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Abstract

We study the best arm identification (BAI) prob-
lem with potentially biased offline data in the fixed
confidence setting, which commonly arises in real-
world scenarios such as clinical trials. We prove
an impossibility result for adaptive algorithms
without prior knowledge of the bias bound be-
tween online and offline distributions. To address
this, we propose the LUCB-H algorithm, which
introduces adaptive confidence bounds by incor-
porating an auxiliary bias correction to balance of-
fline and online data within the LUCB framework.
Theoretical analysis shows that LUCB-H matches
the sample complexity of standard LUCB when
offline data is misleading and significantly out-
performs it when offline data is helpful. We also
derive an instance-dependent lower bound that
matches the upper bound of LUCB-H in certain
scenarios. Numerical experiments further demon-
strate the robustness and adaptability of LUCB-H
in effectively incorporating offline data.

1 INTRODUCTION

Best Arm Identification (BAI) is a fundamental problem in
multi-armed bandit (MAB) research, where the goal is to
find the arm with the highest expected reward through se-
quential sampling. Traditionally, BAI algorithms rely only
on data collected during online. By contrast, in many prac-
tical applications, the decision maker (DM) has access to
substantial amounts of historical data. Historical data, if
relevant, can significantly reduce the number of online sam-
ples needed for decision-making if used correctly. Unfortu-
nately, historical data often comes from different environ-
ments, making them biased and potentially misleading.

Challenges like this arise frequently in real-world applica-
tions. For example, in personalized recommendation sys-

tems, companies often possess years of historical user inter-
action data, which could provide a strong starting point for
new recommendation models. However, user preferences
and behavior evolve over time, creating a gap between past
and present data distributions. Similarly, in clinical trials,
previous studies can offer useful insights into treatment
effectiveness, but differences in patient demographics or
clinical settings may introduce biases that could mislead
decision-making.

These examples highlight the importance of developing ro-
bust algorithms that can adaptively decide when and how to
incorporate historical data. However, no existing algorithm
is designed for BAI with possibly biased offline data. In this
paper, we bridge this gap by proposing a novel approach.

Inspired by the above discussion, we consider BAI with
possibly biased offline data in a fixed confidence setting.
The learning process consists of two phases: a warm-start
phase and an online phase. In the warm-start phase, the DM
receives an offline dataset generated by a latent distribution
P off, which can be used to accelerate the identification pro-
cess in the subsequent online phase. In the online phase, re-
wards are drawn from another latent distribution P on. The
goal is to identify the arm with the highest mean reward at
a fixed confidence level while minimizing the sample com-
plexity, specifically the number of samples collected during
the online phase.

Intuitively, when P off and P on are “far apart", the DM
should ignore the offline dataset and conduct online learn-
ing from scratch. For example, the Track-and-Stop policy
(Garivier and Kaufmann, 2016) and the LUCB algorithm
(Kalyanakrishnan et al., 2012) require
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( ∑
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i log
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(1.1)

samples to ensure correct identification with probability at
least 1−δ, where ∆i > 0 is the suboptimality gap between
the expected reward of the optimal arm and arm i and δ ∈
(0, 1) is the given confidence level. This lower bound holds
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for any P off and P on.

In contrast, when P off and P on are “sufficiently close” the
DM can incorporate offline data to reduce unnecessary ex-
ploration. For instance, when P off = P on, the batch Track-
and-Stop policy (Agrawal et al., 2023) requires
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− TS(i), 0
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(1.2)

samples to achieve the same level of confidence, where
TS(i) represents the number of offline samples for arm i
in the warm-start phase. This bound is tighter than (1.1),
but it only applies when P off = P on.

The goal of this paper is to design a BAI algorithm that
adaptively decides whether to utilize historical data in each
iteration, achieving a tighter bound than (1.1) when P off =
P on, while retaining the bound (1.1) for general (not neces-
sarily equal) P off and P on.

In this paper, we first reveal the fundamental limitations of
adaptive algorithms from a theoretical perspective. Specifi-
cally, we construct two instances to demonstrate an impos-
sibility result: without prior knowledge of an upper bound
on the bias between offline and online data, any adaptive
algorithm leveraging offline data may suffer higher sam-
ple complexity in certain cases, even exceeding the optimal
sample complexity of purely online strategies. This result
shows that it is infeasible to fully adaptively decide when
and how to use offline data with unknown bias, highlight-
ing the need for additional auxiliary information to design
efficient algorithms.

To address this problem, we propose the Lower and Upper
Confidence Bounds - History (LUCB-H) algorithm. LUCB-
H introduces an effective bias upper bound to achieve adap-
tive correction of offline data within the LUCB framework.
In each iteration, it computes upper and lower confidence
bounds based on both online data and a combination of on-
line and offline data. The algorithm then selects the smaller
upper confidence bound and the larger lower confidence
bound to obtain more accurate estimates, dynamically de-
ciding whether to incorporate offline data. The algorithm
significantly reduces sample complexity when offline data
is helpful while discarding the data when the information
is misleading, ensuring that the sample complexity remains
consistent with that of the standard LUCB algorithm.

We present an instance-dependent lower bound on the sam-
ple complexity of δ-PAC algorithm, which can significantly
reduce the sample complexity when the offline data is help-
ful for identifying the best arm. Moreover, we prove that
LUCB-H can achieve this lower bound in certain specific
instances, indicating that the algorithm is theoretically near-
optimal in terms of sample complexity. Numerical experi-
ment results further validate the effectiveness and robust-
ness of LUCB-H, especially in complex environments with
potentially biased offline data.

1.1 RELATED WORK

For the MAB problem, much attention has been devoted
to the integration of offline data into online learning to
improve performance guarantees. The majority of existing
studies focus on the specific setting where offline and on-
line share the same distribution (P off = P on) ensuring that
historical data can be safely leveraged. Shivaswamy and
Joachims (2012) integrated historical data in MAB, show-
ing that logarithmic historical data reduces regret from
logarithmic to constant. Agrawal et al. (2023) extended
Track-and-Stop (Garivier and Kaufmann, 2016), achieving
asymptotical optimal sample complexity under aligned of-
fline and online distributions for BAI. Liu et al. (2025) fo-
cused on the integration of historical data in combinatorial
bandits, and demonstrated its effectiveness in practical ap-
plications. Other research has focused on leveraging offline
data in domains such as dynamic pricing (Bu et al., 2020),
clustered bandits (Bouneffouf et al., 2019; Ye et al., 2020),
reinforcement learning (Hao et al., 2023; Wagenmaker and
Pacchiano, 2023), and sequential data settings (Gur and
Momeni, 2022).

