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Model Breadcrumbs: Scalable Upcycling of Finetuned Foundation Models via
Sparse Task Vectors Merging

Anonymous Authors1

Abstract

The rapid development of AI systems has been
greatly influenced by foundation models. Typ-
ically, these models are fine-tuned for specific
tasks, leading to numerous task-specific versions.
This paper addresses the challenge of merging
and upcycling these fine-tuned models. We intro-
duce Model Breadcrumbs, a simple method using
sparse weight trajectories to guide model adap-
tation within a pre-trained model’s weight space.
Our approach improves performance across mul-
tiple tasks without the need for hyperparameter
tuning for each new task. Extensive experiments,
involving various models, tasks, and modalities,
demonstrate that Model Breadcrumbs provides
an efficient and effective solution for creating
and updating multi-task models, promoting a
community-driven effort for updatable machine
learning.

1. Introduction
Foundational models (Bommasani et al., 2021) have become
instrumental across multiple domains due to their extensive
scale, generality, and capacity to generalize to vast datasets.
They have driven advancements in NLP (Radford et al.,
2018; 2019; Devlin et al., 2018), computer vision(Radford
et al., 2021; Ramesh et al., 2021; Luo et al., 2020), and
other fields (Rives et al., 2021; Yin et al., 2020; Rothchild
et al., 2021) through fine-tuning for specific tasks. However,
scaling these models to perform multiple tasks presents
challenges, particularly in practical scenarios where joint
training is infeasible due to data privacy or computational
constraints (Cossu et al., 2022).

The widespread adoption of foundational models has led to
a proliferation of fine-tuned models with standardized ar-
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chitectures (Bommasani et al., 2021). These models, while
useful for inference, remain largely untapped beyond their
conventional uses. Recent developments in neural network
weight averaging techniques have sought to repurpose these
fine-tuned models, enabling scalable and efficient model
merging (Ramé et al., 2022; Ilharco et al., 2022a; Choshen
et al., 2022; Yadav et al., 2023).

Task Arithmetic, introduced by Ilharco et al. (2022a), re-
fines a foundation model by averaging the differences be-
tween multiple fine-tuned models and the foundation model.
Despite its potential, this method faces limitations with nu-
merous tasks due to its reliance on hyperparameter tuning
and the accumulation of noise.

To address these challenges, we propose Model Bread-
crumbs, a method designed to tackle scalability, reduce
noise in merging tasks, and generalize hyperparameters ef-
fectively. Model Breadcrumbs constructs multi-task models
from pre-existing fine-tuned models, overcoming the limita-
tions of existing methods (see Figure 1). We demonstrate
its effectiveness through extensive evaluations, showing that
Model Breadcrumbs yields competitive multi-task models
with robust performance across varying tasks. Our key con-
tributions are: 1. Introducing a simple and scalable approach
for merging models and reusing pre-existing fine-tuned mod-
els to construct multi-task models, often outperforming their
individual fine-tuned counterparts. 2. We empirically show
the robustness of our approach to hyperparameter variations
and its ability to generalize with the increasing number of
tasks.

2. Related Work
Recent studies in the literature have explored the merg-
ing of models trained from scratch with different initial-
izations (Ainsworth et al., 2022; Stoica et al., 2023). One
of the main challenges in this type of model merging is
aligning the models before the actual merger. Therefore,
research in this branch primarily focuses on finding permu-
tations between networks to bring them into alignment with
a reference model, enabling the subsequent merger of the
two models in weight space. Our work, on the other hand,
distinguishes itself from this line of research, as we concen-
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trate on the model merging of networks that share the same
initialization, specifically initialized by a foundation model.

