

contrast, bi-encoders are trained using large batches636

with in-batch negatives for multiple epochs (e.g.,637

Karpukhin et al. (2020) report using at least 40638

epochs).639

Second, a bulk of our ranking experiments640

uses only two English document collections: MS641

MARCO Documents v1 and v2 (Craswell et al.,642

2021b) and Robust04 (Clarke et al., 2004). How-643

ever, we have to restrict the choice of datasets to644

make multi-seed evaluations of 20+ models feasi-645

ble. Yet, to corroborate existence of positional bias646

we used two additional popular long-document col-647

lections: Gov2 (Allan et al., 2008) and ClueWeb12648

(Collins-Thompson et al., 2013a). For the study649

on robustness of model to positional bias and its650

mitigation, we used two additional synthetic col-651

lections: MS MARCO FarRelevant and two sub-652

sets from LongEmbed (Zhu et al., 2024) together653

with short-document collections MS MARCO Pas-654

sages (v1) (Craswell et al., 2020) and BEIR NQ655

(Kwiatkowski et al., 2019; Thakur et al., 2021).656

One could argue that the limited improvements657

over FirstP baselines result from the models’ in-658

ability to handle long contexts. To address this659

concern, we trained and evaluated a diverse set660

of cross-encoding ranking models, including both661

split-and-aggregate models and models explicitly662

designed for long input sequences. Additionally,663

we assessed cloud-based RankGPT rankers, which664

have shown strong performance in recent research665

(Sun et al., 2023). 666

However, we can still test only a limited number 667

of models: One might always argue that there are 668

untested architectures that would outperform FirstP 669

baselines by a much larger margin. To demonstrate 670

that selected models can, in principle, benefit from 671

long contexts and decisively outperform simple 672

baselines such as FirstP and even MaxP models 673

we trained and/or evaluated them on a synthetic 674

collection MS MARCO FarRelevant, which can 675

be seen as a challenging version of a needle-in-the- 676

haystack test. This is still a limiting experiment, be- 677

cause synthetic collections—with documents com- 678

posed from randomly selected passages—are im- 679

perfect proxies for real-life datasets. In Appendix 680

§ B.3 we discuss limitation in detail and argue 681

that MS MARCO FarRelevant is a more suitable 682

synthetic benchmark for evaluating text retrieval 683

systems compared to LongEmbed subsets Needle 684

and Passkey (Zhu et al., 2024). 685

In summary, we provided three types of evidence 686

for positional bias of relevant passages: strong 687

performance of FirstP models on standard collec- 688

tions, direct estimation of the distribution of rele- 689

vant passages using substring matching and LLM 690

relevance judges (Upadhyay et al., 2024), as well 691

as experimentation with the synthetic collection 692

MS MARCO FarRelevant where relevant passages 693

distribution was not skewed towards the beginning 694

of a document. Each experiment provided imper- 695

fect/limited evidence on its own, but together they 696

strongly supported the existence of relevance posi- 697

tion bias. 698

While our analysis confirms a strong early- 699

position relevance bias across multiple retrieval 700

benchmarks, we acknowledge that this pattern may 701

not generalize to all domains. For example, prior 702

work has shown that in scientific abstracts, both 703

the first and last sentences tend to be crucial (Ruch 704

et al., 2006). Investigating positional relevance pat- 705

terns in such domains is an important direction for 706

future work. 707

In our experiments with Robust04 and MS 708

MARCO, we truncated documents to a maximum 709

of 1431 BERT tokens. However, this constraint 710

did not hinder our ability to address key research 711

questions. As detailed in Appendix § A.2, using 712

larger inputs led to only marginal improvements. 713

Notably, when models trained on MS MARCO 714

were applied to MS MARCO FarRelevant in a 715

zero-shot setting, we observed a significant drop in 716
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MRR (at least 17%) across many models. Several717

models—including RankGPT (Sun et al., 2023)—718

even failed to outperform a random-shuffling base-719

line, despite MS MARCO FarRelevant documents720

containing fewer than 1500 tokens.721

Interestingly, despite this token limitation, sev-722

eral long-context models significantly outper-723

formed both FirstP and MaxP baselines by over724

20%. This suggests that even short-document col-725

lections can serve as a meaningful benchmark for726

distinguishing strong and weak long-context mod-727

els—unlike the original MS MARCO, where all728

models have close accuracy.729

6 Ethics Statement730

We believe our study does not pose any ethical731

concerns. We do not collect any new data with732

the help of human annotators and we do not use733

human or animal subjects in our study. Although734

we do discover a positional bias in existing retrieval735

collections, we are not aware of any potential risks736

or harms that can be caused by the exposure of this737

bias.738

In terms of the environmental impact, our com-739

putational requirements are rather modest, because740

we only fine-tuned our models rather than trained741

them from scratch. These models were also rather742

small by modern standards. Except 1B-parameter743

TinyLLAMA (Zhang et al., 2024), each model has744

about 100M parameters (see Table 11 for details).745

Despite training and testing 20+ models with three746

seeds, we estimate to have spent only about 6400747

GPU hours for our main experiments. 96% of the748

time we used NVIDIA A10 (or similarly-powerful)749

RTX 3090 GPUs and 4% of the time we used750

NVIDIA A6000.751

We believe this is roughly equivalent to train-752

ing a single 1B-parameter TinyLLAMA model,753

which required about 3400 GPU hours using a754

more powerful NVIDIA A100. This, in turn, this755

is only a tiny fraction of compute required to train756

LLAMA2 models (2% compared to a 7B LLAMA2757

smodel).5758
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A Experiments: Additional Information,1186

Ablations, and Detailed Results1187

A.1 Detailed Training and Evaluation Setup1188

A.1.1 General Setup1189

In our work, a ranker is applied to the output of1190

the first-stage retrieval model, also known as a1191

candidate-generator. Depending on the experiment1192

Ranker TREC DL NQ BEIR
(2019-2020)

NDCG@10 NDCG@10

Original MS MARCO training set

MaxP (ELECTRA) 0.715 0.514
PARADE Attn (ELECTRA) 0.710 0.496
PARADE Transf-RAND-L2 (ELECTR.) 0.703 0.474
CEDR-KNRM 0.599 0.318

De-biased MS MARCO (Hofstätter et al., 2021a)

MaxP (ELECTRA) 0.716 (+0.1%) 0.516 (+0.6%)
PARADE Attn (ELECTRA) 0.675a (−4.9%) 0.427a (−14.0%)
PARADE Transf-RAND-L2 (ELECTR.) 0.706 (+0.4%) 0.485a (+2.5%)
CEDR-KNRM 0.604 (+0.7%) 0.353a (+11.0%)

We train each model using the original and the de-biased MS MARCO.
For each model trained on the de-biased dataset, we compute a gain
(or loss) compared to the same model trained on the original training
set. Statistical significance of the differences are denoted using the
superscript superscript a (p-value threshold is 0.05 for TREC DL and
0.01 for NQ BEIR). Best numbers are in bold: Results are averaged
over three seeds.

Table 3: Performance of (Selected) Rankers Trained
on Original and De-biased MS MARCO and Tested on
Short-Document Collections.

and the dataset we use different candidate genera- 1193

tors: for MS MARCO v1 and Robust04 we used 1194

a BM25 ranker (Robertson, 2004). In that, for 1195

MS MARCO v1 it was applied to documents ex- 1196

panded using the doc2query approach (Nogueira 1197

and Lin, 2019). For MS MARCO v2, we used a 1198

hybrid retriever where candidate records are first 1199

produced using a k-NN search and subsequently 1200

re-ranked using a linear fusion of BM25 scores and 1201

the cosine similarity between query and document 1202

embeddings. Embeddings were generated using 1203

ANCE (Xiong et al., 2021). 1204

Depending on the collection we computed a sub- 1205

set of the following metrics: the mean reciprocal 1206

rank (MRR), the non-discounted cumulative gain 1207

at rank k (NDCG@K) (Järvelin and Kekäläinen, 1208

2002), the mean average precision (MAP), and 1209

precision at rank (P@K), k ∈ {10, 20}. Due to 1210

space constraints, we included results with MAP 1211

and P@K only in the Appendix (see § A.5). Note 1212

that for test sets with sparse labels (MS MARCO 1213

development set and MS MARCO FarRelevant) we 1214

computed only MRR. 1215

All experiments were carried out using the an 1216

anonymous retrieval toolkit framework, which em- 1217

ployed Lucene and an anonymous toolkit for k- 1218

NN search to provide retrieval capabilities. Deep 1219

learning support was provided via PyTorch (Paszke 1220

et al., 2019) and HuggingFace Transformers library 1221

(Wolf et al., 2019). The instructions to reproduce 1222

our key results are publicly available in the on-line 1223
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A.1.2 Model Training1225

A ranker was trained to distinguish between pos-1226

itive examples (known relevant documents) and1227

hard negative examples (documents not marked1228

as relevant) sampled from the set of top-k candi-1229

dates returned by the candidate generator. We used1230

k = 100 for MS MARCO and MS MARCO Far-1231

Relevant and k = 1000 for Robust04 (based on1232

preliminary experiments).1233

Retriever / Ranker zero-shot fine-tuned
transferred

Random shuffling of top-100 0.052 0.052
Retriever 0.207 0.207

FirstP (BERT) 0.016b 0.090b

FirstP (Longformer) 0.017b 0.091b

FirstP (ELECTRA) 0.019b 0.089b

FirstP (Big-Bird) 0.021b 0.089b

FirstP (JINA) 0.018b 0.088b

FirstP (MOSAIC) 0.018b 0.089b

FirstP (TinyLLAMA) 0.020b 0.079b

FirstP (E5-4K) 0.015ab –

AvgP 0.154ab (−48.1%) 0.365ab (+11.4%)