Thompson Sampling (TS) is a popular Bayesian method
that effectively incorporates offline data into online learn-
ing by constructing prior distributions, yielding signifi-
cant performance gains when distributions align (Russo
and Van Roy, 2016). However, prior mis-specification can
severely affect performance, making TS worse than state-
of-the-art online policies without any offline data (Liu and
Li, 2016; Simchowitz et al., 2021). Such results illustrate
the necessity of adaptive strategies for deciding whether
and how historical data should be used, particularly in sce-
narios with potentially biased offline data.

Zhang et al. (2019) explored the integration of biased
offline data into contextual bandits. They proposed the
ARROW-CB algorithm, which uses a weighted strategy
to balance between ignoring and fully incorporating of-
fline data without requiring prior knowledge of the offline-
online discrepancy. While ARROW-CB does not offer im-
proved regret bounds compared to baseline algorithms
that ignore offline data. Cheung and Lyu (2024) formally
demonstrated that, in the absence of a non-trivial upper
bound on the discrepancy, no non-anticipatory policy can
achieve better regret bounds than such baselines. To ad-
dress this issue, Cheung and Lyu (2024) introduced an
online policy MIN-UCB, which incorporates a non-trivial
bias bound that adaptively determines whether to incor-
porate or discard historical data, improving regret bounds
when historical data is helpful and retaining regret bounds
when it is misleading. In contrast to our work, MIN-UCB
focuses on regret minimization in MAB, while we address
the BAI problem.

The discrepancy between offline and online data distribu-
tions plays a crucial role in determining whether historical



data can be effectively leveraged. Several studies have ex-
plored strategies to address this challenge. Si et al. (2023)
proposed a distributionally robust strategy for learning un-
der environmental changes, while Chen et al. (2022) ex-
plored distribution shift in reinforcement learning. Similar
studies exist in supervised learning, such as Crammer et al.
(2008); Mansour et al. (2009); Ben-David et al. (2010).

2 FORMULATION

We consider the BAI problem with possibly biased offline
data. Let A = {1, 2, . . . , k} be the set of arms. The learn-
ing process consists of two phases: the warm-start phase
and the online phase. During the warm-start phase, DM
receives historical reward data for each arm. Specifically,
for each arm i ∈ A, the DM is given TS(i) indepen-
dent and identically distributed (i.i.d.) samples denoted as
{Xs(i)}TS(i)

s=1 , where each sample is drawn from an offline
reward distribution P off

i .

In the subsequent online phase, the DM selects an arm
At ∈ A to pull at each round t, and observes a stochas-
tic reward Yt(At) drawn from the online reward distribu-
tion P on

At
. The offline and online reward distributions may

differ, i.e., P off ̸= P on.

The DM follows a policy π = (πt)
∞
t=1, which is a (pos-

sibly randomized) rule for selecting an arm At at each
round t. The decision is based on the available obser-
vations up to time t − 1, given by Ft−1 = (S =
{TS(i)}i∈A, {Al, Yl(Al)}t−1

l=1). The underlying instance I
is defined as a four-tuple (A, {TS(i)}i∈A, P, δ), where A
is the set of arms, {TS(i)}i∈A represents the number of his-
torical reward data collected from the warm-start phase for
each arm i, P denotes the reward distribution consisting of
the online and offline reward distributions P on and P off ,
and δ is a given constant. In this setup, the DM has access
only to A and {TS(i)}i∈A before the online phase, whereas
P and δ are unknown. In this paper, we assume that both
the online and offline reward distributions, P on and P off ,
are normal distributions with known variance, a fact that
is also known to the DM. For any arm i ∈ A, we denote
its online and offline means as µon(i) = EY (i)∼P on

i
[Y (i)],

and µoff(i) = EX(i)∼P off
i

[X(i)], respectively.

The DM aims to identify the arm with the highest
mean reward in the online phase, defined as I∗ =
argmaxi∈A µon(i). Without loss of generality, we assume
that the means of the arms are ordered such that µon(1) >
µon(2) ≥ · · · ≥ µon(k), which implies that arm 1 is the
unique best arm, i.e., I∗ = 1. Let ∆i = µon(1)−µon(i) de-
note the suboptimality gap between arm i and the best arm
under the online distribution. Given δ > 0, the DM seeks to
design a non-anticipatory policy π that terminates at round
τδ > 0 and outputs an estimate Î∗τδ = argmaxi∈A µ̂on

τδ
(i),

where µ̂on
τδ
(i) represents the estimate of µon(i) at time τδ .

The policy is required to satisfy P(Î∗τδ = 1) ≥ 1− δ, i.e., it
identifies the arm with the highest online mean with proba-
bility at least 1− δ. Any policy that satisfies this condition
is called a δ-PAC algorithm.

While existing BAI algorithms depend solely on online data
and not on offline data, an ideal algorithm should be adap-
tive, making real-time decisions about whether to incorpo-
rate historical data in each round. If historical data is useful,
integrating it can lower the sample complexity required for
a correct identification probability of at least 1 − δ. Con-
versely, if it is misleading, the algorithm should discard
the offline data and rely solely on the online data, ensuring
that its sample complexity is of the same order as the best
purely online strategy. The subsequent discussion demon-
strates that such an adaptive strategy is impossible without
additional auxiliary information.

3 AN IMPOSSIBILITY RESULT

Any δ-PAC algorithm that utilizes historical data bene-
fits when P off and P on are close, but suffers when P off

and P on differ significantly. However, an ideal algorithm
should distinguish between these cases. In this section, we
demonstrate that no ideal algorithm can exist by means of
constructing lower bound on an “alternative instance” for
any δ-PAC policy.

We consider two instances IP and IQ, which share the same
arm set A = {1, 2}, offline sample sizes {TS(i)}i∈A and
the failure probability δ ∈ (0, 1). However, IP and IQ have
different reward distributions, P and Q, and their optimal
arms are also different. Specifically, for instance IP ,

P on = P off , P on
1 = N (0, 1) and P on

2 = N (−δβ , 1).

Observe that the squared mean gap under P on satisfies
(µon(1)−µon(2))2 = δ2β . If the offline sample numbers sat-
isfy TS(1) = TS(2) ≥ 4(δ−2β − δ−2β+ϵ) log(1/δ), where
ϵ ∈ (0, δ), then, existing online policies such as Track-and-
Stop (Agrawal et al., 2023) achieves an expected stopping
time at least

Ω(E[τ ′δ]− TS(1)− TS(2))

= Ω(δ−2β log(1/δ)− (δ−2β − δ−2β+ϵ) log(1/δ))

= Ω(δ−2β+ϵ log(1/δ)), (3.1)

where E[τ ′δ] is the expected stopping time without using
historical data when given the error bound δ ∈ (0, 1).
Clearly, the bound in (3.1) strictly outperforms that in (1.1)
in terms of sample complexity. Despite this apparent im-
provement, we show that any non-anticipatory policy that
outperforms (1.1) on IP must incur a higher sample com-
plexity than (1.1) on a suitably chosen IQ. Let E[τδ(P )]
and E[τδ(Q)] be the expected stopping times of the δ-PAC
algorithm on Instances P and Q, respectively. The follow-
ing proposition is proved in Appendix B.



