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ABSTRACT

Neural networks are traditionally represented in terms of their weights. A key
property of this representation is that there are multiple representations of a net-
work which can be obtained by permuting the order of the neurons. These rep-
resentations are generally not compatible and attempting to transfer part of a net-
work without the preceding layers is usually destructive to any learned relation-
ships. This paper proposes a method by which a neural network is represented in
terms of interactions between neurons rather than explicit weights. In addition to
reducing the number of free parameters, this encoding is agnostic to the ordering
of neurons, bypassing a key problem for weight-based representations. This al-
lows us to transplant individual neurons and layers into another network and still
maintain their functionality. This is particularly important for tasks like trans-
fer learning and neuroevolution. We show through experiments on the MNIST
and CIFAR10 datasets that this method is capable of representing networks which
achieve identical performance to direct weight representation, and that transfer
done this way preserves much of the performance between two networks that are
distant in parameter space.

1 INTRODUCTION

Neural networks are traditionally represented by their weights. This entails directly storing the
weights in a structure such as a tensor. However, this type of representation has the property that
for any given network, an equivalent network can be obtained by permuting the order of the neu-
rons along with the corresponding weights. In other words, functionally identical networks - that
is, networks with the same computation graph - can have different representations simply because
the units comprising them are defined in a different order. This implies two things: that the rep-
resentation contains unnecessary information about the ordering of neurons, and that the internal
representations for two networks are overwhelmingly likely to be incompatible.

We propose that representing the network in a way that is agnostic to the neuron order, i.e, is per-
mutation invariant with respect to the neurons, can reduce these two problems. Current methods of
reducing model size, such as pruning, quantization, tensor decomposition and knowledge distillation
manipulate the weight representations and do not directly address the issue of permutation. In this
paper, we take a different approach by thinking of networks in terms of neurons rather than weights.
We present a method of representing the network which considers neural networks as unordered sets
of neurons, building permutation invariance directly into the representation.

Our experiments with this representation show that considering networks as collections of neurons
rather than weights provides benefits in addition to reducing the size of the model. Because the
number of possible permuted representations of even a single layer is the factorial of the number
of neurons, it is extremely likely that two networks which are trained on the same task will have
incompatible representations, even if functionally similar. This means that cross-model transfer of
information is generally impossible for arbitrary models (Neyshabur et al., 2020). We show that
viewing networks as neurons rather than weights increases the robustness of the network to such
operations. This has important implications for transfer learning as well as opening the door to
population-based learning methods such as neuroevolution (Stanley et al., 2019).

In the following sections, we first present some context and motivation for considering permutation-
invariant representation, and contrast our approach with existing ones. We then introduce neuron
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Figure 1: A neural network (left) with n(i) hidden units per layer is traditionally represented by
explicitly specifying the weights of the connections, usually as a matrix or tensorW (i) of dimension
n(i−1) × n(i) (middle). We propose instead to view the network as sets of neurons (right), with
a neuron j in layer i represented as a vector z(i)

j . Weights are generated implicitly by calculating
alignment coefficients between neurons. This representation is parameter efficient and there is no
explicit ordering within each layer, rendering it permutation invariant.

embeddings, self-contained representations of individual neurons, and the corresponding represen-
tation of the network as a series of unordered sets of neurons. The key to this approach is the
self-contained nature of the neuron embeddings; weights are not fixed, but are generated dynami-
cally in an attention-inspired way allowing them to be reordered and even moved between layers and
models. We then perform experiments showing that this representation is able to achieve compara-
ble performance to weight-based representations in fewer numbers of parameters. Finally, we test
models on tasks designed to determine whether neuron-based representation transfers knowledge
across models better than weight-based representation, and show that our method leads to a larger
amount of information transferred.