MaxP 0.297b 0.328b

MaxP (ELECTRA) 0.328b 0.349b

MaxP (DEBERTA) 0.298b 0.332b

SumP 0.211ab (−28.8%) 0.327b (−0.4%)

CEDR-DRMM 0.157ab (−47.3%) 0.372ab (+13.3%)

CEDR-KNRM 0.055ab (−81.5%) 0.382a (+16.4%)

CEDR-PACRR 0.209ab (−29.6%) 0.393a (+19.9%)

Neural Model1 0.085ab (−71.3%) 0.396a (+20.6%)

PARADE Attn 0.300b (+1.0%) 0.337b (+2.8%)

PARADE Attn (ELECTRA) 0.338b (+3.3%) 0.354b (+1.6%)

PARADE Attn (DEBERTA) 0.307b (+3.2%) 0.343b (+3.4%)

PARADE Avg 0.274ab (−7.6%) 0.322b (−1.7%)

PARADE Max 0.291b (−2.1%) 0.330b (+0.6%)

PARADE Transf-RAND-L2 0.243a (−18.2%) 0.419ab (+27.7%)

P. Transf-RAND-L2 (ELECTRA) 0.229a (−30.2%) 0.432ab (+23.8%)

PARADE Transf-PRETR-L6 0.267ab (−10.0%) 0.413a (+26.0%)

P. Transf-PRETR-LATEIR-L6 0.244a (−18.0%) 0.358ab (+9.2%)

LongP (Longformer) 0.233a (−21.7%) 0.399a (+21.7%)

LongP (Big-Bird) 0.126ab (−57.4%) 0.401a (+22.1%)

LongP (JINA) 0.069ab (−76.9%) 0.372ab (+13.4%)

LongP (MOSAIC) 0.120ab (−59.6%) 0.397a (+21.2%)

LongP (TinyLLAMA) 0.078ab (−73.6%) 0.397a (+21.1%)

LongP (E5-4K) 0.057ab (−80.7%) N/A (zero-shot only)
LongP RankGPT (GPT-4o-mini) 0.043b N/A (zero-shot only)
LongP RankGPT (Claude-3-haiku) 0.051b N/A (zero-shot only)

In each column we show a relative gain over models’ respective MaxP
baseline. For LongP models, the gain is over MaxP (BERT). Statis-
tically significant differences from a respective MaxP baseline are
denoted with the superscript a. Statistical significant differences with
respect to Longformer are denoted with the superscript b (p-value
< 0.01).

Table 4: Model Ranking Performance on MS MARCO
FarRelevant.

Each model was trained using three seeds. All1234

models except MOSAIC were trained using half-1235

6https://anonymous.4open.science/r/long_doc_
rank_model_analysis_v2-78E9/

precision. MOSAIC models were trained using full- 1236

precision. MOSAIC training was unstable (even 1237

though we used the full precision) and often re- 1238

sulted in close-to-zero performance. For this reason 1239

we continued training with more seeds until we ob- 1240

tained three models with reasonable performance. 1241

This seed selection strategy could potentially have 1242

biased (up) MOSAIC results. To compute statisti- 1243

cal significance, we averaged query-specific metric 1244

values over these seeds. 1245

All MS MARCO models were trained from 1246

scratch. Then these models were fine-tuned on Ro- 1247

bust04. Note that except for the aggregation Trans- 1248

formers and TinyLLAMA, we use a base, i.e., a 1249

12-layer Transformer (Vaswani et al., 2017) models. 1250

TinyLLAMA has 22 layers and about 1B parame- 1251

ters. BERT-base is more practical then a 24-layer 1252

BERT-large and performs at par with BERT-large 1253

on MS MARCO and Robust04 (Hofstätter et al., 1254

2020a; Li et al., 2024). In our own experiments, we 1255

see that large (24 and more layers) model perform 1256

much better on the MS MARCO Passage collec- 1257

tion, but we were not able to outperform 12-layer 1258

models on the MS MARCO Documents collection. 1259

Note that Longformer (Beltagy et al., 2020), Big- 1260

Bird (Zaheer et al., 2020), and DEBERTA base 1261

(He et al., 2021), JINA (Günther et al., 2023), and 1262

MOSAIC (Portes et al., 2023) all have 12 layers, 1263

but a larger embedding matrix. 1264

One training epoch consisted in iterating over all 1265

queries and sampling one positive and one nega- 1266

tive example with a subsequent computation of a 1267

pairwise margin loss. We used the minibatch size 1268

one with gradient accumulation over 16 steps. The 1269

learning rates are provided in the model configura- 1270

tion files (in the on-line repository).7 We used the 1271

AdamW optimizer (Loshchilov and Hutter, 2017) 1272

and a constant learning rate with a 20% linear 1273

warm-up (Mosbach et al., 2020). 1274

We have learned that—unlike neural retrievers— 1275

cross-encoding rankers (Nogueira and Cho, 2019) 1276

are relatively insensitive to learning rates, their 1277

schedules, and the choice of loss functions. We 1278

were sometimes able to achieve better results using 1279

multiple negatives per query and a listwise margin 1280

loss (or cross-entropy). However, the gains were 1281

small and not consistent compared to a simple pair- 1282

wise margin loss used in our work (in fact, using 1283

a listwise loss function sometimes lead to overfit- 1284

7https://anonymous.4open.science/r/long_doc_
rank_model_analysis_v2-78E9/.
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Model MS MARCO TREC DL Robust04
dev 2019 2020 2021 title description

MRR NDCG@10 NDCG@20

Prior work (FirstP, MaxP), Zhang et al. (Zhang et al., 2021)

FirstP (BERT) – – – – 0.449 0.510
MaxP (BERT) – – – – 0.477 (+6.2%) 0.530 (+3.9%)
MaxP (ELECTRA) – – – – 0.523 0.574

Prior work (PARADE) Li et al. (Li et al., 2024)

PARADE Attn (ELECTRA) – – – – 0.527 0.587
PARADE Max (ELECTRA) – 0.679 0.613 – 0.544 0.602
PARADE Transf-RAND (ELECTRA) – 0.650 0.601 – 0.566 0.613

Our results

FirstP (BERT) 0.394 0.631 0.598 0.660 0.475 0.527
MaxP (BERT) 0.392 (−0.4%) 0.648 (+2.6%) 0.615 (+2.8%) 0.665 (+0.8%) 0.488a (+2.6%) 0.544a (+3.3%)
PARADE Attn 0.416a (+5.5%) 0.647 (+2.5%) 0.626a (+4.6%) 0.677 (+2.5%) 0.503a (+5.7%) 0.556a (+5.6%)

FirstP (ELECTRA) 0.417 0.652 0.642 0.686 0.492 0.552
MaxP (ELECTRA) 0.414 (−0.6%) 0.659 (+1.0%) 0.630 (−1.9%) 0.683 (−0.5%) 0.502 (+2.0%) 0.563 (+2.1%)
PARADE Attn (ELECTRA) 0.431a (+3.3%) 0.675a (+3.5%) 0.653 (+1.8%) 0.705 (+2.8%) 0.523a (+6.4%) 0.581a (+5.3%)

FirstP (DEBERTA) 0.415 0.675 0.629 0.702 0.534 0.596
MaxP (DEBERTA) 0.402 (−3.2%) 0.679 (+0.6%) 0.620 (−1.4%) 0.705 (+0.4%) 0.535 (+0.2%) 0.609 (+2.2%)
PARADE Attn (DEBERTA) 0.422a (+1.6%) 0.685 (+1.4%) 0.659a (+4.8%) 0.713 (+1.4%) 0.549a (+2.9%) 0.615a (+3.2%)

FirstP (Longformer) 0.404 0.657 0.616 0.654 0.483 0.540
LongP (Longformer) 0.412a (+1.9%) 0.676a (+2.9%) 0.628 (+2.0%) 0.693a (+6.0%) 0.500a (+3.6%) 0.568a (+5.1%)

FirstP (Big-Bird) 0.408 0.663 0.620 0.679 0.507 0.560
LongP (Big-Bird) 0.397a (−2.9%) 0.655 (−1.1%) 0.618 (−0.3%) 0.675 (−0.5%) 0.452a (−10.9%) 0.477a (−14.9%)

FirstP (JINA) 0.422 0.658 0.618 0.679 0.488 0.532
LongP (JINA) 0.416a (−1.5%) 0.670a (+1.8%) 0.632 (+2.1%) 0.689 (+1.4%) 0.503a (+2.9%) 0.558a (+4.9%)

FirstP (MOSAIC) 0.423 0.654 0.607 0.662 0.453 0.538
LongP (MOSAIC) 0.421 (−0.4%) 0.660 (+0.9%) 0.630a (+3.7%) 0.694a (+4.9%) 0.456 (+0.6%) 0.570a (+6.0%)

In each column we show a relative gain over model’s respective FirstP baseline: The last column shows the average relative gain over FirstP.
Best numbers are in bold: Our results are averaged over three seeds (but not necessarily prior art).
Statistical significant differences with respect to this baseline are denoted using the superscript superscript a. p-value threshold is 0.01 for an
MS MARCO development collection and 0.05 otherwise.