Proposition 3.1 Consider instance IP as described above.
Suppose the offline sample sizes satisfy TS(1) ∈ N and
there exists ϵ > 0 such that TS(2) ≤ C

2 (δ
−2β − δ−2β+ϵ),

where C > 0 is an absolute constant and δ ∈ (0, 1). Then,
for any δ-PAC policy π that satisfies

E[τδ(P )] ≤ Cδ−2β+ϵ log(1/δ)

on instance IP , there exists an instance IQ defined as

Q1 = P1, Qon
2 = N (δβ , 1),

Qoff
2 = N

(
−

√
8δ−2β−ϵ

C(1− δϵ)
− δβ , 1

)
,

such that as δ → 0+, the policy π suffers

E[τδ(Q)] ≥ Ω

(
1

δ2β+ϵ
log
(1
δ

))
= ω(E[τ ′δ]).

We first analyze instances IP and IQ. In instance IP , arm 1
is the better arm, while in instance IQ, arm 2 is the better
arm. Instances IP and IQ share the same arm set, same of-
fline sample sizes which are sufficiently large to reduce the
sample complexity on instance IP with parameter δ. Al-
though the online reward distributions are different, with
P on
2 = N (−δβ , 1) in IP and Qon

2 = N (δβ , 1) in IQ, a sign
flip and arm relabeling make the two instances equivalent
to any online-only policy. The offline datasets are generated
from different offline reward distributions. Consequently,
offline data plays a critical role in these instances: it can
be helpful in IP , but misleading in IQ. Without additional
information, we cannot determine whether the offline data
will be helpful or misleading.

Proposition 3.1 shows that an ideal algorithm does not exist.
Even when we consider an extreme case when TS(1) =
TS(2) = ∞, which implies that the DM knows the exact
mean value of the offline reward distributions P off , it is
not possible to find an algorithm simultaneously (1) if the
offline data is helpful (instance IP ), it could reduce sample
complexity compared to pure online strategies like LUCB;
(2) if the offline data is misleading (instance IQ), it should
be “smart” enough to discard the historical data and match
the sample complexity of the standard LUCB algorithm.

In the following section, we introduce an LUCB-based
algorithm, called LUCB-H, which incorporates an addi-
tional input: the valid biased bound V = {V (i)}i∈A ∈
(R ∪ {∞})k on an instance I such that

V (i) ≥ |µoff(i)− µon(i)|, for each i ∈ A.

The quantity V (i) serves as an upper bound on the mean
shift between the offline and online reward distributions
P off(i) and P on(i) for arm i. Before the online phase, the
DM can construct the prior knowledge of V (i) by several
machine learning estimators, such as the LASSO (Blanchet

et al., 2019), by cross-validation (Chen et al., 2022), or ob-
tain some insights on how to construct them empirically (Si
et al., 2023).

If V (i) = ∞, then the DM has no prior knowledge about
the difference between the online and offline distributions
before the online phase. In this case, Proposition 3.1 has
already demonstrated that no ideal algorithm exists. There-
fore, we assume that V (i) < ∞. Similar upper bound
can be found in the contexts of supervised learning (Cram-
mer et al., 2008), offline policy learning on contextual ban-
dits (Si et al., 2023), stochastic optimization (Besbes et al.,
2022) and multi-task bandit learning (Wang et al., 2021).

Algorithm 1 LUCB-H Algorithm
Input: Valid bias bound {V (i)}ki=1 on the instance, confi-
dence parameter δ, offline samples S

1: For each i ∈ A, compute X̂(i) and set Ŷ0(i) = 0
2: At t = 1, . . . , k, pull each arm once, then set

Nk+1(i) = 1 for all i ∈ A
3: for t = k + 1, k + 2, . . . do
4: // Construct lower and upper bounds.
5: Compute LCBt(i) and UCBt(i) by (4.1)–(4.2)
6: Compute LCBS

t (i) and UCBS
t (i) by (4.3)–(4.4)

7: Compute LCBmix(i) = max{LCBt(i),LCB
S
t (i)}

and UCBmix(i) = min{UCBt(i),UCBS
t (i)}

8: Set ht = argmaxi∈A UCBmix(i)

9: Set lt = argmaxi ̸=ht
UCBmix(i)

10: end for
11: if LCBmix(ht) ≥ UCBmix(lt) then
12: Break the loop.
13: end if
14: Pull arms ht and lt, and observe independent rewards:

Yt(ht) ∼ P on
ht

and Yt(lt) ∼ P on
lt

.
15: Update sample mean Ŷt+1(i) and sample counters

Nt+1(i) by

Ŷt+1(i) =

{
Nt(i)·Ŷt(i)+Yt(i)

Nt(i)+1 , if i = ht or lt
Ŷt(i), otherwise,

and Nt+1(i) = Nt(i) + 1{i ∈ {ht, lt}}.
Output: I∗ = argmaxi∈A UCBmix(i)

4 DESIGN AND ANALYSIS OF THE
LUCB-H ALGORITHM

The LUCB algorithm was first proposed by Kalyanakrish-
nan et al. (2012). Unlike the UCB algorithm, which is more
suitable for cumulative reward maximization, LUCB is
specifically designed for the BAI problem (more precisely,
the best m-arm identification problem where m ∈ A). In
each round, LUCB selects two arms: the one with the high-
est sample mean and the one with the largest upper confi-
dence bound among the remaining arms. LUCB provides



a theoretical upper bound on the error probability under
the PAC framework and achieves near-optimal sample com-
plexity in many cases. As an attractive approach for finite-
action stochastic bandits, it has been extended to other vari-
ants, such as the top feasible arm identification problem
(Katz-Samuels and Scott, 2019). With these merits in mind,
it seems quite natural to generalize the idea of LUCB to
address the BAI problem in a historical data setting.

To extend the LUCB algorithm to a setting with historical
data, the main challenge is deciding how much to rely on of-
fline data while ensuring accurate online decision-making.
To address this problem, LUCB-H computes both the upper
and lower confidence bounds using two types of estimators.

• The first uses only online data and follows the standard
LUCB method:

LCBt(i) = Ŷt(i)−

√
2 log(kt/δ)

Nt(i)
and (4.1)

UCBt(i) = Ŷt(i) +

√
2 log(kt/δ)

Nt(i)
, (4.2)

where Ŷt(i) is the empirical mean of arm i.