Neyshabur et al. (2020) highlighted the benefits of linearly
interpolating two fine-tuned models originating from the
same pre-trained model. They showed that this technique
often yields a model that outperforms both of the original
fine-tuned models. This discovery sparked subsequent in-
vestigations into the merging of fine-tuned models derived
from a single foundation model, exploring its potential and
practical applications. Wortsman et al. (2022) demonstrated
that models fine-tuned on the same dataset with different
hyperparameters can be combined together using a weighted
average to yield an overall higher performing model. Un-
like our work they did not consider merging models from
different datasets and tasks. Choshen et al. (2022) merged
models from multiple trained models in order to create a
better pretrained model to be used for downstream tasks.
Unlike our work they do not demonstrate or study the cre-
ation of multi-task ability through the merging. Matena and
Raffel (2022) considered merging of multiple fine-tuned
models originating from the same pre-trained model, trained
on diverse datasets. The merger operation combines a series
of fine-tuned models using a weighted average determined
by the Fisher information matrix (Myung, 2003). However,
computing the Fisher information matrix, as well as finding
other required hyperparameters for this approach, becomes
increasingly computationally expensive as the number of
models to be merged grows. Therefore, it faces challenges
when applied at scale. In contrast, our approach is com-
putationally efficient, and as we will show in Section 4,
its hyperparameters exhibit the ability to generalize to the
scenarios where a large number of models are to be merged.

A related study to ours is conducted by Ilharco et al. (2022a),
introducing a method named Task Arithmetic for model
merging. Their approach begins by forming Task Vectors,
representing the weight differences between pre-trained
and fine-tuned weights for each task. The merged model’s
weights are then obtained by adding a scaled sum of these
task vectors to the pre-trained weights. However, their
approach necessitates a validation set for each new task,
which adds complexity and computational overhead, cou-
pled with an increasing accumulation of noise as more tasks
are merged to the foundation model. A concurrent study by
Yadav et al. (2023) presents a method named TIES. Like
the Task Arithmetic method (Ilharco et al., 2022a), TIES
initially constructs a set of Task Vectors. These vectors
undergo a masking process to eliminate interfering weights,
identified as a percentage of overall weights with low mag-
nitudes. The remaining unmasked weights undergo a sign
alignment operation to determine their polarity. Finally,
a scaled sum merges the task vectors with the pre-trained
model. Our approach differs from TIES in two key aspects.
Firstly, we apply masking to both very large and small mag-

Foundation
Model

Mult-task
Model

Masking
Outliers in
Fine-tuning
Trajectories

Masked Trajectories
Applied to The

Foundation Model

Fine-tuned
Models

Figure 1. Method overview. Starting with a fine-tuned foundational
model, we form task vectors by subtracting pre-trained model
weights from each fine-tuned model. We then apply a masking
operation to each layer, filtering out outliers and small values.
Finally, the masked task vectors are aggregated and combined with
the pre-trained model to create a unified multi-task model.

nitude weights of the task vectors to minimize interference,
whereas TIES focuses solely on small magnitude weights.
Secondly, our masking strategy employs layer-wise masking
as opposed to overall masking. Notably, in the context of
task vectors, overall masking of small magnitude weights
typically targets weights in the early layers (Matena & Raf-
fel, 2022).

3. Model Breadcrumbs Framework
The Model Breadcrumbs framework is designed to enable
the construction of multi-task models from pre-existing fine-
tuned foundation models without the need for further train-
ing. The central idea is to merge models and aggregate
valuable knowledge for the resulting multi-task model while
filtering out potential harmful perturbations that could im-
pact its performance. This section provides an overview of
the process for acquiring and merging Model Breadcrumbs.

To start generating Model Breadcrumbs, we begin with a
pre-trained foundation model that has undergone fine-tuning
for various auxiliary tasks. Denoting the weights of the
foundation model as θ, after fine-tuning on a specific task t,
the weights are transformed into θ′t. The initial step involves
creating task vectors by calculating the weight differences
between θ′t and θ, resulting in θdt .

θdt = θ′t − θ (1)

Note that θdt contains both (a) large outliers, indicating sub-
stantial deviations from the pre-trained starting point, and
(b) negligible differences representing minor perturbations
from the foundation model’s weights. The presence of these
extremes can impact the effectiveness of the resulting multi-
task model upon merging. To address this concern, we
implement a masking process that filters out both large out-
liers and small perturbations.

