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Abstract

Detecting out-of-distribution (OOD) examples
is an important task for deploying reliable ma-
chine learning models in safety-critial applica-
tions. While post-hoc methods based on the Ma-
halanobis distance applied to pre-logit features
are among the most effective for ImageNet-scale
OOD detection, their performance varies signif-
icantly across models. We connect this incon-
sistency to strong variations in feature norms,
indicating severe violations of the Gaussian as-
sumption underlying the Mahalanobis distance es-
timation. We show that simple ¢2-normalization
of the features mitigates this problem effectively,
aligning better with the premise of normally dis-
tributed data with shared covariance matrix. Ex-
tensive experiments on 44 models across diverse
architectures and pretraining schemes show that
{5-normalization improves the conventional Ma-
halanobis distance-based approaches significantly
and consistently, and outperforms other recently
proposed OOD detection methods. Code is avail-
able at github.com/mueller-mp/maha-norm.

1. Introduction

Deep neural networks have demonstrated remarkable perfor-
mance across a variety of real-world tasks. However, when
faced with inputs that fall outside their training distribu-
tion, they can behave unpredictably and even result in high-
confidence predictions (Hendrycks & Gimpel, 2017; Hein
et al., 2019). These so-called out-of-distribution (OOD) in-
puts are often misclassified with high confidence as belong-
ing to the in-distribution (ID) classes, creating significant
risks for real-world deployments. OOD detectors aim to
identify and reject such anomalous inputs — potentially
prompting human intervention, transitioning to a safe state,
or declining to provide a prediction — while still allowing
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Figure 1. Normalizing features improves OOD detection with
the Mahalanobis distance consistently. Shown is the difference
in false-positive rate at true positive rate of 95% between unnormal-
ized and normalized features for 44 ImageNet models, averaged
over five OOD datasets of the OpenOOD benchmark.

genuine ID samples to pass through normally. OOD de-
tection methods are commonly divided into methods that
require modifications to the training process and so-called
post-hoc detection methods that can be applied to any pre-
trained network. For many downstream tasks (not only
OOD detection), the best results are achieved by models
that have been pretrained on large datasets, some of which
might not be publicly available. Since adjusting the training
scheme for these networks is usually not feasible, simple
post-hoc OOD detection is most often used in practice.

Common post-hoc OOD detection methods are based on a
scoring function that typically inputs either the logit/softmax
outputs of a model (Hendrycks & Gimpel, 2017; Hendrycks
et al., 2022; Liu et al., 2020), or the pre-logit features (Lee
et al., 2018b; Ren et al., 2021; Sun et al., 2022), or both
(Sun et al., 2021; Wang et al., 2022). VisionTransformers
have shown particular success in this area (Koner et al.,
2021). For large-scale settings where, e.g., ImageNet is
the ID dataset, they perform particularly well (Galil et al.,
2023), especially when paired with feature-based methods
(Bitterwolf et al., 2023). Among those, the Mahalanobis
distance (Lee et al., 2018b; Ren et al., 2021) stands out as a
particularly effective and simple scoring function. However,
despite leading for some models to state-of-the-art OOD
performance, it fails for others and shows high performance
variation across different models and pretraining schemes,
and brittleness when confronted with supposedly easy noise
distributions as OOD data (Bitterwolf et al., 2023).
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Figure 2. Mahalanobis++: We illustrate how to improve Mahalanobis-based OOD detection. Left: For unnormalized features, assuming
a shared covariance matrix for all classes leads to suboptimal OOD detection (bottom) with the Mahalanobis score. Center: Normalizing
the features, i.e. projecting them onto the unit sphere mitigates this problem effectively. Right: After normalization, the fit of the shared
covariance matrix is tighter for all classes, leading to improved OOD detection as in- and out-distribution are better separated. Shown are
the Mahalanobis++ scores for a pretrained ConvNextV2-L on NINCO, which achieves a new state-of-the-art FPR of 18.4% (see Tab. 6).

In this work, we observe that for models where the Maha-
lanobis distance does not work well as OOD detector, the
assumptions underlying the method are often not well satis-
fied. In particular, the feature norms vary much more than
expected when assuming a Gaussian model with a shared
covariance matrix. To mitigate this problem, we provide a
simple solution, called Mahalanobis++, which we visualize
in Figure 2: By projecting the features onto the unit sphere
before estimating the Mahalanobis distance, we significantly
reduce the class-dependent feature variability and obtain a
better fit of the covariance matrix, which ultimately leads
to consistent improvements in OOD detection, as demon-
strated in Fig. 1 or Tab. 4.

In summary, our contributions are the following:

* We observe that the assumptions underlying the Ma-
halanobis distance as OOD detection method, in par-
ticular that the features are normally distributed with a
shared covariance matrix, are often not well satisfied

¢ We relate this to variations in the feature norm, which
can vary strongly across and within classes, and corre-
lates with the Mahalanobis distance

* We provide an easy solution, which we call Maha-
lanobis++: Normalizing the features by their /-norm
before computing the Mahalanobis distance

* We evaluate Mahalanobis++ across a large range of
models with different pretraining schemes and archi-
tectures on ImageNet and Cifar datasets and find that
it consistently outperforms the conventional Maha-
lanobis distance and other baseline methods, and im-
proves the detection of far-OOD noise distributions

2. Related Work

Mahalanobis distance. Most closely related to our work are
the well-established OOD detection methods based on the
Mahalanobis distance. Lee et al. (2018b) proposed to esti-
mate a class-conditional Gaussian distribution with a shared
covariance matrix “with respect to (low- and upper-level)
features”, and to use the minimal Mahalanobis distance to
the respective mean vectors as OOD score. Since then, the
community has transitioned to using only the pre-logit fea-
tures. Ren et al. (2021) proposed to additionally estimate
a class-agnostic mean and covariance matrix and use the
difference between the two resulting scores as OOD score,
called relative Mahalanobis distance. These methods have
demonstrated broad applicability, spanning domains such
as medical imaging (Anthony & Kamnitsas, 2023) and self-
supervised OOD detection (Sehwag et al., 2021). Gaussian
mixture models (GMMs) represent a more comprehensive
framework for modelling feature distributions. They have
been applied to small-scale setups but require tweaks to
the training process (e.g. spectral normalization) (Mukhoti
et al., 2023). Adapting them to ImageNet-scale setups as
post-hoc OOD detectors has so far not been successful.

Feature norm. The role of the feature norm for OOD detec-
tion has been investigated in several works (Yu et al., 2020).
Park et al. (2023b) underline that the norm of pre-logit fea-
tures are equivalent to confidence scores and that the feature
norms of OOD samples are typically smaller than those of
ID samples. Their observations are mostly based on results
obtained with strong over-training and simple networks. We
will show that this observation does not hold generally. Gia
& Ahn (2023) investigate the role of the {5 norm in con-
trastive learning and OOD detection. Regmi et al. (2024)
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and Haas et al. (2024) try to leverage the feature norm to dis-
criminate between ID and OOD samples. In particular, they
concurrently suggested training with £5-normalized features
and then using the norm of the unnormalized features as
OOD score at inference time, similar to Yu et al. (2020) and
Wei et al. (2022).

Spherical embeddings. Spherical embeddings have been
investigated and leveraged across several fields (Liu et al.,
2018; Zhou et al., 2022; Sablayrolles et al., 2018; Yaras et al.,
2022), also within the OOD detection literature (Zheng et al.,
2022). Ming et al. (2023) proposed CIDER, a contrastive
training scheme that creates well-separated hyperspherical
embeddings via a dispersion loss and applies KNN as de-
tection method at inference time. Sehwag et al. (2021) also
train with a contrastive loss, and apply the Mahalanobis dis-
tance as OOD detection method on the normalized features
at inference time. Haas et al. (2023) observe that normaliz-
ing features during train and inference time improves perfor-
mance on the DDU benchmark (Mukhoti et al., 2023). They
hypothesize that their training scheme induces early neural
collapse, which might benefit out-of-distribution detection
capabilities of networks. Importantly, all those methods are
train-time methods, i.e. require modifications to the training
process, including feature normalization - either explicitly
in the case of Haas et al. (2023), or implicitly through the
contrastive loss in Ming et al. (2023) and Mukhoti et al.
(2023). They then apply normalization at inference time,
because they also normalized at train time. In contrast, we
highlight the benefits of feature normalization when apply-
ing the Mahalanobis distance as post-hoc OOD detection
method in this work - which is non-obvious for generic
pretraining schemes.

Cosine-based detection scores. Many previous works have
suggested using the angle, or more specifically, the cosine,
for OOD detection, but those mostly require modifications
to training or architecture (Techapanurak et al., 2020; Tack
et al., 2020), or are used for unsupervised setups (Radford
etal., 2021; Ming et al., 2022). Park et al. (2023a) and Sun
et al. (2022) use nearest neighbour search in the normal-
ized feature-space, which amounts to a nearest neighbour
search in the cosine space. We show that Mahalanobis++
outperforms cosine-based OOD detection methods.

3. Variations in feature norm degrade the
performance of Mahalanobis-based OOD
detectors

In this Section, we investigate the assumptions underlying
the Mahalanobis distance as OOD detection method. We
report results for NINCO (Bitterwolf et al., 2023) as OOD
dataset. For all experiments, we use a pretrained ImageNet
SwinV2-B-In21k model (Liu et al., 2022) with 87.1% Ima-
geNet accuracy. This strong model is a prototypical example

where OOD detection on NINCO with Mahalanobis score
performs significantly worse (FPR of 58.2%) than for other
similar models like the ViT-B16-In21k-augreg with 84.5%
accuracy (Steiner et al., 2022) but low FPR of 31.3% using
the Mahalanobis score.

3.1. Mahalanobis Distance

The Mahalanobis distance is a simple, hyperparameter-free
post-hoc OOD detector that has been suggested by Lee et al.
(2018b). Given the training set (z;, y;)"_, with input z; and
class labels y; one estimates: i) the class-wise means /i, and
ii) a shared covariance matrix 3

ﬂc = Ni Z (;5(:1:1) (1)
R
D=5 Y @)~ p)(é() — i)" @)

where ¢(z;) are the pre-logit features of x;, V. the number
of train samples in class ¢, N the total number of train sam-
ples, and C' the total number of classes. The Mahalanobis
distance of a test sample x to a class mean ji. is then

drtana (e fie) = ($la) — fie) TS (d(x) — fre) - (3)

and the final OOD-score Syana () of x; is the negative
smallest distance to one of the class means:

SMaha(Z1) = —mcin drrana (T fic) 4

If Smana(2¢) < T then the sample is rejected as OOD, where
for evaluation purposes 7' is typically determined by fixing
a TPR of 95% on the in-distribution. The core assumption
of Lee et al. (2018a) is that “the pre-trained features of
the softmax neural classifier might also follow the class-
conditional Gaussian distribution”. Indeed, one implicitly
uses a probabilistic model where each class is modelled as
a Gaussian N (fic, 3) with a shared covariance matrix 3,
which can be seen as a weighted average of the covarlance

matrices of the features of each class: 3 = Z =1 NC Se
with 3, = N D igi=e(@() — fic) (B(x:) — fic) T, with the

weight N, \N being an estimate of P(Y = ¢).

The Mahanalobis score is a strong baseline for OOD detec-
tion as noted in Bitterwolf et al. (2023) where they report for
a particular Vision Transformer (ViT) trained with augreg (a
carefully selected combination of augmentation and regular-
ization techniques) by Steiner et al. (2022) state-of-the-art
results on their NINCO benchmark comparing several mod-
els and OOD detection methods. On the other hand other
ViTs like DeiT or Swin that are equally strong in terms of
classification performance showed degraded OOD detection
results. Moreover, Bitterwolf et al. (2023) report that the
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Mahalanobis-based OOD detector performs worse on their
“unit tests” of simple far-OOD test sets than other methods.

In the remainder of this section, we will try to identify the
reasons for the varying performance of Mahalanobis-based
OQOD detection. Our main hypothesis is that it is due to
violations of its core assumptions:

* Assumption I: the class-wise features (¢(;)),, = fol-
low a multivariate normal distribution A (pie, 22),

¢ Assumption II: the covariance matrix 3 is the same
for all classes.

Below, we will show that these assumptions do not hold for
some models, as indicated in Fig. 2. One strong indicator
of this violation is the norm of the features, which turns out
to be a strong confounder, ultimately degrading the OOD
detection performance with Mahalanobis-based detectors.

For completeness, we mention the Relative Mahalanobis
score here, proposed by Ren et al. (2021), also suggested
as a fix to the Mahalanobis score. They argue that for the
detection of near-OOD, one should use a likelihood ratio of
two generative models compared to the likelihood used in
the Mahalanobis method. Thus they fit a global Gaussian
distribution with mean figioba1 and covariance matrix ﬁglobal,
and use the difference between the class-conditional and the
global Mahalanobis score as OOD score.

Expected Observed
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Figure 3. The feature norms vary strongly across and within
classes. Left: We simulate how the feature norms per class would
be distributed if they were sampled from Gaussians with the means
and covariance matrix used for the Mahalanobis distance estima-
tion. Right: The actual feature norm distribution observed in
practice. Both the average norms across classes and the norms
within each class vary much stronger than expected.

3.2. Is the Gaussian fit in feature space justified?

As the features ¢(x;) € R? for input z are high-dimensional,
e.g. d = 1024 for a SwinV2-B, we expect some concen-
tration of measure phenomena if the features ¢(z) of a

particular class are Gaussian distributed. In particular, the
feature norm would be concentrated, as the following lemma
shows.

Lemma 3.1. Ler ®(X) ~ N (u, ). Then

Var (|| @(X)3)

2 ’

P (12O = () + )] = ¢) <

€

where Var(|(X)|12)i= 37 (3\2+62\-+18)— (-2

i=1
and (X\;)L_, are the eigenvalues of 3.

This implies that ||®(X)||, should be concentrated around

\/tr(X) + ||u||§ In the right part of Fig. 3, we show the
distribution of the norms of the training features across
classes for the SwinV2-B model, i.e. the feature norms of
those samples that were used for estimating class means and
covariance. In the left part of Fig. 3 we show the distribution
of feature norms when sampling from A (., ) for every
class c. As expected from the derived Lemma, the sampled
norms vary little around their mean value. It is evident by the
differences of the left and right part of Fig. 3, that the fit with
class-conditional means and shared covariance matrix does
not represent the structure of the data well as the observed
feature norms of SwinV2-B show heavy tails (right) which
would not be present if the data was Gaussian (left). In
Figure 8 we show that similar heavy-tailed feature norm
distributions but with different skewness can be found even
for the same ViT-architecture where the Mahalanobis score
does not work well. This shows that Assumption I of the
Mahalanobis score is not fulfilled across models, and models
can deviate heavily from it. In contrast, for the ViT-augreg
(Steiner et al., 2022), which has been shown to have very
good OOD detection performance with the Mahalanobis
score (Bitterwolf et al., 2023), the feature norms behave
roughly as expected under the Gaussian assumption (right
plot in Figure 8).

