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Abstract

Face reenactment aims to transfer the expression and pose
from a driving face to a source face. Great progress has been
made on this task with the recent success of deep generative
models. However, it remains challenging when the two faces
hold a significant pose discrepancy. Identity change and im-
age distortion arise as pose discrepancy increases. To tackle
these problems, we propose to exploit multiple guidance de-
rived from the 3D morphable face model (3DMM). Firstly, a
precomputed optical flow is utilized to guide the estimation
of motion fields. Secondly, a precomputed occlusion map is
utilized to guide the perception of occluded areas. Finally, a
rendered image is utilized to guide the restoration of missing
contents. We present a new reenactment framework to inte-
grate the above guidance and generate high-quality results.
Extensive experiments show the superior performance of our
framework compared with several state-of-the-art methods.
Ablation studies demonstrate the effectiveness of exploiting
multiple guidance from the 3DMM.

Introduction
Given a source face and a driving face, face reenactment
refers to the task of generating a reenacted face with expres-
sion and pose from the driving face and identity from the
source face. This task has a wide range of practical applica-
tions such as film production, next-generation communica-
tion, and role-playing video games.

Traditional solutions (Thies et al. 2015, 2016) to face
reenactment mainly come from the graphics community.
With advances in generative adversarial networks (GANs)
(Goodfellow et al. 2014), learning-based methods have
demonstrated impressive results. The commonly used strat-
egy is to decouple appearance and motion information from
input images and obtain motion descriptors such as fa-
cial landmarks. Based on this strategy, some methods (Wu
et al. 2018; Zakharov et al. 2019; Zhang et al. 2019; Ha
et al. 2020) generate reenacted results by translating mo-
tion descriptors into images. Another kind of method (Wiles,
Koepke, and Zisserman 2018; Siarohin et al. 2019a,b; Zhao
and Zhang 2022) predicts dense motion fields to deform
source images in the pixel or feature domain. Nevertheless,
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Figure 1: Challenging cases of face reenactment under a sig-
nificant pose discrepancy. The first row and the second row
show the problems of identity change and image distortion,
respectively. While our method can alleviate these problems
and achieve a clear improvement.

it remains challenging for these methods to generate real-
istic results when there exists a significant pose discrep-
ancy between the source face and the driving face. The large
pose discrepancy not only makes it difficult to capture long-
distance motion patterns, but the caused occlusions place
high demands on restoring missing contents.

To deal with pose discrepancy, 3D information is criti-
cally important since the head motions happen in the 3D
physical world. Compared with 2D photographic depictions,
3D representations contain richer spatial information that
is beneficial for modeling large motions. Recently, several
methods (Yao et al. 2020; Doukas, Zafeiriou, and Sharman-
ska 2021; Ren et al. 2021; Hong et al. 2022) have been pro-
posed to utilize 3D information for more accurate motion
estimation. However, proper handling of occlusions with 3D
information is also important while rarely considered.

In this paper, we propose to exploit multiple guidance de-
rived from the 3D morphable face model (3DMM) (Blanz
and Vetter 1999) for both accurate motion estimation and
proper handling of occlusions. Based on the 3D face rep-
resentation, we first compute an optical flow for the inner
face, which serves as a good starting point to guide the mo-
tion estimation for the entire image. To handle occlusions,
we then compute an occlusion map for the inner face to in-
dicate the occluded areas and guide the perception of occlu-



sions. Finally, to enhance the restoration of missing contents
caused by occlusions, we render the target 3D face into a
2D image to guide the generation of faithful facial structure.
A new reenactment framework is presented to utilize the
above guidance to generate high-quality reenacted results.
We evaluate our framework qualitatively and quantitatively
on two public datasets: VoxCeleb (Nagrani, Chung, and Zis-
serman 2017) and CelebV (Wu et al. 2018). Experimental
results show the proposed multiple guidance can facilitate
the generation of accurate facial motions and photo-realistic
results, even under a significant pose discrepancy. Our main
contributions can be summarized as follows:

• We propose to utilize multiple guidance provided by the
3DMM for face reenactment, including computed optical
flow, computed occlusion map, and rendered mesh.

• We present a new end-to-end reenactment framework,
which effectively incorporates the multiple guidance to
estimate accurate motion fields, properly handle occlu-
sions, and generate photo-realistic results.

• Experiments demonstrate that our framework can allevi-
ate the problems caused by a significant pose discrepancy
and achieve superior performance compared with several
state-of-the-art methods.