In each layer L, we mask out the extreme tails of the abso-
lute magnitude distribution of θdt , using γ and β as thresh-
olds for the right and left tails, respectively. Let wL

i rep-
resent the index of the weights sorted by their absolute
magnitude in layer L and i the order in the sort (lowest to
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Table 1. The evaluation of the above merging strategies over 8 tasks
using ViT-B-32 reveals the advantage of Breadcrumbs over other
merging methods. Note that not only Fisher Merging (Matena
& Raffel, 2022) lags behind both Task Arithmetic (Ilharco et al.,
2022a) and Model Breadcrumbs, it also requires significantly more
computational resources.

Method Avg. Normalized Acc.

Breadcrumbs 83.35
Task Arithmetic 77.66
Fisher Merging 75.11
Task Arithmeticw/ random masking 74.00

highest). The mask mβ,γ
L for the layer L is defined as:

mβ,γ
L [wi] =

{
0 if i ≤ β or i ≥ γ

1 otherwise
(2)

The masked weights are set to zero in θdt or returned to
their respective pre-training weights in θ′t. Aggregating
mβ,γ

L over all layers, for task t, results in the final mask
mβ,γ

t . Next, we apply the mask mβ,γ
t to the task vectors

θdt . We now have a set of weight differences that define a
trajectory within the weight space of the foundation model.
Traversing this trajectory allows us to effectively transfer
the knowledge accumulated during fine-tuning across tasks,
while filtering out the harmful perturbations. For a total of
T tasks, we assemble a multi-task model θ∗ by following
the trajectories defined by the Model Breadcrumbs with a
specific strength parameter α. The formation of this multi-
task model is expressed in Eq. 3. Furthermore, Appendix A
describes the pseudocode of our algorithm.

θ∗ = θ + α
∑
t∈T

mβ,γ
t .θdt (3)

4. Experiments
In this section, we evaluate the Model Breadcrumbs frame-
work through a series of experiments focusing on three key
aspects: 1. Scalability and Performance: Incrementally
adding up to 8 vision tasks to assess the performance of
merged Model Breadcrumbs. 2. Hyperparameter Gener-
alization: We explore how the hyperparameters introduced
by Model Breadcrumbs—α, β, and γ—generalize over the
number of datasets. 3. Target Task Improvement: Enhanc-
ing a fine-tuned model’s performance on a target task by
merging related tasks into it.

We follow the benchmarks and settings used by Ilharco et
al. (2022a) for meaningful comparison. Results are pre-
sented using normalized accuracy, calculated as the ratio
of accuracy achieved by the merged model to that of the
fine-tuned model:

Normalized Accuracy =
Accuracy of Merged Model

Accuracy of Fine-tuned Model
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(a) At each point, evaluation is per-
formed over all 8 tasks.
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(b) At each point, evaluation is per-
formed only over the observed tasks.

Figure 3. The solid line is
the avg. normalized accu-
racy across all evaluation
points. Each data point
corresponds to an exper-
iment involving a subset
of the 8 tasks under study.
Notably, it is evident that
the Model Breadcrumbs
(with 91% sparsity), con-
sistently outperform the
Task Arithmetic (Ilharco
et al., 2022a). Specifi-
cally, in the experiment in-
volving all eight tasks, the
Model Breadcrumbs out-
perform the Task Arith-
metic by a substantial mar-
gin of 5.7%.

A fine-tuned model has a normalized accuracy value of
1. Average normalized accuracy is the mean normalized
accuracy across multiple tasks. Our experiments cover both
Vision and NLP domains. For details on datasets, models,
and configurations, see Appendix B.

4.1. Merging Model Breadcrumbs

In this section, we explore the scalability and performance
of merged Model Breadcrumbs as we progressively include
tasks, reaching a total of 8 in our investigation, as detailed
in Appendix B. Merging enables the creation of multi-task
models that can excel across various tasks simultaneously.
This versatility is valuable both in scenarios where we have
multiple privately fine-tuned models as well as in cases
where we have access to publicly available fine-tuned mod-
els. This allows the extraction of existing knowledge from
these models without the need for extra training or access
to additional training data. Table 1 presents a comparison
between Model Breadcrumbs with 91% sparsity (β = 90%,
γ = 99%), the recently proposed Task Arithmetic (Ilharco
et al., 2022a), and Fisher Merging (Matena & Raffel, 2022)
across 8 tasks, using ViT-B-32 model. Model Breadcrumbs
outperforms all considered methods by a substantial mar-
gin. Fisher Merging (Matena & Raffel, 2022) lags behind
both Task Arithmetic (Ilharco et al., 2022a) and Model
Breadcrumbs, and notably, it requires significantly more
computational resources. Therefore, we proceed with the
rest of our studies without evaluating Fisher Merging.

