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ABSTRACT

In recent years, deep Reinforcement Learning (RL) has demonstrated remark-
able performance in simulated control tasks however there have been significantly
fewer applications to real-world problems. While there are several reasons for
this dichotomy, one key limitation is a need for theoretical stability guarantees in
real-world applications, a property which cannot be provided by Deep Neural Net-
work controllers. In this work, we investigate the stability of trained RL policies
for continuous control tasks and identify the types of dynamics produced by the
Markov Decision Process (MDP). We find the solutions produced by this interac-
tion are deterministically chaotic with small initial inaccuracies in sensor readings
or actuator movements compounding over time producing significantly different
long-term outcomes, despite intervention in intermediate steps. The presence of
these chaotic dynamics in the MDP provides evidence that RL controllers produce
unstable solutions, limiting their application to real-world problems.

1 INTRODUCTION

Modern control systems rely heavily on closed-loop controllers to regulate their state without human
intervention. Through this feedback, the controller (policy) can continually monitor and adjust the
control system (environment), guiding it towards a desired outcome as specified by a general reward
function. In this framework, commonly represented as a Markov Decision Process (MDP) (Bellman,
1957), the policy selects actions based on the current state of the environment, allowing it to dynam-
ically respond to any external disturbances. However, due to the indirect nature of this feedback,
if the policy is not properly designed, the policy-environment interaction can produce oscillations
in the system’s state which compound to produce unstable dynamics. This can be extremely detri-
mental to real-world environments that operate with expensive equipment. Therefore, in addition to
maximising long-term rewards, a policy should be optimised to produce stable solutions however,
this is often overlooked when producing control policies.

One method which learns approximate solutions to the MDP which does not directly account for
these unstable dynamics is deep Reinforcement Learning (RL) (Sutton & Barto, |1998; Mnih et al.,
20135 20155 [Silver et al.l [2016; 2017a3bj |Lillicrap et al., [2019). In this framework, the policy is
encoded by a Deep Neural Network (DNN) trained to take actions that maximise the feedback given
by the reward function. However, when performing this optimisation little attention is given to the
stability of these solutions instead focusing primarily on long-term reward maximisation. This pro-
duces controllers which are highly skilled at performing a specified task but are very sensitive to
initial conditions. As a result, small initial changes to the environment can compound to produce
significantly different long-term outcomes as shown in Figure[I] This sensitivity is a defining charac-
teristic of a chaotic system (Lorenz, |1963; |Devaneyl, |2003) and indicates the control policy is highly
unstable. This poses a significant problem for the application of RL to real-world applications as
these systems often require stability guarantees (Dulac-Arnold et al.| 2019; 2021).

However, conducting stability analysis with deep RL controllers presents a significant challenge due
to the complex non-linear nature of the DNN controllers. This makes it difficult to analyse and
predict their behaviour using traditional stability analysis techniques as these are typically designed
for linear controllers and simple control systems. However, quantifying the level of chaos produced
by a fixed non-linear closed-loop system is a well studied problem within the context of dynamical
systems (Liapunov, |1892).
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Figure 1: Long-term trajectories produced when one trained Soft Actor-Critic policy controls the
Walker Walk Environment with different starting positions. Initially, each environment is separated
by a distance of 10~° units but significantly diverges after 5 seconds.

In this work, we use the mathematical analysis found in dynamical systems theory and chaos theory
to quantify the stability of deep RL policies. We show the MDP framework can be redefined as a
controllable dynamical system with the interaction between policy and controller being represented
as a state trajectory. Using this representation, we analyse the stability of the interaction by mea-
suring how sensitive trajectories are to initial conditions through the use of the Maximal Lyapunov
Exponent (MLE) 2005) and Sum of Lyapunov Exponents (SLE). From this, we establish
that RL policies produce stable dynamics when controlling simple low-dimensional systems as small
changes to the initial state do not produce significantly different long-term outcomes. However, as
the complexity of the environment increases so too does the instability of the solutions.

Finally, we propose a method for reducing the unstable dynamics produced by the MDP by con-
straining all system states in the reward function. In general, the reward function in the MDP
framework is designed to be as abstract as possible to allow for a wide range of potential solu-
tions. However, this introduces an under-specification issue as only a subset of the system state is
used when computing the reward. We show this ambiguity produces controllers which are highly
sensitive to initial conditions and when properly constrained the instability reduces significantly.
Therefore, properly constraining all system states in the reward function introduces a trade-off be-
tween stability and flexibility.