Table 5: Comparison of long-context models to respective FirstP baselines and prior art.

ting). Note again that this is different from neural1285

retrievers where training is difficult without using1286

a listwise loss and/or batch-negatives (Karpukhin1287

et al., 2020; Xiong et al., 2021; Qu et al., 2021;1288

Zerveas et al., 2021; Formal et al., 2021).1289

For MS MARCO, all models except PARADE-1290

Transf-Pretr-LATEIR-L6 and PARADE-Transf-1291

RAND-L2 were trained for one epoch: Further1292

training did not improve (and sometimes degraded)1293

accuracy. However, PARADE-Transf-RAND-L21294

and PARADE-Transf-Pretr-LATEIR-L6 required1295

two-to-three epochs to reach the maximum accu-1296

racy. For training using de-biased MS MARCO,1297

we used only one epoch. In the case of Robust04,1298

each model was finetuned for 100 epochs, but all1299

epochs were short, so the overall training and eval-1300

uation time was comparable to that of fine-tuning1301

on MS MARCO for a single epoch.1302

To reproduce our main results, we estimate that1303

one needs about 6400 GPU hours: 6000 hours1304

using NVIDIA A10 (or RTX 3090) with 24 GB of1305

memory and 400 hours using NVIDIA A6000 with1306

48 GB of memory. A6000 was required only for 1307

TinyLLAMA. 1308

From our experience models trained on MS 1309

MARCO v2 performed worse on TREC 2021 1310

queries compared to models trained on MS 1311

MARCO v1. This may indicate that models some- 1312

how learn to distinguish between original MS 1313

MARCO v1 documents and newly added ones 1314

(which did not have positive judgements in the 1315

training sets). As a result, these models are biased 1316

and tend to not rank these new documents well even 1317

when they are considered to be relevant by NIST as- 1318

sessors. For this reason, we used MS MARCO v2 1319

data in a zero-shot transfer mode where ranking 1320

models trained on MS MARCO v1 are evaluated 1321

on TREC DL 2021 queries. 1322

A.1.3 Miscellaneous Notes 1323

To enable efficient training and evaluation of the 1324

large number of models, for Robust04 and original 1325

MS MARCO documents were truncated to have at 1326

most 1431 BERT tokens. In § A.2 (see Table 6) 1327

we show that for our top-performing model PA- 1328
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Retriever / Ranker MS MARCO TREC DL Robust04 Avg. gain
dev (2019-2021) title description Over FirstP

MRR NDCG@10 NDCG@20

Retriever 0.312 0.629 0.428 0.402 –

PARADE Attn (1 chunk) 0.401 0.637 0.476 0.527 –
PARADE Attn (2 chunks) 0.408a (+1.8%) 0.653a (+2.7%) 0.499a (+4.9%) 0.544a (+3.3%) +3.2%
PARADE Attn (3 chunks) 0.406a (+1.3%) 0.648a (+1.7%) 0.505a (+6.1%) 0.557a (+5.7%) +3.7%
PARADE Attn (4 chunks) 0.412a (+2.9%) 0.654a (+2.7%) 0.504a (+5.9%) 0.558a (+5.9%) +4.3%
PARADE Attn (5 chunks) 0.409a (+2.0%) 0.652a (+2.4%) 0.502a (+5.6%) 0.556a (+5.5%) +3.9%
PARADE Attn (6 chunks) 0.411a (+2.4%) 0.653a (+2.6%) 0.504a (+5.9%) 0.554a (+5.2%) +4.0%

Table 6: Effectiveness of the PARADE Attention model for different input truncation thresholds

RADE Attention (Li et al., 2024) using a larger1329

number of chunks only marginally improves out-1330

comes. Depending on a dataset, the highest accu-1331

racy is achieved using either three or four chunks.1332

However, for training on de-biased MS MARCO,1333

the truncation threshold is much higher: 8109 to-1334

kens.1335

For SplitP approaches, queries were padded to1336

32 BERT tokens with padding being masked out1337

during training (longer queries were truncated). For1338

SplitP models with greedy partitioning into disjoint1339

chunks, long document were split into at most three1340

chunks containing 477 document tokens (each con-1341

catenated with up to 32 query tokens plus three1342

special tokens).1343

We evaluated 20+ models, but we had to exclude1344

two LongT5 variants (Guo et al., 2022) and Ro-1345

Former (with ROPE embeddings) (Su et al., 2024)1346

due to poor convergence and/or crashes. Specif-1347

ically, even after 10 epochs of training LongT51348

models were ≈ 10% less accurate than BERT-base1349

FirstP trained for one epoch. Given the uncertainty1350

regarding the possible convergence of models as1351

well as the need to train these for three epochs, we1352

have to abandon this experiment as overly expen-1353

sive. RoFormer models were failing due to CUDA1354

errors when the context length exceeded 512: We1355

were not able to resolve this issue.1356

For bias-mitigation experiments, for several rea-1357

sons, we us ed only a subset of models. First, we1358

had to exclude all LongP models since none of1359

them supported a context longer than 8192 tokens.1360

In contrast, in this experiment we trained our chunk-1361

and-aggregate tokens up to the length of 8109 and1362

then extrapolated to rank documents up to 327681363

tokens long. Second, we chose representative mod-1364

els with vastly different generalization properties.1365

MaxP and PARADE Attention models performed1366

well on MS MARCO FarRelevant in the zero-shot1367

setting, but did not benefit much from in-domain1368

fine-tuning. PARADE Transformer MRR dropped 1369

from 0.433 to 0.229 in the zero-shot setting, but 1370

increased up to 0.432 after in-domain fine-tuning. 1371

CEDR-KNRM also benefited a lot from fine-tuning 1372

on MS MARCO FarRelevant, but its zero-shot per- 1373

formance was at the level of random-baseline. 1374

A.2 Varying the Number of Chunks 1375

To understand if truncating input to have at most 1376

1431 BERT tokens negatively affected model per- 1377

formance, we carried out an ablation study where 1378

one of the top-performing models was trained 1379

and evaluated using inputs of varying maximum 1380

lengths. To this end we used PARADE Attention 1381

with the number of input chunks varying from one 1382

to six. In that the same number of chunks was used 1383

during training and evaluation, i.e., we had to carry 1384

out six experiments. Similar to our main experi- 1385

ments, we trained each model using three seeds. 1386

We carried out this ablation experiment using our 1387

MS MARCO and Robust04 datasets. 1388

The results are presented in Table 6: We can 1389

see that—depending on the dataset—three or four 1390

input chunks are optimal. However, the additional 1391

gains over the FirstP baseline are at most 0.6% 1392

when averaged over all test sets. 1393

Gao and Callan 2022 carried out a similar abla- 1394

tion using ClueWeb09: Increasing the number of 1395

input chunks from three to six lead to only about 1396

2.3% relative improvement in NDCG@20. How- 1397

ever, even this modest gain could have been slightly 1398

inflated due to model not being trained directly on 1399

shorter inputs. Indeed, truncation of an input for 1400

a six-chunk model to one chunk is potentially less 1401

effective than training and evaluating the model 1402

using one-chunk data. 1403
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Model MS MARCO TREC DL
dev 2019-2021

MRR NDCG@10 P@10 MAP

Retriever 0.312 0.629 0.720 0.321

FirstP (BERT) 0.394 0.632 0.712 0.311
FirstP (Longformer) 0.404 0.643 0.722 0.317
FirstP (ELECTRA) 0.417 0.662 0.734 0.320
FirstP (DEBERTA) 0.415 0.672 0.741 0.327
FirstP (Big-Bird) 0.408 0.656 0.727 0.321
FirstP (JINA) 0.422 0.654 0.728 0.320
FirstP (MOSAIC) 0.423 0.643 0.726 0.316
FirstP (TinyLLAMA) 0.395 0.615 0.692 0.301
FirstP (E5) 0.380 0.641 0.722 0.317
FirstP RankGPT (OpenAI) – 0.708 0.790 0.352
FirstP RankGPT (Anthropic) – 0.703 0.776 0.347

AvgP 0.389 (−1.3%) 0.642 (+1.5%) 0.717 (+0.7%) 0.317a (+2.0%)

MaxP 0.392 (−0.4%) 0.644a (+1.9%) 0.723 (+1.5%) 0.322a (+3.7%)
MaxP (ELECTRA) 0.414 (−0.6%) 0.659 (−0.5%) 0.745 (+1.5%) 0.326 (+2.1%)
MaxP (DEBERTA) 0.402a (−3.2%) 0.671 (−0.1%) 0.746 (+0.7%) 0.335a (+2.5%)
SumP 0.390 (−1.0%) 0.639 (+1.0%) 0.715 (+0.4%) 0.319a (+2.6%)

CEDR-DRMM 0.385a (−2.3%) 0.629 (−0.5%) 0.708 (−0.5%) 0.313 (+0.6%)
CEDR-KNRM 0.379a (−3.8%) 0.630 (−0.3%) 0.711 (−0.1%) 0.313 (+0.8%)
CEDR-PACRR 0.395 (+0.3%) 0.643a (+1.6%) 0.719 (+0.9%) 0.320a (+2.9%)

Neural Model1 0.398 (+0.9%) 0.650a (+2.8%) 0.723a (+1.5%) 0.323a (+3.9%)