In Figure 3, we assess all possible task subsets of the 8 tasks
detailed in Section B, amounting to a total of 256 = 28

combinations, under two settings: 1. evaluation over all
8 tasks and, 2. evaluation only on the subset of tasks that
have been observed. As we can see in Figure 2a merg-
ing Model Breadcrumbs (91% sparsity) results in superior
multi-task models compared to the Task Arithmetic (Ilharco
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Algo. / Data MRPC RTE CoLA SST-2

Zero-shot 74.8 52.7 8.29 92.7
FT 87.9 ±0.68 76.2 ±0.46 51.6 ±0.37 93.3 ±0.35
FT + TA 88.6 ±0.59 76.4 ±0.40 52.1 ±0.32 93.5 ±0.31
FT + Ours 90.0 ±0.50 77.5 ±0.38 53.2 ±0.34 94.4 ±0.32

Table 2. Model merging enhances the fine-tuned (FT in ta-
ble) models. Specifically, the merger of Breadcrumbs (ours
in table) yields higher-performing models without requiring
additional training data or combining with models trained
on similar data. Values represent the average performance
over 20 runs, followed by the standard error. TA stands for
Task Arithmetic.

et al., 2022a). Furthermore, the performance gap between
these two approaches increases as more tasks are observed,
resulting in vastly superior multi-task models when more
Model Breadcrumbs are available. In Figure 2b we can
see that for small task numbers the resulting merged model
performs closely to that of the multiple fine-tuned models
although the gap increases as more tasks are added. Model
Breadcrumbs again proves to be more performance that Task
Arithmetic (Ilharco et al., 2022a) in this setting.

4.2. Validation-Free Setting
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Figure 4. Validation-Free Setting. Using
the ViT-B-32 model, we tune hyperpa-
rameters for Breadcrumbs and Task Arith-
metic based on the first few tasks. Subse-
quent tasks are added without further vali-
dation. Breadcrumbs significantly outper-
forms Task Arithmetic in this setting.

In Section 4.1, we
compared Model
Breadcrumbs
and Task Arith-
metic (Ilharco
et al., 2022a)
under their re-
spective optimal
hyperparameters.
These hyperparam-
eters were tuned
based on model
performance on
the validation
dataset for each subset of tasks following (Ilharco et al.,
2022a). However, as the number of tasks increases, the
search for optimal hyperparameters becomes increasingly
resource-intensive. Furthermore, the need for a validation
set from each task being added can be restrictive due to
privacy concerns or due to the unavailability of additional
validation data. Thus, we consider a new setting where
hyperparamters are tuned based on a few tasks, and
subsequent tasks are added using these pre-determined
hyperparameters.

The results, shown in Figure 4, reveal that the hyperparame-
ters of Model Breadcrumbs exhibit a high degree of general-
izability. For the ViT-B-32 model, optimal hyperparameters
remain consistent across scenarios with three or more tasks,
up to the 8-task scenario. This stability in hyperparameter
settings persists with increasing model scale, as demon-
strated in additional experiments detailed in Appendix C.
Motivated by these results, we extended the evaluation to a
longer task sequence of 200 tasks using the ViT-L-14 model,
which is detailed in Appendix C. Despite the larger task
sequence, Model Breadcrumbs consistently outperforms
Task Arithmetic (Ilharco et al., 2022a), highlighting the ro-

bustness and generalizability of its hyperparameters. The
stability in hyperparameter settings simplifies implementa-
tion, reduces the need for extensive tuning, and enhances
the practicality and ease of use of Model Breadcrumbs in
real-world multi-task learning scenarios. This fundamental
divergence underscores the substantial advantage of Model
Breadcrumbs over Task Arithmetic (Ilharco et al., 2022a).