Related Work
3D Morphable Face Model
3D Morphable Face Model (3DMM) (Blanz and Vetter
1999) is a parametric face model that represents 3D facial
shapes and textures with a set of parameters. To achieve
better facial modeling, several variants (Paysan et al. 2009;
Cao et al. 2013) have been proposed to represent faces
with fine-grained semantic parameters of identity, expres-
sion, pose, etc. These models produce 3D face representa-
tions from multiple face scans using principal component
analysis (PCA). We use Basel Face Model (BFM) (Paysan
et al. 2009) in our framework.

Face Reenactment
2D-based methods 2D-based methods directly decouple
appearance and motion information from input 2D images,
which can be roughly classified into translation-based meth-
ods and warping-based methods.

Translation-based methods model the task of face reen-
actment as an image translation problem (Isola et al. 2017;
Zhu et al. 2017). For instance, ReenactGAN (Wu et al.
2018) translates the transformed facial landmarks of a spe-
cific source face into reenacted images with an encoder-
decoder model. To generalize to unseen persons, Zakharov
et al. (2019) propose to synthesize a neural talking head with
several images of that person. Landmarks and source appear-
ance are fused in the generator to produce reenacted faces.
Nevertheless, fine-tuning is still required for unseen identi-
ties due to the use of meta-learning mechanism. Zhang et al.
(2019) introduce a one-shot framework trained in an unsu-
pervised manner, which only needs a single source image.
Reenacted images are generated by fusing the source appear-
ance with the target face parsing maps. However, the results

are distorted when reenacting a different identity. Burkov
et al. (2020) utilize pose augmentation to boost the per-
formance of cross-identity reenactment. Bi-layer (Zakharov
et al. 2020) generates two components from perspectives of
low frequency and high frequency separately and fuses them
to obtain final results. Since the used motion descriptors
such as landmarks and parsing maps are subject-specific, the
identity preservation problem arises when the driving face
holds a clearly different facial shape from the source face.
Ha et al. (2020) propose a landmark transformer to alleviate
this problem, while the fidelity of reenacted images is still
not high enough.

Warping-based methods model the relative motion be-
tween the source face and the driving face with dense mo-
tion fields such as optical flow, which are used to deform
source images into reenacted ones. X2Face (Wiles, Koepke,
and Zisserman 2018) predicts optical flow from driving im-
ages, pose vectors or audio. The predictions are then used
to warp source face images. However, it lacks the ability
to generate contents that do not exist in the source images.
Monkey-Net (Siarohin et al. 2019a) applies the estimated
optical flow to deform the source face in the feature domain
and achieves better results. FOMM (Siarohin et al. 2019b)
models local motions around keypoints with affine transfor-
mations and obtains more accurate motion fields. To boost
the performance of motion estimation, One-shot Talking
Head (Wang, Mallya, and Liu 2021) extends the dimension-
ality of keypoints and predicts several flow fields. MRAA
(Siarohin et al. 2021) introduces a region-based motion field
modeling approach. Zhao and Zhang (2022) propose to use
more flexible TPS transformation to replace affine transfor-
mation. DaGAN (Hong et al. 2022) predicts a face depth
map to guide motion estimation and image generation. Gen-
erally, warping-based methods achieve higher fidelity than
translation-based methods since the high-frequency infor-
mation can be better preserved with spatial deformation.
Nevertheless, the motion fields are commonly learned from
scratch in a self-supervised manner due to the lack of labels.
The performance will drop significantly when large motions
are observed. Our method is also warping-based, while the
motion field is first computed and then completed instead of
learned from scratch.

3D-based methods 3D-based methods are built upon the
prior knowledge of 3D face models. Kim et al. (2018) render
the reenacted meshes of a 3D face model and translate them
into photo-realistic images. This method requires training
on a large number of images of a specific person and there-
fore has to be retrained for new-coming identities. Yao et al.
(2020) employ a graph neural network to learn optical flow
from meshes of source and driving faces, while the areas
that cannot be modeled by 3D models are less considered.
HeadGAN (Doukas, Zafeiriou, and Sharmanska 2021) ex-
tracts PNCC representations from reconstructed face meshes
to perform conditional synthesis and takes audio features
as complementary information to boost performance. SAFA
(Wang, Zhang, and Li 2021) combines FOMM with 3D
models to estimate flexible expressional motions, while the
subject-specific facial keypoints are still involved and lead