PARADE Attn 0.416a (+5.5%) 0.652a (+3.1%) 0.728a (+2.2%) 0.324a (+4.2%)
PARADE Attn (ELECTRA) 0.431a (+3.3%) 0.680a (+2.7%) 0.763a (+3.9%) 0.335a (+4.9%)
PARADE Attn (DEBERTA) 0.422a (+1.6%) 0.688a (+2.4%) 0.763a (+3.0%) 0.339a (+3.9%)

PARADE Avg 0.392 (−0.6%) 0.646a (+2.1%) 0.715 (+0.4%) 0.317a (+2.1%)
PARADE Max 0.405a (+2.7%) 0.655a (+3.5%) 0.733a (+2.9%) 0.324a (+4.1%)

PARADE Transf-RAND-L2 0.419a (+6.3%) 0.655a (+3.6%) 0.734a (+3.1%) 0.326a (+5.0%)
PARADE Transf-RAND-L2 (ELECTRA) 0.433a (+3.9%) 0.670 (+1.2%) 0.747 (+1.8%) 0.327 (+2.2%)
PARADE Transf-PRETR-L6 0.402a (+1.9%) 0.643 (+1.6%) 0.717 (+0.8%) 0.322a (+3.6%)
PARADE Transf-PRETR-LATEIR-L6 0.398 (+1.1%) 0.626 (−0.9%) 0.707 (−0.7%) 0.307 (−1.1%)

LongP (Longformer) 0.412a (+1.9%) 0.668a (+3.9%) 0.752a (+4.1%) 0.333a (+5.1%)
LongP (Big-Bird) 0.397a (−2.9%) 0.651 (−0.7%) 0.726 (−0.2%) 0.322 (+0.3%)
LongP (JINA) 0.416a (−1.5%) 0.665a (+1.7%) 0.742a (+2.0%) 0.328a (+2.4%)
LongP (MOSAIC) 0.421 (−0.4%) 0.664a (+3.3%) 0.740a (+1.9%) 0.327a (+3.7%)
LongP (TinyLLAMA) 0.402a (+1.7%) 0.608 (−1.1%) 0.692 (+0.0%) 0.306 (+1.6%)
LongP (E5) 0.353a (−7.1%) 0.649 (+1.3%) 0.724 (+0.3%) 0.323 (+1.8%)
LongP RankGPT (OpenAI) – 0.706 (−0.3%) 0.783 (−1.0%) 0.350 (−0.7%)
LongP RankGPT (Anthropic) – 0.707 (+0.5%) 0.780 (+0.5%) 0.348 (+0.4%)

In each column we show a relative gain with respect model’s respective FirstP baseline: The last column shows the average
relative gain of FirstP. Best numbers are in bold: Results are averaged over three seeds. Unless specified explicitly, the backbone
is BERT-base.
Statistical significant differences with respect to this baseline are denoted using the superscript superscript a. p-value threshold is
0.01 for an MS MARCO development collection and 0.05 otherwise.
E5-models were used only in the zero-shot model, i.e., without fine-tuning.

Table 7: Ranking performance on MS MARCO and TREC DL.
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A.3 Backbone Selection for SplitP Models and1404

Prior Art Comparison1405

A.3.1 Choice of a Backbone1406

1407

To understand if using BERT-base as back-1408

bone model for various SplitP (i.e., chunk-and-1409

aggregate) approaches diminished models’ ability1410

to process and understand long contexts, we carried1411

out a focused comparison of several backbone mod-1412

els, including ELECTRA (Clark et al., 2020) and1413

DEBERTA (He et al., 2021). To this end, we used1414

two methods: PARADE (Li et al., 2024) Attention1415

and MaxP. PARADE Attention model achieved1416

the largest average gain over FirstP in our main1417

experiments (see Table 1), whereas MaxP models1418

were extensively benchmarked in the past (Li et al.,1419

2024; Dai and Callan, 2019; Zhang et al., 2021).1420

Although prior work found ELECTRA to be a bet-1421

ter backbone model in terms of absolute accuracy1422

(Li et al., 2024; Zhang et al., 2021), we found no1423

systematic evaluation of the relationship between a1424

backbone model and achievable FirstP gains.1425

Results in Tables 5 and 1 confirm overall su-1426

periority of both ELECTRA and DEBERTA over1427

BERT-base. In that, DEBERTA models are nearly1428

always more effective compared to ELECTRA1429

models with biggest differences on Robust04.1430

However, their relative effectiveness with respect1431

to their respective FirstP baselines does not ex-1432

ceed that of BERT-base. The same is true for1433

LongP models. Except Longformer they performed1434

equally or worse compared to FirstP on 8 test sets1435

out of 18. Moreover, all LongP models achieved1436

lower average gains over FirstP (see the last col-1437

umn in Table 1). We conclude that to measure ca-1438

pabilities of chunk-and-aggregate model to under-1439

stand and incorporate long context, it appears to be1440

beneficial to use BERT-base instead of ELECTRA1441

or DEBERTA.1442

Finally, we would like to note that on stan-1443

dard benchmarks Big-Bird’s (Zaheer et al., 2020)1444

FirstP version always outperforms its LongP ver-1445

sion (sometimes by as much as 10-15%), which1446

seems to be puzzling. We noticed, however, that1447

for shorter inputs, the model turns off sparse atten-1448

tion and prints the respective warning. Thus, we1449

hypothesize that it is the use of sparse attention that1450

causes this degradation. In contrast, the sparse at-1451

tention implementation of the Longformer (Beltagy1452

et al., 2020) does not exhibit such a degradation (al-1453

though with Longformer, not all attention is sparse:1454

query-to-document attention is full). Despite Big- 1455

Bird underperforms on standard benchmarks, it 1456

still does well on MS MARCO FarRelevant after 1457

fine-tuning (see Table 4). 1458

A.4 Efficiency Evaluation 1459

Figure 3: Average relative gain (in %) vs. relative in-
crease in run-time compared to respective FirstP base-
lines on MS MARCO, TREC DL 2019-2021, and Ro-
bust04 (for a representative subset of models). Except
LongP RankGPT, LongP models truncate documents
to be at most 1431 tokens. There is no truncation for
RankGPT.

From the efficiency-effectiveness plot in Fig. 3, 1460

we can see that all long-document models are at 1461

least 2× slower than respective FirstP baselines. 1462

The biggest average gain of merely 5% is achieved 1463

by the PARADE Attn model (with a BERT-base 1464

backbone) at the cost of being 2.5× slower than its 1465

FirstP baseline. All LongP models are even slower 1466

and show less improvement. Given such small ben- 1467

efits at the cost of a substantial slow-down, one 1468

could question practicality of such models and sug- 1469

gest using FirstP variants instead. 1470

A.4.1 Comparison to Prior Art 1471

We also use Table 5 to compare with prior art. We 1472

generally reproduce prior art, in particular, exper- 1473

iments by Li et al. 2024, who invented PARADE 1474

models. Our ELECTRA-based models achieve 1475

higher NDCG@10 on TREC DL 2019-2020 and 1476

PARADE Attention models come very close, but 1477

they are about 3-5% worse compared to their PA- 1478

RADE Transformer on Robust04. At the same time, 1479

our DEBERTA-based PARADE Attention model 1480

achieves similar NDCG@20 scores. 1481

Note that one should not expect identical results 1482

due to differences in training regimes and candidate 1483
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Model NDCG@20 P@20 MAP NDCG@20 P@20 MAP

Retriever 0.428 0.365 0.255 0.402 0.334 0.240

FirstP (BERT) 0.475 0.405 0.277 0.527 0.447 0.303
FirstP (Longformer) 0.483 0.413 0.277 0.540 0.454 0.307
FirstP (ELECTRA) 0.492 0.424 0.294 0.552 0.465 0.320
FirstP (DEBERTA) 0.534 0.459 0.319 0.596 0.503 0.350
FirstP (Big-Bird) 0.507 0.435 0.300 0.560 0.473 0.325
FirstP (JINA) 0.488 0.421 0.287 0.532 0.450 0.305
FirstP (MOSAIC) 0.453 0.390 0.266 0.538 0.455 0.310
FirstP (TinyLLAMA) 0.431 0.370 0.246 0.473 0.398 0.262
FirstP (E5-4K) 0.438 0.371 0.247 0.429 0.355 0.234
FirstP RankGPT (OpenAI) – – – 0.562 0.456 0.280
FirstP RankGPT (Anthropic) – – – 0.541 0.446 0.268

AvgP 0.478 (+0.5%) 0.411 (+1.6%) 0.292a (+5.4%) 0.531 (+0.9%) 0.451 (+1.0%) 0.324a (+6.7%)

MaxP 0.488a (+2.6%) 0.425a (+5.1%) 0.306a (+10.6%) 0.544a (+3.3%) 0.467a (+4.5%) 0.338a (+11.5%)
MaxP (ELECTRA) 0.502 (+2.0%) 0.441a (+3.9%) 0.319a (+8.3%) 0.563 (+2.1%) 0.483a (+4.0%) 0.350a (+9.3%)
MaxP (DEBERTA) 0.535 (+0.2%) 0.464 (+1.2%) 0.340a (+6.7%) 0.609a (+2.2%) 0.519a (+3.2%) 0.378a (+7.9%)
SumP 0.486 (+2.2%) 0.418a (+3.4%) 0.305a (+10.2%) 0.538 (+2.1%) 0.461a (+3.1%) 0.337a (+11.1%)