To further evaluate the adherence to Assumption I, we cen-
ter training features of the SwinV2-B by their class means:
" () = ¢(xi)—fic[i)- These centered features, used for
covariance estimation, should ideally follow a zero-mean
multivariate normal distribution. To quantify deviations
from normality, we use Quantile-Quantile (QQ) plots, a stan-
dard approach in statistics (see, e.g. Wilk & Gnanadesikan
(1968)) which compares sample quantiles against those of
a theoretical distribution (here, the standard normal). A
straight diagonal line indicates agreement with the theo-
retical distribution; deviations highlight mismatches. To
enable direct comparison between models (and later be-
tween normalized and unnormalized features), we standard-
ize ¢ (z;) by its empirical standard deviation. While
standardization technically alters the distribution (as the em-
pirical variance is sample-dependent), we expect this to be
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Table 1. Variance alignment. We measure how much the class-
variances deviate from the global variance via the deviation score
(see Eq. 5). Lower values indicate better alignment. Normalization
aligns the features of SwinV2 and DeiT3, but not ViT-augreg.

unnormalized normalized
SwinV2-B-In21k 0.26 0.12
DeiT3-B16-In21k 0.24 0.15
ViT-B16-In21k-augreg 0.05 0.05

negligible due to the large dataset size (> 10° samples). We
report QQ-plots for three directions for a SwinV2-B and a
DeiT3 (blue lines in Figure 4), and observe strong deviations
from the ideal diagonal line, indicating that the centered fea-
tures have much stronger tails than expected if the features
followed a Gaussian distribution, further refuting Assump-
tion I. We observe similar heavy tails in QQ-plots of other
models where the Mahalanobis score is not working well
for OOD detection (see Fig. 9 in App. D). Only the ViT with
augreg training has a QQ plot close to the expected one.

To assess the validity of Assumption II, we measure how
strongly the individual class variances deviate from the
global variance. To this end, we compute the expected
relative deviation over all directions:

_ 2tr(A?) + tr(A)?

E.[(u” Au)?] = ,

d(d+2) )

where v has a uniform distribution on the unit sphere and
A=3"2(3; —2)82 (see App. C for a derivation). We
average over all classes ¢ and report the results for a SwinV2-
B, a DeiT3-B and a ViT-augreg in Table 1. We observe that
the SwinV2 and DeiT3 show significantly larger deviations
than the ViT-augreg, indicating that the class-specific vari-
ances differ more. More models in Tab. 7 in the Appendix.

3.3. Correlation of feature norm and spg;pa-score

The strong variations within and across classes we observed
in Figure 3 indicate that the feature norm might impact the
Mahalanobis estimation. To investigate this, we plot the fea-
ture norm against the Mahalanobis score spsqn, assigned
by the SwinV2-B model for ID and OOD test samples (i.e.
samples that were not used for estimating means and covari-
ance) in Figure 5. We observe a clear correlation: Samples
with large feature norms consistently receive a large OOD
score, and vice versa for samples with small feature norms
- irrespective of whether they belong to the in or out distri-
bution. Ideally, a detector should be able to distinguish ID
from OOD samples irrespective of the norm of the OOD
samples. Since a large fraction of the OOD samples have
a comparably small feature norm, the resulting OOD de-
tection performance is, however, poor. The reason for this
strong correlation is the strongly different average feature
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Figure 4. QQ-plot: {2 —normalization helps transform the fea-
tures to be more aligned with a normal distribution. For a
SwinV2 and DeiT3 model (where the feature norms vary strongly
across and within classes) normalization shifts the distribution
towards a Gaussian (black line).

norm across classes observed above. In Fig. 7, we observe
the same correlation for other models (again, the ViT-B-
augreg being an exception). In Fig. 6 in the Appendix, we
substantiate this observation by artificially scaling the fea-
ture norm of OOD samples, leading to improved detection
when the feature norm is increased and worse detection
when the feature norm is decreased.

The heavy correlation between feature norm and OOD score
implies that images yielding small feature norm are not
detected as OOD (see Fig. 6 for a discussion). This also
explains why the simple OOD unit tests in Bitterwolf et al.
(2023), using synthetic images of little variation, e.g. black
or uni-colour images, often fail. These synthetic images
contain little variation in color, which often results in small
activations in the network, and thus small pre-logit features,
see Figure 10 for an analysis.

4. Mahalanobis++: Normalize your features

A challenge with Mahalanobis distance-based OOD detec-
tion is its sensitivity to feature norms, which can strongly
correlate with Mahalanobis scores. We further find the
feature distribution to strongly contradict the theoretical
Gaussian assumption (with shared covariance), as empirical
feature norms vary much more in practice than expected. To
address this mismatch, we propose a simple but effective fix:
Discarding the feature norm and leveraging only directional
information in the features by ¢5-normalization.
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Figure 5. The feature norm correlates with the Mahalanobis
score for SwinV2-B: Left: The smaller the feature norm, the
smaller the Mahalanobis OOD score Sarqha, itrespective of
whether a sample is ID or not. OOD samples with small feature
norms are systematically classified as ID. Right: After normaliza-
tion, OOD samples with small feature norms can be detected, and
OOD detection is significantly improved.

Method. Instead of the original features ¢(x), we use £a-
normalized ones for computing the Mahalanobis score:

o(x:) = ¢(x:)/l|d(xi)ll2, (6)

The class-means and covariance matrix of the Mahalanobis
score are estimated using the normalized features, and also
test features are normalized when computing their score.
We denote this simple modification as Mahalanobis++.

We note that ¢5-normalization has been used with non-
parametric post-hoc OOD detection methods like KNN
(Sun et al., 2022; Park et al., 2023a) or cosine similarity
(Techapanurak et al., 2020). With the Mahalanobis score,
however, ¢>-normalization has - to the best of our knowl-
edge - only been investigated for train-time methods like
SSD+ (Sehwag et al., 2021) or CIDER (Ming et al., 2023).
Those methods normalize their features for OOD detection
because they also normalize during training. This is orthog-
onal to our work: The standard Mahalanobis method for
OOD detection is a post-hoc method, where adjusting the
pretraining scheme is not feasible. We show below that
Mahalanobis++ outperforms KNN and cosine similarity
in all considered cases and, in particular, improves OOD
detection consistently across tasks, architectures, training
methods and OOD datasets as post-hoc method.

Improved normality. To evaluate how Mahalanobis++
improves the adherence to the assumption of a Gaussian
model with a shared covariance matrix, we compare the
resulting feature distributions via QQ-plots to the unnormal-
ized features. Like for the unnormalized features, we center
demer () = () — flcfi)> divide by the empirical stan-
dard deviation, and plot the resulting quantiles against the
quantiles of a standard normal. We observe that across all

directions, normalization (green line in Figure 4) shifts the
feature quantiles closer to the diagonal line, confirming that
Mahalanobis++ better satisfies the Gaussian assumption
of Mahalanobis-based detection. We validate this for more
models in Figure 9 in the Appendix.

Variance alignment. In Table 1, we observe lower vari-
ance deviation scores for normalized features of the SwinV2
model compared to unnormalized features, indicating that
normalization aligns the class variances in Mahalanobis++.
We illustrate this effect in Figure 2, which visualizes cen-
tered training features for three selected classes along a
random direction. Without normalization, class feature vari-
ances differ substantially, and the shared covariance matrix
fails to jointly capture their distributions. After normaliza-
tion, class variances become more consistent, making the
shared variance assumption more appropriate. To further
validate this, we examine which in-distribution test samples
are flagged as OOD at a 95% true-positive rate: unnormal-
ized Mahalanobis rejects samples from 634 classes, while
Mahalanobis++ rejects samples from 728 classes. In an
ideal setting with a perfect covariance fit, one would expect
samples to be drawn uniformly from all 1,000 classes. The
increase from 634 to 728 classes suggests that normalization
reduces bias in the covariance estimation, better aligning
with the shared variance assumption. We substantiate our
observations in Figure 11 and Table 7 in the Appendix for
more models. We find that class variances are more similar
to the global variances after normalization for all models -
except the ViT-augreg.

Decoupling of feature norm and QOD score. In Figure 5
on the right, we plot the feature norm of ID and OOD sam-
ples against their OOD scores obtained via Mahalanobis++.
In contrast to the conventional Mahalanobis score, the corre-
lation between OOD score and feature norm (before normal-
ization) is much weaker. In particular, OOD samples with
small feature norm are now also detected as OOD, which
was not the case for unnormalized Mahalanobis.

5. Experiments

ImageNet. Our main goal is to investigate the effective-
ness of Mahalanobis++ across a large pool of architectures,
model sizes and training schemes for ImageNet-scale OOD
detection, as this is where the conventional Mahalanobis
distance showed the most varied results in previous studies
(Bitterwolf et al., 2023; Mueller & Hein, 2024). To this end,
we use 44 publicly available model checkpoints from timm
(Wightman, 2019) and huggingface. co. Following the
OpenOOD setup (Yang et al., 2022), we report results on
Ninco (Bitterwolf et al., 2023), iNaturalist (Van Horn et al.,
2018), SSB-hard (Vaze et al., 2022), Openlmages-O (Krasin
et al., 2017) and Texture (Cimpoi et al., 2014). We report
the false positive rate at a true positive rate of 95% (FPR)
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Table 2. ImageNet. FPR (lower is better) on five OpenOOD datasets. Green indicates that normalization improves over unnormalized
features, bold indicates the best and underlined the second best method. Mahalanobis++ consistently improves over Maha and baselines.

model ConvNeXtV2-B-In21k

dataset NIN SSB TxT OpO iNat|Avg
MSP (Hendrycks & Gimpel, 2017) 41.4 60.1 47.4 24.6 8.7 |36.5
MaxLogit (Hendrycks et al., 2022) 31.9 51.1 40.7 16.5 4.9 |29.0
Energy (Liu et al., 2020) 30.1 47.8 39.5 14.6 4.2 |27.2
GEN (Liu et al., 2023) 29.7 52.3 359 13.8 3.5|27.1
Energy+React (Sun et al., 2021) 29.5 48.0 38.6 13.9 3.7 |26.7
fDBD (Liu & Qin, 2024) 37.0 60.4 379 154 3.8 {309
ViM (Wang et al., 2022) 26.9 47.7 28.1 79 1.1 |224
KNN (Sun et al., 2022) 40.9 59.0 32.9 16.5 6.5|31.2
Neco (Ammar et al., 2024) 27.7 45.9 35.0 125 2.8 |24.8
NNguide (Park et al., 2023a) 31.7 53.5 31.6 12.7 3.3 |26.6
Rel.-Mahalanobis (Ren et al., 2021) 28.1 54.6 33.2 11.7 2.0 |25.9
Rel.-Mahalanobis++ 24.7 51.6 32.1 11.3 2.2 244

Mahalanobis (Lee et al., 2018b)
Mahalanobis++

30.3 53.8 304 94 14 ‘25.0
224 469 265 7.8 13 21.0

SwinV2-B-In21k
NIN SSB TxT OpO iNat
48.2 63.8 51.7 32.5 21.1
38.6 52.6 47.7 24.6 13.0
38.3 47.8 50.9 26.3 13.9
37.0 57.0 38.7 17.6 8.9
35.1 48.8 448 185 7.2
50.5 74.5 419 19.1 6.1
50.4 75.7 354 154 1.7
57.2 82.3 354 185 6.8
32.6 48.7 39.8 17.6 5.8
427 72.5 33.0 12.3 3.5
48.2 74.0 39.7 193 3.5
34.4 62.5 36.8 15.7 3.9
582 81.4 41.5 232 35
31.3 62.0 28.7 9.7 1.6

DeiT3-B16-In21k
NIN SSB TxT OpO iNat
61.0 73.2 66.0 46.5 32.9
552 67.2 619 41.4 343
55.9 65.2 63.2 43.3 45.6
45.2 61.5 50.1 24.8 13.7
50.9 63.8 55.2 32.1 27.3
53.570.9 50.7 24.8 11.8
55.3 75.7 48.8 21.1 4.8 |41.1
52.6 73.7 43.7 21.1 9.7 |40.2
51.5 64.8 57.4 34.1 24.2|46.4
46.4 68.4 443 19.3 9.3 (375
474 69.8 46.2 20.1 6.0 |37.9
38.3 61.6 42.5 17.1 4.0 32.7
525 72.8 47.0 21.4 5.5|39.8
38.8 62.8 42.0 15.6 3.1 |32.5

Avg
43.4
353
355
31.8
30.9
38.4
35.7
40.0
28.9
32.8
36.9
30.6
41.6
26.7

Avg
559
52.0
54.7
39.0
45.9
42.4

as the OOD detection metric and refer to the appendix for
other metrics, such as AUC, details on the model check-
points, baseline methods, and extended results. In addition
to Mahalanobis++, we also report relative Mahalanobis++,
i.e the relative Mahalanobis distance with 5 normalization.

We report results on the five OOD datasets in Table 2 using
three pretrained base-size models: ConvNextV2 (Woo et al.,
2023), SwinV2 (Liu et al., 2022) and DeiT3 (Touvron et al.,
2022). For all models, Mahalanobis++ outperforms the con-
ventional Mahalanobis distance consistently across datasets,
and is the best-performing method on average, and in most
cases also per dataset. Also the relative Mahalanobis++
outperforms its counterpart across models and datasets, but
is slightly worse on average. In Table 4, we show the results
averaged over the five datasets for 44 models with different
training schemes, model sizes and network types. With the
exception of three models (two of which are trained with
augreg), Mahalanobis++ outperforms its counterparts in
all cases. relative Mahalanobis++ outperforms its coun-
terpart in 39/44 cases. In 30/44 cases, the best performing
method is Mahalanobis++ (in 6/44 cases it is relative Ma-
halanobis++) and the differences to the baseline methods
are often large. Averaged over models, Mahalanobis++
is the best method, followed by relative Mahalanobis++
and outperforming the previously best method ViM by 7
FPR points. We note that Mahalanobis++ is particularly
effective for the best-performing models, as it is the best
method for 4 of the top-5 models.

We further note that NNguide (Park et al., 2023a) and
KNN (Sun et al., 2022), both of which operate in a nor-
malized feature space, are consistently outperformed by
Mahalanobis++. The most competitive baseline method
that is not based on the Mahalanobis distance is ViM (Wang
et al., 2022), which for certain models shows similar or
slightly better performance than Mahalanobis++ (e.g. for

Table 3. CIFAR100.  Green indicates that normalization im-
proves the baseline, bold and underlined indicate the best and
second best method. We report FPR averaged over OpenOOD
datasets. Maha++ is the best method. The best FPR is achieved by
Maha++ for ViT-S16-21k highlighted in blue.