2 RELATED WORK

2.1 PERMUTATION INVARIANCE IN NEURAL NETWORKS

Permutation invariance refers to the property that a function remains unchanged even when some
aspect of it is permuted. Previous work has been done on introducing various forms of permutation
invariance (PI) to neural networks, primarily focused on allowing neural networks to exhibit per-
mutation invariance over the inputs. Edwards & Storkey (2017) and Zaheer et al. (2017) introduce
methods which use pooling operations to perform permutation-invariant operations for set inputs.
Chen et al. (2014) introduce permutation invariance into the features themselves by recombining
pairs of features. Set Transformer (Lee et al., 2019) builds upon these by using self-attention to
capture higher order interactions. Sensory neurons (Tang & Ha, 2021) use similar modular units
to produce a PI policy. All these methods address permutation invariance in the inputs rather than
the network representation. Our aim is to do the opposite - to represent an arbitrary neural network
(which may or may not be permutation invariant with respect to the inputs) in a manner that is PI to
shuffling of the neurons.

Transfer Learning Transferring knowledge learned by a model from a source domain to a related
target domain (Bozinovski, 2020; Pratt, 1992) is an effective method of improving the performance
of models when target domain data is scarce. This may be done in a number of ways: by augmenting
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the dataset in the target domain with relevant or modified data points from the source domain, by
finding common features between the two domains, and directly transferring the network parameters
by reusing part of the network (Pan & Yang, 2010; Tan et al., 2018). This is generally done by
copying the first n layers of the network. It has been shown that one of the characteristics of a good
transfer is that different instances of a model trained on the same task should lie close together in
parameter space (Neyshabur et al., 2020); that is, they have compatible features and can be combined
in a non-destructive manner without severe degradation in performance. Permutation dependence
over the feature order is one source of incompatibility; even if the preceding layers generate the exact
same features, it is likely they will still be in the “wrong” order for two different representations. Our
goal in this paper is to eliminate this source of incompatibility, which may open up the possibility for
transfer learning from multiple sources or transfer of partial layers. While still reliant on the exact
features generated by preceding layers, permutation invariance ensures that the network is no longer
sensitive to the ordering of the features; thus, the network is no longer reliant on co-adaptation of
the later layers to the feature order, but only to the content of the features themselves.

Neuroevolution and Indirect Encoding Neuroevolution is the application of evolutionary meth-
ods to neural networks, involving the training of a population of networks. A key component of
many evolutionary algorithms is recombination, which merges two individuals to create an offspring
individual in order to preserve and propagate useful innovations (Eiben & Smith, 2015; Gangwani &
Peng, 2018). Applying this to neural networks has been challenging precisely because of the “per-
mutation problem” - the incompatibility of representations between networks due to permutation
- and addressing it has been a central focus of neuroevolution work (Stanley et al., 2019). Previ-
ous methods in the neuroevolution literature addressed this by looking for analogous structures in
the network to limit the impact of permutation (Stanley & Miikkulainen, 2002), or by sorting the
neurons based on their connections (Das et al., 2008). However, these methods do not scale to the
sizes of networks in modern deep learning. We propose that a more efficient solution is to build
permutation invariance into the representation, thereby bypassing the problem.

A second challenge for scaling these methods is that weights are encoded directly, meaning each
weight is specified explicitly. Indirect encoding is an alternative approach which represents the
network using a small number of parameters and uses rules to generate the weights, with each
parameter being responsible for multiple weights (Schmidhuber, 1997; Stanley & Miikkulainen,
2003). This is inspired by biological neural networks - it is clear that brains are not initialized
randomly, but rather a number of innate capabilities are encoded for in the genome in an efficient
way (Koulakov et al., 2021). However, the estimated 100 trillion connections in the human brain
(Ackerman et al., 1992) far exceeds the capacity of our DNA to represent, and thus it is necessary
to encode the information in a more efficient manner while still producing the required structure.
This concept has proved successful at allowing larger networks to be trained with evolution (Stanley
et al., 2009; Hausknecht et al., 2012; Koutnı́k et al., 2013). Modern neural network architectures can
also be viewed in this light; notably, convolution (Fukushima & Miyake, 1982; LeCun et al., 1989)
and attention (Vaswani et al., 2017) generate large numbers of effective weights. In order to achieve
better scaling, we also use indirect encoding, generating weights based on a small number of vector
representations.