CEDR-DRMM 0.466 (−2.0%) 0.403 (−0.4%) 0.287a (+3.8%) 0.533 (+1.3%) 0.458a (+2.5%) 0.326a (+7.6%)
CEDR-KNRM 0.483 (+1.7%) 0.413 (+1.9%) 0.291a (+5.1%) 0.535 (+1.7%) 0.456 (+2.0%) 0.324a (+6.8%)
CEDR-PACRR 0.496a (+4.3%) 0.426a (+5.3%) 0.307a (+11.0%) 0.549a (+4.2%) 0.466a (+4.4%) 0.337a (+11.2%)

Neural Model1 0.484 (+1.8%) 0.417a (+3.1%) 0.298a (+7.7%) 0.537 (+1.9%) 0.459a (+2.6%) 0.330a (+8.8%)

PARADE Attn 0.503a (+5.7%) 0.433a (+6.9%) 0.311a (+12.4%) 0.556a (+5.6%) 0.476a (+6.5%) 0.344a (+13.3%)
PARADE Attn (ELECTRA) 0.523a (+6.4%) 0.456a (+7.4%) 0.329a (+11.7%) 0.581a (+5.3%) 0.495a (+6.5%) 0.358a (+11.9%)
PARADE Attn (DEBERTA) 0.549a (+2.9%) 0.475a (+3.6%) 0.346a (+8.7%) 0.615a (+3.2%) 0.522a (+3.8%) 0.383a (+9.4%)
PARADE Avg 0.483 (+1.5%) 0.412 (+1.8%) 0.291a (+5.2%) 0.534 (+1.5%) 0.457 (+2.4%) 0.318a (+4.7%)
PARADE Max 0.489a (+2.8%) 0.420a (+3.8%) 0.306a (+10.8%) 0.548a (+4.0%) 0.470a (+5.3%) 0.337a (+11.0%)

PARADE Transf-RAND-L2 0.488a (+2.8%) 0.423a (+4.6%) 0.303a (+9.7%) 0.548a (+4.1%) 0.469a (+5.0%) 0.338a (+11.6%)
PAR. Transf-RAND-L2 (ELECTRA) 0.523a (+6.3%) 0.454a (+6.9%) 0.330a (+12.2%) 0.574a (+3.9%) 0.488a (+5.0%) 0.354a (+10.6%)
PARADE Transf-PRETR-L6 0.494a (+4.0%) 0.426a (+5.3%) 0.308a (+11.5%) 0.554a (+5.1%) 0.474a (+6.1%) 0.346a (+14.1%)
PAR. Transf-PRETR-LATEIR-L6 0.450a (−5.2%) 0.389a (−3.9%) 0.277 (+0.3%) 0.501a (−4.9%) 0.423a (−5.3%) 0.302 (−0.5%)

LongP (Longformer) 0.500a (+3.6%) 0.435a (+5.3%) 0.309a (+11.5%) 0.568a (+5.1%) 0.482a (+6.1%) 0.347a (+12.9%)
LongP (Big-Bird) 0.452a (−10.9%) 0.389a (−10.7%) 0.274a (−8.8%) 0.477a (−14.9%) 0.400a (−15.5%) 0.279a (−14.2%)
LongP (JINA) 0.503a (+2.9%) 0.434a (+3.1%) 0.309a (+7.5%) 0.558a (+4.9%) 0.473a (+5.2%) 0.335a (+9.7%)
LongP (MOSAIC) 0.456 (+0.6%) 0.393 (+0.8%) 0.280a (+5.3%) 0.570a (+6.0%) 0.484a (+6.3%) 0.350a (+13.0%)
LongP (TinyLLAMA) 0.452a (+4.8%) 0.396a (+6.9%) 0.267a (+8.7%) 0.505a (+6.7%) 0.428a (+7.6%) 0.297a (+13.3%)
LongP (E5-4K) 0.439 (+0.1%) 0.375 (+1.0%) 0.250 (+1.3%) 0.434 (+1.1%) 0.360 (+1.6%) 0.241a (+2.9%)
LongP RankGPT (OpenAI) – – – 0.562 (+0.0%) 0.456 (−0.0%) 0.281 (+0.3%)
LongP RankGPT (Anthropic) – – – 0.538 (−0.6%) 0.445 (−0.2%) 0.268 (−0.0%)

In each column we show a relative gain with respect model’s respective FirstP baseline: The last column shows the average relative gain of
FirstP. Best numbers are in bold: Results are averaged over three seeds. Unless specified explicitly, the backbone is BERT-base.
Statistical significant differences with respect to this baseline are denoted using the superscript superscript a. p-value threshold is 0.05.
E5-models were used only in the zero-shot model, i.e., without fine-tuning.

Table 8: Ranking performance on Robust04.
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generators. In particular, in the case of Robust04,1484

Li et al. 2024 use RM3 (BM25 with a pseudo-1485

relevance feedback (Jaleel et al., 2004)), which1486

is more effective than BM25 (Robertson, 2004)1487

(which we use on Robust04).1488

Another important comparison point is Robust041489

results by Zhang et al. 2021 who were able to re-1490

produce original MaxP results by Dai and Callan1491

2019, which used BERT-base as a backbone. In ad-1492

dition, they experimented with ELECTRA models1493

“pre-finetuned” on MS MARCO. When compar-1494

ing BERT-base results, Zhang et al. 2021 have the1495

maximum relative gain of 6.6% compared to ours1496

3.3%. However, in absolute terms we got higher1497

NDCG@20 for both FirstP and MaxP. Their MaxP1498

(ELECTRA) has comparable performance to ours1499

on TREC DL 2019-2020, but it is 2-4% better on1500

Robust04. In turn, our MaxP (DEBERTA) is bet-1501

ter by 2-6%. Although we do not always match1502

prior art using the same backbone models, we gen-1503

erally match or outperform prior results, which, we1504

believe, boosts the trustworthiness of our experi-1505

ments.1506

A.5 Additional Experimental Results1507

In this section we provide links for additional ex-1508

perimental results. In particular, we compute ad-1509

ditional effectiveness metrics for MS MARCO,1510

TREC DL, and Robust04. MS MARCO and TREC1511

DL results are shown in Table 7. Robust04 datasets1512

are presented and Table 8. Furthermore, we pro-1513

vide detailed results for MS MARCO FarRelevant1514

in Table 4. Evaluation results of rankers trained1515

on de-biased data and tested on short-document1516

collections can be found in Table 3.1517

B Additional Dataset Details1518

B.1 Summary Dataset Statistics1519

Summary query and dataset statistics is given in1520

Tables 9 and 10. Please, note that in the case of1521

MS MARCO FarRelevant, we created about 500K1522

training and 7K testing queries, but to reduce exper-1523

imentation cost we ended up using only 50K and1524

1K, respectively.1525

B.2 MS MARCO FarRelevant Creation1526

Algorithm1527

The MS MARCO FarRelevant dataset was created1528

as follows: Assume that Ct is the number of tokens1529

in the passage:1530

data set # of documents average # of
BERT tokens
per document

Long-document collections

MS MARCO doc. v1 3.2M 1.4K
MS MARCO doc. v2 12M 2K
Robust04 0.5M 0.6K
MS MARCO FarRelevant 0.53M 1.1K
Needle (LongEmbed) 0.8K variable-length
Passkey (LongEmbed) 0.8K variable-length

Short-document collections

MS MARCO pass. v1 8.8M 75
Natural Questions (BEIR) 2.7M 107

LONGEMBED subsets each have 16 subsets of documents whose
lengths vary from (approximately) 256 to 32768 tokens.

Table 9: Document Statistics

# of queries avg. # of
BERT tokens

avg. # of
pos. judgements

MS MARCO doc. v1

MS MARCO doc. train 352K 7 1
MS MARCO doc. dev 5193 7 1
TREC DL 2019 43 7 153.4
TREC DL 2020 45 7.4 39.3

MS MARCO v2

TREC DL 2021 57 9.8 143.9

Robust04

title 250 3.6 69.6
description 250 18.7 69.6

MS MARCO FarRelevant

train 50K 7.0 1
test 1K 7.0 1

LongEmbed

Needle 800 13.0 1
Passkey 800 9.7 1

Natural Questions (BEIR)

all queries 3452 9.9 1.2

MS MARCO pass. v1

TREC DL 2019 43 7 95.4
TREC DL 2020 54 7.2 66.8

Table 10: Query Statistics
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• Select randomly a document length between1531