4.3. Target Task Improvement via Model Merging

We explore the potential of improving a single target task’s
performance through model merging, switching to NLP
tasks to demonstrate the method’s cross-modality effective-
ness. We fine-tuned the T5-base model (Raffel et al., 2020)
for 4 GLUE tasks (Wang et al., 2018) and merged six pub-
licly available fine-tuned T5-base models with each of them
(details in Appendix B). Table 2 compares Zeroshot, pure
fine-tuning, Task Arithmetic (Ilharco et al., 2022a), and
Breadcrumbs. The results show that Breadcrumbs consis-
tently enhances fine-tuned model performance, outperform-
ing other methods without additional training or data from
the same dataset. This highlights Model Breadcrumbs’ ver-
satility and effectiveness across diverse tasks.

5. Conclusions
We introduced Model Breadcrumbs, a simple and effective
method for building multi-task models from existing fine-
tuned foundation models. Our experiments demonstrate
its ability to enhance performance across multiple tasks
with stable and generalizable hyperparameters, making it
practical for real-world scenarios. Our experiments show
that larger models benefit more, narrowing the performance
gap with individual fine-tuned models. Additionally, our
NLP experiments highlight its versatility across different
modalities.

Model Breadcrumbs’ performance depends on the qual-
ity of the initial fine-tuned models, with issues such as
poor generalization potentially propagating. Future research
should focus on mitigating these limitations and explor-
ing advanced aggregation techniques. As tasks increase,
expanding model capacity will be crucial for maintaining
performance. In conclusion, Model Breadcrumbs excels in
simplicity, efficiency, and effectiveness for multi-task mod-
els. By leveraging publicly available fine-tuned models, it
supports community-driven model refinement and updat-
able machine learning, contributing to efficient and scalable
multi-task learning solutions.
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Table 3. Data statistics.
Dataset Training Validation Testing Classes

Cars 7,330 814 8041 196
DTD 3,384 376 1,880 47
EuroSAT 21,600 2,700 2,700 10
GTSRB 23,976 2,664 12,630 43
MNIST 55,000 5,000 10,000 10
RESISC45 17,010 1,890 6,300 45
SUN397 17,865 1,985 19,850 397
SVHN 68,257 5,000 26,032 10

A. Algorithm: Model Breadcrumbs
In this section, we have a closer look at the Model Breadcrumbs algorithm for model merging, which was introduced in
Section 3. The algorithm is given below.
Algorithm 1 Model merging via Breadcrumbs.

1: Input: Foundation model θ, Fine-tuned models {θ′t}
n
t=1, α, β, and γ

2: Output: Multi-task model θ∗

3: for t = 1 to n do
4: θdt ← θ′t − θ /*Create task direction.*/
5: for each layer layer in Layers(θ) do
6: p← |θdt,layer| /*Record abs. value of task direction at current layer*/
7: mγ

t,layer ← mask topk percent(p, k = γ) /*Generate mask for top k percent of weights*/

8: mβ
t,layer ← mask bottomk percent(p, k = β) /*Generate mask for bottom k percent of weights*/

9: mβ,γ
t,layer ← merge masks(mβ

t,layer,m
γ
t,layer)

10: end for
11: mβ,γ

t ← stack masks

({
mβ,γ

t,layer

}
layer∈Layers(θ)

)
/*Generate 1 mask per fine-tuned model*/

12: end for
13: θ∗ ← θ + α

∑
t∈T mβ,γ

t · θdt /*Generate the multi-task model*/
14: Return θ∗

B. Data, Models, and Configurations
In Section 4.1, 4.2, C, and D, we assess our findings using an extensive set of 8 datasets: Cars (Krause et al., 2013),
DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), GTSRB (Houben et al., 2013), MNIST (LeCun et al., 2010),
RESISC45 (Cheng et al., 2017), SUN397 (Xiao et al., 2010), and SVHN (Netzer et al., 2011) (see Tabel 3 for more details).
We fine-tune various CLIP models (Radford et al., 2021) (ViT-B-32, ViT-B-16, and ViT-L-14) following a procedure similar
to (Ilharco et al., 2022b), our fine-tuning comprises 2000 iterations with a batch size of 128, a learning rate set to 1e-5, and a
cosine annealing learning rate schedule with 200 warm-up steps. The AdamW optimizer (Loshchilov & Hutter, 2017) with
a weight decay of 0.1 is employed for optimization.