Model MSP Ash ML KNN ViM MD MD++
SwinV2-S-1k 47.28 92.66 40.96 36.27 34.02 40.10 26.01
Deit3-S-21k  48.92 94.47 42.37 36.81 39.99 41.99 31.72
ConvN-T-21k 60.60 92.11 57.44 51.16 51.18 52.48 42.69
ViT-B32-21k 48.02 93.98 31.28 26.49 27.14 26.28 18.94
ViT-S16-21k 52.17 80.45 37.63 3191 24.90 2551 18.58
RNI18 80.59 78.98 79.87 76.61 79.61 79.48 72.92
RN34 76.93 78.27 7533 7444 77.17 76.63 74.51
RNxt29-32  82.31 72.59 8230 73.17 76.40 77.67 67.71
Average 62.10 85.44 5590 50.86 51.30 52.52 44.13

EVA and DeiT networks). For several other networks (e.g.,
ConvNexts, Mixer, ResNets, EfficientNets, Swins,...), differ-
ences are, however, larger and often in the range of 8-15%
FPR. We note that most of the OOD datasets in OpenOOD
show contamination with ID samples, as reported in Bitter-
wolf et al. (2023). Therefore, we report results on Ninco,
which has been cleaned from ID data, separately in Table 6,
and find even clearer improvements of Mahalanobis++.

Two of the three models for which Mahalanobis++ does
not bring an improvement are ViTs trained with augreg by
Steiner et al. (2022). Those are the models that showed state-
of-the-art performance in Bitterwolf et al. (2023). We extend
our observations from the previous Sections regarding these
models in Appendix D, where we show that their feature
norms are already well-behaved; therefore, /5 normalization
does not improve the normality assumptions.

Bitterwolf et al. (2023) reported that Mahalanobis-based
detectors sometimes fail to detect supposedly easy-to-detect
noise distributions (called “unit tests”’). In Section 3, we
connected this to the small feature norm those samples ob-
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Table 4. FPR on OpenOOD datasets, Green indicates that a normalized method is better than its unnormalized counterpart, bold
indicates the best and underlined the second best method. Maha++ improves over Maha on average by 7.6% in FPR over all models.
Similarly, rMaha++ is, on average, 2.9% better in FPR than rMaha. In total, Maha++ improves the SOTA compared to the strongest
competitor rMaha among all OOD methods by 6.9%, which is a significant improvement. The lowest FPR is achieved by Maha++ for the

EVA02-L14-M38m-In21k highlighted in blue.

Model ValAcc MSP E E+R ML VIiM AshS KNN NNG NEC GMN GEN f{DBD Maha Maha++ rMaha rMaha++
ConvNeXt-B-In21k 86.3 417 40.1 36.0 373 29.5 885 372 31.8 314 542 326 379 336 243 31.7 29.5
ConvNeXt-B 84.4 61.4 909 869 702 528 995 587 512 665 739 601 603 542 44.6 50.0 45.4
ConvNeXtV2-T-In21k 85.1 447 373 37.1 386 27.0 967 41.6 364 332 472 365 423 325 28.6 34.6 33.4
ConvNeXtV2-B-In21k 87.6 365 272 267 290 224 953 312 266 248 389 271 309 250 21.0 259 24.4
ConvNeXtV2-L-In21k 88.2 350 270 265 285 287 956 30.8 259 241 329 264 316 278 18.8 25.8 23.0
ConvNeXtV2-T 83.5 60.5 66.1 586 589 499 99.2 628 541 739 536 618 554 44.4 48.9 44.6
ConvNeXtV2-B 85.5 588 70.8 64.1 595 468 996 534 479 559 712 486 537 463 375 43.0 39.1
ConvNeXtV2-L 86.1 58.6 68.0 60.1 583 484 99.1 489 447 559 638 463 485 417 36.2 39.0 38.0
DeiT3-S16-In21k 84.8 60.5 533 504 544 476 992 498 475 51.6 520 478 544 502 424 489 43.6
DeiT3-B16-In21k 86.7 559 547 459 520 41.1 992 402 375 464 462 390 424 398 325 37.9 327
DeiT3-L16-In21k 87.7 55.0 455 383 469 364 981 350 321 385 368 346 382 349 30.1 33.4 29.9
DeiT3-S16 83.4 56.9 540 581 522 433 856 069.8 482 522 641 466 542 524 46.5 49.1 44.9
DeiT3-B16 85.1 59.7 823 884 644 447 992 . 713 635 635 460 548 515 46.7 483 45.0
DeiT3-L16 85.8 603 80.5 89.3 640 46.1 784 540 725 643 569 451 524 453 39.7 42.7 38.6
EVA02-B14-In21k 88.7 324 268 262 288 220 879 296 258 250 360 243 286 255 21.0 26.2 23.8
EVA02-L14-M38m-In21k 90.1 27.0 22,6 224 243 180 91.0 258 228 21.8 399 203 239 197 17.7 21.1 20.4
EVA02-T14 80.6 648 662 668 63.1 493 984 60.8 571 554 541 579 664 510 48.1 52.6 50.7
EVA02-S14 85.7 522 534 53.1 495 348 99.1 . 403 429 43.0 417 489 36.6 354 38.1 36.8
EffNetV2-S 83.9 593 71.0 58.7 61.1 522 994 456 452 593 779 497 540 473 40.2 43.6 40.4
EffNetV2-L 85.7 57.1 742 574 588 489 992 489 471 560 581 447 492 413 34.6 38.0 34.8
EffNetV2-M 85.2 57.0 693 56.7 573 547 995 513 486 549 668 452 52,6 460 37.1 41.1 36.8
Mixer-B16-In21k 76.6 715 830 835 750 71.8 958 778 839 755 612 677 718 633 52.5 60.0 529
SwinV2-B-In21k 87.1 434 355 309 353 357 770 400 328 289 577 31.8 384 416 26.7 36.9 30.6
SwinV2-L-In21k 87.5 404 359 312 345 390 851 389 329 290 488 315 375 418 24.7 36.2 28.7
SwinV2-S 84.2 612 68.1 62.1 609 51.1 999 586 529 560 612 528 607 524 38.9 48.7 393
SwinV2-B 84.6 624 662 582 605 499 99.1 550 S51.1 554 56.1 499 569 479 40.1 452 39.7
ResNet101 81.9 67.7 828 99.6 70.7 505 802 53.6 514 706 823 625 713 459 43.5 55.6 66.8
ResNet152 82.3 66.4 82.1 995 70.0 49.7 80.0 520 468 69.1 772 603 693 444 38.3 51.8 64.7
ResNet50 80.9 72.0 959 994 758 531 803 678 641 766 895 654 748 495 52.0 62.5 70.4
ResNet50-supcon 78.7 540 473 421 484 720 40.6 470 419 478 788 535 480 955 44.5 90.2 63.7
ViT-T16-In21k-augreg 755 70.7 553 484 583 511 949 762 710 528 582 647 585 555 48.0 59.2 57.7
ViT-S16-In21k-augreg 81.4 57.0 389 425 417 334 767 556 489 38.1 443 465 440 36.7 31.7 43.0 40.6
ViT-B16-In21k-augreg2 85.1 553 459 41.1 475 539 98.6 475 422 437 60.1 429 514 542 38.2 47.0 39.1
ViT-B16-In21k-augreg 84.5 46.5 337 36.0 346 269 949 543 456 324 386 365 364 257 28.3 30.8 315
ViT-B16-In21k-orig 81.8 446 307 309 331 290 626 386 354 305 488 384 357 309 275 35.4 339
ViT-B16-In21k-miil 84.3 480 350 346 388 37.8 969 450 385 339 571 383 446 471 30.4 43.6 36.7
ViT-L16-In21k-augreg 85.8 402 294 250 30.0 23.6 945 506 412 280 41.6 307 304 210 239 252 25.8
ViT-L16-In21k-orig 81.5 40.8 293 29.2 31.1 304 493 340 316 294 479 352 33.0 309 26.8 33.6 32.6
ViT-S16-augreg 78.8 648 59.0 60.6 60.0 68.1 969 715 689 602 618 61.8 648 493 49.2 48.4 48.2
ViT-B16-augreg 79.2 643 59.6 562 60.1 634 902 655 641 599 603 615 635 496 48.0 47.6 46.7

ViT-B16-CLIP-L2b-In12k  86.2 422 377 355 372 355 995
ViT-L14-CLIP-L2b-In12k 88.2 31.5 252 246 265 215 976
ViT-H14-CLIP-L2b-In12k  88.6 320 265 26.1 277 223 978
ViT-s0400M-SigLip 89.4 455 47.1 394 418 30.6 935

200 223 263 363 243 273 282 224 271 254
312 234 275 530 246 289 271 220 268 251
287 261 396 643 283 299 288 245 273 255

Average 84.4 527 530 51.0 49.0 419 90.7

tain. In Table 5 we report the number of “failed” unit tests (a
unit test counts as failed when a detector shows FPR values
above 10%) and observe that normalization, in particular
Mahalanobis++ remedies this effectively. For results on all
models, we refer to Table 17 Appendix.

Table 5. Normalization improves robustness against noise dis-
tributions. We report the number of failed unit tests (noise dis-
tributions with FPR values > 10%) from Bitterwolf et al. (2023).
Normalization remedies the brittleness of Mahalanobis-based de-
tectors. Full Table in Appendix E.

model ConvNeXtV2 SwinV2 ViT-CLIP
Maha 5/17 10/17 14/17
Maha++ 0/17 0/17 0/17

CIFAR We investigate Mahalanobis++ on CIFAR100
(Krizhevsky, 2009), following the OpenOOD setup with tiny

489 4438

360 563 436 478 425 349 418 389

ImageNet (Le & Yang, 2015), Mnist (LeCun et al., 1998),
SVHN (Netzer et al., 2011), Texture (Cimpoi et al., 2014),
Places (Zhou et al., 2017) and Cifar10 as OOD datasets for
a range of architectures and training schemes.

We report results averaged across the OOD datasets in Ta-
ble 3 for the most competitive methods and standard base-
lines (full results in Appendix E). We observe that Maha-
lanobis++ consistently outperforms the conventional Maha-
lanobis distance, but the differences are smaller compared
to the ImageNet setup. We hypothesize that this is because
the problems of the Mahalanobis distance are less drastic at
a smaller scale, and therefore the conventional Mahalanobis
distance is already fairly effective for OOD detection. ViM
and KNN are the most competitive baseline methods, but
Mahalanobis++ remains the most consistent and effective
method across models.
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Table 6. FPR on NINCO, Green indicates that normalized method is better than its unnormalized counterpart, bold indicates the best
method, and underlined indicates second best method. Maha++ improves over Maha on average by 10.9% in FPR over all models.
Similarly, rMaha++ is 6.0% better in FPR than rMaha. In total, Maha++ improves the SOTA compared to the strongest competitor rMaha
among all OOD models by 6.3% which is significant. The lowest FPR is achieved by Maha++ for the ConvNeXtV2-L-In21k highlighted

in blue.
Model Val Acc MSP E E+R ML VIM AshS KNN NNG NEC GMN GEN fDBD Maha Maha++ rMaha rMaha++
ConvNeXt-B-In21k 86.3 462 43.0 40.0 405 412 927 51.6 412 352 538 38.0 483 487 28.8 40.2 325
ConvNeXt-B 84.4 64.1 894 862 714 647 996 70.1 622 682 683 659 68.6 64.6 50.5 59.5 49.7
ConvNeXtV2-T-In21k 85.1 51.6 424 424 441 345 975 541 450 387 525 442 514 409 32.8 40.0 36.8
ConvNeXtV2-B-In21k 87.6 414 301 295 319 269 958 409 31.7 277 406 297 37.0 303 224 28.1 24.7
ConvNeXtV2-L-In21k 88.2 387 30.7 29.8 315 372 960 387 299 270 434 290 366 346 18.4 27.7 214
ConvNeXtV2-T 83.5 66.1 733 684 657 644 992 823 739 617 723 641 7T1.6 66.1 523 58.6 49.7
ConvNeXtV2-B 85.5 629 739 69.8 635 61.1 994 673 603 607 692 571 65.1 589 44.7 524 44.1
ConvNeXtV2-L 86.1 638 723 668 636 624 995 624 569 619 712 556 59.7 538 43.0 47.1 42.1
DeiT3-S16-In21k 84.8 68.7 61.8 59.8 626 606 997 629 593 60.1 585 587 658 624 50.8 59.8 50.9
DeiT3-B16-In21k 86.7 61.0 559 509 552 553 995 52,6 464 515 522 452 535 525 38.8 474 383
DeiT3-L16-In21k 87.7 59.7 462 41.8 489 457 984 438 378 423 437 382 466 420 339 38.1 32.8
DeiT3-S16 83.4 643 63.0 638 606 543 841 756 578 606 664 574 650 61.1 535 56.3 50.5
DeiT3-B16 85.1 66.7 87.8 899 726 597 991 745 801 719 667 573 67.1 637 57.2 58.9 53.2
DeiT3-L16 85.8 67.8 823 86.6 705 579 8.1 672 779 708 629 584 644 570 504 52.0 46.6
EVA02-B14-In21k 88.7 358 282 274 309 287 927 376 300 273 390 258 323 317 23.8 30.3 259
EVA02-L14-M38m-In21k 90.1 29.0 243 241 257 214 948 303 261 229 395 203 260 222 18.6 22.1 20.1
EVA02-T14 80.6 7277 745 752 721 6777 988 745 710 684 656 705 735 659 64.0 65.9 64.4
EVA02-S14 85.7 612 614 615 578 516 989 60.0 540 532 519 531 600 493 48.0 49.1 47.8
EffNetV2-S 83.9 677 715 733 695 740 997 609 596 694 799 629 679 675 59.9 59.2 52.1
EffNetV2-L 85.7 637 772 688 643 694 989 625 60.1 635 644 563 624 584 47.8 50.8 443
EffNetV2-M 85.2 634 75.1 69.1 638 723 996 63.1 606 633 675 563 645 617 50.0 522 453
Mixer-B16-In21k 76.6 774 834 835 795 780 948 858 837 798 667 759 803 734 65.4 70.3 63.1
SwinV2-B-In21k 87.1 482 383 351 386 504 860 572 427 326 563 370 505 582 313 48.2 34.4
SwinV2-L-In21k 87.5 459 387 354 386 553 899 551 417 323 63.1 365 505 57.8 28.3 47.6 322
SwinV2-S 84.2 67.6 71.7 70.1 66.7 668 998 73.1 668 627 610 638 734 68.0 49.8 63.7 48.5
SwinV2-B 84.6 69.5 72,6 693 674 666 978 694 652 642 607 620 70.5 633 522 59.1 50.2
ResNet101 81.9 734 852 1000 76.1 758 899 749 664 772 835 725 845 668 50.4 55.8 53.5
ResNet152 82.3 712 832 1000 744 746 88.1 720 616 750 795 699 824 649 46.5 52.7 522
ResNet50 80.9 76.0 947 999 786 79.6 899 837 750 800 89.1 750 857 699 61.0 58.2 56.9
ResNet50-supcon 78.7 60.6 57.0 56.1 56.8 846 591 658 584 569 803 600 639 983 59.6 90.7 61.8
ViT-T16-In21k-augreg 75.5 790 729 69.6 740 664 90.1 817 819 71.1 694 784 723 61.6 63.2 67.6 68.0
ViT-S16-In21k-augreg 81.4 67.0 533 554 547 474 850 709 640 519 583 614 576 448 44.6 51.1 50.5
ViT-B16-In21k-augreg2 85.1 62.1 52.1 494 546 710 987 640 570 513 652 534 644 698 459 58.5 44.5
ViT-B16-In21k-augreg 84.5 56.8 452 489 454 38.1 941 67.7 590 43.1 50.1 482 498 313 35.7 352 37.1
ViT-B16-In21k-orig 81.8 522 392 390 410 356 714 527 476 383 569 482 445 356 31.6 38.3 36.5
ViT-B16-In2 1k-miil 84.3 572 464 465 493 46.1 98.0 59.6 517 43.6 594 500 58.1 56.2 354 48.6 40.2
ViT-L16-In21k-augreg 85.8 470 390 273 377 31.7 952 686 589 354 527 376 403 242 28.9 26.5 28.1
ViT-L16-In21k-orig 81.5 462 373 37.1 377 422 585 458 407 364 558 42.1 40.1 394 324 37.6 36.1
ViT-S16-augreg 78.8 728 728 73.6 725 80.7 97.0 821 80.0 727 71.0 728 754 632 63.1 59.2 58.9
ViT-B16-augreg 79.2 722 717 696 71.1 735 909 776 759 709 655 720 738 62.9 61.3 58.4 574