512 + Ct and 1431;1532

• Using rejection sampling, obtain K1 non-1533

relevant samples such that their total length1534

exceeds 512, but the length of K1 − 1 first1535

samples is at most 512.1536

• Using the same approach, sample another1537

K2 + 1 samples such that the total length of1538

K2 samples is at most 1431−Ct, but the total1539

length of K2 + 1 samples exceeds this value.1540

• Discard the last sampled passage and ran-1541

domly mix the remaining K2 non-relevant1542

passages with a single relevant passage.1543

• Finally, append the resulting string to the con-1544

catenation of the first K1 non-relevant pas-1545

sages.1546

B.3 Comparison of FarRelevant and1547

Synthetic Data from LongEmbed1548

Our synthetic data consists of two subsets Nee-1549

dle and Passkey from LongEmbed collection (Zhu1550

et al., 2024) and our newly created MS MARCO1551

FarRelevant dataset. The datasets can be seen1552

a variant of a needle-in-the-haystack benchmark1553

(Saad-Falcon et al., 2024; Zhu et al., 2024) and1554

they share a common limitation: the resulting doc-1555

uments are constructed by combining pieces of text1556

in a purely mechanical fashion and do not repre-1557

sent natural documents. In this section, we describe1558

Needle and Passkey in more detail and compare1559

them to our proposed collection MS MARCO Far-1560

Relevant, which—we believe—offers several prac-1561

tical advantages despite also being synthetic.1562

The needle subset is created by taking a single1563

document (a Paul Graham essay on taste8), trun-1564

cating it to generate 16 buckets of varying lengths1565

(from 256 to 32,768 tokens), and inserting a sin-1566

gle answer-bearing sentence at a random location.1567

An example query-document pair can be found in1568

Figure 4. While this design ensures precise con-1569

trol over document length (doubling per bucket), it1570

introduces several problems:1571

1. Extremely low document diversity: All ex-1572

amples are truncated variants of the same orig-1573

inal text, which severely limits the variability1574

in document style and content.1575

8https://www.paulgraham.com/goodtaste.html

2. Artificial signal separation: The inserted an- 1576

swer sentence differs substantially from the 1577

background text, making it easy for models to 1578

identify it. 1579

The Passkey subset is similar in structure and 1580

also uses length-bucketed documents, but instead 1581

of a single sentence, it inserts a three-sentence 1582

passkey definition into a synthetic background con- 1583

text (see Figure 5). However, the background is 1584

even less natural than Needle’s subset background, 1585

being composed of unrelated or nonsensical declar- 1586

ative statements (e.g., “The sky is blue. The sun 1587

is yellow. Here we go. There and back again.”). 1588

This leads to even greater distributional mismatch 1589

between signal and context. 1590

Critically, both Needle and Passkey were de- 1591

signed primarily to test answer extraction or re- 1592

trieval of small, highly localized answer-bearing 1593

spans. They are not well suited to studying re- 1594

trieval or ranking of entire passages or documents, 1595

especially when relevance is more distributed or 1596

contextual. 1597

Our MS MARCO FarRelevant (see Figure 6 for 1598

an example) is designed to be textually similar to 1599

MS MARCO Documents but with different posi- 1600

tional biases for relevant passages. We believe it 1601

offers a more robust testbed for long-context doc- 1602

ument ranking. While it is also synthetic in con- 1603

struction, it avoids many of the pitfalls noted above. 1604

Each document is created by concatenating multi- 1605

ple passages, which are typically meaningful and 1606

complete, only one of which is relevant to the query. 1607

The remaining passages serve as distractors but are 1608

independently coherent. Although these documents 1609

do not exist in the wild, they are much more diverse 1610

in content and style than those in Needle or Passkey 1611

despite being typically much shorter. Furthermore, 1612

each individual passage is semantically complete 1613

and belongs to a real corpus, namely, MS MARCO 1614

Passages. 1615

B.4 Positional Bias Identification 1616

To assess positional bias, we we used a combi- 1617

nation of approximate string matching and LLM- 1618

based judging, which was recently shown to highly 1619

correlate with human judgments (Upadhyay et al., 1620

2024; Arabzadeh and Clarke, 2025). The resulting 1621

distributions can be found in Figure 7. 1622

Approximate string matching was used for MS 1623

MARCO training and development (dev) sets, both 1624

of which have sparse labels. Although initially MS 1625
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Aaron Swartz created a scraped feed of the essays page. November 2021(This essay is derived from
a talk at the Cambridge Union. )When I was a kid, I’d have said there wasn’t. My father told me so.
Some people like some things, and other people like other things, and who’s to say who’s right?It
seemed so obvious that there was no such thing as good taste that it was only through indirect evidence
that I realized my father was wrong.
The novel "The Lord of the Rings" was written by Tolkien and published in the mid-20th century.
And that’s what I’m going to give you here: a proof by reductio ad absurdum. If we start from the
premise that there’s no such thing as good taste, we end up with conclusions that are obviously false,
and therefore the premise must be wrong. We’d better start by saying what good taste is. There’s
a narrow sense in which it refers to aesthetic judgements and a broader one in which it refers to
preferences of any kind. The strongest proof would be to show that taste exists in the

Figure 4: A sample relevant document for the Needle collection. The query/question is: “Who wrote the novel "The
Lord of the Rings" and when was it published?”. The answer-bearing sentence is marked by bold font.

The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again. The grass is
green. The sky is blue. The sun is yellow. Here we go. There and back again. The grass is green. The
sky is blue. The sun is yellow. Here we go. There and back again. The grass is green. The sky is blue.
The sun is yellow. Here we go. There and back again. Joyce Jenkins’s pass key is 44349. Remember
it. 44349 is the pass key for Joyce Jenkins. The grass is green. The sky is blue. The sun is yellow.
Here we go. There and back again. The grass is green. The sky is blue. The sun is yellow. Here we go.
There and back again. The grass is green. The sky is blue. The sun is yellow. Here we go. There and
back again. The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
The grass is green. The sky is blue. The sun is yellow. Here we go.

Figure 5: A sample relevant document for the Passkey collection. The query/question is: “what is the passkey for
Joyce Jenkins?”. The answer-bearing sentence is marked by bold font.
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Andhra Pradesh Airports make an easy access for tourists visiting the state. This huge state has many
airports, which serves the needs of both tourists and residents commuting to different parts in its large
expanse. However, Hyderabad Airport is the major as well as the only international airport of Andhra
Pradesh. Hyderabad, a major IT hub of India, boasts of the sixth busiest airport in India. Keeping the
rush of passengers in mind, the Government is planning to establish another airport in Hyderabad.
In contrast, traditional English Longbow shooters step into the bow, exerting force with both the
bow arm and the string hand arm simultaneously, especially when using bows having draw weights
from 100 lbs to over 175 lbs. Heavily stacked traditional bows (recurves, long bows, and the like)
are released immediately upon reaching full draw at maximum weight, whereas compound bows
reach their maximum weight around the last inch and a half, dropping holding weight significantly
at full draw. The Oreo Biscuit was first developed and produced by the National Biscuit Company
(today known as Nabisco) in 1912 at its Chelsea, Manhattan factory in the current-day Chelsea Market
complex, located on Ninth Avenue between 15th and 16th Streets. Today, this same block of Ninth
Avenue is known as Oreo Way..
It’s possible to take a day trip to the Bahamas by ferry. In some cases, less than it would cost to fly. The
high-speed Balearia Bahamas Express travels from Fort Lauderdale to the city of Freeport on Grand
Bahama, one of many Bahamian islands with British roots.It’s roughly the distance from Philadelphia
to New York.Prepare for a long day.n some cases, less than it would cost to fly. The high-speed Balearia
Bahamas Express travels from Fort Lauderdale to the city of Freeport on Grand Bahama, one of many
Bahamian islands with British roots. It’s roughly the distance from Philadelphia to New York.
I was 17 when I took Bactrim for a UTI, I was a month away from turning 18 and was given this
because another antibiotic would have more side effects I was told. I took it for 5 days and became
horribly sick from a nasty cold and was told to stop Bactrim and to take Z Pac instead for 5 days.
Cases When Medicare Does NOT Automatically Start for You Medicare will NOT automatically start
when you turn 65 if you’re not receiving Social Security Benefits or Railroad Retirement Benefits for
at least 4 months prior to your 65th birthday. You wanted to know how you can feel on your belly
that you’re pregnant. And actually this a pretty hard thing to do.There are better ways to find out if
you’re pregnant or not. For example, if you ever miss a period, the best thing to do is to take a home
pregnancy test, because that’s the first sign of pregnancy.And if it’s positive, ...here are better ways to
find out if you’re pregnant or not. For example, if you ever miss a period, the best thing to do is to take
a home pregnancy test, because that’s the first sign of pregnancy.
1 Whisk light soy sauce, dark soy sauce, red wine vinegar, chili oil, ginger, sugar, garlic, and green
onion together in a bowl; pour into a sealable container, seal, and refrigerate 1 hour. See how to make a
simple sweet-and-sour peach sauce. See how easy and delicious it is to make horseradish sauce from
scratch.
Here you’ll find a number of Kentucky facts including the state history at a glance; Kentucky state facts
such as the location of the state capital, city populations, geography and natural resources; Information
on Kentucky’ government, symbols and traditions; and even a list of famous Kentuckians.
Confidence votes 193. Replacing a car window usually cost around $300 give or take based upon
where you live, what options your car glass needs and what type of car you drive. Additionally, you
can save money if you can repair your car glass instead of completely replacing it. However, if the
window is completely shattered this will not be an option.
Flying time from Chicago, IL to Cairo, Egypt. The total flight duration from Chicago, IL to
Cairo, Egypt is 12 hours, 47 minutes. This assumes an average flight speed for a commercial
airliner of 500 mph, which is equivalent to 805 km/h or 434 knots. It also adds an extra 30
minutes for take-off and landing. Your exact time may vary depending on wind speeds.

Figure 6: A sample relevant document for the MS MARCO FarRelevant collection. The query/question is: “how
long is the flight from chicago to cairo”. The answer-bearing passage is marked by bold font.
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MS MARCO train MS MARCO dev TREC DL 2019-2021 (combined)

Gov2 (1MQ) ClueWeb12 (WebTrack) Robust04

Figure 7: Illustration of relevant passage bias for five document collections (including MS MARCO v2) and 6+
query sets. A distribution of first relevant passage positions (red bars) vs. relevant document lengths (blue bars).
Positions and lengths are measured in the number of subword tokens (BERT-base tokenizer). Best viewed in color.