Neuron-based Representation Neuron-based representations have also previously been em-
ployed in the literature, often in the context of evolving individual neurons (Moriarty & Mikkulainen,
1996; Gomez, 2003; Schmidhuber et al., 2007) or compact representations of networks (Eliasmith
& Anderson, 2002; Dürr et al., 2006; Reisinger & Miikkulainen, 2007; Karaletsos et al., 2018; Kar-
aletsos & Bui, 2020). Our work makes use of neuron-based representation to achieve permutation
invariance, but is aimed at bridging the gap between these two applications. In contrast to evolution-
ary approaches which view neurons as individually interchangable units to be optimized, our aim
is not to train individual neurons in a population-based manner but instead to represent entire pre-
trained networks and discover structures which can be transferred between networks. Compared to
previous work on full network representations, our approach not only represents single networks but
also aims to improve cross-model compatibility between multiple networks by reducing networks
down to transferable units. As such, the approach we propose is designed to make the individual
neuron representations as self-contained as possible, without any interaction with network-specific
structures such as hypernetworks.
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Attention Attention (Vaswani et al., 2017) is a highly successful mechanism which underpins
most modern models for natural language processing. The key strength of attention is its ability to
generate a large number of attention scores using only a small number of parameters, and to do so
dynamically, which can be seen as form of indirect encoding (Tang et al., 2020). In addition, it does
so in a permutation-invariant way, by only depending on the features of the two endpoints. Because
of this key property, we base our model on the attention kernel with appropriate modifications.
Attention as used in models such as Transformers (Vaswani et al., 2017) operates between the tokens
given as inputs to the network; our method differs in that we use as endpoints the neurons themselves.
This means the weights are input agnostic and tied to the neurons present in the network.

Model Compression and Tensor Decomposition Neural network compression refers to the gen-
eral goal of reducing the size of a model in order to reduce the amount of storage or computation
required without significantly impacting performance. A number of approaches have been explored
to achieve this which can be broadly classified into pruning, quantization, knowledge distillation
and tensor decomposition approaches (Gale et al., 2019; Blalock et al.; Choudhary et al., 2020;
Deng et al., 2020). The first three categories are orthogonal to our approach; although they all re-
duce the size of the model, they do so in a different manner and can be used in conjunction. The
approach we describe here is closely related to the fourth category, tensor decomposition.

Because weights in neural networks may be represented with tensors, it is possible to express the
full tensor as a product or sum of lower-rank or smaller tensors using tensor decomposition. Several
methods for providing exact or approximate decompositions exist (Kolda & Bader, 2009; Bacciu
& Mandic, 2020); commonly used methods include CP (Kiers, 2000), Tucker (Tucker, 1966) and
tensor train (Oseledets, 2011) decomposition. The method we describe in this paper can be viewed
as a low-rank decomposition of the weight tensors, similar to the methods described in Jaderberg
et al. (2014) and Yu et al. (2017). That is, for a weight matrix W ∈ Rm×n with rank r, we
approximate W with the product W = XY with X ∈ Rm×r and Y ∈ Rr×n. This reduces the
number of parameters from mn to r(m + n) (Deng et al., 2020). There are two major points of
contrast between our method and other tensor decompositions: first, our primary goal is to generate
self-contained representations of neurons and the embedding for each neuron is used twice - once
to determine the incoming weights, and once to determine the outgoing weights. For this reason,
our method imposes a symmetry constraint such that the two embeddings are identical in order to
produce a single representation of the “role” of a neuron. Second, our method allows for different
attention kernels other than the linear dot-product; thus, it is only the simplest case that can be
represented as an approximate factorization.

3 METHOD

We will first describe how our method works for a simple feedforward network. Then, we will
describe how CNNs can be represented as well. In summary, our method removes all stored weights
from the network and replaces them with a set of vector representations of the neurons present in the
network. Weights are then generated in an attention-like way, with some important modifications.