• The second incorporates historical data. Let X̂(i) be

the historical mean, i.e., X̂(i) =
∑TS(i)

s=1 Xs(i)
TS(i) . Then at

round t, the estimated mean is

Ŷ S
t (i) =

Nt(i) · Ŷt(i) + TS(i) · X̂(i)

Nt(i) + TS(i)
,

with adjusted confidence bounds

LCBS
t (i) = Ŷ S

t (i)− radSt (i) and (4.3)

UCBS
t (i) = Ŷ S

t (i) + radSt (i), (4.4)

respectively, where

radSt (i) =

√
2 log(kt/δ)

Nt(i) + TS(i)
+

TS(i)

Nt(i) + TS(i)
· V (i).

The above confidence interval consists of two parts: the first
term is a standard confidence bound after incorporating his-
torical data, and the second term compensates for potential
bias, which is quantified by the parameter V (i).

The core idea of the LUCB algorithm is to iteratively nar-
row down the set of candidate arms using these confidence
bounds, which accelerates convergence. Inspired by this in-
sight, the algorithm then conservatively selects the tighter
bounds, i.e.,

LCBmix
t (i) = max{LCBt(i),LCB

S
t (i)}, and

UCBmix
t (i) = min{UCBt(i),UCBS

t (i)}.

Since the arm with the largest sample mean may differ with
or without historical data, LUCB-H selects ht as the arm

with the largest upper bound, then proceeds as in standard
LUCB.

Next, we analyze UCBS
t (i) and UCBt(i). When the bias

bound V (i) is small and the offline sample size TS(i) is
large, typically UCBS

t (i) < UCBt(i), indicating historical
data can reduce confidence intervals and speed up conver-
gence. A small V (i) suggests similarity between P on and
P off , making historical data beneficial; otherwise, histori-
cal data should be discarded.

In addition, let us compare the expectations of UCBS
t (i)

and UCBt(i), to intuitively analyze the impact of the pa-
rameter V (i) and the amount of historical data for arm
i ∈ A on the algorithm’s performance. Here, we focus on
round t and, for the sake of exposition, we treat Nt(i) as a
deterministic quantity, which we denote as nt(i). Then,

E[UCBS
t (i)|Nt(i) = nt(i)]

=
nt(i) · µon(i) + TS(i) · µoff(i)

nt(i) + TS(i)
+

TS(i)

nt(i) + TS(i)
· V (i)

+

√
2 log(kt/δ)

nt(i) + TS(i)

= µon(i) +
TS(i)

nt(i) + TS(i)
(V (i) + µoff(i)− µon(i))

+

√
2 log(kt/δ)

nt(i) + TS(i)

and

E[UCBt(i)|Nt(i) = nt(i)] = µon(i) +

√
2 log(kt/δ)

nt(i)
.

As analyzed above, the biased bound V (i) and the actual
mean shift between offline and online data µoff(i)− µon(i)
determine whether the historical data is helpful for iden-
tifying the best arm, and the number of offline samples
TS(i) plays a critical role in the reducing sample complex-
ity. Hence, we define a discrepancy measure

η(i) = V (i) + µoff(i)− µon(i)

on arm i and we can know that η(i) ∈ [0, 2V (i)]. When the
length of the confidence interval on arm i is smaller than
∆i/4, sampling for arm i can stop (Jamieson and Nowak,
2014). Therefore, we can infer that when ηi < ∆i/4, the
historical data for arm i is helpful for the identification pro-
cess. The following theorem further supports this inference.

Theorem 4.1 The LUCB-H algorithm, which inputs a
valid bias bound V on instance I , the expected stopping
time E[τδ] satisfies

E[τδ] = O

( ∑
∆i>0

(
1

∆2
i

log(
1

δ
)− Savu(i)

))
, (4.5)



where the “Saving” term in the upper bound is

Savu(i) = TS(i) ·max

{
1− 4η(i)

∆i
, 0

}
.

Theorem 4.1 is provided in Appendix C. The upper bound
in (4.5) is not greater than the expected stopping time in
the standard case using LUCB (without utilizing historical
data). Note that Savu(i) ≥ 0. When η(i) ≤ ∆i/4, P on(i)
and P off(i) are sufficiently close, indicating that the histor-
ical data is helpful, and the sample complexity of LUCB-H
can be strictly less than that of LUCB. Otherwise, the his-
torical data is misleading, and the DM should discard it. In
this case, LUCB-H adaptively retains the sample complex-
ity of the standard LUCB algorithm. If η(i) ≤ ∆i/4, then
Savu(i) is monotonically increasing with respect to TS(i).
This means that the more helpful historical data we have,
the better it is for identifying the best arm, which is consis-
tent with common intuition.

5 LOWER BOUND OF ANY δ-PAC
ALGORITHM

This section characterizes the complexity of the BAI prob-
lem when using possibly biased offline data. It assumes
that the set of probability measures P satisfies a common
assumption used in the BAI and MAB literature (Lai and
Robbins, 1985; Kaufmann et al., 2016), specifically related
to the continuity of the KL divergence. This assumption
enables us to develop change-of-measure arguments for de-
riving lower bounds on the problem’s complexity.

Assumption 5.1 For all v, v′ ∈ P2 such that v ̸= v′, for
all a > 0, there exists v′′ ∈ P such that KL(v, v′) <
KL(v, v′′) < KL(v, v′) + a and EX∼v′′ [X] > EX∼v′ [X].
Furthermore, there exists v′′′ ∈ P such that KL(v, v′) <
KL(v, v′′′) < KL(v, v′)+a and EX∼v′′′ [X] < EX∼v′ [X].

Theorem 5.1 Suppose that P satisfies Assumption 5.1;
any algorithm that is δ-PAC on M satisfies, for δ ≤ 0.15,
the expected stopping time

E[τδ]=Ω

( ∑
∆i>0

(
1

KL(µon(i), µon(1))
log
(1
δ

)
−Savl(i)

))
,

where Savl(i), the “Saving” term in the lower bound, is

Savl(i) = TS(i)max

{
µoff(1)− µoff(i)

∆i
, 0

}2

.

Comparing the lower bound to standard LUCB, LUCB-H
improves the bound on the stopping time bound by includ-
ing the saving term Savl(i) for arms i ∈ A. The proof of
Theorem 5.1 can be found in Appendix D.

Next, we will analyze the upper bound of the stopping time
of the LUCB-H algorithm and the lower bound of BAI with
biased historical data. Clearly, the upper bound of LUCB-H
is almost equal to the lower bound of sample complexity for
the BAI problem with possibly biased offline data. Specif-
ically, when the offline data are misleading and identical,
the two bounds are identical. In the following, we quantify
the gap between two bounds in two cases when the saving
terms Savu(i) > 0 and Savl(i) > 0. We define the gap
between them as gap(i) := Savl(i)− Savu(i).