MARCO passages were exact substrings of MS1626

MARCO documents, document and passage texts1627

were collected at different times this lead to some1628

content divergence (Craswell et al., 2021a) that1629

made exact mapping virtually impossible. There1630

have been prior and contemporaneous attempts to1631

recover initial positions, but only with a limited1632

success. In particular, (Coelho et al., 2024) used1633

exact matching and found only about one thousand1634

matching passages. Hofstätter et al. (2020b) used1635

matching of answer words—rather than passage1636

text itself—and were able to match only 32% of1637

the passages. Both of these attempts match only a1638

small-to-modest fraction of passages while being a1639

subject to biases.1640

Our approximate string matching combines1641

approximate substring matching with longest-1642

substring matching and incorporates efficiency1643

heuristics to identify initial candidate sets. Can-1644

didate sets were constructed using two approaches:1645

selecting all relevant passages and documents (for a1646

given query) and retrieving top-5 documents using1647

relevant passages as queries. To assess reliability,1648

we manually inspected a subset of the matched pas-1649

sages and found the procedure to be sufficiently1650

accurate. We then applied this approach to two sets1651

of queries:1652

• A set of all 5193 queries from the dev set; 1653

• A (random and uniform) sample of 5000 train- 1654

ing queries. 1655

In both cases, we were able to find matches for 1656

about 85% of the queries. 1657

For queries sets with “dense” relevance judg- 1658

ments produced by TREC NIST assessors we used 1659

an LLM judge. This included TREC 2019, 2020, 1660

2021 TREC DL queries (Craswell et al., 2021b), 1661

Robust04 (Clarke et al., 2004), Gov2 with 2007, 1662

2008 Million Query Track queries (Allan et al., 1663

2008), and ClueWeb12 with 2012 and 2013 Web 1664

Track queries (Collins-Thompson et al., 2013b). 1665

It is noteworthy that Hofstätter et al. (2020b) em- 1666

ployed crowd-workers to identify the distribution 1667

of relevance chunks. They found similar evidence 1668

of the relevance position bias, but their study was 1669

limited only to TREC DL 2019 query set. 1670

To avoid potential positional biases in LLM- 1671

judging, we divided each document into non- 1672

overlapping chunks and judged each chunk sep- 1673

arately. Chunking was preserving sentence bound- 1674

ary while ensuring each chunk size was close to 1675

having 256 tokens. For efficiency reasons, we only 1676

considered at most 36 chunks (about 9K tokens) 1677

and 500-2000 positive query-document pairs per 1678
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query set. A chunk was considered to be relevant1679

if it received a positive grade from the LLM-judge.1680

The LLM-judge model was GPT4-mini (OpenAI,1681

2023).1682

For most collections, there was only a small frac-1683

tion of documents where the LLM-judge found no1684

relevant query-document pairs. One exception is1685

the Gov2 collection with 2007, 2008 Million Query1686

Track queries where this happened in about 30%1687

of the cases. Despite this gap, Gov2 still had a sub-1688

stantial positional bias with about 57% of the cases1689

where the first chunk was deemed to be relevant.1690

Model family # of
params.

PARADE Transformer 132-148M
Longformer 149M
BigBird 127M
JINA 137M
MOSAIC 137M
DEBERTA-based models 184M
TinyLLAMA-based models 1034M
Other BERT- and ELECTRA-based models ≈110 M

Table 11: Number of Model Parameters

C Ranking with Cross-Encoding1691

Long-Document Models1692

In this section, we describe long-document cross-1693

encoding models in more details. With an ex-1694

ception of TinyLLAMA (Zhang et al., 2024) all1695

models use only smallish bi-directional encoder-1696

only Transformers (Vaswani et al., 2017) with 100-1697

200M parameters in total (see Table 11). TinyL-1698

LAMA is a so-called LLM-ranker: a “causal”1699

decoder-only Transformer that has about 1B pa-1700

rameters. Moreover, we focus only on the pure-1701

Transformer architectures leaving hybrid architec-1702

tures such as RankMamba for future work (Xu,1703

2024).1704

We assume that an input text is split into small1705

chunks of texts called tokens. Although tokens can1706

be complete English words, Transformer models1707

usually split text into sub-word units (Wu et al.,1708

2016).1709

The length of a document d—denoted as |d|—1710

is measured in the number of tokens. Because1711

neural networks cannot operate directly on text, a1712

sequence of tokens t1t2 . . . tn is first converted to1713

a sequences of d-dimensional embedding vectors1714

w1w2 . . . wn by an embedding network. These em-1715

beddings are context-independent, i.e., each token1716

is always mapped to the same vector (Collobert 1717

et al., 2011; Mikolov et al., 2013). 1718

For a detailed description of Transformer mod- 1719

els, please see the annotated Transformer guide 1720

(Rush, 2018) as well as the recent survey by Lin 1721

et al. (Lin, 2019), which focuses on the use of 1722

BERT-style cross-encoding models for ranking and 1723

retrieval. For this paper, it is necessary to know 1724

only the following basic facts: 1725

• BERT is an encoder-only model, which con- 1726

verts a sequence of tokens t1t2 . . . tn to a se- 1727

quence of d-dimensional vectors w1w2 . . . wn. 1728

These vectors—which are token representa- 1729

tions from the last model layer—are com- 1730

monly referred to as contextualized token em- 1731

beddings (Peters et al., 2018); 1732

• BERT operates on word pieces (Wu et al., 1733

2016) rather than on complete words; 1734

• The vocabulary includes two special tokens: 1735

[CLS] (an aggregator) and [SEP] (a separa- 1736

tor); 1737

• Using a pooled representation of token vectors 1738

w1w2 . . . wn, a linear layer is used to produce 1739

a ranking score. A nearly universal pooling 1740

approach in cross-encoding rankers is to use 1741

the vector of the [CLS] token, i.e., w1. How- 1742

ever, we learned that some models (e.g., JINA 1743

(Günther et al., 2023)) converge well only with 1744

mean pooling, i.e., they use 1
n

∑n
i=1wi. 1745

A “vanilla” BERT ranker (dubbed as monoBERT 1746

by Lin et al. (Lin, 2019)) uses a single fully-connect 1747

layer F as a prediction head, which converts the 1748

last-layer representation of the [CLS] token (i.e., a 1749

contextualized embedding of [CLS]) into a scalar 1750

(Nogueira and Cho, 2019). It makes a prediction 1751

based on the following sequence of tokens: [CLS] 1752

q [SEP] d [SEP], where q is a query and d is a 1753

document. 1754

An alternative approach is to aggregate con- 1755

textualized embeddings of regular tokens using a 1756

shallow neural network (MacAvaney et al., 2019; 1757

Boytsov and Kolter, 2021; Khattab and Zaharia, 1758

2020) (possibly together with the contextualized 1759

embedding of [CLS]) . This was first proposed by 1760

MacAvaney et al. (MacAvaney et al., 2019) who 1761

also found that incorporating [CLS] improves per- 1762

formance. However, Boytsov and Kolter proposed 1763

a shallow aggregating network that does not use the 1764
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output of the [CLS] token and achieved the same1765