ViT-B16-CLIP-L2b-In12k ~ 86.2 497 4477 426 440 49.6 999
ViT-L14-CLIP-L2b-In12k 88.2 355 288 281 299 245 979
ViT-H14-CLIP-L2b-In12k  88.6 36.4 31.1 30.8 31.6 249 970
ViT-s0400M-SigLip 89.4 503 474 421 442 402 955

Average 84.4 589 58.6 57.6 552 549 929

6. Conclusion

We showed that the frequently occurring failure cases of
the Mahalanobis distance as an OOD detection method are
related to violations of the method’s basic assumptions. We
showed that the feature norms vary much stronger than ex-
pected under a Gaussian model, that the feature distributions
are strongly heavy-tailed and that feature norms correlate
with the Mahalanobis score - irrespective of whether a sam-
ple is ID or OOD. These insights explain why certain models
- despite impressive ID classification performance - showed
strongly degraded OOD detection results with the Maha-
lanobis score in previous studies (Bitterwolf et al., 2023).
We introduced Mahalanobis++, a simple remedy consisting
of /5 normalization that effectively mitigates those prob-
lems. In particular, the resulting feature distributions are

more aligned with a normal distribution, less heavy-tailed,
and the class variances are more similar, leading to improved
OOD detection results across a wide range of models. Maha-
lanobis++ outperforms the conventional Mahalanobis dis-
tance in 41/44 cases, rendering it clearly the most effective
method across models. It outperforms the previously best
baseline ViM by 7 FPR points on average on the OpenOOD
datasets, and is the best method for 4 of the 5 top models.
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A. Overview

The Appendix is structured as follows:
In Section B we provide the proof for Lemma 3.1. In Section D we provide extended analysis on feature norm and
normalization. In particular,

» we show the feature norm distribution for more models in Figure 8
» we provide QQ-plots for more models in Figure 9

* We report the feature norm distribution for ID and OOD data in Figure 10, showing that OOD features can be larger
than ID features for off-the-shelf pretrained models

» we highlight that the class variances become more similar to the global variance after normalization in Figure 11

» we plot the correlation between feature norm and OOD-score in Figure 7
In Section E we report extended results. In particular,

» we show additional ImageNet numbers (AUC for NINCO in Table 11, OpenOOD near and far in Table 8 and Table 9,
OpenOOD averaged AUC in Table 10)

* we compare cosine-based methods on ImageNet explicitly in Table 12
¢ we show robustness to noise distributions (unit tests) in Table 17

* we show additional CIFAR numbers (Cifar10 AUC in Table 13 and FPR in Table 14, Cifar100 AUC in Table 15 and
FPR in Table 16

* we compare Mahalanobis++ to SSD+ in Table 18 to highlight the benefits of post-hoc OOD detection methods

In Section F we report details on the model checkpoints used throughout the experiments (ImageNet models in Table 19 and
Cifar models in Table 20). In Section G we provide details on the OOD detection methods evaluated in the main paper.

B. Proof of Lemma 3.1

Proof. Let ¥ = UAU be the eigendecomposition of the covariance matrix with U being an orthogonal matrix containing
the eigenvectors of 3 and A the diagonal matrix containing the eigenvalues of o. Let X be a random variable with distribution
N (1, %) (in the main paper, we denoted the features as @ (X)), here we write them as X for notational simplicity). Then it
holds Z = U” X has distribution A"(U 1, A) and since U7 is an orthogonal matrix: || X||3 = ||Z||. We have

d d d
E[IX[3] =E[IZ]5] = > E[Z}]=> Var(Z)+E[Z]*=> A+ ||UTﬂ||§ = () + ||l
i=1 i=1 i=1
‘We note that
Var(|1Z3) = E[|ZIl3] - E[IZI31* = E[IZ]l3] — (tx() + [|ul3)? (M

and it remains to compute E[|| Z ||;1] We note that

d d d d 2 4
Bl 215 = Y BlZ + SBR[z = (N2 + 6hi ) + (Z(Ai + u§>> S0

i=1 i#] i=1
where we have used the following calculations:

0=E[(Z; — 1:)*] = E[Z}] — BpiXi — i
3N =E[(Zi — )] = E[Z]] — 4uE[Z}] + 6uTE[Z]] — 3u;
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and thus

E[Z}] = 3piXi + 53

E[Z]] = 3\7 + 6u3 X +
This yields

d d
Var([|Z]13) = Y (3AF + 6N + i) = D (A + 4if)°

i=1 i=1

Applying Chebychev’s inequality yields the result. O

C. Derivation of expected squared relative variance deviation

Here we want to derive the statement about the expected squared relative variance (denoting the covariance matrix as C
instead of X0):

2trace(A2) + trace(A)?

E,[(uTC™3(C; — C)C3u)?] = FeE) :

®)

where u has a uniform distribution on the unit sphere and A = C~2 (c;—C)C ~2. We note that A is symmetric and thus
has an eigendecomposition A = UAU”. We have

E,[(u” Au)?] = E,[(UTw)"A(UTw))?] = B, [(u” Au)?] Z A2E,[uf] + 30 AN EL[ufu?]
i#£]

It remains to compute these moments on the unit sphere. For this purpose we note that Hu||§ = Z?Zl u? = 1 and thus

d 2 a4
ol = (S ) =3t T
=1

i=1 i#j
We note that u} fori = 1,...,d and ufu? for i # j are all equally distributed and thus for ¢ # j
1 = dE[u;] + d(d — 1)E[uju] ©)

Moreover, we note that rotations do not change the distribution for a unifom distribution on the sphere and thus (u;, u;) and
( Ui —Uj u1+u]

N LG ) have the same distribution and

(ui\;iuj)Q (Ui\‘;éuj>2] _ %E[ugl] _ %E[u?u?].

This yields E[u;] = 3E[u;u3]. Plugging this into (9) yields

3 22]:;

]E[Uﬂ = m7

Thus

E,[(u” Au)?] = ; 3ZA2+ZA)\ 2; 22)\2+Z>\>\

i#£] 3,7=1

Using that trace(A) = Zle A; finishes the derivation.
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D. Extended Analysis

Here, we report extended results on the experiments of Section 3 of the main paper. In particular, we show that the
observations made hold beyond the SwinV2 model. If not stated differently, all experiments are with ImageNet as ID dataset
and NINCO as OOD dataset.

Feature Norm Correlation. In the main paper, we showed that for a SwinV2 model, the feature norm of a sample
correlates strongly with the OOD score received via the Mahalanobis distance. Here, we show this phenomenon for more
models. In Figure 7, we plot the feature norm against the OOD score assigned by Mahalanobis and Mahalanobis++ for
four models. For SwinV2, ConvNext and ViT-clip, the feature norms correlate strongly with the OOD score. Normalizing
the features (bottom) mitigates this dependency, as OOD samples with small feature norms are detected as OOD, and thus
improves OOD detection strongly. A notable exception is the augreg-ViT, for which there is no correlation between feature
norms and OOD score. In Figure 6, we further investigate the dependency of the Mahalanobis score on the feature norm by
artificially scaling the feature norm of the OOD features with a prefactor . That is, for a SwinV2 model, we use « * ¢; for
each OOD feature and leave the ID validation features unchanged. We report the FPR values against « in Figure 6, and again
observe a clear correlation between the scaling factor and the FPR: Perhaps unexpectedly, upscaling the features reduces the
false-positive rate, up to a scaling factor of 2, where zero false positives are achieved. When scaling down the feature norm,
the FPR increases, and for a ~ 0.5, i.e. at half the original feature norm, all OOD samples are identified as ID. Notably,
this does not change for smaller « values, not even for o = 0, where all OOD samples collapse to the zero vector. In other
words, everything in the vicinity of the origin is identified as in-distribution, which contradicts the intuition of tight Gaussian
clusters centered around class means. In the main paper, we hypothesized that this might explain why the Mahalanobis
distance sometimes fails to detect the unit tests since those might receive a small feature norm. In Figure 10, we plot the
feature norms of different datasets for a range of models with (top) and without (bottom) pretraining. We find that the
feature norms of natural OOD images like those from NINCO tend to be even larger than the ImageNet feature norms. This
violates basic assumptions in feature-norm-based OOD detection methods like the negative-aware-norm (Park et al., 2023b),
indicating that special training schemes might be necessary for those methods. However, noise distributions like the unit
tests from Bitterwolf et al. (2023) can lead to fairly small feature norms for most models. Since we showed that small
feature norms lead to small Mahalanobis distances for many models, this highlights why these supposedly easy-to-detect
images were not detected with the Mahalanobis distance in previous studies.

Feature norm distribution. In Figure 8§, we plot the feature norms for four ViTs of exactly the same architecture (ViT-B16).
In order to make the plots comparable, we normalize by the average feature norm per model. We observe that, like for the
SwinV2 in the main paper, the norms vary strongly across and within classes - except for the augreg-ViT. This model is one
of the models that performed well with Mahalanobis ~out-of-the-box”, i.e., not requiring normalization.

QQ plots. In Figure 9 we show QQ plots for four models along three directions in feature space. We observe that the
normalized features (green) more closely resemble a normal distribution compared to the unnormalized features (blue),
which is best visible via the long tail. The only exception is the augreg-ViT, for which normalized and unnormalized features
are similarly close to a Gaussian distribution.

Variance alignment. We report extended results on the expected relative deviation scores (see Eq. 5) for more models in
Table 7. We observe that for all models - except the ViT-augreg - normalization lowers the deviations, indicating a better
alignment of the global variance with the individual class variances. In Figure 11, we illustrate this further: Instead of the
score reported in Table 7, which computes an expectation over all directions, we pick three specific directions: 1) a random
direction, 2) an eigendirection with a large eigenvalue, and 3) an eigendirection with a small eigenvalue. Ideally, along each
direction, the 1000 class variances would coincide with the globally estimated, shared variance. For each direction, we
divide the 1000 class variances by the global variance and plot the resulting distribution. Distributions peaked around 1
indicate that the global variance can capture the class variances well. We observe that the distributions of the variances after
feature normalization peak more towards one for all models, except the ViT-augreg.

Augreg ViTs. The ViTs that showed the best performance with Mahalanobis distance in previous studies were base-size
ViTs pretrained on ImageNet2 1k and fine-tuned on ImageNet1k by Steiner et al. (2022). The training scheme is called augreg,
a carefully tuned combination of augmentation and regularization methods. In this paper, we made several observations
regarding those models (applies for both base-size and large-size models with pretraining on ImageNet21k). In particular,
they

* show strong OOD detection performance with Mahalanobis distance without normalization, and normalization does
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Table 7. Deviations from global variance. We report the mean squared relative variance deviation as defined in Equation (5) for multiple
models. In all cases, except for the ViT-augreg, normalization significantly improves the fit of the global covariance matrix to the
covariance structure of the individual classes. As noted in the text for the ViT-augreg the features already follow very well the assumptions
of the Mahalanobis score and normalization leads to no improvements.

model unnormalized normalized
ViT-B16-In21k-augreg 0.05 0.05
SwinV2-B-In21k 0.26 0.12
ViT-B16-CLIP-L2b-In12k 0.17 0.08
ViT-B16-In21k-augreg2 0.14 0.07
ViT-B16-In21k-miil 0.12 0.09
DeiT3-B16-In21k 0.24 0.15
ConvNeXt-B-In21k 0.17 0.11
EVA02-B14-In21k 0.21 0.14
ConvNeXtV2-B-In21k 0.23 0.18
ConvNeXtV2-B 0.22 0.14
ConvNeXt-B-In21k 0.17 0.11
ConvNeXt-B 0.22 0.12

not improve Mahalanobis-based OOD detection
* show little variations in feature norm compared to all other investigated models
* show no correlation between feature norm and Mahalanobis score (in contrast to all other investigated models)
* show much weaker heavy tails than the other models
* show low values for the variance deviation metric

* loose their advantage for unnormalized Mahalanobis-based detection when the fine-tuning scheme is changed (the
augreg? model is fine-tuned from a 21k-augreg-checkpoint, but the fine-tuning scheme differs in learning rate and
augmentations)