Reenactment

Module

Multiple

Guidance

Complete

Flow & Occlusion

Completion

Module

Motion Calculation

Render

Identity

Expression & 

Pose

Source Mesh

Driving Mesh

Target

Mesh

Source

Generated

Driving

Source

3
D

 R
ec

o
n

st
ru

ct
io

n

Figure 2: Overview of the proposed reenactment framework. Instead of estimating motion fields from scratch, we introduce a
new scheme where the optical flow and occlusion map are first computed and then completed. The reenacted image is generated
by deforming the source image with the complete optical flow and occlusion map, under the guidance of the rendered image.

to the identity preservation problem. StyleRig (Tewari et al.
2020b) uses 3DMM parameters to modulate the latent space
of pre-trained StyleGAN (Karras, Laine, and Aila 2019) to
control the expression and pose of generated face images.
Based on this, Tewari et al. (2020a) propose an optimization-
based method to compute embeddings of existing images to
perform reenactment on real-world faces. More recent work
PIRenderer (Ren et al. 2021) uses 3DMM parameters to pre-
dict an optical flow and control the generation process. How-
ever, the results become unrealistic when a significant iden-
tity or pose discrepancy occurs. Different from these meth-
ods, we extract multiple guidance from the 3DMM and ap-
ply them for both accurate motion estimation and proper
handling of occlusions.

Methodology
Given a source image Is and a driving image Id , we aim to
generate an image Ig with the expression and pose of Id and
other attributes of Is such as identity, illumination, and back-
ground. As illustrated in Fig. 2, we first perform 3D recon-
struction on (Is , Id) and extract multiple guidance including
computed optical flow Fc , computed occlusion map Oc , and
rendered image Ir . Subsequently, we employ a completion
module to estimate motions for the entire image based on
the computed results (Fc ,Oc). Finally, we apply the com-
plete optical flow F and occlusion map O to transform Is
into Ig in our reenactment module, which is also guided by
the rendered image Ir .

Extraction of Multiple Guidance
In this part, we perform 3D reconstruction on input images
and obtain multiple guidance from reconstructed 3D faces,
as shown in Fig. 2. A pre-trained face reconstruction model
provided by (Deng et al. 2019) is used to extract 3DMM
parameters from face images. Given a face image, the re-
construction model regresses a vector v = (α,β, δ,γ,p) ∈
R257, where α ∈ R80, β ∈ R64, and δ ∈ R80 represent
the identity, expression, and texture parameters, respectively.
γ ∈ R27 and p ∈ R6 refer to the illumination and face

pose, respectively. The mesh topology we adopt contains
v = 35709 vertices and f = 70789 triangles. The 3D co-
ordinates V ∈ Rv×3 of mesh vertices can be computed with
the regressed parameters.

V = (Vmean +αVid + βVexp)R
⊤ + t (1)

where Vmean and Vid are the PCA bases of BFM (Paysan
et al. 2009), and Vexp is built from (Cao et al. 2013).
R ∈ SO(3) and t ∈ R3 are the rotation and translation
derived from p, respectively. With attributes A ∈ Rv×d as-
signed to the vertices, a 2D image can be rendered through
rasterization.

I = R(V,A, C) (2)
where I ∈ Rh×w×d is the rendered image. h and w denote
the spatial size while d denotes the attribute dimension. R
is the rendering function that rasterizes 3D vertex attributes
into the 2D image plane. C is the perspective camera model.
We use PyTorch3D (Ravi et al. 2020) to implement the ren-
dering process.

Given Is and Id , we extract their 3DMM parameters vs

and vd , which are then recombined to obtain target param-
eters vt = (αs ,βd , δs ,γs ,pd). The target mesh can be
constructed with vt and then rendered into an image Ir with
computed color according to the texture and illumination of
the source face. Ir serves as the guidance of facial structure
to facilitate the restoration of missing contents caused by oc-
clusions. The optical flow for the inner face can be computed
with the constructed vertices as follows:

Fc = R(Vt ,P(Vs , C), C)− G(h,w) (3)

where P is the function that projects 3D vertices into the 2D
coordinate space. G is used to generate a 2D coordinate grid
of shape Rh×w×2. We additionally compute an occlusion
map for the inner face to indicate the occluded areas and
guide the perception of occlusions.

Oi,j
c = 1(Pi,j

t ∈ Ps) (4)

where Oc ∈ Rh×w×1 is the computed occlusion map. i and
j denote the indices of row and column. Pt and Ps are the
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Figure 3: Illustration of the completion module.

nearest triangles at each pixel of the inner facial region in
Ig and Is , respectively. The indicator function 1 identifies
such a rule that a target pixel is occluded if its corresponding
triangle cannot be found in the set of source triangles.