2 BACKGROUND

2.1 DYNAMICAL SYSTEMS

Dynamical systems are a general-purpose mathematical framework used to analyse the behaviour
of complex, high-dimensional, non-linear systems over time. Each system is uniquely defined by a
phase space S, time domain T and update function v : T x S — S. For systems with continuous
states, S is a Euclidean space with each axis representing a different degree of freedom and the
coordinates corresponding with a unique system configuration. Given an initial state s € S, the
update function for a continuous time dynamical system determines the state at time ¢ € T by the
initial value problem s; = wu(t,sg). For a discrete time dynamical system, this update rule is
recursively defined as s; = wu(s;_1). Furthermore, the trajectory of an initial state s, is defined as
the ordered set of states between times g and t1, i.e {s; : t € [to, t1]}. Through this information,
we can gain a greater understanding of how the system behaves over time as different trajectories
reveal different system properties.
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2.2  SYSTEM STABILITY

Within the domain of dynamical systems, stability is characterised by a tendency for trajectories
to converge over time. Conversely, if any arbitrarily small perturbation to the state of the system
produce significantly different long-term outcomes the system is said to be unstable and have a high
dependence on initial conditions. While there are several methods for quantifying this stability one
method which works well for complex non-linear systems is the spectrum of Lyapunov Exponents
(As) (Liapunovl |1892; Ruelle, [1979). These values represent the exponential rate of convergence/
divergence in each dimension of the phase space with negative values indicating convergence along
an axis and positive values indicating divergence. In general, for a dynamical system with IV degrees
of freedom there are N Lyapunov exponents {1, A, ..., A, } with \; > X;11. Given a set of
Lyapunov Exponents {)\; : i € [1, N]} the average separation between two trajectories with initial
distance € is:

N
€ = Ze’\it (1
i=1

In this equation, each Lyapunov exponent \; represents the exponential growth rate in a specific
direction in the phase space while the Sum of all Lyapunov Exponents (SLE) represents the average
growth rate of an N-dimensional volume. Thus a negative SLE indicates stable dynamics as volumes
in the phase space exponentially converge. Furthermore, a positive SLE is an indication of unstable
dynamics as any small changes in the system state will produce exponentially diverging trajectories.

However, for large values of ¢ Equation [I| is dominated by the Maximal Lyapunov Exponent Ay
(MLE) and the distance between two trajectories with initial separation e approaches e x e*! as
t — oo. Thus, given two initial states so and 8o, with |89 — §¢| = €, the MLE is found by the limit:

. .
Ap = lim lim - In <St5t|) )

t—ooe—0 ¢ €

Values of A\; < O indicate the dynamical system is robust to small perturbations as similar
states exponentially converge over time. Conversely, values of A\; > 0 suggest the system is
unstable as small changes to the initial conditions result in vastly different trajectories. As a result,
MLE can be used to quantify the stability of dynamical systems as negative values only occur in
stable systems (Shao et al.|[2016).

Finally, for a dynamical system with positive MLE and negative SLE the trajectories produced are

said to be deterministically chaotic (Kalnay, [2003). This means that while there is a high sensitivity

to initial conditions and exponential divergence the trajectories remain bounded by a chaotic attrac-

tor (Grebogi et al.| [1987). As a result, once a trajectory has entered a chaotic attractor it becomes

increasingly difficult to predict the long-term outcomes given an approximation of a state. Specifi-

cally, any trajector)l/ [)11;)e:diction using an approximate state will on average decrease in accuracy by a
n

factor of 10 every =3 = seconds. This value is known as the Lyapunov Time and provides an upper

bound on prediction accuracy given a state approximation.

3 REDEFINING THE MDP AS A DYNAMICAL SYSTEM

In order to use the MLE to determine the stability of RL controllers, the underlying MDP must be
represented as a dynamical system. By making this redefinition the solutions produced by the policy-
environment interactions can be viewed as state trajectories in the dynamical system and analysed
accordingly. For this, an appropriate phase space and transition function need to be defined which
can suitably represent the evolution of the control system over time. As chaos theory requires the
phase space to be a continuous Euclidean space it is appropriate to use the environment state space
as the phase space. It is worth noting that, for some environments, the observation space could be
used for this however this requires each observation to be unique, a property which is not often
given.