In short, the augreg models omit all the points that we identified as problematic for Mahalanobis-based OOD detection. This
indicates that the augreg training scheme induces a feature space that lends itself naturally towards a normal distribution,
aligning well with the assumptions of the Mahalanobis distance as OOD detection method. Understanding the exact reason
why the augreg scheme induces those features is beyond the scope of this paper. The connection of training hyperparameters
and OOD detection performance was, however, investigated by Mueller & Hein (2024). It should be stressed that for
post-hoc OOD detection, we ideally want a method that works well with all models, not only those obtained via a certain
training scheme. We provide such a method with Mahalanobis++.
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Figure 6. Impact of the feature norm of OOD samples on their Mahalanobis score. When scaling down the norm of the features while
leaving the feature direction unchanged, OOD samples receive a smaller Mahalanobis score and are incorrectly classified as ID samples.
When the feature norm is artificially increased, the opposite happens.
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Figure 7. Mahalanobis++ resolves feature-norm dependency of Mahalanobis score. With unnormalized features, OOD samples with
small pre-logit feature norm were systematically identified as ID, but after normalization, OOD samples with small feature norm are
rightfully detected as OOD, resulting in significantly improved OOD detection with Mahalanobis++. The only exception is an augreg
ViT, which does not show a correlation between feature norm and Mahalanobis score, even without normalization.
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Figure 8. For most models, the feature norms vary strongly across and within classes. The same plot as the “observed” part of
Figure 5 in the main paper, but normalized by the global average feature norm to make the scales of different models comparable. We
thus show how strongly the feature norms vary relative to their scale. We report results for ViT-B16 models with different pretraining
schemes. Only the augreg ViT shows little variation in feature norm and is the only model that does not benefit from normalization.
Interestingly, the augreg2 model was finetuned on ImageNet-1k from the same 21k-checkpoint as the augreg model and even achieves
higher classification accuracy, but shows a very different feature norm distribution - which reflects in the OOD detection performance
with Mahalanobis and Mahalanobis++: All models except for the augreg model benefit from normalization.
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Figure 9. QQ-plot: />—normalization helps transform the features to be more aligned with a normal distribution. Normalized
features in green, unnormalized features in blue. For a SwinV2, DeiT3 and ViT-augreg2, the feature norms vary strongly across classes
(see e.g. Fig. 3 and Fig. 8) and normalization shifts the distribution towards a Gaussian. For a ViT-B-augreg the feature norms are similar
across classes (see Fig 8) and the feature norms are already fairly normal, so £2-normalization has almost no effect.
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Figure 10. Feature norm distribution. In contrast to previous work (e.g., (Park et al., 2023b)), we find that the feature norm of natural

OOD samples (NINCO in green) is often larger than that of ID samples (orange). Far-OOD data, like noise distributions, tend to have

lower feature norms. This holds for models with (top) and without (bottom) pretraining.
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Figure 11. Mahalanobis++ aligns class-variances. We report the distribution of the variances of the train features for each class along
three directions: 1) a random direction, 2) a large eigendirection, 3) a small eigendirection. For each class, we compute the variance
divided by the global variance, and plot the resulting distributions. Larger deviations from one indicate larger deviations of the class
variance from the global variance. For all directions the distribution of variances is more peaked around 1 after normalization, indicating
that after normalization the shared variance assumption is more appropriate - except for the ViT-augreg.
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E. Extended results

Table 8. FPR on OpenOOD-near datasets, Green indicates that normalized method is better than its unnormalized counterpart, bold
indicates the best method, and underlined indicates second best method. Maha++ improves over Maha on average by 9.6% in FPR over
all models. Similarly, rMaha++ is 5.5% better in FPR than rMaha. The lowest FPR is achieved by ViM for the EVA02-L14-M38m-In21k
highlighted in blue, closely followed by Maha++ for the same model.

Model Val Acc MSP E E+R ML VIM AshS KNN NNG NEC GMN GEN fDBD Maha Maha++ rMaha rMaha++
ConvNeXt-B-In21k 86.3 539 46.1 442 467 538 913 631 527 422 538 467 583 59.6 41.7 51.8 44.7
ConvNeXt-B 84.4 700 89.0 86.8 751 721 990 775 721 721 729 733 76.1 72.0 59.1 67.3 58.1
ConvNeXtV2-T-In21k 85.1 59.7 512 515 533 454 957 627 556 483 562 544 617 52.7 449 52.1 48.8
ConvNeXtV2-B-In21k 87.6 508 39.0 38.8 415 373 955 499 426 368 461 41.0 487 420 34.7 41.3 38.2
ConvNeXtV2-L-In21k 88.2 484 385 38.6 406 488 956 495 414 359 549 397 495 46.6 31.2 41.2 35.6
ConvNeXtV2-T 83.5 727 79.1 758 729 726 986 8.7 81.0 697 746 724 784 733 60.5 66.6 58.2
ConvNeXtV2-B 85.5 69.6 792 763 705 690 990 749 703 682 71.1 658 726 669 55.0 61.5 54.1
ConvNeXtV2-L 86.1 69.8 774 737 699 706 984 703 668 688 778 64.1 682 624 53.6 56.4 51.9
DeiT3-S16-In21k 84.8 73.1 658 648 674 687 988 708 67.1 654 645 655 726 707 60.4 68.4 60.6
DeiT3-B16-In21k 86.7 67.1 60.6 574 612 655 989 632 574 581 591 534 622 627 50.8 58.6 49.9
DeiT3-L16-In21k 87.7 66.7 543 512 571 573 972 539 494 522 529 48.1 569 545 47.3 51.6 46.3
DeiT3-S16 83.4 708 713 713 685 638 867 8l.1 677 685 70.5 667 728 69.7 62.4 65.4 60.0
DeiT3-B16 85.1 71.8 89.5 90.1 768 673 987 79.6 83.6 76.1 719 654 747 71.8 64.8 67.4 61.7
DeiT3-L16 85.8 725 833 867 744 659 850 753 800 747 679 658 723 66.4 60.7 61.9 57.2
EVA02-B14-In21k 88.7 451 37.0 365 403 365 938 469 408 36,6 452 366 433 419 34.8 42.0 38.0
EVA02-L14-M38m-In21k 90.1 383 319 317 346 281 952 402 357 315 452 308 363 31.8 28.7 333 32.3
EVA02-T14 80.6 716 769 713 765 746 978 806 773 735 675 764 792 730 71.0 72.7 71.2
EVA02-S14 85.7 67.7 670 67.1 648 581 982 677 629 608 564 615 68.1 58.3 57.0 58.7 57.3
EffNetV2-S 83.9 722 784 769 729 797 987 703 689 727 799 69.1 749 751 64.6 67.7 60.2
EffNetV2-L 85.7 69.0 814 756 701 747 986 700 686 694 705 635 699 658 56.4 59.5 53.8
EffNetV2-M 85.2 689 786 752 693 777 990 712 693 688 702 640 721 69.5 58.1 61.5 54.7
Mixer-B16-In21k 76.6 824 877 878 846 833 949 894 879 848 694 824 856 784 71.8 74.9 68.8
SwinV2-B-In21k 87.1 56.0 43.1 419 456 631 845 698 576 407 609 470 625 69.8 46.7 61.1 484
SwinV2-L-In21k 87.5 540 454 444 464 666 872 679 573 416 726 474 622 693 44.0 60.6 46.1
SwinV2-S 84.2 734 775 770 73.0 754 997 798 757 702 655 720 797 753 59.2 71.1 58.0
SwinV2-B 84.6 739 778 753 73.1 736 984 760 734 706 663 69.6 764 695 59.6 65.6 57.8
ResNet101 81.9 784 870 99.7 804 821 915 826 750 81.1 874 788 876 73.1 58.7 62.8 599
ResNet152 82.3 769 859 99.7 79.2 814 907 810 722 798 844 768 863 713 55.5 60.6 58.6
ResNet50 80.9 80.7 950 99.6 825 841 915 883 819 834 910 807 85 755 65.4 064.6 624
ResNet50-supcon 78.7 70.5 67,5 677 677 874 715 773 694 678 855 712 741 98.2 71.3 91.3 68.5
ViT-T16-In21k-augreg 75.5 837 787 752 798 735 921 8.9 8.5 774 731 835 786 69.7 71.6 74.3 75.0
ViT-S16-In21k-augreg 81.4 738 61.0 63.6 63.1 566 887 772 721 606 624 693 666 567 56.0 61.3 60.8
ViT-B16-In21k-augreg2 85.1 694 59.1 574 624 778 974 734 674 597 686 635 732 774 56.8 68.1 56.0
ViT-B16-In21k-augreg 84.5 644 543 584 548 479 953 749 680 528 559 577 587 44.6 49.0 48.3 49.9
ViT-B16-In21k-orig 81.8 60.6 448 449 48.0 414 625 60.1 546 449 612 571 526 453 40.6 49.9 47.8
ViT-B16-In21k-miil 84.3 65.6 526 533 568 553 962 692 615 52.1 624 60.1 67.3 66.3 47.5 60.1 52.1
ViT-L16-In21k-augreg 85.8 565 49.6 383 489 426 963 732 659 465 542 487 508 364 41.9 39.2 40.8
ViT-L16-In21k-orig 81.5 53.1 402 40.1 422 444 559 507 460 407 593 492 460 464 39.7 47.5 46.1
ViT-S16-augreg 78.8 783 793 80.2 786 855 966 8.8 8.0 789 756 789 812 698 69.9 66.5 66.4
ViT-B16-augreg 79.2 777 78.1 755 774 79.0 932 831 814 773 692 780 798 69.4 68.3 654 64.7
ViT-B16-CLIP-L2b-In12k 86.2 562 469 46.0 49.1 554 993 579 506 459 525 49.1 56.6  65.0 44.7 59.2 49.2
ViT-L14-CLIP-L2b-In12k 88.2 44.1 348 343 372 320 969 486 33.1 37.0 462 363 41.6 453 359 419 39.1
ViT-H14-CLIP-L2b-In12k 88.6 445 36.8 367 387 336 970 505 355 386 555 369 44.1 444 35.8 41.6 38.9
ViT-s0400M-SigLip 89.4 58.6 56.1 525 534 499 953 486 437 513 639 428 489 470 38.6 43.7 39.2
Average 84.4 65.6 640 63.6 620 627 930 695 639 599 653 605 663 62.5 52.9 58.8 533
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Figure 12. We plot the FPR with Mahalanobis++ against the FPR with the conventional Mahalanobis score averaged over the five
OpenOOD datasets. With three minor exceptions, Mahalanobis++ improves OOD detection performance for all models. In particular, it
significantly improves all models with high accuracy.
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Table 9. FPR on OpenOOD-far datasets, Green indicates that normalized method is better than its unnormalized counterpart, bold
indicates the best method, and underlined indicates second best method. Maha++ improves over Maha on average by 6.1% in FPR over all
models. Similarly, rMaha++ is 1.2% better in FPR than rtMaha. In total, Maha++ improves the SOTA compared to the previously strongest
method, ViM, by 5.1%, which is significant. The lowest FPR is achieved by Maha++ for the EVA02-L14-M38m-In21k highlighted in

blue.
Model ValAcc MSP E E+R ML VIM AshS KNN NNG NEC GMN GEN fDBD Maha Maha++ rMaha rMaha++
ConvNeXt-B-In21k 86.3 33.6 36.1 30.6 31.1 133 86.6 20.0 179 24.1 54.5 232 24.3 16.3 12.8 18.2 19.4
ConvNeXt-B 84.4 557 922 869 670 399 998 462 372 627 745 51.4 49.8 42.3 34.9 38.5 37.0
ConvNeXtV2-T-In21k 85.1 347 280 275 288 147 973 275 23.6 23.1 412 246 29.4 19.1 17.7 23.0 23.1
ConvNeXtV2-B-In21k 87.6 269 194 187 20.7 124 952 18.6 159 16.7 342 17.7 19.1 13.7 119 15.7 15.2
ConvNeXtV2-L-In21k 88.2 260 193 185 204 153 956 18.4 15.6 16.3 18.2 17.5 19.6 15.3 10.5 15.5 14.6
ConvNeXtV2-T 83.5 524 574 471 496 348 996 624 506 436 734 4l1.1 50.7 43.5 33.7 372 35.5
ConvNeXtV2-B 85.5 517 652 56.0 522 320 999 39.1 329 477 713 37.1 41.1 32.5 25.8 30.6 29.0
ConvNeXtV2-L 86.1 512 61.7 51.0 506 336 996 346 300 472 545 344 353 27.9 24.6 274 28.6
DeiT3-S16-In21k 84.8 52.1 449 408 457 336 995 358 344 424 436 36.0 422 36.5 30.5 35.9 322
DeiT3-B16-In21k 86.7 485 507 382 458 249 995 248 243 38,6 377 295 29.1 24.6 20.2 24.1 21.2
DeiT3-L16-In21k 87.7 472 397 29.6 40.0 224 987 225 20.7 293  26.1 25.6 25.8 21.9 18.6 21.3 19.0
DeiT3-S16 83.4 475 425 493 413 296 849 623 351 413 599 33.1 41.8 40.9 35.8 38.3 34.8
DeiT3-B16 85.1 516 774 872 56.1 296 996 572 63.1 551 578 33.1 416 37.9 34.7 35.6 33.8
DeiT3-L16 85.8 522 786 91.0 571 328 739 398 676 575 495 314 39.1 31.3 25.7 29.9 263
EVA02-B14-In21k 88.7 239 200 193 21.0 124 839 18.0 15.8 173 29.8 16.2 18.8 14.6 11.8 15.6 14.2
EVA02-L14-M38m-In21k  90.1 195 165 162 175 112 882 161 142 153 364 132 156 117 10.3 13.0 12.4
EVAO02-T14 80.6 562 59.0 59.7 542 325 988 476 437 434 452 455 57.9 36.2 329 393 37.1
EVA02-S14 85.7 419 444 438 392 192 99.6 283 252 310 342 285 36.1 22.1 21.0 24.4 23.1
EffNetV2-S 83.9 50.8 66.1 46.6 533 338 998 292 294 503 76.6 36.7 40.1 28.8 239 27.6 272
EffNetV2-L 85.7 49.1 694 453 513 31.7 99.6 348 329 47.1 49.8 32.2 35.4 25.0 20.0 23.7 222
EffNetV2-M 85.2 49.1 632 444 493 394 998 38.0 347 457 646 32.7 39.6 30.3 23.1 27.5 24.8
Mixer-B16-In21k 76.6 642 798 80.7 685 64.1 964 70.1 81.2 693 558 578 62.6 533 39.7 50.0 423
SwinV2-B-In21k 87.1 35.1 304 235 284 175 720 202 163 2I.1 55.5 21.7 223 22.7 13.3 20.8 18.8
SwinV2-L-In21k 87.5 313 29.7 224 266 207 837 19.6 16.6 20.7 329 208 21.1 23.5 119 20.0 17.1
SwinV2-S 84.2 53.1 61.8 522 529 349 999 445 37.6 46,5 583 39.9 48.1 37.1 253 33.8 26.8
SwinV2-B 84.6 546 585 469 521 341 996 41.0 362 452 493 36.8 439 33.5 27.1 31.6 27.6
ResNet101 81.9 60.5 799 995 643 294 727 342 356 63.6 789 516 60.4 277 334 50.8 71.4
ResNet152 82.3 593 795 994 638 285 728 328 299 620 723 49.3 58.0 26.5 269 459 68.7
ResNet50 80.9 66.2 965 99.2 713 324 728 542 522 720 88.6 552 65.7 32.2 43.0 61.2 75.7
ResNet50-supcon 78.7 43.0 339 250 355 61.7 200 268 235 344 744 417 30.7 93.7 26.6 89.5 60.5
ViT-T16-In21k-augreg 75.5 62.1 39.6 30.6 440 36.1 968 69.1 60.7 364 483 52.1 45.2 46.0 322 49.1 46.1
ViT-S16-In21k-augreg 81.4 458 242 285 274 180 688 412 334 231 322 314 29.0 234 15.5 30.9 27.1
ViT-B16-In21k-augreg2 85.1 46.0 37.1 302 37.6 38.0 99.5 30.3 254 331 54.5 29.2 36.8 38.7 258 33.0 27.8
ViT-B16-In21k-augreg 84.5 345 199 21.0 212 13.0 946 406 307 18.8 270 223 21.6 13.0 14.5 19.1 19.3
ViT-B16-In21k-orig 81.8 339 213 215 232 207 627 242 226 209 405 259 244 212 18.8 25.8 24.6
ViT-B16-In21k-miil 84.3 363 233 222 268 262 974 289 232 217 535 23.7 29.5 344 19.0 32.6 26.3
ViT-L16-In21k-augreg 85.8 293 160 16.1 174 11.0 934 356 247 157 33.1 18.7 16.9 10.7 11.8 15.8 15.8
ViT-L16-In21k-orig 81.5 327 221 220 23.6 21.0 449 228 220 21.8 403 25.8 243 20.6 18.3 243 23.6
ViT-S16-augreg 78.8 558 454 475 476 56.6 97.1 613 582 477 525 503 53.8 35.6 35.5 36.3 36.0
ViT-B16-augreg 79.2 553 472 433 486 530 882 538 525 482 543 50.5 52.7 36.4 34.6 35.8 34.7
ViT-B16-CLIP-L2b-In12k 86.2 329 316 285 293 223 997 208 190 260 340 229 25.7 28.7 17.1 239 21.1
ViT-L14-CLIP-L2b-In12k 88.2 232 188 18.1 193 145 98.0 17.5 15.1 19.1 29.6 16.4 17.7 16.8 134 17.2 16.3
ViT-H14-CLIP-L2b-In12k 88.6 237 196 19.0 203 148 983 18.3 153  20.1 51.3 16.3 18.7 15.6 12.8 16.9 15.9
ViT-s0400M-SigLip 89.4 36.8 41.1 30.7 340 17.7 924 154 143 319 646 18.7 17.3 16.8 15.1 16.3 16.4
Average 84.4 44.0 457 426 404 28.1 89.1 35.1 32.1  36.7 50.3 32.3 354 29.1 23.0 30.5 29.3