Flow-and-Occlusion Completion
After obtaining the optical flow and occlusion map for the
inner face, we employ a completion network Fc to estimate
motions for the entire image based on the computed results,
as shown in Fig. 3. The precomputed optical flow and oc-
clusion map serve as good starting points to estimate final
motion fields. Fc takes the source image Is and a subset of
driving parameters ṽd = (βd ,pd) as inputs and produces
an optical flow, an occlusion map, and corresponding masks.

{Fp ,Op ,Mf ,Mo} = Fc(Is , ṽd) (5)

where Fp and Op represent the predicted optical flow and
occlusion map, respectively. Mf and Mo are the predicted
masks for fusing the predicted and computed results. We
adopt the adaptive instance normalization (AdaIN) (Huang
and Belongie 2017) to inject ṽd into Fc . The final optical
flow and occlusion map can be obtained as follows:

F = Mf ⊙ Fp + (1−Mf )⊙ Fc (6)

O = Mo ⊙Op + (1−Mo)⊙Oc (7)

where ⊙ is the element-wise multiplication.
With the guidance of the computed results, the completion

network can pay more attention to the motion estimation of
non-facial regions, which cannot be modeled by the 3DMM.
The final results take advantage of the computed and pre-
dicted results to make a consistent and accurate estimation
for both the facial and non-facial regions.
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Figure 4: Implementation details of the reenactment module.

Reenacting
In this part, we employ a reenactment network Fr to trans-
form the source image Is into the reenacted image Ig , as
shown in Fig. 4. Fr is designed with an encoder-decoder ar-
chitecture. To preserve source textures, we fuse features at
multiple scales via skip connections. The encoder features
are first warped and then masked before being ported to the
corresponding decoder layers. The optical flow F is used to
warp the source features to the desired regions, while the
occlusion map O is used to mask out the occluded areas
that should be inpainted. To guide the restoration of missing
contents caused by occlusions and produce a faithful facial
structure, we inject the rendered image Ir into the decoder
part of Fr with spatially-adaptive normalization (SPADE)
(Park et al. 2019).

Training
We train our framework end-to-end in a self-supervised
manner. In the training stage, a pair of images (Is , Id)
are randomly chosen from each video to perform self-
reenactment. While the identities of Is and Id can be dif-
ferent in the inference stage. The framework is trained with
a reconstruction loss Lc and a style loss Ls , which are based
on the perceptual loss of (Johnson, Alahi, and Fei-Fei 2016).
Similar to (Siarohin et al. 2019b), we downsample Ig and Id
several times and calculate Lc at multiple scales. Lc and Ls

calculate ℓ1 distance and statistic error between the activa-
tion maps of generated image Ig and ground-truth Id .

Lc =
∑
i,j

∥∥∥ϕi(I
j
g)− ϕi(I

j
d)
∥∥∥ (8)

Ls =
∑
i

∥∥∥Gϕ
i (Ig)−Gϕ

i (Id)
∥∥∥ (9)



Self-reenactment Cross-reenactment
CSIM↑ AED↓ APD↓ FID↓ CSIM↑ AED↓ APD↓ FID↓

X2Face 0.613 2.679 0.2096 36.75 0.462 4.071 0.2898 50.09
FOMM 0.759 1.350 0.0379 9.80 0.521 3.329 0.0775 32.40

PIRenderer 0.760 1.322 0.0413 9.05 0.572 2.923 0.0744 21.73
DaGAN 0.763 1.300 0.0366 8.65 0.495 3.191 0.0678 36.88

Ours 0.761 1.255 0.0372 8.51 0.625 2.919 0.0589 16.77

Table 1: Quantitative comparisons on the VoxCeleb dataset. The up and down arrows represent higher and lower values for
better performance. The best results are highlighted in bold.

where ϕi is the activation map of the i -th layer in the pre-
trained VGG-19 network, and j denotes downsampling j

times. Gϕ
i is the Gram matrix constructed from ϕi . The final

loss used for training our framework is a weighted summa-
tion of the above losses.

L = Lc + λsLs (10)
where we set λs = 250 in the experiments.