Remark 5.1 We analyze the above-defined gap gap(i) in
two special cases.

1. V (i)’s are equal: In this case, we can show that gap is
non-negative because

gap(i)=

(
(η(i)− η(1))2

∆2
i

+ 2
η(i) + η(1)

∆i

)
TS(i) ≥ 0.

2. V (1) = η(1), i.e., P on(1) = P off(1). In this case, we
can also show that the gap is non-negative because

gap(i)=

(
(η(i)− V (i))2

∆2
i

+ 2
η(i) + V (i)

∆i

)
TS(i) ≥ 0.

While we believe that gap(i) ≥ 0 holds generally, we
leave the proof of this to future work.

6 NUMERICAL RESULTS

In this section, we conducted numerical experiments to
evaluate the performance of the LUCB-H algorithm, which
leverages biased offline data, and compared its perfor-
mance with the Pure LUCB algorithm (the LUCB algo-
rithm, which does not utilize any historical data). All ex-
periments were based on a 5-armed bandit problem with re-
wards corrupted by Gaussian noise with unit variance, and
the results reported are averaged over 1000 trials. The over-
all experimental design is divided into two groups based on
the online reward distributions (staircase and linear), with
both groups incorporating the same offline data construc-
tion and experimental variable settings.

We will introduce the design of online and offline
reward distributions first. In Group 1, the online re-
ward distributions exhibit a staircase pattern with means
of (0.8, 0.4, 0.4, 0.4, 0.4). In Group 2, the online re-
ward distributions follow a linear pattern with means of
(0.8, 0.7, 0.6, 0.5, 0.4). Note that in both groups, arm 1 is
the best arm, and the Pure LUCB algorithm makes its deci-
sion solely based on online data.

For each group, three different offline reward distributions
are constructed (with the offline data generated from P off

and with different number of historical samples per arm):



2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500
Pure LUCB

LUCB-H (misleading)

LUCB-H (beneficial)

LUCB-H (partial)

Figure 1: Evolution of E[τδ] with log(1/δ) in group 1
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Figure 7: Samples for different arms when δ = 0.01 in group 1

Arm 1 Arm 2 Arm 3 Arm 4 Arm 5

Arms

0

1000

2000

3000

4000

5000

6000

S
a
m

p
le

s

Figure 8: Samples for different arms when δ = 0.01 in group 2

(a) Case 1 (Misleading Bias): In this case, all arms are
adversely affected. Thus, the offline mean for the
best arm decreases while the means for the subopti-
mal arms increase. The offline means in Group 1 are
(0.4, 0.6, 0.6, 0.6, 0.6), resulting in the offline phase
identifying a best arm that is not arm 1. The offline
means in Group 2 are (0.4, 0.8, 0.7, 0.6, 0.5), which
likewise leads to an offline best arm being different
from arm 1.

(b) Case 2 (Beneficial Bias): In this case, the offline data
assists in the identification process, with the offline
mean for the best arm being increased while those for
the non-best arms are decreased. The offline means in
Group 1 are (0.9, 0.2, 0.2, 0.2, 0.2) so that the offline
phase still correctly identifies arm 1 as the best. The
offline means in Group 2 are (0.9, 0.5, 0.4, 0.3, 0.2),
where the offline best arm remains arm 1.

(c) Case 3 (Partial Adjustment): In this case, selec-
tive adjustments are made across the arms. The of-
fline means in Group 1 are (0.4, 0.6, 0.6, 0.2, 0.2),
under which the offline phase will not select arm
1 as the best. The offline means in Group 2 are
(0.4, 0.8, 0.7, 0.3, 0.2), leading to an offline best arm
different from arm 1.

We also explored the impact of TS(i) and V (i) on the
performance of the LUCB-H algorithm. The two factors
represent the amount of offline data and the deviation be-
tween offline and online data, respectively, which can sig-
nificantly affect the convergence speed and the accuracy of
identifying the best arm. We assess the expected stopping
times of Pure LUCB and LUCB-H under three instances:

1. Variation of δ: The offline sample size is fixed at
TS(i) = 200 in Group 1 and TS(i) = 1000 in Group



2 for all i ∈ A, and the bias parameter is configured
as V = (0.4, 0.2, 0.2, 0.2, 0.2) in Group 1 and Group 2.
We set the confidence levels at δ = 0.1, 0.12, . . . , 0.110.

2. Variation of Offline Sample Size TS(i) and Parame-
ter V (i): Under a fixed δ = 0.01:

• The offline sample size for each arm is varied among
200, 400, 600, 800 and 1000 in Group 1 and among
1000, 2000, 3000, 4000 and 5000 in Group 2. The
bias parameter in these experiments are also V =
(0.4, 0.2, 0.2, 0.2, 0.2).

• When the offline sample size is fixed at 200 for each
arm, the effect of varying parameter V (fixed V (1) =
0.4 and V (i) ranging from 0.2 to 0.4 for all subop-
timal arms in two groups) on the expected stopping
time is further examined.

Figures 1 to 6 analyze how the average stopping time E[τδ]
of the LUCB algorithm, and the LUCB-H algorithm un-
der misleading, beneficial, and partial instances varies from
three perspectives: log(1/δ), offline sample size TS , and
parameter V . Across all experiments, LUCB-H behaves
similarly to Pure LUCB in the misleading instance, both
in terms of mean stopping time and error bars, regardless
of changes in confidence level δ, offline sample size TS(i),
or biased bound V (i). This suggests that LUCB-H wisely
discards misleading offline data. In the partial instances,
LUCB-H’s performance consistently lies between that of
the beneficial and misleading instances. The following anal-
ysis focuses on the beneficial instance.

Figures 1 and 2 show how E[τδ] evolves with log(1/δ). All
curves exhibit linear or near-linear growth. The slope of
each curve approximates the sample complexity of the cor-
responding algorithm. LUCB-H achieves sample complex-
ity that matches that of LUCB in general. LUCB-H requires
significantly fewer samples in the beneficial instance com-
pared to Pure LUCB and LUCB-H in other instances. As
δ → 0, the error bars in the beneficial instance gradually
expand and converge with those of Pure LUCB, indicating
a diminishing influence of historical data.

Figures 3 and 4 illustrate how the stopping time varies with
offline sample size TS . In the beneficial instance, the stop-
ping time decreases sharply as TS increases, demonstrating
the advantage of helpful offline data. The error bars also
shrink with increasing TS , indicating that even biased ben-
eficial data can effectively narrow the confidence bounds
and accelerate convergence.