23



Mahalanobis++: Improving OOD Detection via Feature Normalization

Table 10. AUC on OpenOOD, Green indicates that normalized method is better than its unnormalized counterpart, bold indicates the
best method, and underlined indicates second best method. Maha++ improves over Maha on average by 2.1% in AUC over all models.
Similarly, rMaha++ is 0.6% better in AUC than rMaha. In total, Maha++ improves the SOTA compared to the previously strongest
methods rMaha by 1.4%, which is significant. The highest AUC is achieved by Maha++ for the EVA02-L14-M38m-In21k highlighted in

blue.
Model ValAcc MSP E E+R ML ViIM AshS KNN NNG NEC GMN GEN fDBD Maha Maha++ rMaha rMaha++
ConvNeXt-B-In21k 86.3 88.8 86.8 889 884 933 521 90.1 926 91.6 881 915 903 91.9 93.7 92.0 92.5
ConvNeXt-B 84.4 80.9 613 712 747 854 198 844 868 764 816 832 847 87.1 88.7 87.9 88.7
ConvNeXtV2-T-In21k 85.1 874 88.1 883 883 933 403 886 91.0 913 891 900 864 91.8 92.7 91.2 91.5
ConvNeXtV2-B-In21k 87.6 899 904 91.0 904 948 452 920 936 934 91.1 923 914 94.0 94.9 93.7 94.0
ConvNeXtV2-L-In21k 88.2 90.6 91.1 919 91.1 938 454 921 938 940 927 928 91.7 93.7 953 93.8 94.2
ConvNeXtV2-T 83.5 83.5 78.1 822 81.7 867 21.6 812 853 835 822 866 849 87.0 88.9 88.2 89.1
ConvNeXtV2-B 85.5 82.8 73.0 78.7 79.0 86.7 158 863 883 80.1 834 86.7 86.8 89.0 90.5 89.6 90.3
ConvNeXtV2-L 86.1 83.0 73.0 799 789 845 173 872 888 789 858 873 88.0 89.8 90.6 90.3 90.6
DeiT3-S16-In21k 84.8 80.3 787 812 795 87.1 195 860 874 81.1 879 852 855 87.9 89.5 88.1 89.2
DeiT3-B16-In21k 86.7 824 748 822 784 90.6 184 89.7 904 827 898 874 887 910 923 91.1 92.1
DeiT3-L16-In21k 87.7 843 81.5 86.6 827 920 205 91.1 914 883 909 893 894 92.0 93.0 91.9 92.8
DeiT3-S16 83.4 842 838 83.0 847 882 619 830 865 849 854 878 865 87.9 88.9 88.6 89.3
DeiT3-B16 85.1 83.5 695 633 790 876 224 831 79.1 798 851 87.6 86.1 88.1 88.9 88.9 89.6
DeiT3-L16 85.8 829 76.6 664 805 870 653 846 804 80.6 863 878 86.7 89.0 89.9 89.7 90.4
EVAO02-B14-In21k 88.7 91.0 904 913 909 950 540 922 936 934 925 933 926 94.0 949 93.6 94.1
EVA02-L14-M38m-In21k 90.1 924 91.7 922 923 959 480 936 946 944 920 943 941 95.5 95.9 95.1 95.3
EVA02-T14 80.6 81.3 79.1 789 80.8 872 431 81.7 850 850 864 850 800 86.6 87.2 86.3 86.7
EVA02-S14 85.7 844 79.7 80.1 821 91.6 227 872 895 864 905 878 854 90.8 91.2 90.4 90.7
EffNetV2-S 83.9 83.2 742 832 793 867 208 868 880 82.0 821 872 86.6 88.6 90.0 89.7 90.4
EffNetV2-L 85.7 839 735 832 806 856 17.8 869 87.8 822 863 878 86.6 89.6 90.8 90.7 91.3
EffNetV2-M 85.2 83.7 744 833 806 853 17.8 863 876 824 846 880 862 88.9 90.5 90.2 91.0
Mixer-B16-In21k 76.6 80.4 789 78.7 798 825 486 793 793 799 840 822 813 83.1 86.4 85.1 86.4
SwinV2-B-In21k 87.1 88.0 87.0 904 883 92.1 475 888 91.8 919 870 914 90.1 90.6 929 90.8 91.9
SwinV2-L-In21k 87.5 88.7 86.8 90.8 88.1 919 384 898 922 91.8 889 91.6 908 91.1 93.7 91.5 92.7
SwinV2-S 84.2 823 748 814 789 87.0 148 843 86.8 815 857 864 857 87.9 90.0 88.3 90.0
SwinV2-B 84.6 824 759 828 794 86.1 212 857 872 8.0 86.7 872 86.1 88.8 90.2 89.0 90.1
ResNet101 81.9 799 682 23.1 758 837 564 828 8.5 767 749 83.0 792 88.0 89.5 87.0 85.2
ResNet152 82.3 804 67.6 21.0 758 842 560 827 859 776 717 836 80.6 885 90.0 87.7 86.0
ResNet50 80.9 775 526 276 733 820 608 797 815 733 651 819 774 865 87.5 84.6 83.1
ResNet50-supcon 78.7 852 877 88.7 876 823 886 864 886 878 789 867 87.1 52.9 89.2 76.5 85.6
ViT-T16-In21k-augreg 75.5 799 855 869 851 865 457 759 80.0 864 841 839 855 84.3 86.5 83.8 84.0
ViT-S16-In21k-augreg 81.4 844 904 899 900 91.6 665 853 882 90.8 888 89.1 89.2 90.4 91.5 89.1 89.4
ViT-B16-In21k-augreg2 85.1 844 846 873 854 859 246 868 89.1 876 860 886 845 86.7 90.3 88.6 90.0
ViT-B16-In21k-augreg 84.5 875 919 913 91.7 93.6 548 856 89.1 924 90.1 916 914 934 92.5 92.0 91.9
ViT-B16-In21k-orig 81.8 88.0 932 931 927 935 77.1 904 919 933 877 9l1.1 92.0 927 93.5 91.6 91.8
ViT-B16-In21k-miil 84.3 877 90.6 91.0 90.1 91.8 32.1 884 O91.1 917 86.6 910 89.1 89.6 92.6 90.2 91.2
ViT-L16-In21k-augreg 85.8 89.6 93.0 941 929 946 S58.1 878 90.6 935 899 930 93.1 94.9 94.0 93.9 93.7
ViT-L16-In21k-orig 81.5 89.5 933 933 930 934 862 920 929 935 873 919 925 92.8 93.8 92.2 92.4
ViT-S16-augreg 78.8 823 849 84.6 848 804 467 779 81.8 846 839 851 83.5 86.9 86.8 874 874
ViT-B16-augreg 79.2 82.7 858 864 857 841 529 812 840 856 845 856 848 87.4 87.6 88.0 88.1
ViT-B16-CLIP-L2b-In12k 86.2 879 858 87.8 87.1 923 195 904 925 896 912 908 90.6 90.5 933 91.2 92.2
ViT-L14-CLIP-L2b-In12k 88.2 90.5 899 90.6 904 946 382 922 941 909 923 926 92.7 93.6 94.8 93.7 94.0
ViT-H14-CLIP-L2b-In12k 88.6 90.6 894 90.1 90.2 942 276 920 93.6 90.8 839 927 92.1 93.7 94.7 93.7 94.0
ViT-s0400M-SigLip 89.4 87.6 79.7 858 838 92,6 257 91.8 931 857 888 91.6 920 93.2 93.8 93.4 93.6
Average 84.4 85.0 81.5 81.0 844 89.1 404 86.6 885 862 862 834 875 89.1 91.2 89.8 90.4
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Table 11. AUC on NINCO datasets, Green indicates that normalized method is better than its unnormalized counterpart, bold indicates
the best method, and underlined indicates second best method. Maha++ improves over Maha on average by 2.6% in AUC over all models.
Similarly, rMaha++ is 1.0% better in AUC than rMaha. In total, Maha++ improves the SOTA compared to the previously strongest
methods rMaha by 1.0%, which is significant. The highest AUC is achieved by Maha++ for the EVA02-L14-M38m-In21k highlighted in

blue.
Model ValAcc MSP E E+R ML VIM AshS KNN NNG NEC GMN GEN fDBD Maha Maha++ rMaha rMaha++
ConvNeXt-B-In21k 86.3 88.2 857 87.8 87.6 92,5 454 88.0 91,5 90.7 877 909 89.5 91.2 94.3 923 93.5
ConvNeXt-B 84.4 81.7 648 732 76.7 830 25.1 81.6 852 78.0 8l.1 83.3 83.0 85.8 88.5 87.2 88.8
ConvNeXtV2-T-In21k 85.1 86.7 872 874 875 92.7 397 86.8 90.2 90.6 88.8 89.4 85.9 91.7 929 91.4 91.9
ConvNeXtV2-B-In21k 87.6 89.4 89.1 899 893 948 438 91.1 935 927 913 92.0 91.8 94.5 95.6 94.5 95.0
ConvNeXtV2-L-In21k 88.2 90.2 893 90.7 89.7 939 398 91.6 939 934 926 923 92.8 94.1 96.2 94.7 95.5
ConvNeXtV2-T 83.5 829 762 80.3 80.5 835 260 78.0 83.1 82.0 81.0 85.6 82.5 85.4 88.3 87.5 89.0
ConvNeXtV2-B 85.5 82.6 732 782 79.2 836 200 837 86.6 798 82.9 86.1 85.2 87.9 90.1 89.0 90.3
ConvNeXtV2-L 86.1 822 71.7 78.6 78.0 80.8 19.1 848 87.1 715 84.2 86.4 86.1 88.7 90.2 89.9 90.6
DeiT3-S16-In21k 84.8 779 748 772 762 854 232 834 854 776 876 82.7 84.2 87.3 89.2 87.6 89.0
DeiT3-B16-In21k 86.7 81.5 745 805 775 893 213 876 892 813 89.6 866 875 90.2 91.8 90.6 91.9
DeiT3-L16-In21k 87.7 839 819 863 827 909 253 89.6 90.8 874 90.6 89.1 88.7 91.6 92.8 91.9 92.9
DeiT3-S16 83.4 829 814 812 831 863 646 8l1.1 85.0 83.0 844 86.4 85.1 87.5 88.6 88.4 89.3
DeiT3-B16 85.1 822 66.6 624 767 851 284 805 771 713 83.9 86.4 84.0 87.2 88.3 88.3 89.2
DeiT3-L16 85.8 81.2 755 68.8 78.6 847 623 81.1 788 787 848 86.0 84.9 88.2 89.1 89.2 90.1
EVA02-B14-In21k 88.7 90.6 89.7 91.0 903 947 50.1 91.1 932 927 926 932 930 94.0 95.1 93.9 94.6
EVAO02-L14-M38m-In21k 90.1 926 91.1 91.8 921 96.1 409 932 946 942 920 947 94.8 96.0 96.4 959 96.0
EVAO02-T14 80.6 792 753 750 777 83.6 4l.1 78.3 819 815 83.7 82.3 78.0 84.2 84.8 84.3 84.7
EVAO02-S14 85.7 81.8 76.1 76,5 78.8 88.6 27.0 843 87.1 828 89.6 850 82.8 89.2 89.6 89.3 89.6
EffNetV2-S 83.9 81.1 71.1 77.6 763 81.7 20.7 83.5 849 783 80.6 84.6 83.7 85.5 87.1 88.1 89.4
EffNetV2-L 85.7 82.6 733 803 79.6 80.2 209 840 854 79.7 853 86.4 84.0 87.4 89.0 89.5 90.5
EffNetV2-M 85.2 823 718 795 78.6 81.0 193 840 854 794 839 86.6 84.1 87.2 89.1 89.5 90.6
Mixer-B16-In21k 76.6 793 781 78.1 788 808 498 762 786 789 823 80.9 79.1 80.5 84.6 83.8 85.2
SwinV2-B-In21k 87.1 874 86.0 89.2 87.5 90.8 44.1 86.1 90.5 912 86.7 90.8 88.6 89.4 929 90.4 92.5
SwinV2-L-In21k 87.5 88.2 859 899 874 90.8 369 878 91,5 914 877 912 89.8 90.0 94.1 91.2 935
SwinV2-S 84.2 809 748 79.7 781 839 176 807 838 80.3 84.5 84.7 82.9 86.0 88.7 86.6 88.9
SwinV2-B 84.6 80.8 749 804 78.0 814 289 823 842 797 84.5 85.2 83.1 86.8 88.5 87.3 88.7
ResNet101 81.9 787 673 21.1 746 769 475 776 826 747 741 80.9 73.9 85.3 89.1 87.8 88.1
ResNet152 82.3 79.1 672 200 746 773 487 776 831 756 764 81.4 75.7 85.9 89.5 87.9 88.6
ResNet50 80.9 76.8 550 237 73.0 735 526 751 788 723 662 79.7 71.7 82.7 86.5 86.1 86.6
ResNet50-supcon 78.7 849 872 87.1 872 792 86.0 843 86.8 87.3 80.3 86.9 85.0 48.2 88.1 78.7 87.0
ViT-T16-In21k-augreg 75.5 78.1 81.0 82.1 813 822 544 733 762 823 81.0 80.8 83.0 84.0 83.7 83.0 82.8
ViT-S16-In21k-augreg 81.4 834 88.6 884 885 89.7 61.1 82.0 856 89.2 86.7 87.7 88.4 90.7 90.8 89.5 89.4
ViT-B16-In21k-augreg2 85.1 83.2 82.7 852 839 836 287 847 87.6 86.1 85.5 87.8 82.8 86.1 90.7 88.6 90.8
ViT-B16-In21k-augreg 84.5 86.3 91.1 90.3 91.0 924 562 828 875 915 89.3 91.1 90.3 94.1 932 93.2 93.0
ViT-B16-In21k-orig 81.8 872 918 91.8 915 926 710 883 90.1 92.1 87.3 90.3 91.2 93.1 93.8 92.7 92.9
ViT-B16-In21k-miil 84.3 86.5 88.1 88.6 88.0 912 313 87.2 89.7 90.0 86.5 89.8 88.2 89.9 93.1 91.1 922
ViT-L16-In21k-augreg 85.8 89.5 927 949 9277 939 48.1 839 88.8 932 88.6 932 92.4 95.3 94.4 95.1 94.8
ViT-L16-In21k-orig 81.5 89.3 91.7 91.8 91.6 919 81.7 89.7 913 921 86.1 91.1 91.6 92.4 93.5 92.9 93.1
ViT-S16-augreg 78.8 80.8 81.8 81.5 822 748 444 738 782 819 814 83.0 81.0 85.3 85.1 86.6 86.6
ViT-B16-augreg 79.2 81.0 833 838 834 81.0 524 778 8l.1 83.3 82.0 839 82.5 85.7 85.7 86.9 86.9
ViT-B16-CLIP-L2b-In12k 86.2 86.6 829 855 849 91.1 215 884 91.1 879 90.6 89.6 90.1 89.4 929 90.6 923
ViT-L14-CLIP-L2b-In12k 88.2 90.0 879 89.0 89.0 944 334 912 933 896 926 922 93.4 93.9 95.2 94.2 94.8
ViT-H14-CLIP-L2b-In12k 88.6 89.7 872 882 885 939 276 91.0 924 892 898 918 92.7 94.2 95.3 94.3 94.8
ViT-s0400M-SigLip 89.4 873 795 851 832 9211 26.1 91.8 933 847 883 91.7 924 933 94.6 94.2 94.8
Average 84.4 84.1 80.2 793 831 86.6 399 84.1 86.7 846 854 873 85.9 88.1 90.7 89.7 90.7
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Table 12. FPR on NINCO for cosine-based methods, Green indicates that the normalized method is better than its unnormalized
counterpart, bold indicates the best method, and underlined indicates the second best method. Mahalanobis++ consistently outperforms
other cosine-based methods. In only 2 out of 44 models, another method (once NNguide and once Cosine) is better than Maha++.