It is important that each neuron’s representation contains all the information necessary to perform
its function - thus, there is no equivalent to the query, key and value networks of attention which the
representations pass through before the weights are generated. This ensures a neuron’s representa-
tion is fully self-contained, allowing it to be transplanted into a second neural network and generate
new weights without requiring information from the original neural network.

Neuron Embedding The core idea of our method is to introduce a learnable vector embedding z
for each neuron (Figure 1). This is simply a d-dimensional vector which represents the role of the
neuron and can be trained via gradient descent. This is used to generate weight scores between it and
all neurons in the previous layer using a kernel K(·, ·). Inspired by attention, we use as the weight
the alignment score αij , calculated using a dot product kernel on the embedding z(l)i of neuron i in
layer l and the embedding z(l+1)

j of neuron j in layer l + 1 (Vaswani et al., 2017) with an optional
nonlinearity σ:
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Figure 2: Representation of a convolutional neuron. The standard representation explicitly specifies
all the weights in the kernel. Depthwise separable convolutions provide an approximate replace-
ment by splitting the kernel into a pointwise kernel, which mixes information across channels, and
a depthwise convolution which applies one spatial kernel per channel. We replace the pointwise
convolution with an implicit representation using neuron embeddings but keep the depthwise con-
volution, rendering the network permutation invariant to the ordering of filters but preserving spatial
structure. Each neuron embedding and depthwise convolution pair represents a single output filter.

αij = K(z
(l)
i , z

(l+1)
j ) = σ(z

(l)
i z

(l+1)
j

>
) (1)

This is done efficiently as a matrix operation by packing the embeddings for both layers into the
matrices Z(l) ∈ Rnl×d and Z(l+1) ∈ Rnl+1×d, where ni is the number of hidden units in the layer
i. The activation vector h(l) of layer l takes the place of the value function, giving us:

Attention(Z(l),Z(l+1),h(l)) = σ(Z(l)Z(l+1)>)h(l) (2)

This can be implemented simply by assigning the matrix of attention scores to be the weight matrix
W (l). Note that unlike the Transformer formulation of attention, we use the unscaled dot product
here. Scaling the dot product by 1√

d
corrects the variance of the product to be 1 when the input em-

beddings have variance 1; however, we find in practice it is more effective to scale the initialization
of the embeddings. Each component of the embedding is initialized to be normally distributed with
standard deviation 1√

d
or equivalently variance 1

d , where d is the dimensionality of the embedding:

zi ∼ N(0,
1

d
) (3)

This ensures the magnitude of the embedding vectors has a mean of 1, removing the need for scaling.

Bias In addition to the embedding, each neuron contains a learnable bias b in order to match the
overall function of a feedforward network. This bias has the same role as the bias in a feedforward
layer, and is added after the weights are applied. Since each bias is specific to a single neuron, it can
be considered part of the self-contained representation and moved to a different network.

Input Encoding To generate the weights for the first layer, it is necessary to provide an embedding
for each input to the network, which can be learned from the data (Devlin et al., 2019). A second
possibility is to provide predefined embeddings; for example, through positional encodings (Vaswani
et al., 2017). We tested sinusoidal positional embeddings for one and two dimensions (Vaswani
et al., 2017; Wang & Liu, 2019) as well as localized wavelets, but found that in practice, these fixed
embeddings performed poorly. We allow a model to learn the input embeddings from the dataset,
which can then be shared with subsequent models trained on the same dataset. This is important for
cross-model transfer, as it provides the two models a common basis from which to work.

5



Under review as a conference paper at ICLR 2022

Encoding CNNs CNNs present a unique challenge. For a k × k filter with n(i) input channels,
we have k2 · n(i) incoming weights. However, we only have n(i) embeddings in the layer below. In
addition, we would like to do this in a way that can be encapsulated as a single neuron, allowing it
to operate in a self-contained manner.