Figures 5 and 6 examine how the parameter V influences
the expected stopping time. In the beneficial instance, the
stopping time increases notably as V grows. This indicates
that, even when historical data is advantageous, a large
bound on the shift between online and offline reward distri-
butions can adversely impact LUCB-H’s performance, re-
vealing its sensitivity to substantial shifts. Although the er-
ror bars in the beneficial case widen with increasing V , po-

tentially affecting reliability, LUCB-H still performs com-
parably to Pure LUCB in this scenario.

Figures 7 and 8 summarize the sample allocation per arm
for both Pure LUCB and LUCB-H in Groups 1 and 2 when
δ = 0.01. In the misleading case, LUCB-H assigns sam-
ples similarly to Pure LUCB, demonstrating its ability to
avoid relying on misleading historical data and behave ac-
cordingly. In the beneficial instance, LUCB-H allocates sig-
nificantly fewer samples per arm compared to Pure LUCB,
illustrating its effectiveness in leveraging helpful historical
information. In the partial scenario, LUCB-H dynamically
adapts its sampling; it assigns substantially fewer samples
to arms with beneficial offline rewards, while allocating a
similar number as Pure LUCB to arms with misleading of-
fline data. This showcases LUCB-H’s flexibility in selec-
tively utilizing historical data on an arm-by-arm basis. Ad-
ditionally, some arms receive only one sample, as LUCB
concentrates most samples on the top two arms. When both
offline and initial online data strongly suggest an arm is sub-
optimal, LUCB-H may cease sampling further, reflecting
its adaptivity. In Appendix E, we examine the robustness
of LUCB-H to misspecifications in the bias bound V (i).

7 CONCLUSIONS

In this paper, we studied the best arm identification prob-
lem with potentially biased offline data. We first estab-
lished an impossibility result, proving that no δ-PAC algo-
rithm can out-perform the state-of-the-art on all instances,
without prior knowledge of the bias bound between of-
fline and online distributions. This result highlights the ne-
cessity of incorporating auxiliary knowledge, such as bias
bounds, to effectively utilize offline data while ensuring ro-
bust performance. To address this challenge, we proposed
the LUCB-H algorithm. The algorithm adaptively balances
offline and online data by calculating upper and lower con-
fidence bounds separately with and without offline data for
each arm. It selects the smaller upper confidence bound
and larger lower confidence bound to obtain more accu-
rate mean estimates. This design allows LUCB-H to decide
how much to rely on offline data at each iteration. Our the-
oretical analysis shows that LUCB-H matches the sample
complexity of standard LUCB in misleading cases. It sig-
nificantly reduces the sample complexity when offline data
is reliable. Furthermore, we derived an instance-dependent
lower bound that matches LUCB-Hs upper bound in certain
cases. Experimental results demonstrated LUCB-Hs adapt-
ability and robustness. It effectively reduces sample com-
plexity in favorable cases while remaining robust when of-
fline data is unreliable.
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A PRELIMINARIES

Proposition A.1 (Chernoff Inequality). Let G1, . . . , Gm be independent (though not necessarily identically distributed)
1-subGaussian random variables. For any δ ∈ (0, 1), it holds that

Pr

[∣∣∣∣∣ 1mE

[
m∑
i=1

Gi

]
− 1

m

m∑
i=1

Gi

∣∣∣∣∣ ≤
√

2 log(k/δ)

m

]
≥ 1− δ

k
,

We consider an identifiable class of bandit models of the form:

M = {v = (v1, v2, . . . , vk) : vi ∈ P , µon(1) > µon(2) ≥ . . . ≥ µon(k)} (A.1)

For all instances in set M, I∗ = 1. Let A = ((πt), τ, Î
∗) be a δ-PAC algorithm.

Let IP = (P off , P on) and IQ = (Qoff , Qon) be two problem instances defined over a common finite arm set A. Both
instances share the same offline sample sizes {TS(i)}i∈A and confidence level δ, but may differ in their offline and online
reward distributions. Let τδ(Q, i) be the (random) number of online samples drawn from arm i under instance IQ before
the stopping time τδ; we write E[τδ(Q, i)] for its expectation. The probability that an event E occurs under instance IQ and
instance IP at stopping time σ are written as Pσ(Q, E) and Pσ(P, E) respectively. The Kullback-Leibler (KL) divergence
between distributions P and Q is written as KL(P,Q), and d(p, q) denotes the KL divergence measure between Bernoulli
distributions with means p and q. We assume that the stopping time σ is adapted to the filtration {Ft}t≥0 and is almost
surely finite. To establish the theoretical results, we first introduce the following lemma.

Lemma A.1 Let E ∈ Fσ be any event measurable with respect to the stopping time σ. For any non-anticipatory policy π,
the following inequality holds:

k∑
i=1

E[Nσ(i)]KL
(
Qon(i), P on(i)

)
+

k∑
i=1

TS(i)KL
(
Qoff(i), P off(i)

)
≥ d
(
Pσ(Q, E),Pσ(P, E)

)
. (A.2)

Proof : The log-likelihood ratio for the sequence of observations observed by time t under an algorithm A is

Lt = L({Xs(i)}TS(i)
s=1 , A1, . . . , At, YA1

, . . . , YAt
) :=

k∑
i=1

t∑
l=1

1{Al = i} log
(
Qon

i (YAl
)

P on
i (YAl

)

)
+

k∑
i=1

TS(i)∑
s=1

log

(
Qoff

i (Xs)

P off
i (Xs)

)
.

Recall that {Xs(i)}TS(i)
s=1 are i.i.d. samples from the offline distribution P off

i , while {Yl(i)}Nσ(i)
l=1 are i.i.d. samples from the

online distribution P on
i . We can rewritten Lσ as

Lσ =

k∑
i=1

Nσ(i)∑
l=1

log

(
Qon

i (YAl
)

P on
i (YAl

)

)
+

k∑
i=1

TS(i)∑
s=1

log

(
Qoff

i (Xs)

P off
i (Xs)

)
.
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Since EQ

[
log
(

Qon
i (YAl

)

P on
i (YAl

)

)]
= KL(Qon(i), P on(i)) and EQ

[
log
(

Qoff
i (Xs)

P off
i (Xs)

)]
= KL(Qoff(i), P off(i)), by Wald’s Lemma

(Wald, 2004),

EQ[Lσ] =

k∑
i=1

E[Nσ(i)]KL
(
Qon(i), P on(i)

)
+

k∑
i=1

TS(i)KL
(
Qoff(i), P off(i)

)
. (A.3)

By Lemma 19 in Kaufmann et al. (2016), we have

EQ[Lσ] ≥ d
(
Pσ(Q, E),Pσ(P, E)

)
. (A.4)

Combining (A.3) and (A.4) completes the proof.