Experiments
Experimental Setup
Datasets We conduct experiments on two public datasets:
VoxCeleb (Nagrani, Chung, and Zisserman 2017) and
CelebV (Wu et al. 2018). The VoxCeleb dataset contains
22496 talking-head videos extracted from YouTube. Follow-
ing the same pre-processing method described in (Siarohin
et al. 2019b), we crop valid faces from the original videos.
A total of 17913 and 514 videos with lengths varying from
64 to 1024 frames are obtained for the train and test splits,
respectively. We use a similar test set sampling strategy of
(Ha et al. 2020) and collect 10280 image pairs for both self-
reenactment and cross-reenactment. For self-reenactment,
20 image pairs are randomly sampled from each video of
the test split, while the two images in each pair are from dif-
ferent identities under the cross-reenactment setup. To fur-
ther evaluate the performance of reenacting unseen identi-
ties, similar to the in-the-wild scenario, we construct another
test set using the CelebV dataset that includes videos of five
different celebrities. We randomly sample 1000 image pairs
for each identity and obtain 5000 pairs in total.

Metrics We use multiple metrics to evaluate the quality
of results. To measure the realism of generated images,
Fréchet Inception Distance (FID) (Heusel et al. 2017) is
utilized to estimate the difference between the distributions
of the generated and real images. Besides, the quality of
identity preservation is evaluated with the cosine similarity
(CSIM) of embedding vectors from pretrained face recogni-
tion model. For the motion accuracy, following the previous
work of Ren et al. (2021), we use the Average Expression
Distance (AED) and Average Pose Distance (APD) to eval-
uate the quality of expression and pose transfer, respectively.

Training Details
We train our framework on the VoxCeleb dataset for 100
epochs using four TITAN V GPUs. The ADAM optimizer

CSIM↑ AED↓ APD↓ FID↓
X2Face 0.556 3.702 0.0761 55.72
FOMM 0.516 3.540 0.0854 39.21

PIRenderer 0.567 2.968 0.0611 26.57
DaGAN 0.500 3.442 0.0779 47.46

Ours 0.620 2.944 0.0484 21.96

Table 2: Quantitative comparisons of cross-reenactment on
the CelebV dataset.

(Kingma and Ba 2014) is adopted with an initial learning
rate of 1× 10−4. The learning rate is decreased to 1× 10−5

after 60 epochs. The batch size is set to 8 in our experiments.

Comparisons
We evaluate the performance of our framework under two
setups: self-reenactment and cross-reenactment. The eval-
uation results are compared with the following methods:
X2Face (Wiles, Koepke, and Zisserman 2018), FOMM
(Siarohin et al. 2019b), PIRenderer (Ren et al. 2021) and
DaGAN (Hong et al. 2022). The absolute motions are used
for all methods.

Self-reenactment We first compare the generated results
under the self-reenactment setup, where the source im-
age and the driving image are from the same person. The
quantitative results are reported in Table 1. Our framework
achieves the best results on AED and FID and competitive
results on CSIM and APD. The improvement in AED and
FID shows that our framework can capture more accurate
facial motions and generate more realistic results.

Cross-reenactment We also perform comparisons under
the cross-reenactment setup, where the source and driv-
ing faces are from different identities. Compared with self-
reenactment, cross-reenactment is a more meaningful setup,
which is required for the vast majority of practical appli-
cations. The quantitative results are provided in Table 1
and Table 2. Our framework achieves the best results on
CSIM, which demonstrates that the identity information of
the source face is well-preserved. The lower AED and APD
indicate that our framework is able to capture facial motions
more accurately with multiple guidance from the 3DMM.
In addition, our framework produces more realistic results,
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Figure 5: Qualitative comparisons of cross-reenactment on the VoxCeleb dataset (top two rows) and the CelebV dataset (bottom
two rows).

Figure 6: Quantitative comparisons of cross-reenactment on
the VoxCeleb dataset under different pose discrepancies.

reaching a better FID score. To investigate the performance
under different pose discrepancies between the source and
driving faces, we analyze the quantitative results of cross-
reenactment on the VoxCeleb dataset, as shown in Fig. 6. It
can be seen that our framework can preserve source iden-
tities better and generate more realistic results under both
small and large pose discrepancies.