Under review as a conference paper at ICLR 2024

DPME DCB DCS DWS DWW DWR DCR
1000 | == S p— .
800 1 4 T E 1 - 41—
T 600 . . 1 1 = . =
[1*]
£
& 400 g g 1 1 g g
200 . . 1 1 . .
0_ ——————— - e ———— e —— ] e ———— e ————— - e ———
uoom [=] U om o uom [=] U om o uom o uom o uom o
#2323 825 BES& %28 8BS GBS 8B 3

Figure 2: Boxplot of average total episode reward for the Pointmass Easy (PME), Cartpole Balance
(CB), Cartpole Swingup (CS), Walker Stand (SW), Walker Walk (WW), Walker Run (WR) and
Cheetah Run (CR) environments controlled by a trained instance of SAC, TD3 and PPO. Each
policy-environment combination is independently trained with 10 random seeds and the average
episode reward is reported over 80 evaluation episodes with a fixed length of 1000.

The transition function for this dynamical system must therefore map system states onto itself and
be capable of determining the evolution of the system for all possible states. This can be produced
by composing the policy, 7 : S x ¢ — A, and environment transition function, f : S X A — S,
giving s;11 = u(s;9) = f(s¢, w(s¢; ¢)). While this transition function removes the dependence
on the action space, A, and maps states to states it is now dependent on the policy parameters ¢. As
such, any changes to ¢ produce a new dynamical system however for a fixed policy the dynamical
systems remain fixed. Therefore, for a fixed control policy and deterministic environment, the MDP
can be represented as a dynamical system and the stability of this interaction can be determined by
estimating the MLE and SLE.

4 IDENTIFYING CHAOTIC DYNAMICS

By redefining the RL control loop as a controllable dynamical system we can use the trajectories
produced by the update rule to determine if the policy-environment interaction is stable, unstable or
chaotic. To closely match real-world applications we use tasks sampled from the DeepMind Control
Suite (Tassa et al., [2018]) as this provides a range of deterministic continuous control environments
with varying complexity. Furthermore, as the state space for each of these tasks is a vector of joint
angles, joint angle velocities or 3d coordinates it can appropriately be used as the phase space for
a dynamical system. For each control task, a Stable Baselines 3 (Raffin et al.l 2021) instance of
Soft Actor-Critic (SAC) (Haarnoja et al., 2018]), Twin Delayed Deep Deterministic Policy Gradients
(TD3) (Fujimoto et al., 2018) and Proximal Policy Optimisation (PPO) (Schulman et al., 2017) in
order to identify the types of dynamics produced by off-policy and on-policy deep RL actor-critic
methods. Each model is independently trained 10 times for 5 Million (SAC, TD3) or 10 Million
(PPO) environment steps and the final reward for each model type is reported in Figure [2| This
established similar performance across all tasks however this does not speak to the types of dynamics
produced by each policy as well as the stability of these solutions.

To identify if the dynamics produced by each policy and environment is stable, unstable or chaotic
we need to determine the Sum of Lyapunov Exponents and the Maximal Lyapunov Exponent. This
can be achieved by estimating the full spectrum of Lyapunov Exponents using the approach outlined
by Benettin et al.|(1980aib). This method estimates the spectrum of representing small perturbations
a set of orthogonal vectors in the phase space then iteratively updating these using the dynamical
system transition function. Moreover, to avoid all vectors collapsing to the direction of maximal
growth they are periodically Gram-Schmidt orthonormalized so they each maintain a unique direc-
tion. The Spectrum of Lyapunov Exponents are then determined as the average log convergence/
divergence of the perturbation vectors. Performing this orthonormalization allows for the detection
of both positive and negative Lyapunov exponents up to the dimension of the phase space.
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Figure 3: Estimated Maximal Lyapunov Exponent (MLE) and Sum of Lyapunov Exponents (SLE)
for the Pointmass Easy (PME), Cartpole Balance (CB), Cartpole Swingup (CS), Walker Stand (SW),
Walker Walk (WW), Walker Run (WR) and Cheetah Run (CR) environments controlled by a trained
instance of SAC, TD3 and PPO. Each policy-environment combination is independently trained with
10 random seeds and the average MLE & SLE are calculated using 8 initial states.