Throughout the fine-tuning process, we freeze the weights of CLIP’s text encoder classification layer. This ensures no
introduction of additional learnable parameters, a strategy validated in prior work (Ilharco et al., 2022b).

In Section 4.3, we apply our approach to the NLP domain, specifically investigating four GLUE tasks (Wang et al., 2018)
(MRPC (Dolan & Brockett, 2005), RTE (Wang et al., 2018), CoLA (Warstadt et al., 2019), and SST-2 (Socher et al., 2013))
based on the benchmarks used by (Ilharco et al., 2022a; Wortsman et al., 2022). Our process involves fine-tuning the
T5-base model (Raffel et al., 2020) on these datasets and subsequently merging publicly available fine-tuned models from
other datasets (IMDB (Maas et al., 2011), RACE (Lai et al., 2017), QASC (Khot et al., 2020), MultiNews (Fabbri et al.,
2019), SQuAD (Rajpurkar et al., 2016), and CommonGen (Lin et al., 2019)) into each of them. We fine-tune the T5-base
model (Raffel et al., 2020) on MRPC (Dolan & Brockett, 2005), RTE (Wang et al., 2018), CoLA (Warstadt et al., 2019), and
SST-2 (Socher et al., 2013). Our fine-tuning process utilizes a batch size of 32, a learning rate of 1e-5, and lasts for 5 epochs
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(a) At each point, evaluation is performed over all 8 tasks (i.e
currently merged and the remaining unmerged tasks).
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Figure 5. Comparative performance analysis of Model Breadcrumbs and Task Arithmetic (Ilharco et al., 2022a) methods across varying
CLIP model scales (ViT-B-32, ViT-B-16, and ViT-L-14) as the number of tasks increases. The solid line represents the averaged
normalized accuracy across all evaluation points. Each data point corresponds to an experiment involving a subset of the 8 tasks under
study. Our findings highlight the potential of larger-scale models to mitigate performance degradation and, as seen in Figure 5b, the
capability of Model Breadcrumbs to produce multi-task models that surpass individual fine-tuned models for specific tasks.

using the AdamW optimizer with a linear learning rate schedule. We use a create a validation set from the training data
equal in size to the test set to pick the best model. The publicly available fine-tuned models are sourced from the Hugging
Face hub1, and the specific models can be accessed via the following links:

• IMDB: mrm8488/t5-base-finetuned-imdb-sentiment

• RACE: mrm8488/t5-base-finetuned-race

• QASC: mrm8488/t5-base-finetuned-qasc

• MultiNews: mrm8488/t5-base-finetuned-summarize-news

• SQuAD: mrm8488/t5-base-finetuned-question-generation-ap

• CommonGen: mrm8488/t5-base-finetuned-common gen

C. Effect of Scale
We explore the impact of using larger CLIP models by comparing ViT-B-32, ViT-B-16, and ViT-L-14 models. Optimal
Model Breadcrumbs were found at 90% (β = 90%, γ = 99%), 90% (β = 90%, γ = 99.2%), and 85% (β = 85%,
γ = 99%) sparsity respectively. As shown in Figure 5, larger models significantly enhance performance for both Model
Breadcrumbs and the Task Arithmetic (Ilharco et al., 2022a) baseline. Adding more tasks improves the capacity to construct
better multi-task models, with larger models showing superior results.

In Figure 5a, using the ViT-L-14 model and considering 8 tasks, merging Model Breadcrumbs achieves 91.48% of the
performance of 8 individual fine-tuned models, significantly reducing inference time and compute resources with only a
minor performance loss. Figure 5b indicates that performance decline when merging tasks can be mitigated by using larger
models. For ViT-L-14, Model Breadcrumbs often match or exceed the performance of individual fine-tuned models when
merging tasks.

We further examined task merging for ViT-L-14 with two tasks. Figure 6 shows that merging tasks with Model Breadcrumbs
generally improves performance on both tasks, outperforming Task Arithmetic (Ilharco et al., 2022a). Model Breadcrumbs
consistently produce multi-task models that surpass Task Arithmetic versions, highlighting its potential to enhance task-
specific performance.