B PROOF OF PROPOSITION 3.1

Proof : In the instance IP , arm 1 is the best arm, and in the instance IQ, arm 2 is the best arm. In both instances IP , IQ,
the DM requires E[τ ′δ] = Ω(log(1/δ)/δ2β) pulls (without offline data) to be δ-PAC. Let σ be any almost surely finite
stopping time with respect to Ft on instance IQ. Introducing the event E = (Î∗ = 2) ∈ Fσ , any δ-PAC algorithm satisfies
Pσ(Q, E) ≥ 1 − δ and Pσ(P, E) < δ/2, where Pσ(P, E) and Pσ(Q, E) are the probabilities of the event E occurring on
instances IP and IQ separately in round σ. Denote Eσ(Q, i) as the expectation number of samples allocated to arm i until
round σ on instance IQ, where i ∈ {1, 2}.

By Lemma A.1, we have

d(Pσ(Q, E),Pσ(P, E)) ≤
2∑

i=1

Eσ(Q, i)KL(Qon(i), P on(i)) +

2∑
i=1

TS(i)KL(Qoff(i), P off(i)),

where the function d(x, y) := x log (x/y)+(1−x) log ((1− x)/(1− y)) is the binary relative entropy, with the convention
that d(0, 0) = d(1, 1) = 0. Then the following inequality holds,

Eσ(Q, 2) ≥
d(1− δ, δ

2 )− TS(2)KL(Qoff(2), P off(2))

KL(Qon(2), P on(2))

due to the fact that Qoff
1 = P off

1 and Qon
1 = P on

1 . The monotonicity properties of d(x, y) is increasing when x > y and
decreasing when x < y yield d(1 − δ, δ/2) > d(1 − δ, δ). Hence, we can find an ϵ′ > 0 such that d(1 − δ, δ/2) >
δ−ϵ′d(1− δ, δ). Then

Eσ(Q, 2) ≥ 2δ−2β−ϵ′ log
( 1

2.4δ

)
− TS(2)KL(Qoff(2), P off(2))

KL(Qon(2), P on(2))

≥ 2δ−2β−ϵ′ log
( 1

2.4δ

)
− δ−2β−ϵ′ log

(1
δ

)
= Ω

(
δ−2β−ϵ′ log

(1
δ

))
.

The second inequality holds by the claim assumption that we can find ϵ′′ > 0 such that TS(2) ≤ C
2 (δ

−2β − δ−2β+ϵ′′). Let
ϵ = {ϵ′, ϵ′′, β}. Hence we have

E[τδ(Q)] ≥ Ω

(
δ−2β−ϵ log

(1
δ

))
as desired.

C PROOF OF THEOREM 4.1

To prove Theorem 4.1, we first state a lemma.

Lemma C.1 The following events hold over all rounds t = 1, 2, . . . with probability at least 1− δ/k :∣∣∣∣min(UCBS
t (i),UCBt(i))− µon(i)

∣∣∣∣ ≤ min

(
2

√
2 log(kt/δ)

Nt(i) + TS(i)
+

TS(i)

Nt(i) + TS(i)
· η(i), 2

√
2 log(kt/δ)

Nt(i)

)



and

∣∣∣∣µon(i)−max(LCBS
t (i),LCBt(i))
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√
2 log(kt/δ)

Nt(i) + TS(i)
+

TS(i)
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2 log(kt/δ)

Nt(i)
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Proof : To prove this Lemma, it suffices to prove that

P
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µ(on)(i) ≤ UCBS

t (i) ≤ µ(on)(i) + 2

√
2 log(kt/δ)

Nt(i) + TS(i)
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Indeed, the inequality implies
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by setting TS(i) = 0.
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2 log(kt/δ)

Nt(i) + TS(i)
+

TS(i)

Nt(i) + TS(i)
· η(i)

)

= P

(
Nt(i) · Ŷt(i) + TS(i) · X̂(i)

Nt(i) + TS(i)
≤ µ(on)(i) +

√
2 log(kt/δ)

N+
t (i) + TS(i)

+
TS(i) · (µ(off)(i)− µ(on)(i))

N+
t (i) + TS(i)

)

= P

(
Nt(i) · Ŷt(i) + TS(i) · X̂(i)

Nt(i) + TS(i)
≤ Nt(i)µ

(on)(i) + TS(i)µ
(off)(i)

Nt(i) + TS(i)
+

√
2 log(kt/δ)

N+
t (i) + TS(i)

)

≥ PYi∼P (on)(i)

[∑n
i=1 Yi + TS(i) · X̂(i)

n+ TS(i)
≤ nµ(on)(i) + TS(i)µ

(off)(i)

n+ TS(i)
+

√
2 log(kt/δ)

n+ TS(i)
for n = 1, 2, . . . , t

]

≥ 1− δ

k
.

Then a union bound on the failure probabilities for i ∈ A establishes the Lemma. We can obtain a similar bound for∣∣µon(i)−max(LCBS
t (i),LCBt(i))

∣∣. Clearly, the stopping condition guarantees that the probability of identifying the best
arm is no less than 1− δ.



In the following, we bound the total number of measurements. Define c = 1
2 [µ

on(1) + µon(2)]. We say that arm i∗ is BAD
in round t, if LCBt(i

∗) < c and LCBS
t (i

∗) < c, and an arm i ̸= i∗ is BAD in round t, if UCBt(i) > c and UCBS
t (i) > c.

We claim that for all time t ≥ 1,{
Events in Lemma C.1 hold

}
∩
{
max{LCBt(i

∗),LCBS
t (i

∗)} < min{UCBt(i),UCBS
t (i)}

}
⇒ {ht is BAD } ∩ {lt is BAD }.

Assume that the events in Lemma C.1 hold, then for any i ̸= i∗ and s ≥ τi, where τi is the first integer such that arm i is
not BAD. Define τi∗ = τ2.

UCBt(i) ≤ µ(on)(i) + 2 radt(i)

= c+ 2 radt(i) +
(µon(i)− µon(i∗)) + (µon(i)− µon(2))

2

≤ c+ 2 radt(i)−
∆i

2
≤ c,

where ∆i = µon(i∗)− µon(i).

UCBS
t (i) ≤ µ(on)(i) + radSt (i) +

[√
2 log(kt/δ)

Nt(i) + TS(i)
+

TS(i) ·
(
µ(off)(i)− µ(on)(i)

)
Nt(i) + TS(i)

]

= c− ∆i

2
+ 2

√
2 log(kt/δ)

Nt(i) + TS(i)
+

TS(i)

Nt(i) + TS(i)
· η(i) ≤ c.