The qualitative results are shown in Fig. 5. It can be seen
that X2Face produces unrealistic distorted results. This is
because it uses the predicted optical flow to deform the
source image directly in the pixel domain and lacks the abil-
ity to generate reliable contents for the occluded areas. It
is difficult to estimate accurate optical flow directly from the
input images, especially under a large motion. By deforming
the source image with the estimated optical flow in the fea-
ture domain, FOMM can produce reasonable results. How-
ever, since it uses subject-specific sparse keypoints to esti-
mate facial motions, the facial structure is distorted when the
source face and the driving face hold significantly different
facial shapes. The facial expressions are not well-reenacted
either. When the identities of the source face and the driv-
ing face are quite different (e.g. different genders), PIRen-
derer fails to faithfully preserve the source identity. There
appear some leakages of identity-specific features (e.g. mus-
tache in the second row of Fig. 5) from the driving face to
the reenacted face. One possible explanation is that PIRen-
derer maps the driving parameters into a latent vector and
injects it into the generation process. The model may over-
fit some specific identities during the training process, lead-
ing to the leakage of identity information. DaGAN gener-
ates more accurate facial expressions than FOMM by incor-
porating the learned depth map. However, the facial shapes
are still inaccurate due to the use of subject-specific sparse
keypoints. With the help of multiple guidance derived from
the 3DMM, our method produces more realistic results with
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Figure 7: Qualitative results of the ablation study. The com-
puted optical flow (flow guidance, FG), computed occlusion
map (occlusion guidance, OG), and rendered image (synthe-
sis guidance, SG) are added to the base model in turn.

CSIM↑ AED↓ APD↓ FID↓
Base 0.595 3.195 0.0550 23.36
+FG 0.615 3.055 0.0542 24.03

+FG+OG 0.616 3.043 0.0544 22.39
+FG+OG+SG 0.620 2.944 0.0484 21.96

Table 3: Quantitative ablation results of cross-reenactment
on the CelebV dataset. We add the multiple guidance in turn.

more accurate facial motions compared with the other meth-
ods, even under a large identity or pose discrepancy between
the source face and the driving face. Notably, compared with
PIRenderer and DaGAN, which also incorporate 3D infor-
mation, our framework exploits 3D priors in a more compre-
hensive way. We extract multiple guidance from the 3D face
meshes for both accurate motion estimation and proper han-
dling of occlusions. By utilizing the rich priors contained in
the 3DMM, our framework generates more realistic results
and preserves source identities better.

Ablation Study
We perform ablation experiments on the CelebV dataset to
investigate the effectiveness of the proposed multiple guid-
ance. The optical flow and occlusion map used in the base
model are directly predicted by the completion network,
without guidance of the computed results. Besides, no ren-
dered image is injected into the reenactment network. We
add the proposed multiple guidance to the base model in turn
and report the quantitative results in Table 3. The flow guid-
ance (FG), occlusion guidance (OG), and synthesis guid-
ance (SG) represent the computed optical flow, computed
occlusion map, and rendered image, respectively. It can be
seen that the flow guidance improves CSIM and AED, which
means that it can facilitate more accurate motion estimation
and benefit identity preservation. Comparing the second and
third rows of Table 3, the occlusion guidance brings a clear
improvement to FID, which indicates that it can facilitate the
generation of realistic results. The synthesis guidance im-
proves all four metrics by providing explicit clues for prop-
erly handling occlusions.

P
IR

en
d
er

er
O

u
rs

Source Driving Expression Pose Expression+Pose

P
IR

en
d
er

er
O

u
rs

Figure 8: Qualitative results of disentangled reenactment.

The qualitative results are shown in Fig. 7. It can be seen
that the base model suffers from distortions of facial shapes
due to predicted inaccurate motion fields. By incorporating
the flow guidance as a good starting point for motion es-
timation, the distortions of facial shapes are reduced. With
explicit guidance for the perception of occlusions, the visual
quality improves to a certain extent. The synthesis guidance
provides semantic information such as facial structure and
texture, further helping generate more accurate facial mo-
tions and realistic results.

Disentangled Reenactment
Since the 3DMM parameters are fully disentangled, it is pos-
sible to reenact one of the expression and pose alone while
keeping the other one unchanged. The reenacted results are
shown in Fig. 8. It can be seen that our framework can reen-
act expression or pose independently and generate more re-
alistic images than PIRenderer (Ren et al. 2021).

Conclusion
In this paper, we propose to exploit multiple guidance de-
rived from the 3DMM and present a new face reenactment
framework. The multiple guidance not only helps with more
accurate motion estimation but also facilitates proper han-
dling of occlusions. Our framework can generate realistic
results with accurate facial motions, even under a signifi-
cant head pose discrepancy between the source face and the
driving face. Experimental results show the superior perfor-
mance of our framework compared with several state-of-the-
art methods. Ablation studies demonstrate the effectiveness
of the proposed multiple guidance.
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