Using this method we are able to identify the full spectrum of Lyapunov Exponent for each policy
environment-environment interaction and derive the SLE and MLE. To provide an accurate estimate
of these values we calculate the spectrum for 8 unique initial states taken from sample trajectories
with a minimum length of 200 as this allows for the trajectory to reach any potential chaotic attrac-
tors. A perturbation vector is then initialised for each dimension of the phase space at a distance
of 1075 from the sample state. The spectrum is calculated over 10 thousand environment steps
with orthonormalization every 10 steps and Figure [3] provides the MLE and SLE for each policy-
environment interaction. From this, we can establish stable dynamics occur in the Pointmass and
Cartpole environments as they have negative SLE and negative MLE. This result is consistent with
the reward function for each of these tasks as they provide high rewards for maintaining the robot in
a specified state. Moreover, as the reward function is dependent on each dimension of the state, the
RL policy is trained to minimise any variation in all dimensions. However, the notable exception for
these simple environments occurs when a trained PPO agent controls the Cartpole Swingup task as
this produces negative SLE and positive MLE. As such, the interaction can be classed as chaotic with
trajectories which are highly sensitive to initial conditions but bounded by a chaotic attractor. This
difference in stability is likely due to the small perturbations causing the system to move outside the
on-policy training distribution.

Furthermore, chaotic dynamics also occurs in complex high-dimensional environments (Walker,
Cheetah) however, this is now consistent across all model types. As a result, despite attaining high
rewards, these controllers cannot account for small perturbations to the system state as this produces
significantly different long-term outcomes. Henceforth, the specific trajectory of a state cannot be
predicted using an approximation of the state and true transition function as any small differences
in the state estimation cause exponential diverging dynamics up to the size of the chaotic attractor.
Moreover, despite varying levels of chaos found across environments, the level of chaos produced by
each policy is relatively consistent. This provides an indication the chaotic dynamics are produced
by the environment and is not accounted for by the control policy. Furthermore, Figure |4 shows the
SLE and MLE for each policy-environment interaction during training and further shows stability is
not directly optimised during the training process. The notable exception occurs when PPO controls
the Cheetah Run environment as the MLE and SLE both increase during training and converge to
positive values. As a result, the trajectories for this environment have a tendency to diverge indef-
initely are are not bounded by a chaotic attractor. This demonstrates that the trajectories produced
by the MDP can be stable, chaotic or unstable despite attaining similar rewards.
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Figure 4: Average environment MLE and SLE during training for the Pointmass Easy (PME), Cart-
pole Balance (CB), Cartpole Swingup (CS), Walker Stand (SW), Walker Walk (WW), Walker Run
(WR) and Cheetah Run (CR) when controlled by SAC, TD3 and PPO. Each policy-environment
combination is independently trained with 10 random seeds and the average metrics are calculated
using 8 initial states.

5 REWARD IN A CHAOTIC ATTRACTOR

Having established the presence of unstable and chaotic dynamics in complex high-dimensional
control systems, we now investigate the impact this has on the reward. In the MDP framework,
the reward function R : S x A — R provides feedback to the agent describing how optimal the
current state and action are. Using this feedback, the policy is trained to maximise the expected
sum of rewards » ;- v'r; for a given discount factor y € [0, 1]. Moreover, as the action taken is
a non-linear transformation of the current state via the control policy 7, the reward function can be
redefined as R(s, 7(s; ¢)). Therefore, for a fixed control policy, this function acts as a deterministic
non-linear mapping from state space to a one-dimensional reward space in which the stability of the
reward can be measured.

By considering the reward over a state trajectory as a trajectory in a one-dimensional reward space,
the stability of the reward function can be measured using the Lyapunov Exponents. However, as
this space only contains one dimension the SLE cannot be calculated as this value is dependent on
the existence of multiple Lyapunov Exponents. Despite this, the MLE can still be used to reliably
identify the types of reward dynamics as a negative value indicates stable trajectories with small
perturbations to the state of the system producing similar long-term rewards. Moreover, as the
reward function is bounded, the reward trajectories cannot diverge indefinitely thus, a positive MLE
indicates long-term reward is chaotic and highly sensitive to small changes in the system’s state.

Calculating the reward MLE for each policy-environment interaction (Figure [5) shows that reward
trajectories in simple low-dimensional environments (Pointmass, Cartpole) are stable. This is con-
sistent with the state MLE and reward function for these environments as a large reward is given for
reaching a single fixed point. Conversely, for high-dimensional systems, the reward MLE is positive
indicating a high sensitivity to small changes in system state. This instability in reward is a direct
result of the chaotic state dynamics produced by the control system as small changes in system
state produce differing state trajectories which attain distinct rewards. However, in the case of the
Walker Stand task, there is a possibility the true reward MLE is zero or negative for the SAC and
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Figure 5: Average reward MLE for the Pointmass Easy (PME), Cartpole Balance (CB), Cartpole
Swingup (CS), Walker Stand (SW), Walker Walk (WW), Walker Run (WR) and Cheetah Run (CR)
when controlled by SAC, TD3 and PPO. Each policy-environment combination is independently
trained with 10 random seeds and the average metrics are calculated using 8 initial states.