Model Accuracy \ Maha++ Cosine KNN (Sun et al., 2022) NNguide (Park et al., 2023a)  SSC (Techapanurak et al., 2020)
ConvNeXt-B 84.434 50.5 60.6 70.1 62.2 69.3
ConvNeXt-B-In21k 86.270 28.8 422 51.6 412 51.3
ConvNeXtV2-B 85.474 44.7 57.1 67.3 60.3 66.6
ConvNeXtV2-B-In21k 87.642 224 31.1 40.9 31.7 40.4
ConvNeXtV2-L 86.120 43.0 53.8 62.4 56.9 59.7
ConvNeXtV2-L-In21k 88.196 18.4 27.0 38.7 29.9 39.2
ConvNeXtV2-T 83.462 523 69.4 82.3 73.9 72.8
ConvNeXtV2-T-In21k 85.104 32.8 45.8 54.1 45.0 55.1
DeiT3-B16 85.074 57.2 67.1 74.5 80.1 65.7
DeiT3-B16-In21k 86.744 38.8 46.9 52.6 46.4 53.2
DeiT3-L16 85.812 50.4 62.2 67.2 77.9 68.7
DeiT3-L16-In21k 87.722 33.9 38.9 43.8 37.8 46.3
DeiT3-S16 83.434 53.5 67.6 75.6 57.8 63.6
DeiT3-S16-In21k 84.826 50.8 58.4 62.9 59.3 65.2
EVA02-B14-In21k 88.694 23.8 29.1 37.6 30.0 34.4
EVA02-L14-M38m-In21k  90.054 18.6 22.7 30.3 26.1 28.8
EVA02-S14 85.720 48.0 53.6 60.0 54.0 63.8
EVA02-T14 80.630 64.0 69.8 74.5 71.0 75.5
Mixer-B16-In21k 76.598 65.4 78.2 85.8 83.7 79.5
ResNet101 81.890 50.4 61.5 74.9 66.4 87.2
ResNet152 82.286 46.5 62.1 72.0 61.6 85.8
ResNet50 80.856 61.0 64.0 83.7 75.0 88.2
ResNet50-supcon 78.686 59.6 58.9 65.8 58.4 74.1
SwinV2-B-In21k 87.096 313 459 57.2 42.7 53.7
SwinV2-B 84.604 52.2 63.4 69.4 65.2 71.6
SwinV2-L-In21k 87.468 28.3 42.8 55.1 41.7 53.6
SwinV2-S 84.220 49.8 65.2 73.1 66.8 75.2
EffNetV2-L 85.664 47.8 57.0 62.5 60.1 62.4
EffNetV2-M 85.204 50.0 58.0 63.1 60.6 64.4
EffNetV2-S 83.896 59.9 58.8 60.9 59.6 68.7
ViT-B16-In2 1k-augreg2 85.096 45.9 56.4 64.0 57.0 64.8
ViT-B16-augreg 79.152 61.3 73.1 77.6 75.9 75.7
ViT-B16-In21k-augreg 84.528 35.7 53.4 67.7 59.0 54.0
ViT-B16-In21k-orig 81.790 31.6 46.0 52.7 47.6 452
ViT-B16-In2 1k-miil 84.268 354 49.7 59.6 51.7 62.1
ViT-B16-CLIP-L2b-In12k  86.172 35.8 435 494 423 48.8
ViT-H14-CLIP-L2b-In12k  88.588 23.7 31.5 41.7 274 36.5
ViT-L14-CLIP-L2b-In12k  88.178 254 30.9 39.5 254 333
ViT-L16-In21k-augreg 85.840 28.9 50.0 68.6 58.9 48.2
ViT-L16-In21k-orig 81.508 324 39.2 45.8 40.7 42.0
ViT-S16-augreg 78.842 63.1 75.8 82.1 80.0 78.1
ViT-S16-In21k-augreg 81.388 44.6 60.3 70.9 64.0 61.5
ViT-s0400M-SigLip 89.406 274 29.0 36.3 30.0 35.6
ViT-T16-In21k-augreg 75.466 63.2 772 81.7 81.9 74.2

Table 13. AUROC for CIFAR10, Green indicates that the normalized method is better than its unnormalized counterpart, bold indicates
the best method, and underlined indicates the second best method. Maha++ is clearly the best method. Only for the WRN28-10 Maha is
better (but not significantly). Maha++ improves in all cases over the previously beset methods ViM. We highlight the best AUC achieved
by Maha++ for the ViT-B16-21k-1k in blue.

Model Ash  Dice Ebo KIM KNN ML MSP O-Max React She NNguide T-Scal ViIM Neco rMD rMD++ MD MD++
SwinV2-S-1k 69.96 92.85 9561 98.04 99.25 9583 96.60 97.02 96.83 96.88 6751 96.61 99.53 98.86 98.83 9879 99.50 99.57
ViT-B16-21k-1k  82.75 99.33 99.42 9698 99.64 9941 98.88 97.66 99.45 98.99 87.30 99.06  99.67 99.56 99.03  99.04 99.60 99.71

RNI18 87.15 89.60 91.09 79.62 91.58 90.97 89.93 89.04 90.78 87.62 63.57 90.32  91.12 90.67 89.92 90.06 86.87 91.69
RN34 7829 8484 8726 8275 92.15 8720 88.11 87.38 87.50 81.40 55.07 88.07 92.50 86.39 9034 90.49 91.53 93.61
RNXxt29-32 7833 7190 8845 83.19 9046 8820 8798 85.65 8527 87.90 29.57 8797 9136 89.62 89.84 88.69 90.70 91.56
Average 79.29 8770 9237 88.11 94.62 9232 9230 91.35 91.97 90.56 60.60 9241 94.84 93.02 9359 9341 93.64 9523
RN50-SC — — — —  9.76 — — — — — — — — — 9446 9430 59.00 96.80
RN34-SC — — — —  9%.15 — — — — — — — — — 9472 9424 6421 96.77
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Table 14. FPR for CIFAR10, Green indicates that the normalized method is better than its unnormalized counterpart, bold indicates
the best method, and underlined indicates the second best method. Maha++ is the best method on average. We highlight the best FPR
achieved by Maha++ for the ViT-B16-21k-1k in blue.

Model Ash  Dice Ebo KIM KNN ML MSP O-Max React She NNguide T-Scal ViIM Neco rMD rMD++ MD MD++
SwinV2-S-1k 9343 19.51 882 602 403 807 6.74 5.97 721 12.08 63.18 6.73  2.17 3.66 342 3.18 2.35 2.16
ViT-B16-21k-1k  60.41 242 193 623 175 197 327 3.15 1.99 448 41.88 291 129 1.57 259 2.66 1.66 1.24

RN18 4752 41.18 39.22 56.48 4555 4028 5642 7647 4022 45.89 77.65 5258 5199 41.10 5251 54.09 69.46 46.15
RN34 46.12 4420 38.05 52.89 4624 39.14 5199 7847 4236 4581 76.79 4898 48.15 4193 5267 53.67 5445 3836
RNXxt29-32 9743 63.57 4736 56.54 5591 5041 53.15 89.85 56.26 38.13 99.97 5336 36.13 51.32 58.07 6131 41.17 34.64
Average 68.98 34.18 27.08 35.63 30.70 27.97 3431 50.78 29.61 29.28 71.89 3291 2795 2792 3385 3498 33.82 24.51
RN50-SC — — — — 1948 — — — — — — — — — 3323 3526 81.77 18.59
RN34-SC — — — — 2247 — — — — — — — — — 3052 3289 78,65 17.55

Table 15. AUROC for CIFAR100, Green indicates that the normalized method is better than its unnormalized counterpart, bold indicates
the best method, and underlined indicates the second best method. Maha++ is clearly the best method. Only for the RNxt29-32 She is
slightly better. Maha++ improves in all cases over the previously best methods ViM, Maha and KNN. We highlight the best AUC achieved
by Maha++ for the ViT-B32-21k in blue.

Model Ash Dice Ebo KIM KNN ML MSP O-Max React She NNguide T-Scal ViM Neco rMD tMD++ MD MD++
SwinV2-S-1k  48.67 63.60 84.72 8252 90.06 8520 85.68 85.82 87.53 89.66 71.36 8593 91.34 9038 89.77 89.30 90.29  92.99
Deit3-S-21k ~ 49.99 44.78 85.69 81.59 88.06 86.18 86.21 84.52 88.88 8747 55.19 86.43 9041 89.86 87.44 87.85 8330 90.54
ConvN-T-21k  63.80 53.50 77.76 80.48 86.60 7851 79.09 82.60 80.17 82.94 6298 79.22  87.67 8131 8500 84.89 8795 89.55
ViT-B32-21k  59.23 88.31 90.28 89.13 94.87 89.99 8536 88.00 8859 94.10 87.17 86.73 1 94.62 90.70 9237 92.82 9559 96.84
ViT-S16-21k  65.78 84.35 89.85 84.23 9397 89.44 83.87 88.09 8845 9232 80.08 8538 9591 90.80 93.09 9332 9563 96.81

RN18 7420 79.77 80.31 74.11 8122 8031 79.70 6822 80.27 79.18 81.06 80.02 7850 80.66 81.27 8091 7846 81.71
RN34 65.82 78.86 79.88 75.63 8151 79.76 79.13 73.14 8048 77.15 74.13 79.56 82.13 80.61 8122 80.94 82.03 82.16
RNXxt29-32 79.46 82.01 7858 70.79 80.89 7847 7837 66.11 7836 82.59  73.21 7822 7533 79.68 76.87 77.06 76.18 82.48
Average 63.37 7190 8338 79.81 87.15 8348 8218 79.56 84.09 85.68 73.15 82.69 86.99 8550 8588 85.89 86.80 89.14
RN34-SC — — — — 8376 — — — — — — — — — 7680 80.03 5330 84.83
RNS50-SC — — — — 8241 — — — — — — — — — 7790 79.67 59.01 82.44

Table 16. FPR for CIFAR100, Green indicates that the normalized method is better than its unnormalized counterpart, bold indicates the
best method, and underlined indicates the second best method. Maha++ is improving in all cases over Maha and is on average the best
method. We highlight the best FPR achieved by Maha++ for the ViT-S16-21k in blue.