1https://huggingface.co/models
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Figure 6. Comparison of Model Breadcrumbs and Task Arithmetic (Ilharco et al., 2022a) in the merger of task pairs, revealing improved
accuracy on both tasks and a higher frequency of multi-task models surpassing individual fine-tuned accuracy levels when employing
Model Breadcrumbs.
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Figure 7. The 200-task sequence originates from the ImageNet dataset (Deng et al., 2009), created by dividing the data into 200 5-class
classification tasks. After encountering 10 tasks using the ViT-L-14 model, the best hyperparameters for each method (Breadcrumbs with
85% sparsity and Task Arithmetic (Ilharco et al., 2022a)) are selected and fixed. Each point on the plot represents the evaluation of the
method over all tasks observed up to that point. With an increasing number of tasks, Model Breadcrumbs consistently outperforms Task
Arithmetic (Ilharco et al., 2022a) by a substantial margin, highlighting the robustness of hyperparameters in the Model Breadcrumbs
approach.

We also studied the generalization of hyperparameters with larger models. Figure 8 shows that Model Breadcrumbs
hyperparameters are highly generalizable across tasks, consistent with our results for ViT-B-32 (see Section 4.2). For ViT-L-
14, the hyperparameters remain stable beyond one task, underscoring the robustness and versatility of Model Breadcrumbs.
Task Arithmetic (Ilharco et al., 2022a) quickly collapses in performance as tasks increase.

To further test generalizability, we split ImageNet data (Deng et al., 2009) into 200 tasks. After finding optimal hyperparam-
eters using 10 tasks, we incrementally merged all 200 tasks. Figure 7 shows Model Breadcrumbs (85% sparsity: β = 85%,
γ = 99.3%) consistently outperforming Task Arithmetic, demonstrating the approach’s scalability and robustness.

In summary, Model Breadcrumbs exhibit stable hyperparameters, simplifying implementation and reducing the need for
extensive tuning. This stability offers a substantial advantage in real-world multi-task learning scenarios compared to Task
Arithmetic.

D. Ablations
In this section, we perform ablations to examine alternative design decisions within the Model Breadcrumbs method.
Specifically, we explore different approaches for constructing the masking operation, namely: 1. Bottom-Weight Masking:
Masking only the bottom-most smallest absolute magnitude weights per layer. 2. Top-Weight Masking: Masking only the
top largest absolute magnitude weights per layer. We compare these alternatives to the full Model Breadcrumbs approach,
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Figure 8. Validation free setting using the ViT-L-14 model. The Model Breadcrumbs method was only tune for the 1 task scenario and
evaluate on the additional tasks using those hyperparameters, though the Task Arithmetic appraoch was given more chances to adjust its
hyperparameters (task 1, 2, and 3). We observe that Breadcrumbs substantially outperforms task vectors in this setting.

which encompasses both (1) and (2), as well as the Task Arithmetic (Ilharco et al., 2022a) method, which lacks any masking.
In our investigation, we conduct a grid search to identify the optimal hyperparameters for each of the four configurations.
We assess the resulting multi-task models on 8 tasks discussed in Section B. The results are shown in Figure 9.

Our findings reveal two key insights: (i) both forms of weight masking, as employed in Model Breadcrumbs, are essential for
achieving competitive performance. Model Breadcrumbs, which combines both bottom and top weight masking, emerges as
the most effective approach. (ii) The grid search for hyperparameters within the Model Breadcrumbs approach yields a
higher distribution of high-performance multi-task models compared to the other three settings. Furthermore, there is much
lower variation in the overall performance distribution of the multi-task models produced by the Model Breadcrumbs. These
observations underscore the robustness of Model Breadcrumbs to variations in hyperparameter settings, further enhancing
its practicality and reliability in real-world applications.