accuracy on MS MARCO datasets (Boytsov and1766

Kolter, 2021).1767

Replacing the standard BERT model in the1768

vanilla BERT ranker with a BERT variant that “na-1769

tively” supports longer documents (e.g., Big-Bird1770

(Zaheer et al., 2020)) is, perhaps, the simplest way1771

to deal with long documents. We collectively call1772

these models as LongP models. For a typical BERT1773

model, however, long documents and queries need1774

to be split or truncated so that the overall num-1775

ber of tokens does not exceed 512. In the FirstP1776

mode, we process only the first chunk and ignore1777

the truncated text. In the SplitP mode, each chunk1778

is processed separately and the results are aggre-1779

gated. In the remaining of this section, we discuss1780

these approaches in detail.1781

C.1 LongP models1782

In our work, we benchmark both sparse-attention1783

and full-attention models. Sparse attention LongP1784

models include two popular options: Longformer1785

(Beltagy et al., 2020) and Big-Bird (Zaheer et al.,1786

2020). In that, we use the same approach to1787

score documents as with the vanilla BERT ranker,1788

namely, concatenating queries with documents and1789

making a prediction based on the contextualized1790

embedding of the [CLS] token (Nogueira and Cho,1791

2019). Both Big-Bird and Longformer use a com-1792

bination of the local, “scattered” (our terminology),1793

and global attention. The local attention utilizes a1794

sliding window of a constant length where each to-1795

ken attends to each other token within this window.1796

In the case of the global attention, certain tokens1797

can attend to all other tokens and vice-versa, In1798

Big-Bird, only special tokens such as [CLS] can1799

attend globally. In Longformer, the user have to1800

select such tokens explicitly. Following Beltagy1801

et al. (Beltagy et al., 2020), who applied this tech-1802

nique to question-answering, we “place” global1803

attention only on query tokens. Unlike the global1804

attention, the scattered attention is limited to re-1805

stricted sub-sets of tokens, but these subsets do not1806

necessarily have locality. In Big-Bird the scattered1807

attention relies on random tokens, whereas Long-1808

former uses a dilated sliding-window attention with1809

layer- and head-specific dilation.1810

Full-attention models include JINABert (Gün-1811

ther et al., 2023), TinyLLAMA (Zhang et al., 2024),1812

and MosaicBERT (Portes et al., 2023), henceforth,1813

simply JINA, TinyLLAMA and MOSAIC. All1814

these models use a recently proposed FlashAtten- 1815

tion (Dao et al., 2022) to efficiently process long- 1816

contexts as well as special positional embeddings 1817

that can generalize to document lengths not seen 1818

during training. In that, JINA and MOSAIC use 1819

AliBi (Press et al., 2022), while TinyLLAM uses 1820

ROPE embeddings (Su et al., 2023). JINA and 1821

MOSAIC are bi-directional encoder-only Trans- 1822

former model whereas TinyLLAMA is a unidi- 1823

rectional (sometimes called causal) decoder-only 1824

Transformer model (Vaswani et al., 2017). 1825

In addition architectural difference, models dif- 1826

fer in pretraining strategies. MOSAIC relies pri- 1827

marily on the masked language (MLM) objective 1828

without next sentence prediction (NSP). JINA uses 1829

this approach as a first step, following a RoBERTa 1830

pretraining strategy (Liu et al., 2019) and fine- 1831

tuning on retrieval and classification tasks with 1832

mean-pooled representations. TinyLLAMA was 1833

trained using an autoregressive language modeling 1834

objective (Zhang et al., 2024). We found that JINA 1835

lost an ability to effectively pool on the [CLS] to- 1836

ken and we used mean-pooling instead. We also 1837

use mean pooling for TinyLLAMA. For MOSAIC 1838

we used pooling on [CLS]. 1839

C.2 SplitP models 1840

SplitP models differ in partitioning and aggrega- 1841

tion approaches. Documents can be split into either 1842

disjoint or overlapping chunks. In the first case, 1843

documents are split in a greedy fashion so that each 1844

document chunk except possibly the last one is 1845

exactly 512 tokens long after being concatenated 1846

with a (padded) query and three special tokens. 1847

In the second case, we use a sliding window ap- 1848

proach with a window size and stride that are not 1849

tied to the maximum length of BERT input. Be- 1850

cause our primary focus is accuracy and we aim 1851

to understand the limits of long-document models, 1852

we exclude from evaluation several SplitP models, 1853

e.g., by Hofstätter et al. (2021b); Zou et al. (2021), 1854

which achieve better efficiency-effectiveness trade- 1855

offs by pre-selecting certain document parts and 1856

feeding only selected parts into a BERT ranker. 1857

Greedy partitioning into disjoint chunks 1858

CEDR models (MacAvaney et al., 2019) and the 1859

Neural Model 1 (Boytsov and Kolter, 2021) use the 1860

first method, which involves: 1861

• tokenizing the document d; 1862

• greedily splitting a tokenized document d into 1863
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m disjoint chunks: d = d1d2 . . . dm;1864

• generating m token sequences [CLS] q [SEP]1865

di [SEP] by concatenating the query with doc-1866

ument chunks;1867

• processing each sequence with a BERT model1868

to generate contextualized embeddings for1869

regular tokens as well as for [CLS].1870

The outcome of this procedure is m [CLS]-vectors1871

clsi and n contextualized vectors w1w2 . . . wn (one1872

for each document token ti) that are aggregated in1873

a model-specific ways.1874

MacAvaney et al. (MacAvaney et al., 2019) use1875

contextualized embeddings as a direct replacement1876

of context-free embeddings in the following neural1877

architectures: KNRM (Xiong et al., 2017), PACRR1878

(Hui et al., 2018), and DRMM (Guo et al., 2016).1879

To boost performance, they incorporate [CLS]-1880

vectors in a model-specific way. We call the re-1881

spective models as CEDR-KNRM, CEDR-PACRR,1882

and CEDR-DRMM.1883

They also proposed an extension of the vanilla1884

BERT ranker that makes a prediction using the1885

average [CLS] token: 1
m

∑m
i=1 clsi by passing it1886

through a linear projection layer. We call this1887

method AvgP.1888

The Neural Model 1 (Boytsov and Kolter, 2021)1889

uses the same greedy partitioning approach as1890

CEDR, but a different aggregator network, which1891

does not use the embeddings of the [CLS] token.1892

This network is a neural parametrization of the1893

classic Model 1 (Berger and Lafferty, 1999; Brown1894

et al., 1993).1895

Sliding window approach The BERT1896

MaxP/SumP (Dai and Callan, 2019) and1897

PARADE (Li et al., 2024) models use a sliding1898

window approach. Assume w is the size of the1899

window and s is the stride. Then the processing1900

can be summarized as follows:1901

• tokenizing, the document d into sub-words1902

t1t2 . . . tn ;1903

• splitting a tokenized document d into1904

m possibly overlapping chunks di =1905

ti·sti·s+1 . . . ti·s+w−1: Trailing chunks may1906

have fewer than w tokens.1907

• generating m token sequences [CLS] q [SEP]1908

di [SEP] by concatenating the query with doc-1909

ument chunks;1910

• processing each sequence with a BERT model 1911

to generate a last-layer output for each se- 1912

quence [CLS] token. 1913

The outcome of this procedure is m [CLS]-vectors 1914

clsi, which are subsequently aggregated in a 1915

model-specific ways. Note that PARADE and 1916

MaxP/SumP models do not use contextualized em- 1917

beddings of regular tokens. 1918

BERT MaxP/SumP These models (Dai and 1919

Callan, 2019) use a linear layer F to produce m 1920

relevance scores F (clsi). Then complete docu- 1921

ment scores are computed as maxmi=1 F (clsi) and 1922∑m
i=1 F (clsi) for the MaxP and SumP models, re- 1923

spectively. 1924

PARADE These models (Li et al., 2024) can be 1925

divided into two groups. The first group includes 1926

PARADE average, PARADE max, and PARADE 1927

attention, which all use simple approaches to pro- 1928

duce an aggregated representation of m [CLS]- 1929

vectors clsi. To compute a relevance score these 1930

aggregated representations are passed through a 1931

linear layer F . 1932

In particular, PARADE average and PARADE 1933

max combine clsi using averaging and the element- 1934

wise maximum operation, respectively to gener- 1935

ate aggregated representation of m [CLS] tokens 1936

clsi.9 The PARADE attention model uses a learn- 1937

able attention (Bahdanau et al., 2015) vector C 1938

to compute a scalar weight wi of each i as fol- 1939

lows: w1w2 . . . wm = softmax(C · cls1, C · 1940

cls2, . . . , C ·clsm). These weights are used to com- 1941

pute the aggregated representation as
∑m

i=1wiclsi 1942

PARADE Transformer models combine [CLS]- 1943

vectors clsi with an additional aggregator trans- 1944

former model AggregTransf(). The input of the 1945

aggregator Transformer is sequence of clsi vectors 1946

prepended with a learnable vector C, which plays a 1947

role of a [CLS] embedding for AggregTransf(). 1948

The last-layer representation of the first vector is 1949

passed through a linear layer F to produce a rele- 1950

vance score: 1951

F (AggregTransf(C, cls1, cls2, . . . , clsm)[0])
(1) 1952

9Note that both PARADE average and AvgP vanilla ranker
use the same approach to aggregate contextualized embed-
dings of [CLS] tokens, but they differ in their approach
to select document chunks. In particular, AvgP uses non-
overlapping chunks while PARADE average relies on the
sliding window approach.
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An aggregator Transformer can be either pre-1953

trained or randomly initialized. In the case of a1954

pretrained transformer, we completely discard the1955

embedding layer. Furthermore, if the dimensional-1956

ity of clsi vectors is different from the dimension-1957

ality of input embeddings in AggregTransf , we1958

project clsi using a linear transformation.1959

Miscellaneous models We attempted to imple-1960

ment additional state-of-the-art models (Gao and1961

Callan, 2022; Fu et al., 2022). Gao and Callan (Gao1962

and Callan, 2022) introduced a late-interaction1963

model MORES+, which is a modular long doc-1964

ument reranker that uses a sequence-to-sequence1965

transformer in a non-auto-regressive mode. In1966

MORES+ document chunks are first encoded us-1967

ing the encoder-only Transformer model. Then1968

they use a modified decoder Transformer for1969

joint query-to-all-document-chunk cross-attention:1970

This modification changes a causal Transformer1971

into an encoder-only bi-directional Transformer1972

model. As of the moment of writing, the MORES+1973

model holds the first position on a competitive MS1974

MARCO document leaderboard.10. However, the1975

authors provide only incomplete implementation1976

which does not fully match the description in the1977

paper (i.e., crucial details are missing). We reimple-1978

mented this model to the best of our understanding,1979

but our implementation failed to outperform even1980

BM25.1981

Inspired by this approach, we managed to im-1982

plement a late-interaction variant of the PARADE1983

model, which we denoted as PARADE-LATEIR.1984

Similar to the original PARADE model, it splits1985

documents into overlapping chunks. However, it1986

then encodes chunks and queries independently.1987

Next, it uses an interaction Transformer to (1) mix1988

these representations, and (2) combine output using1989

an aggregator Transformer. In total, the model uses1990

three backbone encoder-only Transformers: All of1991

these Transformers are initialized using pretrained1992

models.1993

Fu et al. (2022) proposed a multi-view1994

interactions-based ranking model (MIR). They im-1995

plement inter-passage interactions via a multi-view1996

attention mechanism, which enables information1997

propagation at token, sentence, and passage levels.1998

Due to the computational complexity, they restrict1999

these interactions to a set of salient/pivot tokens.2000

10https://microsoft.github.io/
MSMARCO-Document-Ranking-Submissions/
leaderboard/

However, the paper does not provide enough de- 2001

tails regarding the choices of these tokens. There is 2002

no software available and authors did not respond 2003

to our clarification requests. Thus, this model is 2004

also excluded from our evaluation. 2005
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