Model Ash  Dice Ebo KIM KNN ML MSP O-Max React She NNguide T-Scal VIM Neco rMD tMD++ MD MD++
SwinV2-S-1k  92.66 7598 40.95 49.65 36.27 40.96 4728 67.04 39.54 39.64 80.29 4558 34.02 33.59 4140 47.14 40.10 26.01
Deit3-S-21k 9447 9634 41.61 47.86 36.81 4237 4892 66.00 4046 40.93 96.35 47.15 3999 37.12 41.02 4136 4199 3172
ConvN-T-21k  92.11 89.10 57.67 6550 51.16 57.44 60.60 66.86 58.23 53.76 91.25 60.04 51.18 5392 6279 61.66 5248 42.69
ViT-B32-21k 9398 46.59 30.51 4324 2649 31.28 48.02 53.68 3253 3325 64.86 40.74 27.14 28.61 33.80 31.03 2628 18.94
ViT-S16-21k  80.45 56.38 36.06 50.09 3191 37.63 52.17 57.38 36.48 38.89 77.85 46.68 2490 3324 3410 3283 2551 18.58

RNI8 78.98 80.53 80.19 7885 76.61 79.87 80.59 97.36 80.18 80.46 68.16 80.25 79.61 79.89 76.14 7749 7948 7292
RN34 7827 7831 75.19 78.08 74.44 7533 7693 9407 7451 78.76 75.07 7620 77.17 7425 7582 7622 76.63 74.51
RNxt29-32 7259 67.03 8222 87.56 73.17 8230 8231 9632 81.87 69.42 81.89 82.60 76.40 80.54 86.58 8439 77.67 67.71
Average 8544 7378 5555 62.60 50.86 5590 62.10 74.84 5547 54.39 79.47 59.90 51.30 52.65 5646 5651 5252 44.13
RN34-SC — — — — 6687 — — — — — — — — — 90.02 7437 9376 63.51
RN50-SC — — — —  66.69 — — — — — — — — — 8353 7815 8238 6795
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Table 17. Normalization improves robustness against noise distributions. We report the number of failed unit tests (noise distributions
with FPR values > 10%) from (Bitterwolf et al., 2023). Normalization improves the brittleness of Mahalanobis-based detectors.

model Maha  Maha++
ConvNeXt-B 16 15
ConvNeXt-B-In21k 4
ConvNeXtV2-B 14
ConvNeXtV2-B-In21k 5
ConvNeXtV2-L 13
ConvNeXtV2-L-In21k 2
ConvNeXtV2-T 17
ConvNeXtV2-T-In21k 6

DeiT3-B16 14
DeiT3-B16-In21k 6

DeiT3-L16

DeiT3-L16-In21k 1

DeiT3-S16 15
DeiT3-S16-In21k 17

EVA02-B14-In21k
EVA02-L14-M38m-In21k 0

EVA02-S14 8

EVA02-T14 11
Mixer-B16-In21k 17
ResNet101 0

ResNet152 0

ResNet50 0

ResNet50-supcon 17
SwinV2-B-In21k 10
SwinV2-B 12
SwinV2-S 15
EffNetV2-L 13
EffNetV2-M 13
EffNetV2-S 11
ViT-B16-224-In21k-augreg2 16
ViT-B16-224-augreg 11
ViT-B16-224-In21k-orig 2

ViT-B16-224-In21k-miil 17

ViT-B16-CLIP-L2b-In12k 14
ViT-H14-CLIP-L2b-In12k 4
ViT-L14-CLIP-L2b-In12k
ViT-L16-224-In21k-orig
ViT-S16-224-augreg
ViT-s0400M-SigLip
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Table 18. Comparison to SSD+. SSD+ consists of a) training with contrastive loss (implicitly normalizing the features), b) estimating
cluster means in the normalized feature space via k-means, c) centering the train features with the closest class mean and estimating a
shared covariance matrix, and d) using the Mahalanobis distance at inference time for OOD detection. SSD+ is therefore not readily
applicable as post-hoc OOD detection method. To highlight the benefits of post-hoc methods, we report the performance of SSD+ with a
ResNet-50, which was trained for 700 epochs with supervised contrastive loss, and compare it to a ConvNext model and an EVA model
with varied pretraining schemes. The latter models outperform SSD+ clearly, underlining the importance of post-hoc methods for OOD
detection.

Model FPR (%)
SSD+ w. 100 clusters 66.0
SSD+ w. 500 clusters 65.7
SSD+ w. 1000 clusters 67.8
CnvNxtV2-L + Maha++ 18.4
EVA02-L14 + Maha++ 18.6
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F. Models
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Table 19. Imagenet model checkpoints.

Modelname

Checkpoint

source

ViT-B16-In21k-augreg
ViT-L16-In21k-augreg
ViT-T16-In21k-augreg
ViT-S16-In21k-augreg
ViT-B16-augreg
ViT-S16-augreg
ViT-s0400M-SigLip
ViT-H14-CLIP-L2b-In12k
ViT-L14-CLIP-L2b-In12k
ViT-B16-In21k-orig
ViT-L16-In21k-orig
ViT-B16-In21k-miil
ViT-B16-In21k-augreg?2
ViT-B16-CLIP-L2b-In12k
EVA02-L14-M38m-In21k
EVA02-B14-In21k
EVA02-S14
EVA02-T14

DeiT3-B16
DeiT3-B16-In21k
DeiT3-L16-In21k
DeiT3-B16-In21k
DeiT3-L16

DeiT3-B16
DeiT3-S16-In21k
DeiT3-S16

SwinV2-S

SwinV2-B
SwinV2-L-In21k
SwinV2-B-In21k
ResNet50

ResNet101

ResNet152
ResNet50-supcon
ConvNeXt-B
ConvNeXt-B-In21k
ConvNeXtV2-L-In21k
ConvNeXtV2-B-In21k
ConvNeXtV2-T-In21k
ConvNeXtV2-T
ConvNeXtV2-B
ConvNeXtV2-L
Mixer-B16-In21k
EffNetV2-M
EffNetV2-S
EffNetV2-L

vit_base_patch16_224.augreg_in21k ft_inlk
vit_large_patch16_224.augreg_in21k _ft_inlk
vit_tiny_patch16_224.augreg_in21k ft_inlk
vit_small_patch16_224.augreg_in2 1k _ft_inlk
vit_base_patch16_224.augreg_inlk
vit_small_patch16_224.augreg_inlk
vit_so400m_patch14 siglip_378.webli_ft_inlk
vit_huge_patch14 _clip_336.laion2b_ft_in12k_inlk
vit_large_patch14 _clip_336.laion2b_ft_in12k_inlk
vit_base_patch16_224.orig_in21k_ft_inlk
vit_large_patch32_384.orig_in21k _ft_inlk
vit_base_patch16_224_miil.in21k _ft_inlk
vit_base_patch16_224.augreg2_in21k _ft_inlk
vit_base_patch16_clip_224.laion2b_ft_in12k_inlk
eva02_large_patch14 448 . mim_m38m_ft_in22k in1k
eva02_base_patch14_448. mim_in22k _ft_in22k inlk
eva02_small_patch14_336.mim_in22k ft_inlk
eva02_tiny_patch14_336.mim_in22k_ft_inlk
deit3_base_patch16_224
deit3_base_patch16_224_in21ft1k
deit3_large_patch16_384.fb_in22k ft_inlk
deit3_base_patch16_384.fb_in22k ft_inlk
deit3_large_patch16_384.fb_inlk
deit3_base_patch16_384.fb_inlk
deit3_small_patch16_384.fb_in22k ft_inlk
deit3_small_patch16_384.fb_in1k
swinv2_small_window16_256.ms_inlk
swinv2_base_window16_256.ms_inlk

swinv2_large_window12t024_192to384.ms_in22k ft_in1k
swinv2_base_window12t024_192to384.ms_in22k _ft_in1k

resnet50.tv2_inlk

resnet101.tv2_inlk

resnetl152.tv2_inlk

rn50supcon

convnext_base.fb_inlk
convnext_base.fb_in22k_ft_in1k
convnextv2_large.fcmae_ft_in22k _in1k_384
convnextv2_base.fcmae_ft_in22k _in1k_384
convnextv2_tiny.fcmae_ft_in22k_inlk_384
convnextv2_tiny.fcmae_ft_inlk
convnextv2_base.fcmae_ft_inlk
convnextv2_large.fcmae_ft_inlk
mixer_b16_224.goog_in21k_ft_inlk
tf_efficientnetv2_m.inlk
tf_efficientnetv2_s.inlk
tf_efficientnetv2_l.in1k

timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface

github.com/roomo7time/nnguide/

timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
timm / huggingface
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Table 20. Cifar model checkpoints.

SwinV2-S-1k  ft from timm model
Deit3-S-21k ft from timm model
ConvN-T-21k  ft from timm model
ViT-B32-21k https://github.com/google-research/big_vision
ViT-S16-21k https://github.com/google-research/big_vision

RN18 https://huggingface.co/edadaltocg/
RN34 https://huggingface.co/edadaltocg/
RN34-SC https://huggingface.co/edadaltocg/
RN50-SC https://huggingface.co/edadaltocg/
RNxt29-32 self trained

G. Methods

We describe OOD detection methods evaluated in our work. Let a neural network ng(z) = g(¢(z)) decompose into a
feature extractor ¢ and linear layer g(¢;) = WZ¢; + b. For input z, ¢(x) denotes the feature embedding, and g(é(x))
produces logits o, which can be transformed to a probability vector p via the softmax function.

MSP (Hendrycks & Gimpel, 2017): Classifer confidence, i.e. max-softmax-probability

s = max(p;)
(&3

Max-Logit (ML or MLS) (Hendrycks et al., 2022): Max-Logit returns the largest entry of the logit-vector o, i.e.
s = max(o.)

Energy (E) (Liu et al., 2020): Energy or log-sum-exp of logits:

C

s =log Z exp (oc)

KL-Matching (KLM) (Hendrycks et al., 2022): KL-Matching computes the average probability vector d. for each of the C
classes. For a test input, the KL-distances of all d. vectors to its probability vector p are computed, and the OOD-score is
the negative of the smallest of those distances:

s = —minKL[p||d.]

In the original paper by (Hendrycks et al., 2022), the average for d. is computed over an additional validation set. Since
none of the other methods leverages extra data and we are interested in fair comparison, we deploy KL-Matching like in
(Wang et al., 2022; Yang et al., 2022), where the average is computed over the train set.

KNN (KNN) (Sun et al., 2022): Computes the k-nearest neighbour in the normalized feature-space: The feature vector
of a test input is normalized to z = ¢/||¢||2 and the pairwise distances r;(z) = ||z — ;|| to the normalized features
Z ={z1,...,zy} of all samples of the training set are computed. The distances r;(z) are then sorted according to their
magnitude and the K" smallest distance, denoted r* (z) is used as negative OOD-score:

s=—r%(z)

Like suggested in (Sun et al., 2022), we use K = 1000.

ReAct (E+R) (Sun et al., 2021): The authors propose to perform a truncation of the feature vector, ¢ = min(¢, r), where
the min operation is to be understood element-wise and r is the truncation threshold. The truncated features can then be
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converted to so-called rectified logits via & = g(¢) = W7'¢ + b. While the rectified logits can now be used with a variety
of existing detection methods, we follow (Sun et al., 2021) and use the rectified Energy as OOD-score:

C

s = log Z exp (0,)

As suggested in (Wang et al., 2022), we set the threshold 7 such that 1% of the activations from the train set would be
truncated.

Virtual Logit Matching (ViM) (Wang et al., 2022): The idea behind ViM is that meaningful features are thought to lie in a
low-dimensional manifold, called the principal space P, whereas features from OOD-samples should also lie in P+, the
space orthogonal to P. P is the D-dimensional subspace spanned by the eigenvectors with the largest D eigenvalues of
the matrix FTF, where F is the matrix of all train features offsetted by u = —(WT)*b (+ denotes the Moore-Penrose

inverse). A sample with feature vector ¢ is then also offset to h= ¢ — u and can be decomposed into h =h” +h?", and
hP" is referred to as the Residual of ¢. ViM leverages the Residual and converts it to a virtual logit oy = a||/h” B |2, where

_ sz\; max, of
T <N Py
POAREIT [P
is designed to match the scale of the virtual logit to the scale of the real train logits. The virtual logit is then appended to

the original logits of the test sample, i.e. to o, and a new probability vector is computed via the softmax function. The
probability corresponding to the virtual logit is then the final OOD-score:

exp (0g)
Sy exp (o) + exp (o)

Like suggested in (Wang et al., 2022), we use D = 1000 if the dimensionality of the feature space d is d > 2048, D = 512
if 2048 > d > 768, and D = d/2 rounded to integers otherwise.

s = —

Cosine (Cos) (Techapanurak et al., 2020; Galil et al., 2023): This method computes the maximum cosine-similarity between
the features of a test-sample and embedding vectors 1. (sometimes also called concept-vector):

~T
s = max e (10)

e |[ag k[l

Ash (Ash) (Djurisic et al., 2023): Ash applies activation shaping at inference time by pruning acitvations below a certain
threshold, and then binarizing (Ash-b) or scaling (Ash-s) the remaining activations, which are then processed as usually in
the network. As suggested by the authors, we apply ash to the pre-logit feature activations.

Softmax-scaled-Cosine (SSC) (Tack et al., 2020): Normalize the rows of the weight matrix w; and the features, and
compute the cosine between the two:
Wi ¢

cosl, = ———

[willllll

Then scale by a scalar ¢ and apply the softmax, to finally use the max-softmax as OOD score:
s = max (softmax(t * 6);)

In Tack et al. (2020) the scalr s is learned, for our post-hoc setup we set s = 1.

NeCo (Nec) (Ammar et al., 2024): Compute the covariance matrix of the feature space, and project to the d eigenvectors
with largest eigenvalues with the corresponding projection matrix P. The difference in norm of the projected features and
the original features is then scaled with the max-logit and serves as OOD score.

[Po(2)|l ¢(z) " PPT¢(x)

T @ T T T e el

()]

Like suggested by the authors, we standardize data and select d such that 90% of the train variance are explained.

* ax o;
K3
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Gaussian Mixture Model (GMM or GMN) (Mukhoti et al., 2023): Estimate a Gaussian mixture model on the train features
¢(x), and use the log-probabilities as OOD score. We use GMN for Gaussian mixture model with normalized features, and
GMM for Gaussian mixture model with regular features.

NNguide (NNG) (Park et al., 2023a): ”Guide” the energy score by a nearest-neighbor score:

S = SEnergy * SKNN

where sy is @ KNN score in the normalized feature space, estimated on a subset of the train features. Like suggested by
the authors, we use 1% of the train features and K = 10 neighbors for ImageNet experiments. We also tried X = 1000,
as increasing K showed promising results in an ablation by the authors (Figure 4 in the paper), but found that it performs
worse on average than K = 10.

Relative Mahalanobis distance (rMaha) (Ren et al., 2021): A modification of the Mahalanobis distance method, thought
to improve near-OOD detection, is to additionally fit a global Gaussian distribution to the train set without taking class-
information into account:

N 1 o 1 . N
fratobal = D b Sgioba = N > (6i = figtoba) (6i — figtobar)”

%

The OOD-score is then defined as the difference between the original Mahalanobis distance and the Mahalanobis distance
w.r.t. the global Gaussian distribution:

§ = —min ((¢ — fie)E 7P — fie) " — (¢ — ﬂglobal)ﬁ:g_l(}bal(qs - ﬂglobal)T)
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