In Figure 10, we examine the cosine similarity between tasks using Model Breadcrumbs and Task Arithmetic (Ilharco et al.,
2022a). Most tasks show orthogonality, indicating minimal side effects upon merging. However, upon closer inspection,
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Breadcrumbs Under Microscope: an Ablation Study Figure 9. Performance
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reveals: Model Breadcrumbs
yields a higher distribution of
high-performance multi-task
models, underlining its
robustness towards hyperpa-
rameter perturbations. Model
Breadcrumbs produces the
highest performing multi-task
model. The number on top
of each violin indicates the
performance of the highest
performing model of that
setting.
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Figure 10. Comparison of Cosine Similarity Between Tasks in Model Breadcrumbs and Task Arithmetic. The figure illustrates the cosine
similarity distribution among tasks, highlighting how Model Breadcrumbs enforces greater orthogonality, leading to reduced interference
during model merging.
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Figure 11. Influence of hyperparameters on model performance using the ViT-B-32 model across eight vision tasks. For ease of readability,
in this part we use β and γ to represent how much weights have been masked. It shows the relationships between α and β, and between β
and γ, highlighting the stability of hyperparameters across the possible combinations.

semantically similar tasks (e.g., MNIST (LeCun et al., 2010), SVHN (Netzer et al., 2011), and GTSRB (Houben et al., 2013))
exhibit higher cosine similarity, suggesting non-orthogonality. This similarity could introduce interference during merging.
In contrast, Model Breadcrumbs pushes all cosine similarity values closer to zero, reinforcing orthogonality. This reduction
in interference could explain the enhance performance of the resulting multi-task models when using Breadcrumbs.

In Figure 11, we demonstrate the impact of hyperparameters on the performance of models using the ViT-B-32 model,
assessed across eight vision tasks outlined in Section B. For ease of readability, in this part we use β and γ to represent
how much weights have been masked. Figure 11a examines the relationship between α and β, the primary determinants
of task vector sparsity. As β increases and more weights are masked, large alphas, which amplify the remaining weights’
contributions, become less tolerable, necessitating lower α’s as β grows. Upon identifying optimal α and β values, we
investigate gamma. In Figure 11b, we depict the relationship between β and gamma. Regardless of beta’s value, the γ that
optimizes a combination of α and β tends to hover around 1%, with lower betas allowing for higher gammas and vice versa.
Across both figures, we consistently observe that numerous combinations of alpha, beta, and γ result in high-performing
merged models, as previously noted in Figure 9.
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Figure 12. Comparison of Model Breadcrumbs and TIES merging methods across tasks, illustrating Model Breadcrumbs’ consistent
outperformance, with the performance gap widening as tasks increase. The results underscore the superior practical performance gains of
Model Breadcrumbs at scale.

E. TIES Merging
A concurrent study by Yadav et al. (Yadav et al., 2023) presents a method named TIES. Like the Task Arithmetic
method (Ilharco et al., 2022a), TIES initially constructs a set of Task Vectors. These vectors undergo a masking process to
eliminate interfering weights, identified as a percentage of overall weights with low magnitudes. The remaining unmasked
weights undergo a sign alignment operation to determine their polarity. Finally, a scaled sum merges the task vectors with
the pre-trained model.

Our approach differs from TIES in two key aspects. Firstly, we apply masking to both very large and small magnitude
weights of the task vectors to minimize interference, whereas TIES focuses solely on small magnitude weights. Secondly,
our masking strategy employs layer-wise masking, wherein a certain percentage of weights are masked based on their
magnitude relative to the weights within that layer, as opposed to overall masking, which ranks all model weights by
magnitude and masks the smallest ones. Notably, in the context of task vectors, overall masking typically targets weights in
the early layers (Matena & Raffel, 2022).

In Figure 12, we compare our method to TIES (Yadav et al., 2023), where at each point: (I) We show results for ViT-B-32
model where we found the best hyper-parameters for that specific number of tasks for each method. (II) We show the average
normalized accuracy over all subsets of the 8 tasks detailed in Section B, amounting to a total of 256 = 28 combinations.
(III) The evaluation is performed over all 8 tasks at each point. As we can see from Figure 12, Model Breadcrumbs merging
consistently outperforms the TIES method at each point, with the performance gap widening as more tasks are considered.
This highlights the significant practical performance advantages of Model Breadcrumbs on a larger scale.
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