Our solution (Figure 2) is to employ reversed order depthwise separable convolutions (Chollet,
2017). The standard order is to apply the n(i) depthwise convolutions first, followed by the point-
wise convolution to expand the number of channels from n(i) to n(i+1). However, in order to pro-
duce self-contained representations, we would like to treat each pointwise-depthwise pair as a single
neuron; for this, we need n(i+1) depthwise kernels. Thus, we reverse the order of operations, per-
forming the pointwise convolution first to produce n(i+1) different channels in the output, and then
assign each channel its own depthwise convolution. Since the pointwise convolution can be seen as a
feedforward network along the channel dimension, we can represent this using neuron embeddings,
with one embedding per output channel. Performing the steps in reverse order is also known as a
blueprint separable convolution and exhibits improved training properties (Haase & Amthor, 2020).

4 EXPERIMENTS

We now present a series of experiments designed to test the ability of our method to represent
equivalent networks to direct weight encoding, and to evaluate its ability to preserve performance
under crossover. We use the MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky, 2009) datasets
to evaluate the models. All models were implemented in Python using the PyTorch library (Paszke
et al., 2019). For reproducibility, the code will be made available on GitHub upon publication.
Experiments were performed on a single computer with an NVIDIA RTX3090 GPU.

Hyperparameter Optimization Hyperparameters for the direct weight representation models
were manually tuned following empirical guidelines (Smith, 2018; Page, 2018) with a small random
search over learning rate and weight decay. As the focus of this paper is on the relative efficacy of the
representation methods rather than overall performance, we did not perform heavy hyperparameter
optimization. Rather, we attempt to showcase the models under similar starting conditions. As such,
the hyperparameters of the neuron embedding representations were matched to those of the direct
representations. This should favor the direct representation slightly; however, there is the possibility
that the results will differ or the performance gap will be greater under different hyperparameters.

4.1 TRAINING FROM RANDOM INITIALIZATION

Our first experiment tests the ability of our method to achieve comparable performance to weight
encoding when trained from random initialization. The intent is to test whether neuron-based rep-
resentations can be trained the same way as direct weight representations without any special tun-
ing. We compared two types of architectures: fully connected and convolutional, each using direct
weight representation, against equivalents using neuron-based representation. We chose training
settings which yielded high performance after a short amount of training for the direct weight rep-
resentations, and used the same settings without modification for the neuron representations.

All models unless otherwise specified were trained with cross-entropy loss (Kingma &
Ba, 2015), using the Adam optimizer on MNIST and SGD with momentum on CIFAR-
10. Network widths are noted in brackets, with convolutional layers denoted with a super-
script c. We test a 2-layer (400,10) and 5-layer (400,400,400,400,10) feedforward network
and a 5-layer convolutional network (16c,40c,1000,100,10) on MNIST, and a 9-layer ResNet
(64c,128c,128c,128c,256c,256c,256c,256c,10) (He et al., 2016) on CIFAR-10 based on the results of
the DAWNBench benchmark (Coleman et al., 2017; Page, 2018). For models using neuron embed-
ding, we set the nonlinearity σ to be the identity for faster training. All models use ReLU activation
for all layers except the output. Comparison was done using the best model found after 2000 steps
of training as determined by cross-validation on a holdout set of 10000 data points. With Adam, we
use a one-cycle learning rate schedule (Smith & Topin, 2019) and cosine annealing, with a learning
rate of 0.01 and batch size of 1000 which has been shown to work well in combination with this
schedule (Smith, 2018). For stochastic gradient descent, we use linear annealing with a maximum
learning rate of 2 × 10−4 obtained by hyperparameter search and a batch size of 512. The dimen-
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Dataset Model Parameters Layers Acc. (%) CE Loss
MNIST FC (direct) 318010 2 fc 98.05 0.0672
MNIST FC (emb.) 76416 2 fc 97.43 0.0999
MNIST FC (direct) 417640 5 fc 98.14 0.0710
MNIST FC (emb.) 97536 5 fc 97.44 0.1077
MNIST Conv. (direct) 160070 3 conv 2 fc 99.38 0.0294
MNIST Conv. (sep.) 84750 3 conv 2 fc 99.27 0.03732
MNIST Conv. (emb.) 51598 3 conv 2 fc 99.00 0.0412