PPO policies. This means that the state trajectories in these systems attain similar rewards despite
exponentially diverging. This is consistent with the definition of reward function for this task as it
only constrains two dimensions (Torso Height, Torso Angle) to specified values while allowing the
remaining 16 dimensions to take any value. However, despite attaining stable rewards, this control
system does not produce stable dynamics limiting its application to real-world problems.

6 IMPLICATIONS OF THE REWARD FUNCTION

Having established the presence of chaotic state and reward dynamics produced by the policy-
environment interaction we now aim to improve the stability of these solutions through reward
function modification. In particular, we address the instability of the state space introduced by an
unconstrained reward function for environments with static solutions. In these tasks, a high reward
is provided for attaining a specified position in a subset of dimensions while allowing the remaining
dimensions to take any value. This mismatch between state dimension and constrain dimension al-
lows for a wide range of solutions to be produced which all attain good performance despite having
different dynamics. However, this flexibility allows a subset of state dimensions to be ignored during
the optimisation process leading to chaotic dynamics.

To investigate the effect the dimensionality of the reward function has on the types of dynamics
produced by the MDP we introduce a new control environment Fixed Point Walker Stand. This
uses the same transition dynamics as the standard Walker Stand task however the reward function
is conditioned on all dimensions of the state space rather than just torso height and angle. For each
state, the reward for FP Walker Stand is given by

r(s) = o(=l5 = sl)), 3)

where o is the sigmoid function and ||.|| is euclidean distance between current state s and desired
state 5. To identify a desired state, s, we train an instance of TD3 on the standard Walker Stand
environment and identify a high reward trajectory with no variation in system states after 700 envi-
ronment steps. As there is little variation but high sensitivity to initial conditions we can determine
this is an unstable fixed point in the dynamical system. Therefore, updating the reward function to
minimise the distance between all system states and the fixed point should produce a policy which
is robust to changes in initial conditions.

By modifying the reward function in this way this new environment can be compared with the
standard Walker Stand task to identify if the reward function or transition function produces chaotic
dynamics. To this end, we independently train 10 instances of SAC, TD3 and PPO on the standard
Walker Walk task for 5 Million (10 Million for PPO) environment steps which can provide a baseline
for performance and stability. Each policy is then trained for a further 1 Million environment steps
using the modified reward function in Eq.3|before being evaluated. Figures[6a] [oc|provides the MLE
and SLE for the state trajectories for the Walker Walk and Fixed Point Walker Walk tasks and shows
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Figure 6: Average state MLE (a), SLE (c), average reward MLE (b) and total reward (d) for the
Walker Stand (SW) and Fixed Point Walker Stand (FWS) when controlled by SAC, TD3 and PPO.
Each policy-environment combination is independently trained with 10 random seeds and the aver-
age metrics are calculated using 8 initial states.

the constrained task produces less chaotic state dynamics. Moreover, the reward MLE (Figure [6b)
also decreases indicating the solutions produced are much more robust to small perturbations in the
systems state. However, this increase in stability comes at the cost of performance as the total reward
(Figure[6d) for each policy has decreased. Therefore, including a constrained reward function in the
MDP introduces a trade-off between flexibility and stability of solutions.

7 CONCLUSION

Despite recent progress in Deep Reinforcement Learning, there have been relatively few applications
in real-world domains as this method lacks theoretical stability guarantees. In this work, we set out
to identify the stability of RL controllers for continuous control environments by viewing the policy-
environment interaction as trajectories in a controllable dynamical system. Through this redefinition,
we established that when any RL method controls a complex environment the interaction is highly
sensitive to initial conditions. As a result, any small changes in the system state compound to
produce significantly different long-term outcomes, a sign of unstable dynamics. Furthermore, we
demonstrate this level of chaos remains consistent through training despite exploring more of the
state space as the policy is only optimised to maximise reward. Finally, we propose a novel method
for improving the stability of RL policies for continuous control environments via reward function
modification. We show that when the reward function constrains all dimensions of the system state,
the MLE of the interaction significantly reduces producing stable dynamics. This demonstrates
instability in the MDP arises from the reward function as an unconstrained reward function allows
for the existence of multiple distinct solutions from a single policy.
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