Since min{UCBs(i),UCB
S
t (i)} ≤ c, we have

min

{
2

√
2 log(kt/δ)

Nt(i) + TS(i)
+

TS(i)

Nt(i) + TS(i)
· η(i), 2

√
2 log(kt/δ)

Nt(i)

}
≤ ∆i

2
.

Solving for Nt(i), we find that

Nt(i) >
32

∆2
i

log
(k
δ

)
− TS(i) ·max

{
1− 4η(i)

∆i
, 0
}
.

Since Lemma C.1 holds, the total number of rounds is observed to be no greater than

∞∑
t=1

1{ht is BAD or lt is BAD} =

∞∑
t=1

n∑
i=1

1 {{ht = i or lt = i} ∩ {i is BAD}}

≤
∞∑
t=1

n∑
i=1

1 {{ht = i or lt = i} ∩ {Nt(i) ≤ τi}} ≤
n∑

i=1

τi

Then LUCB-H algorithm obtains a sample complexity of order in Theorem 4.1.

D PROOF OF THEOREM 5.1

Fix a > 0. For all i ∈ {1, 2, . . . , k}, from Assumption 5.1 there exists an alternative model

v′ = (v1, . . . , vi−1, v
′
i, vi+1, . . . , vk)

in which the only arm modified is arm i, i ̸= 1 and v′i is such that:

KL(vi, v1) < KL(vi, v
′
i) < KL(vi, v1) + a, µon′

(i) > µon′
(1)

and

µoff′
(i) =

{
µoff(i), if µoff(i) > µoff(1)

µoff(1), if µoff(i) < µoff(1).
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Figure 9: Evolution of E[τδ] with V in group 2.
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Figure 10: Evolution of E[τδ] with V in group 2.

In particular, on the bandit model v′ the best arm is no longer arm 1. Introducing the event E = {Î∗ = 1} ∈ Fτδ , any
δ-PAC algorithm satisfies Pτδ(v, E) ≥ 1− δ and Pτδ(v

′, E) ≤ δ. By Lemma A.1, we have

k∑
i=1

Ev[Nτδ(i)]KL(von(i), von
′
(i)) +

k∑
i=1

TS(i)KL(voff(i), voff
′
(i)) ≥ d

(
Pτδ(v, E),Pτδ(v

′, E)
)
≥ d(1− δ, δ).

Then the following holds

k∑
i=1

Ev[Nτδ(i)]KL(von(i), von
′
(i)) +

k∑
i=1

TS(i)KL(voff(i), voff
′
(i)) ≥ log

( 1

2.4δ

)
,

due to the fact that d(1− δ, δ) ≥ log(1/(2.4δ)). Thus

Ev[Nτδ(i)] ≥
log(1/(2.4δ))− TS(i)KL(voff(i), voff

′
(i))

KL(von(i), von′(i)) + a

=
log(1/(2.4δ))

KL(von(i), von′(i)) + a
− TS(i)

KL(voff(i), voff
′
(i))

KL(von(i), von′(i)) + a

=
log(1/(2.4δ))

KL(von(i), von′(i)) + a
− TS(i) ·max

{
µoff(1)− µoff(i)

∆i
, 0

}2

The last equality holds because KL(voff(i), voff
′
(i)) = max{0, µoff(1)−µoff(i)}2/2. Letting a tend to zero and summing

over the arms yields the bound on Ev[τδ] =
∑k

i=1 Ev[Nτδ(i)].

E ROBUSTNESS TO MISSPECIFICATIONS OF THE BIAS BOUND V (i)

The LUCB-H algorithm relies on prior knowledge of an auxiliary bias bound V (i), which serves as an upper bound on the
mean shift between the offline and online reward distributions. That is, V (i) ≥ |µon(i) − µoff(i)| for all arms i. In many
real-world applications, it is possible to approximate or conservatively upper bound V (i) before the online phase begins.
For instance, in recommendation systems or clinical trials, offline and online data often originate from similar but not
identical distributions. Practitioners may exploit prior logs, domain expertise, or distribution shift estimation techniques to
estimate such discrepancies. We have provided a brief discussion of potential empirical strategies in the last paragraph of
Page 2.

Section 6 has already demonstrated the strong empirical performance of LUCB-H under correctly specified bias bounds.
In this section, we investigate how LUCB-H performs when V (i) is misestimated, particularly when it is underestimated.
This corresponds to the case where V (i) < |µon(i) − µoff(i)|, which could potentially compromise the algorithms ability
to properly discount misleading offline data.

To assess the sensitivity of LUCB-H to misestimation of V (i), we conducted an additional experiment in Group 2 (see
Figure 9), where we set V (i) ∈ {0.1, 0.15} for suboptimal arms while the true discrepancy was 0.2. The results show that



even with V (i) set below the true bias, LUCB-H remains stable and competitive. This suggests that LUCB-H is empirically
robust to mild underestimation of the bias.

To better understand when such underestimation can lead to performance degradation, we provide the following analysis.
In the extreme case where V (i) = 0, LUCB-H fully trusts offline data and assumes perfect alignment between offline
and online distributions. Consequently, the selection rule min{UCBt(i),UCBS

t (i)} may favor the offline-based bound
UCBS

t (i), causing the algorithm to overly rely on historical samples. This behavior is particularly problematic if arm i is
the true best arm and the offline mean is significantly biased, leading to suboptimal performance. On the other hand, if
arm i is suboptimal, relying on biased offline estimates may reduce its chances of being pulled, which could actually help
reduce sample complexity.

In Group 2’s previous experiments, we fixed V (1) = 0.4 for the best arm and only varied V (i) for suboptimal arms.
Since V (1) was not underestimated, LUCB-H maintained its effectiveness. To further investigate the impact of bias mis-
estimation on the best arm, we conducted a follow-up experiment in which all arms share the same bias bound, varying
V (i) ∈ {0.1, 0.125, 0.15, 0.175, 0.2, 0.225} for i = 1, 2, . . . , 5 (see Figure 10). This setup allows us to explore both
underestimation and overestimation scenarios.

The results confirm that LUCB-H is robust when V (i) is overestimated: its performance remains comparable to that of Pure
LUCB. However, when V (i) is underestimated, especially for the best arm, LUCB-H may be misled by biased offline data
and underperform relative to the pure online baseline LUCB. These findings provide empirical support for the theoretical
necessity of a valid bias bound, as emphasized in our impossibility result in Proposition 3.1. Without reliable information
to distinguish helpful from misleading historical data, no algorithm can consistently outperform the conservative online
LUCB baseline across all problem instances. A valid V (i) enables LUCB-H to safely incorporate historical data when
appropriate and revert to cautious online behavior when necessary.
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