CIFAR10 ResNet9 (direct) 2438794 8 conv 1 fc 89.40 0.3962
CIFAR10 ResNet9 (sep.) 287818 8 conv 1 fc 88.21 0.4312
CIFAR10 ResNet9 (emb.) 98298 8 conv 1 fc 86.90 0.4469

Table 1: Performance when trained from random initialization for fully connected (FC) mod-
els and convolutional (conv) models. “Direct” models use direct (explicit) weight representation.
“Sep.” models use reverse order depthwise separable convolutions (blueprint separable convolu-
tions). “Emb.” models (ours) use neuron embedding representation.

sionality of the neuron embeddings is set to 64 for fully connected models and 48 for convolutional
models.

Our results show that representation using neuron embeddings is able to achieve comparable perfor-
mance to direct weight representation, when using standard training settings without modification.
The slight difference in performance we attribute to the use of training settings optimized for direct
weight representation; as we will show next, it is not due to the smaller number of parameters lead-
ing to a gap in expressiveness for this problem. We note that training time is also not impacted, and
in some cases is actually reduced which we attribute to the smaller number of parameters.

4.2 COMPRESSION ABILITY

Our next experiment tests the ability of neuron embeddings to exactly reproduce the weights of a
reference fully connected network. This tests the expressiveness of the neuron embeddings. We
expect that if the network is able to reproduce the weights, then performance should match that of
the reference network. We tested different values for d, the embedding dimension to show the effect
of embedding expressiveness on the final accuracy.

To force the embeddings to replicate the weights, we train the embeddings by minimizing the mean
squared loss over all the generated weights when compared to the reference network. This was
chosen as it corresponds to minimizing the quantity

N∑
i=1

1

mini
‖Wi − Zi−1Z

T
i ‖2F ; (4)

that is, it approximates the full-rank decomposition of the weight matrices normalized by the number
of elements. Here Wi is the weight matrix for layer i, mi and ni are the dimensions of Wi, Zi−1
and Zi are the neuron embeddings for the layers i − 1 and i, and ‖ · ‖F is the Frobenius norm.
Models were trained using the Adam optimizer with a learning rate of 0.002 for 2000 steps.

Results are shown in Table 2. As can be seen, with sufficient d models are able to almost exactly
match the performance of a directly encoded network. Insufficient expressiveness as a result of a
too small d harms the performance of the network, but even with only 8 dimensions a significant
fraction of the knowledge was still represented (with an accuracy of 65% versus the 10% of random
chance). In all cases, the number of parameters of the neuron embedding model was smaller than
that of the fully connected reference network, despite being able to match the weights.

4.3 CROSS-MODEL COMPATIBILITY

Our next experiment tests whether neuron-based representations enable better compatibility between
different models. Our goal is to determine the degree to which the function of a neuron is pre-
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Model Free Parameters Accuracy (%) MSE
Reference 318010 97.48 -

Neuron embedding (64 dims) 76416 97.48 0.00036
Neuron embedding (32 dims) 38208 97.15 0.00053
Neuron embedding (16 dims) 19104 75.08 0.00095
Neuron embedding (8 dims) 9552 65.61 0.00177
Neuron embedding (4 dims) 4776 20.72 0.00414

Table 2: Results for training to 2-layer reference network. An embedding dimension of 64 is suffi-
cient to match the performance of this network within margin of error, while decreasing the embed-
ding dimension degrades the performance. MSE refers to the mean squared deviation of the weights
calculated by neuron embedding from the weights in the reference network. The mean-squared
amplitude of the weights in the reference network is 0.0152.

served when it is moved to a different setting. This evaluates the potential of this representation for
crossover operations in neuroevolution and cross-model transfer learning.

We trained two 2-layer fully connected models from random initialization, producing two different
networks to act as a source network and a target network. We then trained two neuron embedding
models to replicate the weights of each fully connected parent, using the same learned input encod-
ings for both. This was done by copying the learned input encodings from the target network to
the source network before training; this did not affect the weights themselves and it is possible to
replicate both the weights of the source and target network to high accuracy using the same input
embedding but different neuron embeddings (Table 3).

Linear interpolation We first interpolated between the two sets of models to determine the shape
of the loss landscape in between the models. We linearly interpolate between the weights of the di-
rect representation, and between the corresponding embedding vectors of the neuron representation.
We make no effort to pick analogous neurons for this, and corresponding embeddings and weights
are simply chosen in the order they are stored. Results of this operation are shown in Figure 3. We
observe that in both cases accuracy is impacted, but performance is similar for both representations
suggesting similar loss landscapes along the direct line connecting the models.
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Figure 3: Model accuracy under linear interpolation. Weights/embeddings are directly interpolated.

Neuron transplant Next, we tested compatibility for both pairs of models by transferring a vari-
able number of neurons in the hidden layer from the source network to the target network, which we
refer to as a crossover operation. If the internal representations are compatible, we expect models
to retain a greater degree of performance under this operation. Here, a crossover coefficient of 0.8
indicates that 80% of the neurons in the that layer of target network have been replaced and 20%
of the neurons remain. A coefficient of 1.0 indicates that the entire layer has been replaced with
the layer from the source network. Neurons are chosen arbitrarily for this, as there is no particular
ordering.
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Figure 4: Accuracy under neuron transplanting. Crossover coefficient indicates the proportion of
neurons in the layer replaced by neurons from another model. At 100% crossover, an entire layer
from the source network is directly transplanted to the recipient network without any further training.

Encoding Method Target Model
Acc. (%)

Source Model
Acc. (%)

50% Crossover
Acc. (%)

100% Crossover
Acc. (%)

Direct Encoding 97.48 97.66 61.73 9.83
Neuron Embedding 97.38 97.41 92.83 79.03

Table 3: Results for transferring a hidden layer neuron by neuron. 50% crossover refers to transfer of
50% of the neurons in the hidden layer from a source network to a target network, without modifying
the other layers. 100% crossover means that the entire layer has been transferred.

The results in Figure 4.3 and Table 3 show that transplanting neurons in the hidden layer results
in minor loss of performance for both models until roughly 1/3 of the neurons were replaced, after
which performance deteriorates rapidly. When the entire layer was transferred, performance was
close to chance for the direct encoding. This is as expected as the weights of the layer are adapted
to their original setting and do not store information in a form usable by the new model. However,
in the case of transfer through neuron embedding, we are able to preserve a larger fraction of the
relationships even when the entire layer is transplanted to a new network. We stress that the direct
encoding and the neuron embedding network represent the same networks with the same weights;
thus, the greater information transfer is due entirely to the way in which the layers are encoded.

5 CONCLUSION

In this paper we presented neuron embeddings, a method of representing a neural network in terms
of unordered sets of individual neurons. This is a parameter-efficient representation which is also
invariant to permutation of the neurons, which allows for better cross-model compatibility. Because
our method encapsulates the role of a neuron in a single compact representation, which we use to
generate the weights implicitly, we are able to transfer all or part of layers from one network neuron-
by-neuron while preserving some degree of function, even for two networks trained independently.
This opens the door to the possibility of neuroevolution at scale, as it addresses a critical roadblock
to crossover in neural networks, and could provide improvements to current population-based and
ensemble methods. In addition, the encapsulated nature of the representations may allow for evo-
lutionary methods to be applied to a single network, by treating the neurons within the network
as a population. Of interest for future work is the extension of this method to larger hierarchical
structures, which may also enable more efficient neural architecture search.

This work also has potential applications for cross-dataset knowledge transfer and transfer learning,
which we intend to investigate in more depth moving forward. For example, it may be possible to
transfer knowledge from multiple models or to improve upon existing methods of imitation learning.
We also would like to further investigate whether neuron-based representation can aid in visualizing
the patterns and knowledge contained in a neural network. If this is the case, this could lead to future
applications for interpretability.
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